Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Sep 28;77(Pt 10):982–988. doi: 10.1107/S2056989021009786

Geometrical variations of two manganese(II) complexes with closely related quinoline-based tripodal ligands

Steven T Frey a,*, Jasper G Ballot a, Allison Hands a, Haley A Cirka a, Katheryn C Rinaolo a, Nich N Phalkun a, Manpreet Kaur b, Jerry P Jasinski b,
PMCID: PMC8491528  PMID: 34667623

The crystal structures of two manganese(II) complexes have been determined. The manganese(II) centers of each structure are six-coordinate with a distorted octa­hedral geometry. Although the bis­(quinolin-2-ylmeth­yl)ethanamine ligands differ only by a methyl group, the structure of one complex is dimeric with bridging acetate ligands and exhibits a trans coordination and coplanarity of the quinolyl moieties, while the second complex is monomeric with a cis coordination of the quinolyl groups.

Keywords: crystal structure, manganese(II), tripodal ligand, quinoline, 6-coordinate, cis/trans

Abstract

Structural analyses of the compounds di-μ-acetato-κ4 O:O′-bis­{[2-meth­oxy-N,N-bis­(quinolin-2-ylmeth­yl)ethanamine-κ4 N,N′,N′′,O]manganese(II)} bis­(tetra­phen­yl­borate) di­chloro­methane 1.45-solvate, [Mn2(C23O2)2(C23H23N3O)2](C24H20B)·1.45CH2Cl2 or [Mn(DQMEA)(μ-OAc)2Mn(DQMEA)](BPh4)2·1.45CH2Cl2 or [1](BPh4)2·1.45CH2Cl2, and (acetato-κO)[2-hy­droxy-N,N-bis(quinolin-2-ylmeth­yl)ethanamine-κ4 N,N′,N′′,O](methanol-κO)manganese(II) tetra­phenyl­borate methanol monosolvate, [Mn(CH3COO)(C22H21N3O)(CH3OH)](C24H20B)·CH3OH or [Mn(DQEA)(OAc)(CH3OH)]BPh4·CH3OH or [2]BPh4·CH3OH, by single-crystal X-ray diffraction reveal distinct differences in the geometry of coordination of the tripodal DQEA and DQMEA ligands to MnII ions. In the asymmetric unit, compound [1](BPh4)2·(CH2Cl2)1.45 crystallizes as a dimer in which each manganese(II) center is coordinated by the central amine nitro­gen, the nitro­gen atom of each quinoline group, and the meth­oxy-oxygen of the tetra­dentate DQMEA ligand, and two bridging-acetate oxygen atoms. The symmetric MnII centers have a distorted, octa­hedral geometry in which the quinoline nitro­gen atoms are trans to each other resulting in co-planarity of the quinoline rings. For each MnII center, a coordinated acetate oxygen participates in C—H⋯O hydrogen-bonding inter­actions with the two quinolyl moieties, further stabilizing the trans structure. Within the crystal, weak ππ stacking inter­actions and inter­molecular cation–anion inter­actions stabilize the crystal packing. In the asymmetric unit, compound [2]BPh4·CH3OH crystallizes as a monomer in which the manganese(II) ion is coordinated to the central nitro­gen, the nitro­gen atom of each quinoline group, and the alcohol oxygen of the tetra­dentate DQEA ligand, an oxygen atom of OAc, and the oxygen atom of a methanol ligand. The geometry of the MnII center in [2]BPh4·CH3OH is also a distorted octa­hedron, but the quinoline nitro­gen atoms are cis to each other in this structure. Hydrogen bonding between the acetate oxygen atoms and hydroxyl (O—H⋯O) and quinolyl (C—H⋯O and N—H⋯O) moieties of the DQEA ligand stabilize the complex in this cis configuration. Within the crystal, dimerization of complexes occurs by the formation of a pair of inter­molecular O3—H3⋯O2 hydrogen bonds between the coordinated hydroxyl oxygen of the DQEA ligand of one complex and an acetate oxygen of another. Additional hydrogen-bonding and inter­molecular cation–anion inter­actions contribute to the crystal packing.

Chemical context  

Synthetic manganese(II) compounds have gained attention in recent years owing to their anti­oxidant (Signorella et al., 2018; Batinić-Haberle et al., 2010, 2014; Iranzo, 2011; Bani & Bencini, 2012; Miriyala et al., 2012; Policar, 2016), anti­cancer (Icsel et al., 2020; Prihantono et al., 2020; Liu et al., 2015; Wang et al., 2014; Zhou et al., 2011), anti­bacterial (Saha et al., 2020; Maurya et al., 2011, Dong et al., 2017), optoelectronic (Qin et al., 2020), catalytic (Sarma et al., 2019), and MRI enhancement (Wang et al., 2018, Boros et al., 2015, Gale et al., 2015) properties. Manganese(II) tends to be less toxic than other metal ions (Iranzo, 2011; Bani & Bencini, 2012), can often reversibly access the MnIII oxidation state, and exhibits luminescence in some instances (Qin et al., 2020). The ability to form stable, efficacious MnII compounds for these applications is dependent upon the nature of the ligands employed, their coord­in­ating atoms, and other groups that can alter the geometry, bulkiness, and/or optical properties of the compound (Signorella et al., 2018, Policar, 2016, Qin et al., 2020).graphic file with name e-77-00982-scheme1.jpg

We have recently begun to study MnII compounds with tetra­dentate, tripodal ligands (Frey, Li et al., 2018; Frey, Ramirez et al., 2018). These ligands are readily synthesized to provide a variety of N and O donors and other groups that can potentially alter the structural and/or electronic properties of the MnII center. Quinoline groups, for example, provide bulkiness that can lead to distorted coordination geometries, potentially altering the coordination number, redox potential, substrate specificity, and/or photophysical properties of a complex. Quinoline ring systems are also the basis for a number of biologically active mol­ecules, suggesting that their presence might lead to medicinally-relevant compounds (Kakoulidou et al., 2021). We report here the synthesis and structural characterization of [Mn(DQMEA)(μ-OAc)2Mn(DQMEA)](BPh4)2·(CH2Cl2)1.45, [1](BPh4)2·1.45CH2Cl2 where DQMEA = 2-meth­oxy-N,N-bis­(quinolin-2-ylmeth­yl)ethanamine, OAc = acetate, BPh4 = tetra­phenyl­borate and [Mn(DQEA)(OAc)(CH3OH)]BPh4·CH3OH, [2]BPh4·CH3OH where DQEA = 2-hy­droxy-N,N-bis­(quinolin-2-yl­meth­yl)ethanamine). These compounds are prepared in a two-step reaction (see reaction scheme) in which mangan­ese(II) acetate is reacted with either DQMEA or DQEA in methanol, followed by anion exchange with sodium tetra­phenyl­borate. The resulting complexes demonstrate how minor alterations in ligand structure can result in significant differences in the complex structure.

Structural commentary  

Compound [1](BPh4)2·(CH2Cl2)1.45 crystallizes in the triclinic space group P Inline graphic (Fig. 1). The structure reveals a dimeric [Mn(DQMEA)(μ-OAc)2Mn(DQMEA)]2+ cation, [1] (Fig. 2) balanced by the presence of tetra­phenyl borate anions. The manganese(II) ions are hexa­coordinate with a distorted octa­hedral geometry. While this is a standard coordination number for transition metal cations, manganese(II) complexes with N-donor ligands are often hepta­coordinate (Frey, Li et al., 2018; Deroche et al., 1996; Policar et al., 2001; Lessa et al., 2007; Dees et al., 2007; Wu et al., 2010; Lieb et al., 2013). The presence of the bulky quinoline rings in this compound may restrict the coordination number to six in [1]. The DQMEA ligands are tetra­dentate, with the central N2 and two quinolyl nitro­gen atoms (N1 and N3) in the same octa­hedral plane and the meth­oxy oxygen (O1) located perpendicular to this nitro­gen plane. This configuration of the DQMEA ligand results in the quinoline groups binding MnII trans to each other, and in coplanarity of their rings. Hydrogen-bonding inter­actions between quinolyl hydrogens and an acetate oxygen, C—H⋯O, further stabilize this trans configuration (Table 3). Oxygens from two bridging acetate ions make up the final two coordinating atoms, with O2 trans to the central N2 nitro­gen of DQMEA and O3 trans to the meth­oxy oxygen, O1. Distortion of the octa­hedral geometry of the coordination sphere is caused by the bite angles of the DQMEA ligand. For example, the five-membered metallacycles formed by coord­ination of quinoline nitro­gens and central nitro­gen of DQMEA, produce bond angles, N2—Mn1—N3 and N2—Mn1—N1, of 73.25 (5) and 75.56 (5)°, respectively, which are significantly reduced from 90° (Table 1). This results in a trans N1—Mn1—N3 angle of 148.35 (5)°. Likewise, the bond angle formed by cis coordination of the meth­oxy oxygen of DQMEA and central nitro­gen, N2—Mn1—O1 is 75.32 (5)°. The remaining trans bond angles, O2—Mn1—N2 and O31—Mn1—O1 are 157.89 (5) and 163.58 (5)°, respectively. The Mn—O and Mn—N bond lengths for the neutral DQMEA ligand fall in the range 2.27–2.36 Å, which is typical of manganese(II) complexes (Deroche et al., 1996; Policar et al., 2001; Lessa et al., 2007; Dees et al., 2007; Wu et al., 2010; Lieb et al., 2013). However, the Mn1—O2 and Mn1—O31 acetate bond lengths, 2.0617 (13) and 2.0908 (14) Å, are significantly shorter.

Figure 1.

Figure 1

The title compound [1](BPh4)2·(CH2Cl2)1.45 with displacement ellipsoids drawn at the 30% probability level. Only the major disorder components for the di­chloro­methane solvent are shown. Dashed lines indicate intra­molecular weak C—H⋯O inter­actions influencing the stability of the complex conformation.

Figure 2.

Figure 2

Structure of the [Mn(DQMEA)(μ-OAc)2Mn(DQMEA)]2+ complex [DQMEA = 2-meth­oxy-N,N-bis­(quinolin-2-ylmeth­yl)ethanamine, OAc = acetate] with atom labels. Displacement ellipsoids drawn at the 30% probability level.

Table 3. Hydrogen-bond geometry (Å, °) for [1](BPh4)2·1.45CH2Cl2 .

Cg9 and Cg12 are the centroids of the C32–C37 and C44–C49 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.95 2.49 3.366 (3) 154
C19—H19⋯O2 0.95 2.31 3.199 (3) 155
C23—H23A⋯O2 0.98 2.31 3.1767 (2) 119
C29—H29⋯Cl2ii 0.95 2.65 3.5305 (2) 155
C8—H8⋯Cg11iii 0.95 2.68 3.5556 (2) 153
C11—H11BCg11iv 0.99 2.81 3.7195 (2) 152
C23—H23BCg9 0.98 2.78 3.7034 (2) 157

Symmetry codes: (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) x+1, y, z.

Table 1. Selected geometric parameters (Å, °) for [1](BPh4)2·1.45CH2Cl2 .

Mn1—O1 2.3225 (12) Mn1—N1 2.3179 (14)
Mn1—O2 2.0617 (13) Mn1—N2 2.2730 (14)
Mn1—O3i 2.0908 (14) Mn1—N3 2.3588 (16)
       
N2—Mn1—N3 73.25 (5) N2—Mn1—O1 75.32 (5)
N2—Mn1—N1 75.56 (5) O2—Mn1—N2 157.89 (6)
N1—Mn1—N3 148.35 (5) O3i—Mn1—O1 163.58 (6)

Symmetry code: (i) -x, -y+1, -z+1.

The compound [2]BPh4·CH3OH crystallizes in the monoclinic space group P21/c. The structure of this compound consists of the [Mn(DQEA)(OAc)(CH3OH)]+ monocation, [2], tetra­phenyl borate counter-ion, and a methanol solvent mol­ecule (Fig. 3). The MnII ion is hexa­coordinate with a distorted octa­hedral geometry. As with [1], the bulky quinoline groups likely prevent a seven-coordinate species from forming. The DQEA ligand is tetra­dentate, but the quinolyl nitro­gen atoms in this structure, N2 and N3, are cis to each other, and the rings are therefore not co-planar. The central nitro­gen of DQEA, N1 and the quinolyl nitro­gens occupy an octa­hedral face, while the alcohol oxygen, O3 is trans to the quinolyl nitro­gen N3. In addition to the DQEA ligand, a monodentate acetate oxygen, O1 is trans to the central nitro­gen of DQEA, while a methanol oxygen, O4 occupies a position trans to the quinolyl nitro­gen, N2. Like DQMEA in [1], binding constraints of the DQEA ligand in [2] result in significant distortions of the octa­hedral geometry of the coordination sphere. Bond angles involving the central nitro­gen of DQEA and quinolyl nitro­gens, N1—Mn1—N2 and N1—Mn1—N3 are 75.63 (5) and 73.81 (5)°, respectively (Table 2). The alcohol oxygen and quinolyl nitro­gen that are trans to each other, form a bond angle with manganese, O3—Mn1—N3 of 149.83 (12)°. The remaining trans bond angles, O1—Mn1—N1 and N2—Mn1—O4 are 175.54 (6) and 161.38 (6)°, respectively.

Figure 3.

Figure 3

The title compound [2](BPh4)·CH3OH with displacement ellipsoids drawn at the 30% probability level. (Only the major disorder components for the hy­droxy­ethyl fragment are shown.)

Table 2. Selected geometric parameters (Å, °) for [2]BPh4·CH3OH .

Mn1—O1 2.0551 (14) Mn1—N1 2.2787 (15)
Mn1—O3 2.182 (7) Mn1—N2 2.3167 (15)
Mn1—O3B 2.13 (3) Mn1—N3 2.2664 (14)
Mn1—O4 2.3190 (16)    
       
N1—Mn1—N2 75.63 (5) O1—Mn1—N1 175.54 (6)
N1—Mn1—N3 73.81 (5) N2—Mn1—O4 161.38 (6)
O3—Mn1—N3 149.83 (12)    

The cis coordination of DQEA to Mn(II) in [2] may result from a hydrogen-bonding network involving the alcohol and quinolyl groups of DQEA and the acetate ligand, O—H⋯O and C—H⋯O (Table 4). A trans configuration of DQEA, like that of DQMEA in [1] would swing the alcohol hydrogen up and away from the acetate ligand, preventing this hydrogen-bonding inter­action. Additional O—H⋯O hydrogen bonds in [2]BPh4·CH3OH, between methanol mol­ecules themselves and with the acetate ligand, provide further stabilization of the structure. This cis structure observed in [2]BPh4·CH3OH may not be favorable with the DQMEA ligand, since the meth­oxy methyl group would disrupt this hydrogen-bonding network.

Table 4. Hydrogen-bond geometry (Å, °) for [2]BPh4·CH3OH .

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.85 (2) 1.79 (2) 2.631 (8) 170 (4)
O3B—H3B⋯O2i 0.84 (2) 1.87 (8) 2.65 (3) 152 (14)
O4—H4⋯O1S 0.89 (2) 1.77 (2) 2.646 (2) 168 (3)
C9—H9⋯O1 0.95 2.43 3.325 (3) 157
C17—H17⋯O1S ii 0.95 2.73 3.364 (3) 125
C18—H18⋯O1S ii 0.95 2.73 3.367 (2) 125
C19—H19⋯O1 0.95 2.39 3.183 (2) 141
C25—H25A⋯N3 0.98 2.79 3.387 (3) 120
O1S—H1S⋯O2i 0.84 1.92 2.691 (2) 151

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z.

Supra­molecular features  

Within the crystal of [1](BPh4)2·(CH2Cl2)1.45, no classical inter­molecular hydrogen bonding inter­actions were found. The crystal packing (Fig. 4) is primarily stabilized by weak C29—H29⋯Cl2 inter­actions (Table 3) and ππ stacking inter­actions between nearby benzene rings (Cg7⋯Cg6) of a quinoline group (where Cg7 and Cg6 are the centroids of the C15–C120 and C1–C6 rings, respectively). In addition, a network of weak C—H⋯π (C8—H8⋯Cg11, X—H, π = 78°; C11—H11BCg11, X—H, π = 59°, C23—H23BCg9, X—H, π = 72°, where Cg9 and Cg11 are the centroids of the C32–C37 and C44–C49 rings, respectively) inter­molecular cation–anion inter­actions (Table 3) are also present and contribute additionally to the crystal packing.

Figure 4.

Figure 4

A view along the a axis of the crystal packing of [1](BPh4)2·(CH2Cl2)1.45 with dashed lines indicating weak C—H⋯Cl inter­actions. Minor disordered solvate mol­ecules were omitted for clarity.

Within the crystal of [2]BPh4·CH3OH, dimerization of complexes occurs by the formation of a pair of inter­molecular O3—H3⋯O2 hydrogen bonds (Table 4) between the coordinated hydroxyl oxygen of DQEA ligand of one complex and an acetate oxygen of another (Fig. 5), forming an Inline graphic(12) ring-motif inter­action. In addition, the methanol solvent mol­ecule forms strong O—H⋯O hydrogen bonds (Table 4) with the coordinated methanol and acetate ligands of the cationic complex, forming an Inline graphic(16) ring motif influencing the crystal packing. Weak C11—H11ACg12 (X—H, π = 58°; where Cg12 is the centroid of the C13A–C18A ring) inter­molecular cation–anion inter­actions (Table 4) are also present and contribute additionally to the crystal packing.

Figure 5.

Figure 5

A view along the c axis of the crystal packing of [2]BPh4·CH3OH. The intra­molecular and inter­molecular O—H⋯O and C—H⋯O hydrogen bonds (Table 4) are shown as dashed lines. Solvate mol­ecules were omitted for clarity.

Database survey  

To the best of our knowledge, structures of the manganese(II) compounds described herein have not been reported previously. We have previously reported the structure of a mononuclear copper(II) complex with DQMEA (Frey, Ramirez et al., 2018). In this structure, the DQMEA ligand is tetra­dentate with a tris configuration of the quinoline groups as observed in [1]. A search of the Cambridge Crystallographic Database (updated in May 2021; Groom et al., 2016) revealed a related manganese(II) complex with a penta­dentate, tripodal ligand containing two methyl quinolyl groups and an imine thiol­ate group (Coggins & Kovacs, 2011). This ligand binds the MnII ion in a trigonal–bipyramidal geometry with the quinoline rings cis to each other in the equatorial plane, similar to [2].

Synthesis and crystallization  

All chemicals were obtained from commercial sources and used without further purification. The water used was deion­ized. The 1H NMR spectra were recorded with a JEOL JNM-ECZ400s NMR spectrometer and referenced against chloro­form. IR spectra were recorded with a Perkin Elmer Spectrum 100 FT–IR.

2-Meth­oxy-N,N-bis­(quinolin-2-ylmeth­yl)ethanamine (DQMEA). In a 250 ml round-bottom flask, 5 g (23 mmol) of 2-chlormethyl­quinoline hydro­chloride was dissolved in 10 ml of H2O and cooled to 273 K in an ice bath. A solution of 1.9 g (47 mmol) of NaOH in 10 ml of H2O was added dropwise with stirring. Following this, a solution of 0.9 g (12 mmol) of 2-meth­oxy­ethyl­amine in 10 ml of CH2Cl2 was added. The reaction mixture was then removed from the ice bath, and brought to reflux for 7 days. The mixture was then cooled to room temperature, and the CH2Cl2 layer was separated, washed twice with brine, and dried over anhydrous sodium sulfate. The solution was then filtered, and the filtrate was chromatographed on alumina (chromatographic grade, 80–200 mesh) eluting with 20:1 CH2Cl2/methanol. Fractions were collected that produced a single spot by TLC on alumina plates (eluting with 100:1, CH2Cl2/methanol) with an R F value of 0.33. Rotary evaporation of these fractions gave 2.4 g (58%) of a light-yellow solid. 1H NMR (CDCl3, 400 MHz) δ 2.87 (t, 2H), 3.30 (s, 3H), 3.54 (t, 2H), 4.06 (s, 4H), 7.48 (t, 2H), 7.65 (t, 2H), 7.75 (m, 4H), 8.01 (d, 2H), 8.10 (d, 2H).

2-Hy­droxy-N,N-bis­(quinolin-2-ylmeth­yl)ethanamine (DQEA). In a 100 ml round-bottom flask, 2.5 g (12 mmol) of 2-chlormethyl­quinoline hydro­chloride was dissolved in 10 ml of H2O and cooled to 273 K in an ice bath. A solution of 0.95 g (24 mmol) of NaOH in 10 ml of H2O was added dropwise with stirring. Following this, a solution of 0.36 g (6.0 mmol) of ethano­lamine in 10 ml of CH2Cl2 was added. The reaction mixture was then removed from the ice bath, and brought to reflux for 7 days. The mixture was then cooled to room temperature, and the CH2Cl2 layer was separated, washed twice with brine, and dried over anhydrous sodium sulfate. The solution was then filtered, and the filtrate was chromatographed on alumina (chromatographic grade, 80–200 mesh) eluting with 100:1 CH2Cl2/methanol. Fractions were collected that produced a single spot by TLC on alumina plates (eluting with 100:1, CH2Cl2/methanol) with an R F value of 0.33. Rotary evaporation of these fractions gave 0.70 g (20%) of a light-yellow solid. 1H NMR (CDCl3, 400 MHz) δ 3.02 (t, 2H), 3.54 (t, 2H), 4.17 (s, 4H), 7.51 (m, 4H), 7.74 (m, 4H), 8.07 (m, 4H).

[Mn(DQMEA)(μ-OAc)2Mn(DQMEA)](BPh4)2 . In a 100 ml round-bottom flask, 0.20 g (0.56 mmol) of DQEA was dissolved in 10 ml of methanol. To this solution, 0.14 g (0.58 mmol) of manganese(II) acetate tetra­hydrate was added, and the solution was brought to reflux for 30 minutes. A solution of 0.19 g (0.56 mmol) of sodium tetra­phenyl­borate in 10 ml of methanol was then added dropwise to the warm reaction mixture. The solution was then cooled in a refrigerator to promote crystallization of the compound. After several hours, the reaction mixture was filtered to produce light-yellow microcrystals that were washed twice with cold methanol and air dried to give 0.36 g (82%) of product. Recrystallization of 20 mg of this product in a mixture of di­chloro­methane and methanol gave crystals suitable for X-ray diffraction. These crystals had an IR spectrum identical to the original product. IR (ATR, cm−1) 2800–3200 (aromatic C—H, w), 1600 (C—O, s), 1425 (C—O, s), 731 (BPh4, s), 704 (BPh4, s).

[Mn(DQEA)(OAc)(CH3OH)]BPh4·CH3OH. In a 100 ml round-bottom flask, 0.20 g (0.58 mmol) of DQEA was dissolved in 10 ml of methanol. To this solution, 0.14 g (0.58 mmol) of manganese(II) acetate tetra­hydrate was added, and the solution was brought to reflux for 30 minutes. A solution of 0.20 g (0.58 mmol) of sodium tetra­phenyl­borate in 10 ml of methanol was then added dropwise to the warm reaction mixture. The solution was then cooled in a refrigerator to promote crystallization of the compound. After several hours, the reaction mixture was filtered to produce light yellow microcrystals that were washed twice with cold methanol and air dried to give 0.31 g (69%) of product. Recrystallization of 20 mg of this product in a mixture of di­chloro­methane and methanol gave crystals suitable for X-ray diffraction. These crystals had an IR spectrum identical to the original product. IR (ATR, cm−1) 2800–3200 (aromatic C—H, w), 1578 (C—O, s), 1427 (C—O, s), 736 (BPh4, s), 700 (BPh4, s).

Refinement  

Crystal data, data collection and structure refinement details for [1](BPh4)2·(CH2Cl2)1.45 and [2]BPh4·CH3OH are summarized in Table 5. For [1](BPh4)2·(CH2Cl2)1.45, all H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.99 Å, with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl). Idealized methyl groups were refined as rotating groups. A solvate methyl­ene chloride mol­ecule was refined as threefold disordered. All C—Cl bond distances were restrained to be the same within a standard deviation of 0.02 Å. U ij components of ADPs were restrained to be similar to each other (SIMU command, esd = 0.01 Å2). Occupancies were not constrained to unity and refined to 0.401 (3), 0.234 (4) and 0.090 (4). In [2]BPh4·CH3OH, the ethanol group of C21, C22 and O3 was found to be disordered. Bond distances and angles of major and minor moiety were restrained to be similar to each other (SAME and SADI commands, esd = 0.02 Å). U ij components of ADPs were restrained to be similar to each other (SIMU command, esd = 0.01 Å2). The hy­droxy H atoms (O3—H3, O3B—H3B, O4—H4) were located in a difference-Fourier map and refined with the distance restraint O—H = 0.8 (2) Å and with U iso(H) = 1.5U eq(O). C-bound H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.99 Å with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl). Idealized methyl groups were refined as rotating groups. An idealized tetra­hedral OH group was also refined as a rotating group: O1S(H1S).

Table 5. Experimental details.

  [1](BPh4)2·1.45CH2Cl2 [2]BPh4·CH3OH
Crystal data
Chemical formula [Mn2(C2H3O2)2(C23H23N3O)2](C24H20B)·1.45CH2Cl2 [Mn(C2H3O2)(C22H21N3O)(CH4O)](C24H20B)·CH4O
M r 1704.59 840.69
Crystal system, space group Triclinic, P\overline{1} Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 11.6553 (5), 13.6846 (7), 16.1109 (6) 10.3504 (3), 17.4824 (5), 23.9618 (9)
α, β, γ (°) 96.842 (4), 105.959 (3), 111.907 (4) 90, 96.222 (3), 90
V3) 2220.29 (18) 4310.3 (3)
Z 1 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.43 0.36
Crystal size (mm) 0.32 × 0.26 × 0.18 0.34 × 0.28 × 0.26
 
Data collection
Diffractometer Rigaku Oxford Diffraction Gemini Eos Rigaku Oxford Diffraction Gemini Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019) Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
Tmin, Tmax 0.819, 1.000 0.845, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 27481, 14664, 10475 31473, 14443, 10348
R int 0.027 0.032
(sin θ/λ)max−1) 0.762 0.765
 
Refinement
R[F2 > 2σ(F 2)], wR(F 2), S 0.054, 0.145, 1.02 0.054, 0.149, 1.04
No. of reflections 14664 14443
No. of parameters 600 582
No. of restraints 141 85
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.98, −0.38 0.67, −0.44

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015 a), SHELXL (Sheldrick, 2015 b), and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989021009786/zl5024sup1.cif

e-77-00982-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989021009786/zl50241sup2.hkl

e-77-00982-1sup2.hkl (1.1MB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989021009786/zl50242sup3.hkl

e-77-00982-2sup3.hkl (1.1MB, hkl)

CCDC references: 2110882, 2110881

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This publication is submitted in memory of Jerry P. Jasinski, a selfless friend, mentor and collaborator who was always generous with his time and willing to share his expertise and guidance. He will be missed.

supplementary crystallographic information

Di-µ-acetato-κ4O:O'-bis{[2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate (1) . Crystal data

[Mn2(C2H3O2)2(C23H23N3O)2](C24H20B)·1.45CH2Cl2 Z = 1
Mr = 1704.59 F(000) = 891
Triclinic, P1 Dx = 1.275 Mg m3
a = 11.6553 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 13.6846 (7) Å Cell parameters from 6992 reflections
c = 16.1109 (6) Å θ = 3.1–31.9°
α = 96.842 (4)° µ = 0.43 mm1
β = 105.959 (3)° T = 173 K
γ = 111.907 (4)° Prism, clear colourless
V = 2220.29 (18) Å3 0.32 × 0.26 × 0.18 mm

Di-µ-acetato-κ4O:O'-bis{[2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate (1) . Data collection

Rigaku Oxford Diffraction Gemini Eos diffractometer 14664 independent reflections
Radiation source: fine-focus sealed X-ray tube 10475 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.027
ω scans θmax = 32.8°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) h = −17→14
Tmin = 0.819, Tmax = 1.000 k = −20→19
27481 measured reflections l = −23→23

Di-µ-acetato-κ4O:O'-bis{[2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate (1) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.9487P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
14664 reflections Δρmax = 0.98 e Å3
600 parameters Δρmin = −0.38 e Å3
141 restraints

Di-µ-acetato-κ4O:O'-bis{[2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Di-µ-acetato-κ4O:O'-bis{[2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C50 0.2765 (8) 0.1499 (8) 0.2170 (7) 0.087 (2) 0.401 (3)
H50A 0.310430 0.093680 0.222114 0.104* 0.401 (3)
H50B 0.314159 0.193635 0.178427 0.104* 0.401 (3)
Cl1 0.1035 (4) 0.0871 (4) 0.1687 (4) 0.0912 (13) 0.401 (3)
Cl2 0.3236 (2) 0.2312 (2) 0.31916 (15) 0.0994 (10) 0.401 (3)
C50B 0.1821 (13) 0.0765 (17) 0.2361 (13) 0.110 (3) 0.234 (4)
H50C 0.161913 0.089629 0.291088 0.132* 0.234 (4)
H50D 0.149835 −0.003348 0.217034 0.132* 0.234 (4)
Cl1B 0.0714 (8) 0.1029 (7) 0.1592 (7) 0.106 (3) 0.234 (4)
Cl2B 0.3482 (8) 0.1217 (5) 0.2742 (4) 0.121 (2) 0.234 (4)
C50C 0.120 (3) 0.044 (4) 0.210 (2) 0.098 (4) 0.091 (4)
H50E 0.111892 −0.031315 0.202229 0.117* 0.091 (4)
H50F 0.067467 0.052816 0.246824 0.117* 0.091 (4)
Cl1C 0.0580 (17) 0.0658 (14) 0.1071 (15) 0.121 (4) 0.091 (4)
Cl2C 0.2853 (19) 0.1342 (16) 0.2661 (13) 0.113 (3) 0.091 (4)
Mn1 0.09233 (2) 0.45986 (2) 0.62585 (2) 0.02693 (7)
O1 0.29639 (12) 0.48106 (12) 0.71832 (8) 0.0371 (3)
O2 0.18228 (14) 0.48215 (12) 0.53151 (8) 0.0394 (3)
O3 0.09615 (13) 0.54513 (13) 0.42244 (10) 0.0483 (4)
N1 0.15837 (14) 0.62702 (11) 0.72088 (9) 0.0278 (3)
N2 0.05875 (14) 0.41899 (12) 0.75235 (9) 0.0292 (3)
N3 −0.01211 (15) 0.26857 (12) 0.59563 (10) 0.0328 (3)
C1 0.22911 (16) 0.72862 (14) 0.71239 (11) 0.0288 (3)
C2 0.2634 (2) 0.73924 (17) 0.63578 (13) 0.0437 (5)
H2 0.235771 0.676298 0.589900 0.052*
C3 0.3360 (3) 0.8393 (2) 0.62682 (17) 0.0581 (6)
H3 0.359397 0.845201 0.574992 0.070*
C4 0.3766 (3) 0.93357 (19) 0.69306 (18) 0.0594 (6)
H4 0.427293 1.002669 0.685928 0.071*
C5 0.3439 (2) 0.92634 (17) 0.76695 (16) 0.0498 (5)
H5 0.371590 0.990495 0.811584 0.060*
C6 0.26878 (19) 0.82404 (15) 0.77838 (12) 0.0353 (4)
C7 0.2307 (2) 0.81229 (17) 0.85354 (13) 0.0437 (5)
H7 0.253913 0.874609 0.898758 0.052*
C8 0.1608 (2) 0.71178 (17) 0.86105 (12) 0.0410 (4)
H8 0.134139 0.703068 0.911408 0.049*
C9 0.12753 (17) 0.61981 (14) 0.79355 (11) 0.0292 (3)
C10 0.04934 (19) 0.50950 (15) 0.80483 (12) 0.0360 (4)
H10A 0.080307 0.509994 0.868655 0.043*
H10B −0.044479 0.496451 0.787555 0.043*
C11 −0.06460 (18) 0.32018 (15) 0.72553 (12) 0.0348 (4)
H11A −0.140053 0.339350 0.706239 0.042*
H11B −0.069498 0.288954 0.777493 0.042*
C12 −0.07526 (18) 0.23631 (15) 0.65099 (13) 0.0356 (4)
C13 −0.1571 (2) 0.12665 (18) 0.64192 (18) 0.0543 (6)
H13 −0.196943 0.106657 0.685119 0.065*
C14 −0.1784 (3) 0.0501 (2) 0.5708 (2) 0.0642 (7)
H14 −0.234905 −0.023909 0.563105 0.077*
C15 −0.1173 (2) 0.08009 (18) 0.50898 (16) 0.0498 (5)
C16 −0.1365 (3) 0.0053 (2) 0.43211 (19) 0.0667 (8)
H16 −0.194530 −0.069156 0.420691 0.080*
C17 −0.0738 (3) 0.0384 (2) 0.37522 (18) 0.0708 (8)
H17 −0.089249 −0.012700 0.323412 0.085*
C18 0.0142 (3) 0.1473 (2) 0.39118 (16) 0.0658 (7)
H18 0.058621 0.169348 0.350618 0.079*
C19 0.0365 (2) 0.2227 (2) 0.46546 (14) 0.0505 (5)
H19 0.097415 0.296177 0.476515 0.061*
C20 −0.03004 (19) 0.19127 (16) 0.52453 (13) 0.0383 (4)
C21 0.16945 (19) 0.39647 (18) 0.80239 (13) 0.0405 (4)
H21A 0.157389 0.323842 0.772881 0.049*
H21B 0.168339 0.395084 0.863466 0.049*
C22 0.30084 (19) 0.48029 (19) 0.80770 (12) 0.0425 (5)
H22A 0.317164 0.552820 0.840554 0.051*
H22B 0.372491 0.461419 0.839134 0.051*
C23 0.41726 (19) 0.5603 (2) 0.71646 (16) 0.0505 (5)
H23A 0.412101 0.558094 0.654474 0.076*
H23B 0.490552 0.544134 0.747434 0.076*
H23C 0.431810 0.632837 0.746210 0.076*
C24 0.17232 (17) 0.50770 (15) 0.45824 (11) 0.0306 (3)
C25 0.2625 (3) 0.4928 (3) 0.41239 (19) 0.0715 (8)
H25A 0.322654 0.468549 0.450229 0.107*
H25B 0.313689 0.562083 0.401453 0.107*
H25C 0.210272 0.438180 0.355498 0.107*
C26 0.45814 (17) 0.73445 (16) 0.27058 (12) 0.0356 (4)
C27 0.5447 (2) 0.6969 (2) 0.32062 (14) 0.0482 (5)
H27 0.576336 0.654627 0.290197 0.058*
C28 0.5860 (2) 0.7196 (2) 0.41342 (17) 0.0672 (8)
H28 0.644722 0.692757 0.444992 0.081*
C29 0.5418 (3) 0.7806 (3) 0.45937 (16) 0.0768 (10)
H29 0.569183 0.795759 0.522546 0.092*
C30 0.4580 (3) 0.8191 (2) 0.41299 (16) 0.0661 (8)
H30 0.427801 0.861977 0.444187 0.079*
C31 0.4166 (2) 0.79596 (18) 0.32057 (14) 0.0469 (5)
H31 0.357572 0.823171 0.290088 0.056*
C32 0.35697 (15) 0.56817 (14) 0.13074 (11) 0.0288 (3)
C33 0.37922 (16) 0.51452 (15) 0.06121 (11) 0.0314 (3)
H33 0.425126 0.556420 0.028015 0.038*
C34 0.33679 (17) 0.40263 (16) 0.03904 (12) 0.0357 (4)
H34 0.355677 0.369708 −0.007685 0.043*
C35 0.26734 (18) 0.33891 (16) 0.08447 (13) 0.0386 (4)
H35 0.238500 0.262297 0.069493 0.046*
C36 0.24016 (18) 0.38826 (16) 0.15238 (13) 0.0375 (4)
H36 0.190876 0.345394 0.183505 0.045*
C37 0.28496 (17) 0.49968 (15) 0.17444 (12) 0.0328 (4)
H37 0.266206 0.531838 0.221614 0.039*
C38 0.52340 (17) 0.76522 (15) 0.12307 (12) 0.0326 (4)
C39 0.4939 (2) 0.7860 (2) 0.03918 (15) 0.0483 (5)
H39 0.403932 0.760101 0.003011 0.058*
C40 0.5905 (3) 0.8432 (2) 0.00576 (18) 0.0591 (6)
H40 0.565407 0.857366 −0.051189 0.071*
C41 0.7210 (3) 0.87880 (19) 0.05451 (18) 0.0572 (7)
H41 0.787152 0.918291 0.032243 0.069*
C42 0.7548 (2) 0.85645 (18) 0.13635 (16) 0.0508 (6)
H42 0.844994 0.878487 0.170137 0.061*
C43 0.65782 (18) 0.80176 (16) 0.17015 (14) 0.0394 (4)
H43 0.684101 0.788790 0.227481 0.047*
C44 0.27982 (17) 0.72875 (15) 0.11957 (11) 0.0320 (4)
C45 0.14906 (17) 0.65120 (15) 0.07830 (11) 0.0310 (3)
H45 0.130892 0.576484 0.071996 0.037*
C46 0.04444 (18) 0.67864 (17) 0.04607 (12) 0.0362 (4)
H46 −0.042807 0.623166 0.018670 0.043*
C47 0.0672 (2) 0.78577 (19) 0.05386 (14) 0.0459 (5)
H47 −0.003866 0.805218 0.033215 0.055*
C48 0.1950 (2) 0.8647 (2) 0.09213 (18) 0.0561 (6)
H48 0.212405 0.939090 0.096583 0.067*
C49 0.2982 (2) 0.83617 (18) 0.12416 (16) 0.0478 (5)
H49 0.385157 0.892280 0.150376 0.057*
B1 0.40542 (18) 0.69972 (16) 0.16043 (13) 0.0297 (4)

Di-µ-acetato-κ4O:O'-bis{[2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C50 0.078 (3) 0.088 (4) 0.095 (4) 0.034 (3) 0.033 (3) 0.019 (3)
Cl1 0.0627 (15) 0.0701 (19) 0.124 (3) 0.0262 (11) 0.0198 (15) 0.0036 (17)
Cl2 0.0863 (15) 0.128 (2) 0.0717 (14) 0.0313 (14) 0.0241 (11) 0.0371 (13)
C50B 0.097 (5) 0.097 (4) 0.112 (4) 0.028 (4) 0.030 (4) 0.006 (4)
Cl1B 0.107 (4) 0.061 (3) 0.111 (4) −0.004 (3) 0.032 (4) 0.030 (3)
Cl2B 0.107 (4) 0.121 (3) 0.101 (3) 0.037 (3) 0.016 (3) −0.008 (3)
C50C 0.085 (5) 0.082 (5) 0.109 (5) 0.024 (4) 0.029 (5) 0.014 (4)
Cl1C 0.106 (5) 0.088 (5) 0.132 (6) 0.016 (5) 0.024 (5) 0.024 (5)
Cl2C 0.086 (5) 0.113 (5) 0.106 (5) 0.024 (4) 0.019 (5) 0.007 (4)
Mn1 0.02674 (13) 0.03049 (14) 0.02112 (11) 0.01047 (10) 0.00803 (9) 0.00420 (9)
O1 0.0261 (6) 0.0485 (8) 0.0334 (6) 0.0143 (5) 0.0069 (5) 0.0116 (6)
O2 0.0464 (8) 0.0493 (8) 0.0283 (6) 0.0213 (6) 0.0187 (5) 0.0123 (6)
O3 0.0324 (7) 0.0494 (9) 0.0538 (9) 0.0165 (6) 0.0012 (6) 0.0164 (7)
N1 0.0311 (7) 0.0276 (7) 0.0225 (6) 0.0118 (6) 0.0078 (5) 0.0045 (5)
N2 0.0310 (7) 0.0294 (7) 0.0250 (6) 0.0102 (6) 0.0100 (5) 0.0069 (5)
N3 0.0338 (8) 0.0304 (7) 0.0296 (7) 0.0127 (6) 0.0075 (6) 0.0024 (6)
C1 0.0307 (8) 0.0269 (8) 0.0264 (7) 0.0117 (6) 0.0072 (6) 0.0067 (6)
C2 0.0596 (13) 0.0352 (10) 0.0361 (10) 0.0150 (9) 0.0228 (9) 0.0103 (8)
C3 0.0804 (17) 0.0434 (13) 0.0549 (13) 0.0177 (12) 0.0380 (13) 0.0223 (11)
C4 0.0716 (16) 0.0319 (11) 0.0660 (16) 0.0092 (11) 0.0262 (13) 0.0184 (11)
C5 0.0571 (13) 0.0289 (10) 0.0527 (12) 0.0123 (9) 0.0136 (10) 0.0054 (9)
C6 0.0392 (9) 0.0279 (9) 0.0327 (8) 0.0136 (7) 0.0063 (7) 0.0033 (7)
C7 0.0601 (13) 0.0333 (10) 0.0337 (9) 0.0199 (9) 0.0143 (9) −0.0009 (8)
C8 0.0560 (12) 0.0396 (10) 0.0279 (8) 0.0197 (9) 0.0184 (8) 0.0032 (7)
C9 0.0312 (8) 0.0301 (8) 0.0247 (7) 0.0122 (7) 0.0095 (6) 0.0039 (6)
C10 0.0430 (10) 0.0327 (9) 0.0316 (8) 0.0103 (8) 0.0211 (7) 0.0056 (7)
C11 0.0369 (9) 0.0313 (9) 0.0360 (9) 0.0102 (7) 0.0182 (7) 0.0081 (7)
C12 0.0351 (9) 0.0296 (9) 0.0405 (9) 0.0127 (7) 0.0129 (7) 0.0077 (7)
C13 0.0598 (14) 0.0322 (11) 0.0743 (16) 0.0143 (10) 0.0361 (12) 0.0118 (10)
C14 0.0629 (16) 0.0303 (11) 0.092 (2) 0.0108 (10) 0.0335 (14) 0.0019 (12)
C15 0.0491 (12) 0.0364 (11) 0.0526 (12) 0.0182 (9) 0.0080 (10) −0.0055 (9)
C16 0.0658 (16) 0.0471 (14) 0.0671 (16) 0.0205 (12) 0.0117 (13) −0.0178 (12)
C17 0.0785 (19) 0.0614 (17) 0.0534 (15) 0.0309 (15) 0.0084 (13) −0.0219 (13)
C18 0.0874 (19) 0.0707 (18) 0.0417 (12) 0.0395 (15) 0.0241 (12) −0.0015 (12)
C19 0.0639 (14) 0.0480 (13) 0.0367 (10) 0.0239 (11) 0.0181 (10) −0.0008 (9)
C20 0.0375 (10) 0.0362 (10) 0.0346 (9) 0.0178 (8) 0.0044 (7) −0.0021 (7)
C21 0.0409 (10) 0.0527 (12) 0.0297 (8) 0.0220 (9) 0.0089 (7) 0.0177 (8)
C22 0.0360 (10) 0.0578 (13) 0.0275 (8) 0.0203 (9) 0.0018 (7) 0.0101 (8)
C23 0.0256 (9) 0.0617 (14) 0.0590 (13) 0.0137 (9) 0.0114 (9) 0.0214 (11)
C24 0.0287 (8) 0.0337 (9) 0.0257 (7) 0.0100 (7) 0.0099 (6) 0.0036 (6)
C25 0.096 (2) 0.105 (2) 0.0677 (16) 0.0679 (19) 0.0631 (16) 0.0456 (16)
C26 0.0290 (8) 0.0346 (9) 0.0313 (8) 0.0038 (7) 0.0086 (7) 0.0033 (7)
C27 0.0388 (11) 0.0522 (13) 0.0375 (10) 0.0095 (9) 0.0037 (8) 0.0105 (9)
C28 0.0485 (13) 0.0771 (19) 0.0418 (12) 0.0015 (12) −0.0022 (10) 0.0218 (12)
C29 0.0674 (17) 0.085 (2) 0.0291 (11) −0.0109 (15) 0.0112 (11) 0.0026 (12)
C30 0.0644 (16) 0.0672 (17) 0.0406 (12) −0.0006 (13) 0.0277 (11) −0.0048 (11)
C31 0.0433 (11) 0.0459 (12) 0.0386 (10) 0.0044 (9) 0.0201 (8) −0.0006 (9)
C32 0.0227 (7) 0.0334 (9) 0.0277 (7) 0.0117 (6) 0.0061 (6) 0.0054 (6)
C33 0.0256 (8) 0.0365 (9) 0.0295 (8) 0.0123 (7) 0.0083 (6) 0.0047 (7)
C34 0.0298 (8) 0.0392 (10) 0.0343 (9) 0.0157 (7) 0.0078 (7) 0.0000 (7)
C35 0.0327 (9) 0.0326 (9) 0.0450 (10) 0.0138 (7) 0.0077 (8) 0.0050 (8)
C36 0.0324 (9) 0.0377 (10) 0.0416 (10) 0.0128 (8) 0.0130 (7) 0.0139 (8)
C37 0.0294 (8) 0.0368 (9) 0.0318 (8) 0.0137 (7) 0.0111 (7) 0.0075 (7)
C38 0.0325 (9) 0.0290 (8) 0.0371 (9) 0.0127 (7) 0.0154 (7) 0.0050 (7)
C39 0.0480 (12) 0.0599 (14) 0.0465 (11) 0.0256 (11) 0.0228 (9) 0.0220 (10)
C40 0.0778 (18) 0.0622 (16) 0.0590 (14) 0.0343 (14) 0.0430 (13) 0.0305 (12)
C41 0.0621 (15) 0.0371 (11) 0.0750 (17) 0.0094 (10) 0.0476 (13) 0.0059 (11)
C42 0.0373 (11) 0.0403 (11) 0.0603 (14) 0.0024 (8) 0.0244 (9) −0.0090 (10)
C43 0.0338 (9) 0.0359 (10) 0.0403 (10) 0.0088 (7) 0.0143 (7) −0.0021 (8)
C44 0.0318 (8) 0.0348 (9) 0.0290 (8) 0.0143 (7) 0.0117 (6) 0.0037 (7)
C45 0.0323 (8) 0.0367 (9) 0.0255 (7) 0.0144 (7) 0.0126 (6) 0.0079 (7)
C46 0.0309 (9) 0.0511 (11) 0.0275 (8) 0.0182 (8) 0.0108 (7) 0.0094 (7)
C47 0.0444 (11) 0.0552 (13) 0.0445 (11) 0.0316 (10) 0.0113 (9) 0.0095 (9)
C48 0.0547 (13) 0.0394 (12) 0.0707 (16) 0.0277 (10) 0.0095 (11) 0.0045 (11)
C49 0.0387 (11) 0.0354 (11) 0.0585 (13) 0.0148 (8) 0.0067 (9) 0.0006 (9)
B1 0.0269 (9) 0.0312 (9) 0.0282 (8) 0.0112 (7) 0.0087 (7) 0.0040 (7)

Di-µ-acetato-κ4O:O'-bis{[2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate (1) . Geometric parameters (Å, º)

C50—H50A 0.9900 C19—H19 0.9500
C50—H50B 0.9900 C19—C20 1.395 (3)
C50—Cl1 1.759 (9) C21—H21A 0.9900
C50—Cl2 1.690 (9) C21—H21B 0.9900
C50B—H50C 0.9900 C21—C22 1.504 (3)
C50B—H50D 0.9900 C22—H22A 0.9900
C50B—Cl1B 1.705 (12) C22—H22B 0.9900
C50B—Cl2B 1.694 (12) C23—H23A 0.9800
C50C—H50E 0.9900 C23—H23B 0.9800
C50C—H50F 0.9900 C23—H23C 0.9800
C50C—Cl1C 1.727 (16) C24—C25 1.498 (3)
C50C—Cl2C 1.744 (16) C25—H25A 0.9800
Mn1—O1 2.3225 (12) C25—H25B 0.9800
Mn1—O2 2.0617 (13) C25—H25C 0.9800
Mn1—O3i 2.0908 (14) C26—C27 1.403 (3)
Mn1—N1 2.3179 (14) C26—C31 1.396 (3)
Mn1—N2 2.2730 (14) C26—B1 1.653 (3)
Mn1—N3 2.3588 (16) C27—H27 0.9500
O1—C22 1.428 (2) C27—C28 1.395 (3)
O1—C23 1.433 (2) C28—H28 0.9500
O2—C24 1.258 (2) C28—C29 1.376 (5)
O3—C24 1.229 (2) C29—H29 0.9500
N1—C1 1.372 (2) C29—C30 1.366 (5)
N1—C9 1.320 (2) C30—H30 0.9500
N2—C10 1.471 (2) C30—C31 1.389 (3)
N2—C11 1.466 (2) C31—H31 0.9500
N2—C21 1.481 (2) C32—C33 1.403 (2)
N3—C12 1.321 (2) C32—C37 1.405 (2)
N3—C20 1.375 (2) C32—B1 1.636 (3)
C1—C2 1.405 (3) C33—H33 0.9500
C1—C6 1.413 (2) C33—C34 1.387 (3)
C2—H2 0.9500 C34—H34 0.9500
C2—C3 1.365 (3) C34—C35 1.379 (3)
C3—H3 0.9500 C35—H35 0.9500
C3—C4 1.402 (3) C35—C36 1.389 (3)
C4—H4 0.9500 C36—H36 0.9500
C4—C5 1.350 (4) C36—C37 1.378 (3)
C5—H5 0.9500 C37—H37 0.9500
C5—C6 1.413 (3) C38—C39 1.391 (3)
C6—C7 1.407 (3) C38—C43 1.397 (3)
C7—H7 0.9500 C38—B1 1.649 (3)
C7—C8 1.352 (3) C39—H39 0.9500
C8—H8 0.9500 C39—C40 1.395 (3)
C8—C9 1.413 (2) C40—H40 0.9500
C9—C10 1.507 (3) C40—C41 1.366 (4)
C10—H10A 0.9900 C41—H41 0.9500
C10—H10B 0.9900 C41—C42 1.374 (4)
C11—H11A 0.9900 C42—H42 0.9500
C11—H11B 0.9900 C42—C43 1.392 (3)
C11—C12 1.503 (3) C43—H43 0.9500
C12—C13 1.409 (3) C44—C45 1.400 (2)
C13—H13 0.9500 C44—C49 1.394 (3)
C13—C14 1.355 (3) C44—B1 1.643 (3)
C14—H14 0.9500 C45—H45 0.9500
C14—C15 1.391 (4) C45—C46 1.392 (3)
C15—C16 1.416 (3) C46—H46 0.9500
C15—C20 1.423 (3) C46—C47 1.372 (3)
C16—H16 0.9500 C47—H47 0.9500
C16—C17 1.342 (4) C47—C48 1.378 (3)
C17—H17 0.9500 C48—H48 0.9500
C17—C18 1.401 (4) C48—C49 1.386 (3)
C18—H18 0.9500 C49—H49 0.9500
C18—C19 1.377 (3)
H50A—C50—H50B 108.1 C18—C19—C20 120.2 (2)
Cl1—C50—H50A 109.6 C20—C19—H19 119.9
Cl1—C50—H50B 109.6 N3—C20—C15 121.25 (19)
Cl2—C50—H50A 109.6 N3—C20—C19 119.40 (19)
Cl2—C50—H50B 109.6 C19—C20—C15 119.34 (19)
Cl2—C50—Cl1 110.3 (6) N2—C21—H21A 109.2
H50C—C50B—H50D 105.2 N2—C21—H21B 109.2
Cl1B—C50B—H50C 103.3 N2—C21—C22 112.12 (16)
Cl1B—C50B—H50D 103.3 H21A—C21—H21B 107.9
Cl2B—C50B—H50C 103.3 C22—C21—H21A 109.2
Cl2B—C50B—H50D 103.3 C22—C21—H21B 109.2
Cl2B—C50B—Cl1B 135.4 (13) O1—C22—C21 107.05 (15)
H50E—C50C—H50F 107.9 O1—C22—H22A 110.3
Cl1C—C50C—H50E 109.2 O1—C22—H22B 110.3
Cl1C—C50C—H50F 109.2 C21—C22—H22A 110.3
Cl1C—C50C—Cl2C 112.2 (17) C21—C22—H22B 110.3
Cl2C—C50C—H50E 109.2 H22A—C22—H22B 108.6
Cl2C—C50C—H50F 109.2 O1—C23—H23A 109.5
O1—Mn1—N3 96.57 (5) O1—C23—H23B 109.5
O2—Mn1—O1 84.05 (5) O1—C23—H23C 109.5
O2—Mn1—O3i 110.97 (6) H23A—C23—H23B 109.5
O2—Mn1—N1 109.12 (6) H23A—C23—H23C 109.5
O2—Mn1—N3 101.83 (6) H23B—C23—H23C 109.5
O3i—Mn1—N1 87.99 (6) O2—C24—C25 116.91 (18)
O3i—Mn1—N2 90.53 (6) O3—C24—O2 125.16 (17)
O3i—Mn1—N3 87.05 (6) O3—C24—C25 117.92 (19)
N1—Mn1—O1 80.52 (5) C24—C25—H25A 109.5
N2—Mn1—N3 73.25 (5) C24—C25—H25B 109.5
N2—Mn1—N1 75.56 (5) C24—C25—H25C 109.5
N1—Mn1—N3 148.35 (5) H25A—C25—H25B 109.5
N2—Mn1—O1 75.32 (5) H25A—C25—H25C 109.5
O2—Mn1—N2 157.89 (6) H25B—C25—H25C 109.5
O3i—Mn1—O1 163.58 (6) C27—C26—B1 120.56 (18)
C22—O1—Mn1 112.30 (11) C31—C26—C27 115.02 (19)
C22—O1—C23 111.21 (16) C31—C26—B1 124.32 (18)
C23—O1—Mn1 121.88 (12) C26—C27—H27 118.8
C24—O2—Mn1 142.36 (13) C28—C27—C26 122.4 (3)
C24—O3—Mn1i 151.82 (14) C28—C27—H27 118.8
C1—N1—Mn1 128.22 (11) C27—C28—H28 119.9
C9—N1—Mn1 113.65 (11) C29—C28—C27 120.2 (3)
C9—N1—C1 118.04 (14) C29—C28—H28 119.9
C10—N2—Mn1 109.92 (11) C28—C29—H29 120.4
C10—N2—C21 111.94 (15) C30—C29—C28 119.2 (2)
C11—N2—Mn1 107.45 (10) C30—C29—H29 120.4
C11—N2—C10 110.41 (14) C29—C30—H30 119.7
C11—N2—C21 109.22 (15) C29—C30—C31 120.5 (3)
C21—N2—Mn1 107.76 (11) C31—C30—H30 119.7
C12—N3—Mn1 111.67 (12) C26—C31—H31 118.6
C12—N3—C20 118.07 (17) C30—C31—C26 122.8 (3)
C20—N3—Mn1 129.60 (13) C30—C31—H31 118.6
N1—C1—C2 119.51 (16) C33—C32—C37 114.90 (16)
N1—C1—C6 122.12 (16) C33—C32—B1 124.78 (16)
C2—C1—C6 118.37 (17) C37—C32—B1 120.30 (15)
C1—C2—H2 119.8 C32—C33—H33 118.7
C3—C2—C1 120.5 (2) C34—C33—C32 122.53 (17)
C3—C2—H2 119.8 C34—C33—H33 118.7
C2—C3—H3 119.6 C33—C34—H34 119.8
C2—C3—C4 120.9 (2) C35—C34—C33 120.37 (17)
C4—C3—H3 119.6 C35—C34—H34 119.8
C3—C4—H4 119.9 C34—C35—H35 120.5
C5—C4—C3 120.1 (2) C34—C35—C36 119.09 (18)
C5—C4—H4 119.9 C36—C35—H35 120.5
C4—C5—H5 119.8 C35—C36—H36 120.1
C4—C5—C6 120.5 (2) C37—C36—C35 119.71 (18)
C6—C5—H5 119.8 C37—C36—H36 120.1
C5—C6—C1 119.66 (18) C32—C37—H37 118.3
C7—C6—C1 117.70 (17) C36—C37—C32 123.36 (17)
C7—C6—C5 122.64 (18) C36—C37—H37 118.3
C6—C7—H7 120.2 C39—C38—C43 114.79 (18)
C8—C7—C6 119.61 (17) C39—C38—B1 121.06 (17)
C8—C7—H7 120.2 C43—C38—B1 124.13 (17)
C7—C8—H8 120.2 C38—C39—H39 118.5
C7—C8—C9 119.59 (18) C38—C39—C40 123.0 (2)
C9—C8—H8 120.2 C40—C39—H39 118.5
N1—C9—C8 122.90 (17) C39—C40—H40 119.8
N1—C9—C10 119.42 (15) C41—C40—C39 120.3 (2)
C8—C9—C10 117.64 (16) C41—C40—H40 119.8
N2—C10—C9 114.35 (14) C40—C41—H41 120.6
N2—C10—H10A 108.7 C40—C41—C42 118.7 (2)
N2—C10—H10B 108.7 C42—C41—H41 120.6
C9—C10—H10A 108.7 C41—C42—H42 119.7
C9—C10—H10B 108.7 C41—C42—C43 120.5 (2)
H10A—C10—H10B 107.6 C43—C42—H42 119.7
N2—C11—H11A 109.2 C38—C43—H43 118.7
N2—C11—H11B 109.2 C42—C43—C38 122.6 (2)
N2—C11—C12 112.10 (15) C42—C43—H43 118.7
H11A—C11—H11B 107.9 C45—C44—B1 124.36 (16)
C12—C11—H11A 109.2 C49—C44—C45 114.81 (17)
C12—C11—H11B 109.2 C49—C44—B1 120.83 (16)
N3—C12—C11 119.00 (16) C44—C45—H45 118.5
N3—C12—C13 123.29 (18) C46—C45—C44 122.94 (18)
C13—C12—C11 117.66 (18) C46—C45—H45 118.5
C12—C13—H13 120.4 C45—C46—H46 120.0
C14—C13—C12 119.1 (2) C47—C46—C45 120.04 (18)
C14—C13—H13 120.4 C47—C46—H46 120.0
C13—C14—H14 120.1 C46—C47—H47 120.5
C13—C14—C15 119.9 (2) C46—C47—C48 118.94 (19)
C15—C14—H14 120.1 C48—C47—H47 120.5
C14—C15—C16 123.2 (2) C47—C48—H48 119.8
C14—C15—C20 118.2 (2) C47—C48—C49 120.4 (2)
C16—C15—C20 118.5 (2) C49—C48—H48 119.8
C15—C16—H16 119.6 C44—C49—H49 118.6
C17—C16—C15 120.8 (3) C48—C49—C44 122.9 (2)
C17—C16—H16 119.6 C48—C49—H49 118.6
C16—C17—H17 119.6 C32—B1—C26 106.64 (15)
C16—C17—C18 120.9 (2) C32—B1—C38 111.30 (14)
C18—C17—H17 119.6 C32—B1—C44 109.25 (14)
C17—C18—H18 119.9 C38—B1—C26 110.86 (14)
C19—C18—C17 120.3 (3) C44—B1—C26 110.05 (14)
C19—C18—H18 119.9 C44—B1—C38 108.71 (15)
C18—C19—H19 119.9
Mn1—O1—C22—C21 38.51 (19) C20—N3—C12—C11 −175.83 (16)
Mn1—O2—C24—O3 10.6 (3) C20—N3—C12—C13 1.6 (3)
Mn1—O2—C24—C25 −170.5 (2) C20—C15—C16—C17 0.1 (4)
Mn1i—O3—C24—O2 −52.6 (4) C21—N2—C10—C9 90.09 (19)
Mn1i—O3—C24—C25 128.6 (3) C21—N2—C11—C12 −73.32 (19)
Mn1—N1—C1—C2 3.7 (2) C23—O1—C22—C21 178.99 (18)
Mn1—N1—C1—C6 −176.51 (12) C26—C27—C28—C29 0.0 (4)
Mn1—N1—C9—C8 178.81 (14) C27—C26—C31—C30 0.3 (3)
Mn1—N1—C9—C10 −3.4 (2) C27—C26—B1—C32 47.7 (2)
Mn1—N2—C10—C9 −29.63 (18) C27—C26—B1—C38 −73.6 (2)
Mn1—N2—C11—C12 43.31 (17) C27—C26—B1—C44 166.12 (17)
Mn1—N2—C21—C22 46.04 (18) C27—C28—C29—C30 −0.4 (4)
Mn1—N3—C12—C11 −4.3 (2) C28—C29—C30—C31 0.7 (4)
Mn1—N3—C12—C13 173.17 (18) C29—C30—C31—C26 −0.7 (4)
Mn1—N3—C20—C15 −167.79 (15) C31—C26—C27—C28 0.0 (3)
Mn1—N3—C20—C19 10.9 (3) C31—C26—B1—C32 −128.48 (19)
N1—C1—C2—C3 −178.6 (2) C31—C26—B1—C38 110.2 (2)
N1—C1—C6—C5 178.65 (18) C31—C26—B1—C44 −10.1 (2)
N1—C1—C6—C7 −1.4 (3) C32—C33—C34—C35 1.4 (3)
N1—C9—C10—N2 23.0 (2) C33—C32—C37—C36 0.8 (2)
N2—C11—C12—N3 −26.8 (2) C33—C32—B1—C26 −139.84 (16)
N2—C11—C12—C13 155.63 (19) C33—C32—B1—C38 −18.8 (2)
N2—C21—C22—O1 −57.5 (2) C33—C32—B1—C44 101.24 (18)
N3—C12—C13—C14 −3.4 (4) C33—C34—C35—C36 0.2 (3)
C1—N1—C9—C8 1.9 (3) C34—C35—C36—C37 −1.3 (3)
C1—N1—C9—C10 179.71 (16) C35—C36—C37—C32 0.8 (3)
C1—C2—C3—C4 −0.8 (4) C37—C32—C33—C34 −1.8 (2)
C1—C6—C7—C8 1.3 (3) C37—C32—B1—C26 41.6 (2)
C2—C1—C6—C5 −1.6 (3) C37—C32—B1—C38 162.65 (15)
C2—C1—C6—C7 178.30 (19) C37—C32—B1—C44 −77.29 (19)
C2—C3—C4—C5 −0.1 (4) C38—C39—C40—C41 2.1 (4)
C3—C4—C5—C6 0.1 (4) C39—C38—C43—C42 1.1 (3)
C4—C5—C6—C1 0.8 (3) C39—C38—B1—C26 −153.23 (18)
C4—C5—C6—C7 −179.1 (2) C39—C38—B1—C32 88.2 (2)
C5—C6—C7—C8 −178.8 (2) C39—C38—B1—C44 −32.1 (2)
C6—C1—C2—C3 1.6 (3) C39—C40—C41—C42 0.5 (4)
C6—C7—C8—C9 0.4 (3) C40—C41—C42—C43 −2.2 (3)
C7—C8—C9—N1 −2.1 (3) C41—C42—C43—C38 1.4 (3)
C7—C8—C9—C10 −179.91 (19) C43—C38—C39—C40 −2.8 (3)
C8—C9—C10—N2 −159.09 (17) C43—C38—B1—C26 28.2 (2)
C9—N1—C1—C2 −179.88 (17) C43—C38—B1—C32 −90.3 (2)
C9—N1—C1—C6 −0.1 (2) C43—C38—B1—C44 149.32 (17)
C10—N2—C11—C12 163.18 (16) C44—C45—C46—C47 0.2 (3)
C10—N2—C21—C22 −74.9 (2) C45—C44—C49—C48 1.3 (3)
C11—N2—C10—C9 −148.00 (16) C45—C44—B1—C26 −107.56 (19)
C11—N2—C21—C22 162.47 (16) C45—C44—B1—C32 9.2 (2)
C11—C12—C13—C14 174.1 (2) C45—C44—B1—C38 130.85 (17)
C12—N3—C20—C15 2.0 (3) C45—C46—C47—C48 1.4 (3)
C12—N3—C20—C19 −179.26 (19) C46—C47—C48—C49 −1.6 (4)
C12—C13—C14—C15 1.4 (4) C47—C48—C49—C44 0.2 (4)
C13—C14—C15—C16 −178.7 (3) C49—C44—C45—C46 −1.5 (3)
C13—C14—C15—C20 2.0 (4) C49—C44—B1—C26 72.5 (2)
C14—C15—C16—C17 −179.2 (3) C49—C44—B1—C32 −170.74 (18)
C14—C15—C20—N3 −3.8 (3) C49—C44—B1—C38 −49.1 (2)
C14—C15—C20—C19 177.5 (2) B1—C26—C27—C28 −176.5 (2)
C15—C16—C17—C18 1.2 (5) B1—C26—C31—C30 176.7 (2)
C16—C15—C20—N3 176.9 (2) B1—C32—C33—C34 179.55 (16)
C16—C15—C20—C19 −1.9 (3) B1—C32—C37—C36 179.43 (16)
C16—C17—C18—C19 −0.7 (5) B1—C38—C39—C40 178.5 (2)
C17—C18—C19—C20 −1.1 (4) B1—C38—C43—C42 179.73 (18)
C18—C19—C20—N3 −176.4 (2) B1—C44—C45—C46 178.56 (16)
C18—C19—C20—C15 2.3 (3) B1—C44—C49—C48 −178.8 (2)

Symmetry code: (i) −x, −y+1, −z+1.

Di-µ-acetato-κ4O:O'-bis{[2-methoxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O]manganese(II)} bis(tetraphenylborate) dichloromethane 1.45-solvate (1) . Hydrogen-bond geometry (Å, º)

Cg9 and Cg12 are the centroids of the C32–C37 and C44–C49 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C2—H2···O2 0.95 2.49 3.366 (3) 154
C19—H19···O2 0.95 2.31 3.199 (3) 155
C23—H23A···O2 0.98 2.31 3.1767 (2) 119
C29—H29···Cl2ii 0.95 2.65 3.5305 (2) 155
C8—H8···Cg11iii 0.95 2.68 3.5556 (2) 153
C11—H11B···Cg11iv 0.99 2.81 3.7195 (2) 152
C23—H23B···Cg9 0.98 2.78 3.7034 (2) 157

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) x+1, y, z.

(Acetato-κO)[2-hydroxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O](methanol-κO)manganese(II) tetraphenylborate methanol monosolvate (2) . Crystal data

[Mn(C2H3O2)(C22H21N3O)(CH4O)](C24H20B)·CH4O F(000) = 1772
Mr = 840.69 Dx = 1.295 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.3504 (3) Å Cell parameters from 8395 reflections
b = 17.4824 (5) Å θ = 2.4–32.4°
c = 23.9618 (9) Å µ = 0.36 mm1
β = 96.222 (3)° T = 173 K
V = 4310.3 (3) Å3 Prism, colourless
Z = 4 0.34 × 0.28 × 0.26 mm

(Acetato-κO)[2-hydroxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O](methanol-κO)manganese(II) tetraphenylborate methanol monosolvate (2) . Data collection

Rigaku Oxford Diffraction Gemini Eos diffractometer 14443 independent reflections
Radiation source: fine-focus sealed X-ray tube 10348 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.032
ω scans θmax = 32.9°, θmin = 2.4°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) h = −15→12
Tmin = 0.845, Tmax = 1.000 k = −25→15
31473 measured reflections l = −34→36

(Acetato-κO)[2-hydroxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O](methanol-κO)manganese(II) tetraphenylborate methanol monosolvate (2) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0597P)2 + 1.7892P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
14443 reflections Δρmax = 0.67 e Å3
582 parameters Δρmin = −0.44 e Å3
85 restraints

(Acetato-κO)[2-hydroxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O](methanol-κO)manganese(II) tetraphenylborate methanol monosolvate (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(Acetato-κO)[2-hydroxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O](methanol-κO)manganese(II) tetraphenylborate methanol monosolvate (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mn1 0.20955 (3) 0.33373 (2) 0.52463 (2) 0.02919 (8)
O1 0.28258 (14) 0.44314 (8) 0.52710 (7) 0.0462 (4)
O2 0.13629 (13) 0.53266 (9) 0.50981 (7) 0.0474 (4)
C21 −0.0123 (4) 0.2185 (2) 0.51942 (16) 0.0392 (8) 0.791 (5)
H21A −0.046372 0.236717 0.554101 0.047* 0.791 (5)
H21B −0.050269 0.167489 0.510100 0.047* 0.791 (5)
C22 −0.0519 (2) 0.27345 (14) 0.47199 (13) 0.0418 (7) 0.791 (5)
H22A −0.026426 0.252695 0.436329 0.050* 0.791 (5)
H22B −0.147385 0.280376 0.467818 0.050* 0.791 (5)
O3 0.0113 (7) 0.3457 (3) 0.4842 (2) 0.0403 (9) 0.791 (5)
H3 −0.040 (3) 0.3839 (18) 0.4820 (17) 0.060* 0.791 (5)
C21B −0.0034 (13) 0.2064 (8) 0.5036 (7) 0.037 (2) 0.209 (5)
H21C −0.047254 0.162125 0.519187 0.044* 0.209 (5)
H21D −0.006777 0.200111 0.462437 0.044* 0.209 (5)
C22B −0.0669 (8) 0.2791 (5) 0.5177 (5) 0.0389 (19) 0.209 (5)
H22C −0.157693 0.280497 0.499824 0.047* 0.209 (5)
H22D −0.067722 0.283649 0.558803 0.047* 0.209 (5)
O3B 0.008 (3) 0.3419 (13) 0.4966 (10) 0.043 (3) 0.209 (5)
H3B −0.056 (11) 0.371 (8) 0.499 (7) 0.065* 0.209 (5)
O4 0.11509 (17) 0.35761 (10) 0.60633 (7) 0.0527 (4)
H4 0.055 (2) 0.3937 (15) 0.5997 (13) 0.079*
N1 0.13266 (14) 0.21202 (8) 0.52926 (7) 0.0303 (3)
N2 0.25628 (13) 0.27746 (8) 0.44162 (6) 0.0266 (3)
N3 0.35823 (13) 0.26902 (8) 0.58298 (6) 0.0252 (3)
C1 0.1944 (2) 0.16292 (10) 0.48974 (8) 0.0357 (4)
H1A 0.133326 0.121192 0.477214 0.043*
H1B 0.272630 0.139148 0.510029 0.043*
C2 0.23347 (16) 0.20309 (9) 0.43876 (7) 0.0280 (3)
C3 0.25111 (19) 0.15814 (10) 0.39141 (8) 0.0334 (4)
H3A 0.233076 0.104858 0.391410 0.040*
C4 0.29409 (19) 0.19162 (11) 0.34578 (8) 0.0356 (4)
H4A 0.308919 0.161726 0.313979 0.043*
C5 0.31655 (16) 0.27117 (10) 0.34599 (7) 0.0283 (3)
C6 0.35729 (18) 0.31007 (11) 0.29957 (8) 0.0353 (4)
H6 0.370740 0.282313 0.266608 0.042*
C7 0.37775 (18) 0.38724 (12) 0.30132 (9) 0.0381 (4)
H7 0.405897 0.412934 0.269861 0.046*
C8 0.35708 (19) 0.42820 (11) 0.34959 (9) 0.0393 (4)
H8 0.370369 0.481974 0.350415 0.047*
C9 0.31792 (18) 0.39232 (10) 0.39589 (9) 0.0345 (4)
H9 0.305140 0.421140 0.428451 0.041*
C10 0.29674 (15) 0.31276 (9) 0.39503 (7) 0.0259 (3)
C11 0.17185 (17) 0.18520 (10) 0.58677 (8) 0.0312 (4)
H11A 0.163531 0.128838 0.588150 0.037*
H11B 0.113287 0.207489 0.612489 0.037*
C12 0.31033 (16) 0.20774 (9) 0.60597 (7) 0.0267 (3)
C13 0.38127 (18) 0.16443 (10) 0.64823 (7) 0.0312 (3)
H13 0.343839 0.120350 0.663192 0.037*
C14 0.50433 (18) 0.18645 (11) 0.66747 (7) 0.0319 (4)
H14 0.552399 0.158636 0.696811 0.038*
C15 0.56008 (16) 0.25053 (10) 0.64375 (7) 0.0276 (3)
C16 0.68919 (18) 0.27456 (12) 0.66024 (8) 0.0364 (4)
H16 0.740753 0.248239 0.689357 0.044*
C17 0.73966 (18) 0.33547 (12) 0.63438 (9) 0.0396 (4)
H17 0.826480 0.351267 0.645467 0.047*
C18 0.66421 (17) 0.37488 (11) 0.59156 (9) 0.0356 (4)
H18 0.700919 0.416920 0.573713 0.043*
C19 0.53883 (17) 0.35388 (10) 0.57505 (8) 0.0300 (3)
H19 0.488663 0.381583 0.546259 0.036*
C20 0.48377 (15) 0.29084 (9) 0.60089 (7) 0.0250 (3)
C23 0.24089 (16) 0.50955 (10) 0.53307 (8) 0.0303 (3)
C24 0.3267 (3) 0.56395 (15) 0.56863 (12) 0.0614 (7)
H24A 0.404881 0.574672 0.550308 0.092*
H24B 0.351550 0.540939 0.605520 0.092*
H24C 0.279510 0.611747 0.573258 0.092*
C25 0.1491 (3) 0.3478 (2) 0.66598 (13) 0.0784 (10)
H25A 0.236358 0.325640 0.672799 0.118*
H25B 0.086276 0.313477 0.680887 0.118*
H25C 0.147710 0.397564 0.684705 0.118*
C1A 0.22940 (15) 0.82390 (9) 0.66632 (7) 0.0259 (3)
C2A 0.10210 (17) 0.80890 (11) 0.67793 (9) 0.0355 (4)
H2A 0.038937 0.848323 0.672024 0.043*
C3A 0.06469 (19) 0.73829 (13) 0.69782 (10) 0.0447 (5)
H3AA −0.022383 0.730787 0.705735 0.054*
C4A 0.1531 (2) 0.67907 (11) 0.70614 (9) 0.0387 (4)
H4AA 0.127219 0.630697 0.719175 0.046*
C5A 0.27959 (18) 0.69140 (10) 0.69519 (8) 0.0326 (4)
H5A 0.341484 0.651201 0.700378 0.039*
C6A 0.31643 (16) 0.76255 (10) 0.67659 (8) 0.0297 (3)
H6A 0.404714 0.770115 0.670519 0.036*
C7A 0.31146 (15) 0.89862 (10) 0.57761 (7) 0.0261 (3)
C8A 0.3448 (2) 0.83050 (11) 0.55251 (9) 0.0380 (4)
H8A 0.343659 0.784419 0.573459 0.046*
C9A 0.3796 (3) 0.82714 (13) 0.49820 (10) 0.0529 (6)
H9A 0.401198 0.779232 0.482977 0.063*
C10A 0.3831 (2) 0.89245 (14) 0.46602 (9) 0.0466 (5)
H10A 0.406822 0.890104 0.428855 0.056*
C11A 0.35142 (19) 0.96101 (13) 0.48919 (8) 0.0389 (4)
H11C 0.353786 1.006842 0.468020 0.047*
C12A 0.31613 (17) 0.96345 (11) 0.54320 (8) 0.0329 (4)
H12A 0.293816 1.011597 0.557854 0.040*
C13A 0.16269 (15) 0.97007 (9) 0.64705 (8) 0.0267 (3)
C14A 0.05958 (16) 0.97907 (10) 0.60442 (9) 0.0353 (4)
H14A 0.059256 0.949083 0.571341 0.042*
C15A −0.04201 (17) 1.02996 (11) 0.60857 (11) 0.0432 (5)
H15A −0.110442 1.033710 0.578894 0.052*
C16A −0.04368 (19) 1.07520 (12) 0.65585 (11) 0.0474 (6)
H16A −0.112196 1.110670 0.658681 0.057*
C17A 0.0554 (2) 1.06805 (12) 0.69877 (10) 0.0441 (5)
H17A 0.055435 1.098602 0.731560 0.053*
C18A 0.15569 (17) 1.01606 (11) 0.69413 (8) 0.0335 (4)
H18A 0.222400 1.011741 0.724482 0.040*
C19A 0.41144 (14) 0.93303 (9) 0.68196 (7) 0.0232 (3)
C20A 0.51032 (15) 0.97532 (10) 0.66120 (8) 0.0287 (3)
H20A 0.501709 0.988501 0.622509 0.034*
C21A 0.62107 (17) 0.99890 (10) 0.69507 (9) 0.0352 (4)
H21E 0.685705 1.027867 0.679253 0.042*
C22A 0.63763 (18) 0.98059 (11) 0.75126 (9) 0.0375 (4)
H22E 0.713240 0.996573 0.774337 0.045*
C23A 0.54236 (19) 0.93855 (11) 0.77356 (8) 0.0366 (4)
H23A 0.552187 0.925441 0.812265 0.044*
C24A 0.43231 (17) 0.91548 (10) 0.73937 (7) 0.0300 (3)
H24D 0.368273 0.886520 0.755581 0.036*
B1 0.27814 (16) 0.90606 (10) 0.64275 (8) 0.0242 (3)
O1S −0.05332 (15) 0.47197 (9) 0.60054 (7) 0.0472 (4)
H1S −0.068772 0.486107 0.566974 0.071*
C1S −0.0042 (2) 0.53448 (14) 0.63392 (11) 0.0520 (6)
H1SA −0.047010 0.581705 0.619749 0.078*
H1SB 0.089674 0.538828 0.632230 0.078*
H1SC −0.021328 0.526189 0.672897 0.078*

(Acetato-κO)[2-hydroxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O](methanol-κO)manganese(II) tetraphenylborate methanol monosolvate (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.02894 (13) 0.02222 (13) 0.03608 (15) −0.00182 (9) 0.00209 (10) −0.00026 (10)
O1 0.0414 (7) 0.0229 (6) 0.0737 (11) 0.0002 (5) 0.0041 (7) −0.0025 (6)
O2 0.0346 (7) 0.0392 (8) 0.0650 (10) 0.0033 (6) −0.0096 (7) −0.0072 (7)
C21 0.0324 (13) 0.0326 (16) 0.051 (2) −0.0094 (11) −0.0030 (14) 0.0003 (13)
C22 0.0340 (12) 0.0340 (13) 0.0541 (17) −0.0049 (9) −0.0099 (11) −0.0010 (11)
O3 0.0302 (12) 0.0282 (13) 0.060 (3) 0.0003 (10) −0.0077 (17) −0.0041 (14)
C21B 0.029 (4) 0.032 (4) 0.047 (5) −0.008 (3) −0.001 (4) −0.004 (4)
C22B 0.028 (3) 0.032 (3) 0.057 (4) −0.005 (3) 0.007 (3) −0.003 (3)
O3B 0.036 (4) 0.033 (4) 0.059 (6) 0.004 (3) 0.000 (5) 0.009 (4)
O4 0.0568 (10) 0.0561 (10) 0.0459 (9) 0.0133 (8) 0.0089 (7) −0.0098 (7)
N1 0.0296 (7) 0.0264 (7) 0.0346 (8) −0.0053 (5) 0.0021 (6) 0.0003 (6)
N2 0.0274 (6) 0.0215 (6) 0.0306 (7) −0.0026 (5) 0.0017 (5) 0.0030 (5)
N3 0.0270 (6) 0.0225 (6) 0.0269 (7) −0.0020 (5) 0.0071 (5) 0.0009 (5)
C1 0.0546 (11) 0.0213 (8) 0.0311 (9) −0.0066 (7) 0.0039 (8) 0.0011 (6)
C2 0.0296 (8) 0.0225 (7) 0.0308 (8) −0.0020 (6) −0.0011 (6) 0.0012 (6)
C3 0.0442 (10) 0.0214 (8) 0.0341 (9) −0.0025 (7) 0.0028 (8) −0.0008 (6)
C4 0.0434 (10) 0.0296 (9) 0.0338 (9) 0.0004 (7) 0.0049 (8) −0.0026 (7)
C5 0.0252 (7) 0.0271 (8) 0.0324 (9) 0.0023 (6) 0.0020 (6) 0.0035 (6)
C6 0.0360 (9) 0.0365 (10) 0.0340 (9) 0.0030 (7) 0.0070 (7) 0.0048 (7)
C7 0.0360 (9) 0.0384 (10) 0.0408 (11) 0.0013 (8) 0.0074 (8) 0.0119 (8)
C8 0.0428 (10) 0.0273 (9) 0.0488 (12) −0.0024 (7) 0.0088 (9) 0.0072 (8)
C9 0.0383 (9) 0.0253 (8) 0.0408 (10) −0.0028 (7) 0.0086 (8) 0.0013 (7)
C10 0.0220 (7) 0.0239 (7) 0.0315 (8) 0.0001 (6) 0.0014 (6) 0.0035 (6)
C11 0.0313 (8) 0.0287 (8) 0.0348 (9) −0.0063 (6) 0.0092 (7) 0.0016 (7)
C12 0.0292 (8) 0.0248 (8) 0.0274 (8) −0.0025 (6) 0.0097 (6) −0.0005 (6)
C13 0.0380 (9) 0.0280 (8) 0.0287 (8) −0.0022 (7) 0.0085 (7) 0.0041 (6)
C14 0.0376 (9) 0.0323 (9) 0.0260 (8) 0.0025 (7) 0.0040 (7) 0.0046 (6)
C15 0.0295 (8) 0.0273 (8) 0.0269 (8) 0.0024 (6) 0.0069 (6) −0.0012 (6)
C16 0.0332 (9) 0.0403 (10) 0.0351 (10) 0.0021 (7) 0.0012 (7) −0.0009 (8)
C17 0.0291 (9) 0.0454 (11) 0.0439 (11) −0.0068 (8) 0.0032 (8) −0.0025 (8)
C18 0.0317 (8) 0.0312 (9) 0.0450 (11) −0.0065 (7) 0.0088 (8) 0.0009 (7)
C19 0.0309 (8) 0.0249 (8) 0.0352 (9) −0.0017 (6) 0.0073 (7) 0.0022 (6)
C20 0.0253 (7) 0.0218 (7) 0.0289 (8) 0.0003 (6) 0.0077 (6) −0.0018 (6)
C23 0.0299 (8) 0.0254 (8) 0.0354 (9) −0.0037 (6) 0.0027 (7) −0.0017 (6)
C24 0.0570 (14) 0.0509 (14) 0.0712 (18) −0.0076 (11) −0.0169 (12) −0.0204 (12)
C25 0.0734 (19) 0.093 (2) 0.0644 (19) 0.0182 (16) −0.0132 (15) −0.0370 (17)
C1A 0.0239 (7) 0.0248 (8) 0.0289 (8) −0.0040 (6) 0.0030 (6) −0.0026 (6)
C2A 0.0230 (7) 0.0353 (9) 0.0486 (11) −0.0038 (7) 0.0051 (7) 0.0046 (8)
C3A 0.0304 (9) 0.0429 (11) 0.0615 (14) −0.0123 (8) 0.0087 (9) 0.0073 (10)
C4A 0.0440 (10) 0.0297 (9) 0.0420 (11) −0.0124 (8) 0.0027 (8) 0.0037 (7)
C5A 0.0384 (9) 0.0242 (8) 0.0344 (9) −0.0020 (7) −0.0001 (7) −0.0023 (7)
C6A 0.0259 (7) 0.0253 (8) 0.0379 (9) −0.0021 (6) 0.0038 (7) −0.0028 (7)
C7A 0.0205 (7) 0.0277 (8) 0.0301 (8) −0.0019 (6) 0.0020 (6) −0.0039 (6)
C8A 0.0437 (10) 0.0296 (9) 0.0438 (11) −0.0057 (8) 0.0182 (9) −0.0081 (8)
C9A 0.0690 (15) 0.0421 (12) 0.0532 (14) −0.0081 (10) 0.0323 (12) −0.0192 (10)
C10A 0.0506 (12) 0.0585 (14) 0.0329 (10) −0.0097 (10) 0.0154 (9) −0.0122 (9)
C11A 0.0372 (9) 0.0489 (12) 0.0302 (9) 0.0006 (8) 0.0024 (7) 0.0031 (8)
C12A 0.0351 (9) 0.0347 (9) 0.0289 (9) 0.0052 (7) 0.0027 (7) 0.0001 (7)
C13A 0.0200 (6) 0.0222 (7) 0.0387 (9) −0.0020 (5) 0.0075 (6) −0.0002 (6)
C14A 0.0245 (8) 0.0272 (8) 0.0533 (12) −0.0023 (6) −0.0001 (7) −0.0015 (8)
C15A 0.0201 (8) 0.0336 (10) 0.0754 (15) −0.0017 (7) 0.0028 (8) 0.0101 (10)
C16A 0.0294 (9) 0.0323 (10) 0.0853 (17) 0.0059 (7) 0.0279 (10) 0.0079 (10)
C17A 0.0428 (10) 0.0351 (10) 0.0598 (13) 0.0029 (8) 0.0296 (10) −0.0042 (9)
C18A 0.0309 (8) 0.0313 (9) 0.0404 (10) −0.0003 (7) 0.0132 (7) −0.0019 (7)
C19A 0.0208 (6) 0.0186 (7) 0.0304 (8) −0.0006 (5) 0.0041 (6) −0.0026 (6)
C20A 0.0243 (7) 0.0267 (8) 0.0353 (9) −0.0032 (6) 0.0036 (6) 0.0037 (6)
C21A 0.0239 (7) 0.0265 (8) 0.0548 (12) −0.0052 (6) 0.0023 (7) 0.0021 (8)
C22A 0.0300 (8) 0.0280 (9) 0.0512 (12) 0.0005 (7) −0.0104 (8) −0.0079 (8)
C23A 0.0415 (10) 0.0341 (10) 0.0325 (9) 0.0007 (8) −0.0036 (8) −0.0040 (7)
C24A 0.0310 (8) 0.0292 (8) 0.0303 (8) −0.0034 (6) 0.0060 (7) −0.0029 (6)
B1 0.0208 (7) 0.0218 (8) 0.0304 (9) −0.0016 (6) 0.0045 (6) −0.0025 (6)
O1S 0.0457 (8) 0.0450 (9) 0.0509 (9) −0.0040 (7) 0.0050 (7) −0.0076 (7)
C1S 0.0468 (12) 0.0492 (13) 0.0588 (15) 0.0004 (10) 0.0004 (10) −0.0151 (11)

(Acetato-κO)[2-hydroxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O](methanol-κO)manganese(II) tetraphenylborate methanol monosolvate (2) . Geometric parameters (Å, º)

Mn1—O1 2.0551 (14) C18—H18 0.9500
Mn1—O3 2.182 (7) C18—C19 1.365 (2)
Mn1—O3B 2.13 (3) C19—H19 0.9500
Mn1—O4 2.3190 (16) C19—C20 1.414 (2)
Mn1—N1 2.2787 (15) C23—C24 1.501 (3)
Mn1—N2 2.3167 (15) C24—H24A 0.9800
Mn1—N3 2.2664 (14) C24—H24B 0.9800
O1—C23 1.252 (2) C24—H24C 0.9800
O2—C23 1.231 (2) C25—H25A 0.9800
C21—H21A 0.9900 C25—H25B 0.9800
C21—H21B 0.9900 C25—H25C 0.9800
C21—C22 1.511 (5) C1A—C2A 1.401 (2)
C21—N1 1.497 (4) C1A—C6A 1.405 (2)
C22—H22A 0.9900 C1A—B1 1.643 (2)
C22—H22B 0.9900 C2A—H2A 0.9500
C22—O3 1.438 (5) C2A—C3A 1.393 (3)
O3—H3 0.849 (18) C3A—H3AA 0.9500
C21B—H21C 0.9900 C3A—C4A 1.382 (3)
C21B—H21D 0.9900 C4A—H4AA 0.9500
C21B—C22B 1.487 (13) C4A—C5A 1.380 (3)
C21B—N1 1.477 (13) C5A—H5A 0.9500
C22B—H22C 0.9900 C5A—C6A 1.389 (2)
C22B—H22D 0.9900 C6A—H6A 0.9500
C22B—O3B 1.463 (16) C7A—C8A 1.394 (2)
O3B—H3B 0.84 (2) C7A—C12A 1.406 (3)
O4—H4 0.890 (17) C7A—B1 1.640 (3)
O4—C25 1.445 (3) C8A—H8A 0.9500
N1—C1 1.474 (2) C8A—C9A 1.389 (3)
N1—C11 1.470 (2) C9A—H9A 0.9500
N2—C2 1.322 (2) C9A—C10A 1.380 (3)
N2—C10 1.380 (2) C10A—H10A 0.9500
N3—C12 1.325 (2) C10A—C11A 1.375 (3)
N3—C20 1.377 (2) C11A—H11C 0.9500
C1—H1A 0.9900 C11A—C12A 1.383 (3)
C1—H1B 0.9900 C12A—H12A 0.9500
C1—C2 1.502 (2) C13A—C14A 1.404 (2)
C2—C3 1.408 (3) C13A—C18A 1.394 (3)
C3—H3A 0.9500 C13A—B1 1.648 (2)
C3—C4 1.357 (3) C14A—H14A 0.9500
C4—H4A 0.9500 C14A—C15A 1.389 (3)
C4—C5 1.410 (3) C15A—H15A 0.9500
C5—C6 1.407 (3) C15A—C16A 1.383 (3)
C5—C10 1.415 (2) C16A—H16A 0.9500
C6—H6 0.9500 C16A—C17A 1.377 (3)
C6—C7 1.366 (3) C17A—H17A 0.9500
C7—H7 0.9500 C17A—C18A 1.393 (3)
C7—C8 1.396 (3) C18A—H18A 0.9500
C8—H8 0.9500 C19A—C20A 1.397 (2)
C8—C9 1.373 (3) C19A—C24A 1.403 (2)
C9—H9 0.9500 C19A—B1 1.651 (2)
C9—C10 1.408 (2) C20A—H20A 0.9500
C11—H11A 0.9900 C20A—C21A 1.393 (2)
C11—H11B 0.9900 C21A—H21E 0.9500
C11—C12 1.509 (2) C21A—C22A 1.376 (3)
C12—C13 1.406 (2) C22A—H22E 0.9500
C13—H13 0.9500 C22A—C23A 1.383 (3)
C13—C14 1.362 (3) C23A—H23A 0.9500
C14—H14 0.9500 C23A—C24A 1.389 (2)
C14—C15 1.408 (2) C24A—H24D 0.9500
C15—C16 1.416 (3) O1S—H1S 0.8400
C15—C20 1.414 (2) O1S—C1S 1.416 (3)
C16—H16 0.9500 C1S—H1SA 0.9800
C16—C17 1.364 (3) C1S—H1SB 0.9800
C17—H17 0.9500 C1S—H1SC 0.9800
C17—C18 1.401 (3)
O1—Mn1—O3 104.41 (14) C14—C15—C20 117.95 (15)
O1—Mn1—O3B 107.0 (6) C20—C15—C16 119.40 (16)
O1—Mn1—O4 89.75 (7) C15—C16—H16 120.0
O1—Mn1—N2 108.03 (6) C17—C16—C15 120.08 (18)
O1—Mn1—N3 102.93 (6) C17—C16—H16 120.0
O3—Mn1—O4 83.98 (17) C16—C17—H17 119.8
O3—Mn1—N1 78.14 (13) C16—C17—C18 120.39 (17)
O3—Mn1—N2 86.19 (17) C18—C17—H17 119.8
O3B—Mn1—O4 76.4 (7) C17—C18—H18 119.4
O3B—Mn1—N1 75.0 (5) C19—C18—C17 121.11 (17)
O3B—Mn1—N2 92.6 (8) C19—C18—H18 119.4
O3B—Mn1—N3 143.7 (5) C18—C19—H19 120.1
N1—Mn1—O4 86.88 (6) C18—C19—C20 119.89 (17)
N1—Mn1—N2 75.63 (5) C20—C19—H19 120.1
N1—Mn1—N3 73.81 (5) N3—C20—C15 121.47 (15)
O3—Mn1—N3 149.83 (12) N3—C20—C19 119.39 (15)
O1—Mn1—N1 175.54 (6) C15—C20—C19 119.12 (15)
N2—Mn1—O4 161.38 (6) O1—C23—C24 117.54 (18)
N3—Mn1—O4 83.64 (6) O2—C23—O1 123.34 (17)
N3—Mn1—N2 97.28 (5) O2—C23—C24 119.07 (18)
C23—O1—Mn1 137.39 (13) C23—C24—H24A 109.5
H21A—C21—H21B 108.1 C23—C24—H24B 109.5
C22—C21—H21A 109.5 C23—C24—H24C 109.5
C22—C21—H21B 109.5 H24A—C24—H24B 109.5
N1—C21—H21A 109.5 H24A—C24—H24C 109.5
N1—C21—H21B 109.5 H24B—C24—H24C 109.5
N1—C21—C22 110.6 (3) O4—C25—H25A 109.5
C21—C22—H22A 109.9 O4—C25—H25B 109.5
C21—C22—H22B 109.9 O4—C25—H25C 109.5
H22A—C22—H22B 108.3 H25A—C25—H25B 109.5
O3—C22—C21 109.0 (3) H25A—C25—H25C 109.5
O3—C22—H22A 109.9 H25B—C25—H25C 109.5
O3—C22—H22B 109.9 C2A—C1A—C6A 114.92 (16)
Mn1—O3—H3 131 (3) C2A—C1A—B1 124.23 (15)
C22—O3—Mn1 113.0 (4) C6A—C1A—B1 120.85 (14)
C22—O3—H3 114 (3) C1A—C2A—H2A 118.8
H21C—C21B—H21D 108.7 C3A—C2A—C1A 122.42 (18)
C22B—C21B—H21C 110.6 C3A—C2A—H2A 118.8
C22B—C21B—H21D 110.6 C2A—C3A—H3AA 119.7
N1—C21B—H21C 110.6 C4A—C3A—C2A 120.60 (18)
N1—C21B—H21D 110.6 C4A—C3A—H3AA 119.7
N1—C21B—C22B 105.9 (9) C3A—C4A—H4AA 120.6
C21B—C22B—H22C 110.2 C5A—C4A—C3A 118.86 (17)
C21B—C22B—H22D 110.2 C5A—C4A—H4AA 120.6
H22C—C22B—H22D 108.5 C4A—C5A—H5A 120.0
O3B—C22B—C21B 107.5 (15) C4A—C5A—C6A 120.01 (17)
O3B—C22B—H22C 110.2 C6A—C5A—H5A 120.0
O3B—C22B—H22D 110.2 C1A—C6A—H6A 118.4
Mn1—O3B—H3B 141 (10) C5A—C6A—C1A 123.15 (16)
C22B—O3B—Mn1 112.2 (16) C5A—C6A—H6A 118.4
C22B—O3B—H3B 90 (10) C8A—C7A—C12A 114.20 (16)
Mn1—O4—H4 109 (2) C8A—C7A—B1 124.47 (16)
C25—O4—Mn1 137.22 (16) C12A—C7A—B1 121.23 (15)
C25—O4—H4 111 (2) C7A—C8A—H8A 118.6
C21—N1—Mn1 105.73 (17) C9A—C8A—C7A 122.81 (19)
C21B—N1—Mn1 111.4 (6) C9A—C8A—H8A 118.6
C1—N1—Mn1 109.55 (11) C8A—C9A—H9A 119.5
C1—N1—C21 116.0 (2) C10A—C9A—C8A 120.9 (2)
C1—N1—C21B 98.8 (5) C10A—C9A—H9A 119.5
C11—N1—Mn1 106.33 (10) C9A—C10A—H10A 120.9
C11—N1—C21 109.97 (19) C11A—C10A—C9A 118.26 (19)
C11—N1—C21B 121.5 (7) C11A—C10A—H10A 120.9
C11—N1—C1 108.77 (14) C10A—C11A—H11C 119.9
C2—N2—Mn1 114.17 (11) C10A—C11A—C12A 120.2 (2)
C2—N2—C10 117.78 (15) C12A—C11A—H11C 119.9
C10—N2—Mn1 127.93 (11) C7A—C12A—H12A 118.2
C12—N3—Mn1 113.60 (11) C11A—C12A—C7A 123.60 (18)
C12—N3—C20 118.50 (14) C11A—C12A—H12A 118.2
C20—N3—Mn1 127.48 (11) C14A—C13A—B1 121.98 (15)
N1—C1—H1A 108.5 C18A—C13A—C14A 114.98 (16)
N1—C1—H1B 108.5 C18A—C13A—B1 122.95 (15)
N1—C1—C2 115.08 (15) C13A—C14A—H14A 118.6
H1A—C1—H1B 107.5 C15A—C14A—C13A 122.8 (2)
C2—C1—H1A 108.5 C15A—C14A—H14A 118.6
C2—C1—H1B 108.5 C14A—C15A—H15A 119.9
N2—C2—C1 118.68 (16) C16A—C15A—C14A 120.1 (2)
N2—C2—C3 123.55 (16) C16A—C15A—H15A 119.9
C3—C2—C1 117.66 (15) C15A—C16A—H16A 120.5
C2—C3—H3A 120.3 C17A—C16A—C15A 119.03 (18)
C4—C3—C2 119.41 (17) C17A—C16A—H16A 120.5
C4—C3—H3A 120.3 C16A—C17A—H17A 120.0
C3—C4—H4A 120.3 C16A—C17A—C18A 120.0 (2)
C3—C4—C5 119.39 (17) C18A—C17A—H17A 120.0
C5—C4—H4A 120.3 C13A—C18A—H18A 118.5
C4—C5—C10 118.09 (16) C17A—C18A—C13A 123.07 (19)
C6—C5—C4 122.50 (17) C17A—C18A—H18A 118.5
C6—C5—C10 119.40 (16) C20A—C19A—C24A 115.08 (15)
C5—C6—H6 119.6 C20A—C19A—B1 123.20 (15)
C7—C6—C5 120.80 (19) C24A—C19A—B1 121.72 (14)
C7—C6—H6 119.6 C19A—C20A—H20A 118.7
C6—C7—H7 120.2 C21A—C20A—C19A 122.51 (17)
C6—C7—C8 119.66 (18) C21A—C20A—H20A 118.7
C8—C7—H7 120.2 C20A—C21A—H21E 119.7
C7—C8—H8 119.3 C22A—C21A—C20A 120.55 (17)
C9—C8—C7 121.33 (18) C22A—C21A—H21E 119.7
C9—C8—H8 119.3 C21A—C22A—H22E 120.6
C8—C9—H9 120.1 C21A—C22A—C23A 118.90 (17)
C8—C9—C10 119.90 (18) C23A—C22A—H22E 120.6
C10—C9—H9 120.1 C22A—C23A—H23A 120.0
N2—C10—C5 121.73 (15) C22A—C23A—C24A 119.99 (18)
N2—C10—C9 119.36 (16) C24A—C23A—H23A 120.0
C9—C10—C5 118.90 (16) C19A—C24A—H24D 118.5
N1—C11—H11A 109.4 C23A—C24A—C19A 122.97 (17)
N1—C11—H11B 109.4 C23A—C24A—H24D 118.5
N1—C11—C12 111.03 (14) C1A—B1—C13A 108.68 (13)
H11A—C11—H11B 108.0 C1A—B1—C19A 108.83 (13)
C12—C11—H11A 109.4 C7A—B1—C1A 111.22 (13)
C12—C11—H11B 109.4 C7A—B1—C13A 110.01 (14)
N3—C12—C11 118.03 (15) C7A—B1—C19A 108.38 (12)
N3—C12—C13 123.03 (16) C13A—B1—C19A 109.71 (13)
C13—C12—C11 118.92 (15) C1S—O1S—H1S 109.5
C12—C13—H13 120.4 O1S—C1S—H1SA 109.5
C14—C13—C12 119.19 (16) O1S—C1S—H1SB 109.5
C14—C13—H13 120.4 O1S—C1S—H1SC 109.5
C13—C14—H14 120.1 H1SA—C1S—H1SB 109.5
C13—C14—C15 119.83 (16) H1SA—C1S—H1SC 109.5
C15—C14—H14 120.1 H1SB—C1S—H1SC 109.5
C14—C15—C16 122.64 (17)
Mn1—O1—C23—O2 −42.8 (3) C16—C15—C20—C19 0.6 (2)
Mn1—O1—C23—C24 139.8 (2) C16—C17—C18—C19 0.5 (3)
Mn1—N1—C1—C2 −29.29 (19) C17—C18—C19—C20 −0.7 (3)
Mn1—N1—C11—C12 −43.03 (16) C18—C19—C20—N3 −178.44 (16)
Mn1—N2—C2—C1 −6.0 (2) C18—C19—C20—C15 0.1 (3)
Mn1—N2—C2—C3 177.88 (14) C20—N3—C12—C11 178.90 (14)
Mn1—N2—C10—C5 −177.28 (11) C20—N3—C12—C13 0.7 (2)
Mn1—N2—C10—C9 2.2 (2) C20—C15—C16—C17 −0.9 (3)
Mn1—N3—C12—C11 5.76 (19) C1A—C2A—C3A—C4A −1.0 (3)
Mn1—N3—C12—C13 −172.45 (13) C2A—C1A—C6A—C5A 1.9 (3)
Mn1—N3—C20—C15 170.56 (12) C2A—C1A—B1—C7A −110.51 (19)
Mn1—N3—C20—C19 −10.9 (2) C2A—C1A—B1—C13A 10.7 (2)
C21—C22—O3—Mn1 37.8 (4) C2A—C1A—B1—C19A 130.17 (18)
C21—N1—C1—C2 90.3 (2) C2A—C3A—C4A—C5A 0.9 (3)
C21—N1—C11—C12 −157.0 (2) C3A—C4A—C5A—C6A 0.5 (3)
C22—C21—N1—Mn1 43.1 (3) C4A—C5A—C6A—C1A −2.0 (3)
C22—C21—N1—C1 −78.6 (3) C6A—C1A—C2A—C3A −0.4 (3)
C22—C21—N1—C11 157.5 (2) C6A—C1A—B1—C7A 69.80 (19)
C21B—C22B—O3B—Mn1 −52.1 (17) C6A—C1A—B1—C13A −168.96 (15)
C21B—N1—C1—C2 87.2 (7) C6A—C1A—B1—C19A −49.5 (2)
C21B—N1—C11—C12 −171.7 (6) C7A—C8A—C9A—C10A 0.2 (4)
C22B—C21B—N1—Mn1 −36.3 (13) C8A—C7A—C12A—C11A −0.4 (3)
C22B—C21B—N1—C1 −151.4 (10) C8A—C7A—B1—C1A −23.7 (2)
C22B—C21B—N1—C11 90.1 (11) C8A—C7A—B1—C13A −144.17 (16)
N1—C21—C22—O3 −55.1 (5) C8A—C7A—B1—C19A 95.89 (19)
N1—C21B—C22B—O3B 56.6 (17) C8A—C9A—C10A—C11A 0.1 (4)
N1—C1—C2—N2 24.6 (2) C9A—C10A—C11A—C12A −0.5 (3)
N1—C1—C2—C3 −159.00 (16) C10A—C11A—C12A—C7A 0.7 (3)
N1—C11—C12—N3 26.3 (2) C12A—C7A—C8A—C9A 0.0 (3)
N1—C11—C12—C13 −155.37 (16) C12A—C7A—B1—C1A 160.32 (15)
N2—C2—C3—C4 0.2 (3) C12A—C7A—B1—C13A 39.9 (2)
N3—C12—C13—C14 1.0 (3) C12A—C7A—B1—C19A −80.09 (18)
C1—N1—C11—C12 74.87 (17) C13A—C14A—C15A—C16A 0.8 (3)
C1—C2—C3—C4 −176.00 (18) C14A—C13A—C18A—C17A −0.9 (3)
C2—N2—C10—C5 −1.5 (2) C14A—C13A—B1—C1A −85.78 (19)
C2—N2—C10—C9 177.96 (16) C14A—C13A—B1—C7A 36.2 (2)
C2—C3—C4—C5 −1.9 (3) C14A—C13A—B1—C19A 155.34 (15)
C3—C4—C5—C6 −178.02 (18) C14A—C15A—C16A—C17A −1.0 (3)
C3—C4—C5—C10 1.9 (3) C15A—C16A—C17A—C18A 0.2 (3)
C4—C5—C6—C7 179.84 (18) C16A—C17A—C18A—C13A 0.7 (3)
C4—C5—C10—N2 −0.2 (2) C18A—C13A—C14A—C15A 0.1 (3)
C4—C5—C10—C9 −179.62 (16) C18A—C13A—B1—C1A 90.51 (18)
C5—C6—C7—C8 −0.5 (3) C18A—C13A—B1—C7A −147.51 (16)
C6—C5—C10—N2 179.71 (15) C18A—C13A—B1—C19A −28.4 (2)
C6—C5—C10—C9 0.3 (2) C19A—C20A—C21A—C22A 0.4 (3)
C6—C7—C8—C9 0.8 (3) C20A—C19A—C24A—C23A 0.4 (2)
C7—C8—C9—C10 −0.6 (3) C20A—C19A—B1—C1A 148.13 (15)
C8—C9—C10—N2 −179.42 (17) C20A—C19A—B1—C7A 27.0 (2)
C8—C9—C10—C5 0.0 (3) C20A—C19A—B1—C13A −93.08 (18)
C10—N2—C2—C1 177.65 (15) C20A—C21A—C22A—C23A −0.1 (3)
C10—N2—C2—C3 1.5 (2) C21A—C22A—C23A—C24A 0.0 (3)
C10—C5—C6—C7 0.0 (3) C22A—C23A—C24A—C19A −0.2 (3)
C11—N1—C1—C2 −145.12 (15) C24A—C19A—C20A—C21A −0.5 (2)
C11—C12—C13—C14 −177.15 (16) C24A—C19A—B1—C1A −32.7 (2)
C12—N3—C20—C15 −1.5 (2) C24A—C19A—B1—C7A −153.78 (15)
C12—N3—C20—C19 177.03 (15) C24A—C19A—B1—C13A 86.09 (18)
C12—C13—C14—C15 −1.9 (3) B1—C1A—C2A—C3A 179.91 (19)
C13—C14—C15—C16 −177.40 (17) B1—C1A—C6A—C5A −178.38 (16)
C13—C14—C15—C20 1.1 (3) B1—C7A—C8A—C9A −176.23 (19)
C14—C15—C16—C17 177.64 (18) B1—C7A—C12A—C11A 175.92 (16)
C14—C15—C20—N3 0.6 (2) B1—C13A—C14A—C15A 176.65 (17)
C14—C15—C20—C19 −177.92 (16) B1—C13A—C18A—C17A −177.39 (17)
C15—C16—C17—C18 0.3 (3) B1—C19A—C20A—C21A 178.73 (16)
C16—C15—C20—N3 179.20 (16) B1—C19A—C24A—C23A −178.84 (16)

(Acetato-κO)[2-hydroxy-N,N-bis(quinolin-2-ylmethyl)ethanamine-κ4N,N',N'',O](methanol-κO)manganese(II) tetraphenylborate methanol monosolvate (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2i 0.85 (2) 1.79 (2) 2.631 (8) 170 (4)
O3B—H3B···O2i 0.84 (2) 1.87 (8) 2.65 (3) 152 (14)
O4—H4···O1S 0.89 (2) 1.77 (2) 2.646 (2) 168 (3)
C9—H9···O1 0.95 2.43 3.325 (3) 157
C17—H17···O1Sii 0.95 2.73 3.364 (3) 125
C18—H18···O1Sii 0.95 2.73 3.367 (2) 125
C19—H19···O1 0.95 2.39 3.183 (2) 141
C25—H25A···N3 0.98 2.79 3.387 (3) 120
O1S—H1S···O2i 0.84 1.92 2.691 (2) 151

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1, y, z.

Selected bond lengths (Å) and angles (°) of [1](BPh4)2·(CH2Cl2)1.45

Mn1–O1 2.3255 (12)
Mn1–O2 2.0617 (13)
Mn1–O3A 2.0908 (14)
Mn1–N1 2.3179 (14)
Mn1–N2 2.2730 (14)
Mn1–N3 2.3588 (16)
N2–Mn1–N3 73.25 (5)
N2–Mn1–N1 75.56 (5)
N1–Mn1–N3 148.35 (5)
N2–Mn1–O1 75.32 (5)
O2–Mn1–N2 157.89 (6)
O3A–Mn1–O1 163.58 (6)

Selected bond lengths (Å) and angles (°) of [2]BPh4·CH3OH

Mn1—O1 2.0551 (14)
Mn1—O3 2.182 (7)
Mn1—O3B 2.13 (3)
Mn1—O4 2.3190 (16)
Mn1—N1 2.2787 (15)
Mn1—N2 2.3167 (15)
Mn1—N3 2.2664 (14)
N1—Mn1—N2 75.63 (5)
N1—Mn1—N3 73.81 (5)
O3—Mn1—N3 149.83 (12)
O1—Mn1—N1 175.54 (6)
N2—Mn1—O4 161.38 (6)

Funding Statement

This work was funded by National Science Foundation grants CHE-1039027 and CHE-2018494 to Jerry P. Jasinski and Steven T. Frey.

References

  1. Bani, D. & Bencini, A. (2012). Curr. Med. Chem. 19, 4431–4444. [DOI] [PubMed]
  2. Batinić-Haberle, I., Rebouças, J. S. & Spasojević, I. (2010). Antioxid. & Redox Signal. 13, 877–918. [DOI] [PMC free article] [PubMed]
  3. Batinić-Haberle, I., Tovmasyan, A., Roberts, E. R. H., Vujaskovic, Z., Leong, K. W. & Spasojevic, I. (2014). Antioxid. & Redox Signal. 20, 2372–2415. [DOI] [PMC free article] [PubMed]
  4. Boros, E., Gale, E. M. & Caravan, P. (2015). Dalton Trans. 44, 4804–4818. [DOI] [PMC free article] [PubMed]
  5. Coggins, M. K. & Kovacs, J. A. (2011). J. Am. Chem. Soc. 133, 12470–12473. [DOI] [PMC free article] [PubMed]
  6. Dees, A., Zahl, A., Puchta, R., van Eikema Hommes, N. J. R., Heinemann, F. W. & Ivanović-Burmazović, I. (2007). Inorg. Chem. 46, 2459–2470. [DOI] [PubMed]
  7. Deroche, A., Morgenstern-Badarau, I., Cesario, M., Guilhem, J., Keita, B., Nadjo, L. & Houée-Levin, C. (1996). J. Am. Chem. Soc. 118, 4567–4573.
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. Dong, H., Yang, X., He, J., Cai, S., Xiao, K. & Zhu, L. (2017). RSC Adv. 7, 53385–53395.
  10. Frey, S. T., Li, J., Kaur, M. & Jasinski, J. P. (2018). Acta Cryst. E74, 1138–1141. [DOI] [PMC free article] [PubMed]
  11. Frey, S. T., Ramirez, H. A., Kaur, M. & Jasinski, J. P. (2018). Acta Cryst. E74, 1075–1078. [DOI] [PMC free article] [PubMed]
  12. Gale, E. M., Atanasova, I. P., Blasi, F., Ay, I. & Caravan, P. (2015). J. Am. Chem. Soc. 137, 15548–15557. [DOI] [PMC free article] [PubMed]
  13. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  14. Icsel, C., Yilmaz, V. T., Aydinlik, S. & Aygun, M. (2020). Eur. J. Med. Chem. 202, 112535–112545. [DOI] [PubMed]
  15. Iranzo, O. (2011). Bioorg. Chem. 39, 73–87. [DOI] [PubMed]
  16. Kakoulidou, C., Hatzidimitriou, A. G., Fylaktakidou, K. C. & Psomas, G. (2021). Polyhedron, 195, 114986–1144996.
  17. Lessa, J. A., Horn, A. Jr, Pinheiro, C. B., Farah, L. L., Eberlin, M. N., Benassi, M., Catharino, R. R. & Fernandes, S. (2007). Inorg. Chem. Commun. 10, 863–866.
  18. Lieb, D., Friedel, F. C., Yawer, M., Zahl, A., Khusniyarov, M. M., Heinemann, F. W. & Ivanovic-Burmazovic, I. (2013). Inorg. Chem. 52, 222–236. [DOI] [PubMed]
  19. Liu, J., Guo, W., Li, X., Li, X., Geng, J., Chen, Q. & Gao, J. (2015). Int. J. Mol. Med. 35, 607–616. [DOI] [PMC free article] [PubMed]
  20. Maurya, R. C., Bohre, P., Sahu, S., Martin, M. H. & Sharma, A. K. (2011). Arab. J. Chem, 9, S54–S63.
  21. Miriyala, S., Spasojevic, I., Tovmasyan, A., Salvemini, D., Vujaskovic, Z., St Clair, D. & Batinic-Haberle, I. (2012). Biochim. Biophys. Acta, 1822, 794–814. [DOI] [PMC free article] [PubMed]
  22. Policar, C. (2016). Redox-Active Therapeutics, edited by I. Batinić-Haberle, J. S. Rebouças & I. Spasojević, pp. 125–164. Switzerland: Springer International Publishing.
  23. Policar, C., Durot, S., Lambert, F., Cesario, M., Ramiandrasoa, F. & Morgenstern-Badarau, I. (2001). Eur. J. Inorg. Chem. pp.1807–1818.
  24. Prihantono, , Irfandi, R., Raya, I. & Warsinggih, (2020). Ann. Med. Surg. 60, 396–402. [DOI] [PMC free article] [PubMed]
  25. Qin, Y., She, P., Huang, X., Huang, W. & Zhao, Q. (2020). Coord. Chem. Rev. 416, 213331–213350.
  26. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  27. Saha, T., Kumar, P., Sepay, N., Ganguly, D., Tiwari, K., Mukhopadhyay, K. & Das, S. (2020). ACS Omega, 5, 16342–16357. [DOI] [PMC free article] [PubMed]
  28. Sarma, C., Chaurasia, P. K. & Bharati, S. L. (2019). Russ. J. Gen. Chem. 89, 517–531.
  29. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  30. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  31. Signorella, S., Palopoli, C. & Ledesma, G. (2018). Coord. Chem. Rev. 365, 75–102.
  32. Wang, J., Wang, H., Ramsay, I. A., Erstad, D. J., Fuchs, B. C., Tanabe, K. K., Caravan, P. & Gale, E. M. (2018). J. Med. Chem. 61, 8811–8824. [DOI] [PMC free article] [PubMed]
  33. Wang, Z.-W., Chen, Q. Y. & Liu, Q.-S. (2014). Transition Met. Chem. 39, 917–924.
  34. Wu, H., Yuan, J., Qi, B., Kong, J., Kou, F., Jiaa, F., Fan, X. & Wang, Y. (2010). Z. Naturforsch. Teil B, 65, 1097–1100.
  35. Zhou, D.-F., Chen, Q.-Y., Qi, Y., Fu, H.-J., Li, Z., Zhao, K.-D. & Gao, J. (2011). Inorg. Chem. 50, 6929–6937. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2. DOI: 10.1107/S2056989021009786/zl5024sup1.cif

e-77-00982-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989021009786/zl50241sup2.hkl

e-77-00982-1sup2.hkl (1.1MB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989021009786/zl50242sup3.hkl

e-77-00982-2sup3.hkl (1.1MB, hkl)

CCDC references: 2110882, 2110881

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES