Abstract
We studied the effect of a new hypoglycemic compound dapagliflozin on the functioning of rat liver mitochondria. Dapagliflozin in concentrations of 10-20 μM had no effect on the parameters of respiration and oxidative phosphorylation of rat liver mitochondria. Increasing dapagliflozin concentration to 50 μM led to a significant inhibition of mitochondrial respiration in states 3 and 3UDNP. Dapagliflozin in this concentration significantly reduced calcium retention capacity of rat liver mitochondria. These findings indicate a decline in the resistance of rat liver mitochondria to induction of Ca2+-dependent mitochondrial permeability transition pore. In a concentration of 10 μM, dapagliflozin significantly decreases the rate of H2O2 formation in rat liver mitochondria, which attested to an antioxidant effect of this compound. Possible mitochondrion-related mechanisms of the protective action of dapagliflozin on liver cells are discussed.
Key Words: dapagliflozin, mitochondria, mitochondrial permeability transition pore, mitochondrial respiration, reactive oxygen species
Footnotes
Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 171, No. 5, pp. 572-576, May, 2021
References
- 1.Belosludtsev KN, Belosludtseva NV, Mironova GD, Dubinin MV. Mitochondrial Ca2+ transport: mechanisms, molecular structures, and role in cells. Biochemistry (Moscow). 2019;84(6):593–607. doi: 10.1134/S0006297919060026. [DOI] [PubMed] [Google Scholar]
- 2.Belosludtsev KN, Belosludtseva NV, Dubinin MV. Diabetes mellitus, mitochondrial dysfunction and Ca2+-dependent permeability transition pore. Int. J. Mol. Sci. 2020;21(18):6559. doi: 10.3390/ijms21186559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Belosludtsev KN, Belosludtseva NV, Kosareva EA, Talanov EY, Gudkov SV, Dubinin MV. Itaconic acid impairs the mitochondrial function by the inhibition of complexes II and IV and induction of the permeability transition pore opening in rat liver mitochondria. Biochimie. 2020;176:150–157. doi: 10.1016/j.biochi.2020.07.011. [DOI] [PubMed] [Google Scholar]
- 4.Belosludtsev KN, Talanov EY, Starinets VS, Agafonov AV, Dubinin MV, Belosludtseva NV. Transport of Ca2+ and Ca2+-dependent permeability transition in rat liver mitochondria under the streptozotocin-induced type I diabet. Cell. 2019;8(9):1014. doi: 10.3390/cells8091014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Cristelo C, Azevedo C, Marques JM, Nunes R, Sarmento B. SARS-CoV-2 and diabetes: New challenges for the disease. Diabetes Res. Clin. Pract. 2020;164:108228. doi: 10.1016/j.diabres.2020.108228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Davies M, Chatterjee S, Khunti K. The treatment of type 2 diabetes in the presence of renal impairment: what we should know about newer therapies. Clin. Pharmacol. 2016;8:61–81. doi: 10.2147/CPAA.S82008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.FDA Drug Safety Communication: FDA strengthens kidney warnings for diabetes medicines canagliflozin (Invokana, Invokamet) and dapagliflozin (Farxiga, Xigduo XR). FDA Drug Safety Communication, 2016. URL: https://www.fda.gov/Drugs/DrugSafety/ucm505860.htm
- 8.Fusco S, Garasto S, Corsonello A, Vena S, Mari V, Gareri P, Ruotolo G, Luciani F, Roncone A, Maggio M, Lattanzio F. Medication-induced nephrotoxicity in older patients. Curr. Drug Metab. 2016;17(6):608–625. doi: 10.2174/1389200217666160406115959. [DOI] [PubMed] [Google Scholar]
- 9.Lahnwong S, Palee S, Apaijai N, Sriwichaiin S, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. Acute dapagliflozin administration exerts cardioprotective effects in rats with cardiac ischemia/reperfusion injury. Cardiovasc. Diabetol. 2020;19(1):91. doi: 10.1186/s12933-020-01066-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic. Biol. Med. 2017;104:298–310. doi: 10.1016/j.freeradbiomed.2017.01.03. [DOI] [PubMed] [Google Scholar]
- 11.Mamidi RN, Proctor J, De Jonghe S, Feyen B, Moesen E, Vinken P, Ma JY, Bryant S, Snook S, Louden C, Lammens G, Ways K, Kelley MF, Johnson MD. Carbohydrate malabsorption mechanism for tumor formation in rats treated with the SGLT2 inhibitor canagliflozin. Chem. Biol. Interact. 2014;221:109–118. doi: 10.1016/j.cbi.2014.08.001. [DOI] [PubMed] [Google Scholar]
- 12.Scheen AJ. Sodium-glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2020;16(10):556–577. doi: 10.1038/s41574-020-0392-2. [DOI] [PubMed] [Google Scholar]
- 13.Secker PF, Beneke S, Schlichenmaier N, Delp J, Gutbier S, Leist M, Dietrich DR. Canagliflozin mediated dual inhibition of mitochondrial glutamate dehydrogenase and complex I: an off-target adverse effect. Cell Death Dis. 2018;9(2):226. doi: 10.1038/s41419-018-0273-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Winer N, Sowers JR. Epidemiology of diabetes. J. Clin. Pharmacol. 2004;44(4):397–405. doi: 10.1177/0091270004263017. [DOI] [PubMed] [Google Scholar]
- 15.Zhou H, Wang S, Zhu P, Hu S, Chen Y, Ren J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPKmediated inhibition of mitochondrial fission. Redox Biol. 2018;15:335–346. doi: 10.1016/j.redox.2017.12.019. [DOI] [PMC free article] [PubMed] [Google Scholar]