Abstract
目的
总结近年来 miRNA 在调控脂肪干细胞(adipose-derived stem cells,ADSCs)分化中的研究进展。
方法
查阅近年来与 miRNA 和 ADSCs 分化调控相关的文献,详细分析其调节机制,并进行综述。
结果
在 ADSCs 分化过程中,miRNA 的表达会改变,并且 miRNA 可通过调节细胞分化相关的信号通路,调控 ADSCs 定向分化为脂肪细胞、成骨细胞、软骨细胞、神经细胞、肝细胞等。
结论
利用 miRNA 对 ADSCs 分化的调控作用,构建出符合需求的组织工程种子细胞,用于临床分子靶向治疗和干细胞治疗。
Keywords: miRNA, 脂肪干细胞, 多向分化
Abstract
Objective
To review the research progress of miRNA regulation in the differentiation of adipose-derived stem cells (ADSCs).
Methods
The recent literature associated with miRNAs and differentiation of ADSCs was reviewed. The regulatory mechanism was analyzed in detail and summarized.
Results
The results indicate that the expression of miRNAs changes during differentiation of ADSCs. In addition, miRNAs regulate the differentiation of ADSCs into adipocytes, osteoblasts, chondrocytes, neurons, and hepatocytes by regulating the signaling pathways involved in cell differentiation.
Conclusion
Through controlling the differentiation of ADSCs by miRNAs, the suitable seed cell for tissue engineering can be established. The review will provide a theoretical basis for molecular targeted therapy and stem cell therapy in clinic.
Keywords: miRNA, adipose-derived stem cells, multipotential differentiation
2001 年 Zuk 等[1]发现脂肪干细胞(adipose-derived stem cells,ADSCs)是一类具有多向分化性能的成体干细胞,它具有自我更新和多向分化特征,能分化为脂肪细胞、成骨细胞、软骨细胞、肌细胞、神经细胞等[2]。ADSCs 还具有治疗一些疾病的潜能,如糖尿病、肥胖、自身免疫性疾病、多发性硬化症、气管食管瘘等[3]。与其他类型干细胞相比,ADSCs 具有来源丰富、获取方法简单、不存在伦理问题,具有多向分化潜能和较低免疫原性等优点,使得其成为当前再生医学研究和应用的热点。
miRNA 是一类长约 22 nt 的非编码 RNA,一般以互补配对方式和靶基因结合,引导 RNA 诱导沉默复合物(RNA-induced silencing complex,RISC)清除 mRNA 或抑制 mRNA 的翻译,影响编码蛋白基因的表达[4]。miRNA 从基因组上转录后,生成具有 5’端帽子和3’端多聚腺苷酸的长片段初级转录本(primary miRNA,pri-miRNA)。在 Drosha 酶和辅助蛋白 DGCR8 的作用下,pri-miRNA 发生去帽子和脱腺苷化,形成长约 70 nt、具茎环结构的次级转录本(miRNA precursor,pre-miRNA)。在 Ran-GTP 和核转运蛋白 Exportin-5 的协作下,pre-miRNA 从细胞核内转运到细胞质中。在 Dicer 酶和辅助蛋白 TRBP 的作用下,pre-miRNA 被剪切成双链 RNA 复合体。其中的一条链进入 RNA 诱导沉默复合物 RISC,引导 RISC 和靶基因结合,发挥 miRNA 调控靶基因的功能[4]。近年研究表明,miRNA 参与 ADSCs 自我更新、增殖、分化等过程的调控[5-8]。本文就 miRNA 在调控 ADSCs 分化中的研究进展综述如下。
1. miRNA 调控 ADSCs 成脂分化
1.1. ADSCs 成脂分化相关的 miRNA 表达
ADSCs 向脂肪细胞分化是一个复杂的生理过程,主要包括增殖、生长停滞、终末分化等阶段。Shi 等[9]利用基因芯片和 Meta 分析,发现 hsa-let-7 家族、hsa-miR-15a-5p、hsa-miR-27a-3p、hsa-miR-106b-5p、hsa-miR-148a-3p、hsa-miR-26b-5p 与脂肪形成有关。Tang 等[10]利用 miRNA 芯片技术,发现 miR-31、miR-125b-5p 和 miR-326 在大鼠 ADSCs 成脂分化时显著下调表达。有研究利用基因芯片和高通量测序等技术,检测了 ADSCs 成脂分化时 miRNA 的表达谱,鉴定 miR-642a-3p 是脂肪细胞特异性 miRNA,并发现 miR-30a 和 miR-30d 上调表达,miR-31 和 miR-363 下调表达[11-12]。
1.2. 促进 ADSCs 成脂分化的 miRNA
在 ADSCs 成脂分化时,miR-21 的表达逐渐升高,分化第 3 天时达顶峰,第 8 天时降至本体水平。过表达 miR-21 会显著降低靶基因 TGF-β 受体 2(TGF-β receptor 2,TGFBR2)的表达,导致 TGF-β 信号通路下游的 SMAD 家族成员 3 磷酸化水平降低,解除了 TGF-β 信号通路对成脂分化的抑制作用[13]。如果过表达 miR-30c,就会抑制靶基因纤溶酶原激活抑制物 1 和激活素受体样激酶 2 的表达,增强成脂标志基因的表达,促进甘油三酯积累[14]。有研究表明,miR-125a-3p 和 miR-483-5p 分别靶向细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)和小 G 蛋白超家族成员的 RhoA,使得细胞核内磷酸化的 ERK1/2 降低,解除其对过氧化物酶体增生物激活受体 γ(peroxisome proliferator-activated receptor,PPARγ)的抑制作用,促进 ADSCs 向成脂分化[15]。此外,miR-148a 和 miR-204-5p 分别靶向抑制 Wnt1 和 DVL3,从而抑制 Wnt 信号通路,最终促进 ADSCs 成脂分化[16-17]。
1.3. 抑制 ADSCs 成脂分化的 miRNA
有文献报道,在 ADSCs 成脂分化过程中,miR-138 的表达逐渐下降,并且过表达 miR-138 会抑制成脂分化关键基因 PPARγ、CCAAT 增强子结合蛋白 α(CCAAT enhancer binding protein alpha,C/EBPα)和脂肪酸结合蛋白 4 的表达,降低脂滴含量,抑制了 ADSCs 成脂分化[18]。另有研究表明,miR-143 的表达随 ADSCs 成脂分化而下降,但从第 3 天开始,表达逐渐增加,第 7 天时达高峰。在 ADSCs 的增殖阶段,过表达 miR-143 会抑制成脂分化,但在生长停滞阶段或终末分化阶段,过表达 miR-143 会促进成脂分化[19]。也有文献报道,肥胖患者的脂肪组织中 miR-130 的表达降低,而 PPARγ 的表达升高,表明它们之间的调控关系和肥胖有关,进一步实验发现 miR-130 能结合到 PPARγ 的编码区和 3’UTR,抑制 PPARγ 的表达[20]。miR-27b 和 miR-540 可以直接靶向 PPARγ 的 3’UTR,使 PPARγ 蛋白表达下降,是 ADSCs 成脂分化的负调控因子[21-23]。然而 miR-1908 的表达随 ADSCs 成脂分化而增加,过表达 miR-1908 抑制 ADSCs 成脂分化[24]。
1.4. 促进 ADSCs 成脂分化并抑制 ADSCs 成骨分化的 miRNA
miR-17-5p 和 miR-106a 可靶向抑制 BMP-2,上调成脂分化标志基因 C/EBPα 和 PPARγ 的表达,抑制了 ADSCs 的成骨分化,促进 ADSCs 向成脂分化[25]。
2. miRNA 调控 ADSCs 成骨分化
2.1. 促进 ADSCs 成骨分化的 miRNA
有研究表明,在 ADSCs 成骨分化时,miRNA 的表达会改变[26]。miR-218 的表达随成骨分化逐渐递增,miR-218 直接靶向 Wnt 信号通路的抑制因子分泌型 Frizzled 相关蛋白 2(secreted frizzled related protein 2,SFRP2)和 DKK2,间接激活了 Wnt/β-catenin 信号通路,调节 ADSCs 向成骨分化,同时 Wnt/β-catenin 信号反馈性地促进 miR-218 的表达,这种反馈性调节模式表明 miR-218 和 Wnt 信号通路都可促进 ADSCs 向成骨分化[27]。在 ADSCs 成骨分化过程中,miR-196a 的表达也不断升高,过表达 miR-196a 会抑制 ADSCs 增殖,促进 ADSCs 向成骨分化[28]。有文献报道 miR-34a 和 miR-375 都参与调控 ADSCs 成骨分化。如在 ADSCs 向成骨分化时,miR-34a 的表达逐渐上升,过表达 miR-34a 可抑制靶基因视网膜母细胞瘤结合蛋白 2,使 Runx2 表达增加,从而促进 ADSCs 成骨分化[29];过表达 miR-375 显著促进 ADSCs 成骨分化,下调 miR-375 的表达则抑制成骨分化,作者鉴定到 miR-375 的靶基因为 DEPTOR,过表达 miR-375 或干涉靶基因 DEPORT 后,Akt 信号通路被抑制,从而促进 ADSCs 成骨分化[30]。研究表明,共同表达 miR-148b 和 BMP-2,可显著提高 ADSCs 的成骨分化能力[31]。在 BMP-2 诱导大鼠 ADSCs 成骨分化时,miR-146a 的表达显著降低,miR-146a 靶向抑制 BMP 信号通路下游的 SMAD4,当在大鼠体内降低 miR-146a 的表达,可以促进 ADSCs 向成骨细胞分化,并增强临界性颅骨缺损的修复效果[32]。miR-216a 在 ADSCs 成骨分化时表达增加,miR-216a 直接靶向抑制 c-Cbl,激活 PI3K/Akt 信号通路,促进 ADSCs 向成骨分化,加强小鼠体内骨生成[33]。此外,利用多孔羟基磷灰石/聚己内酯复合支架材料和转染 miR-221 抑制剂的 ADSCs,可显著提高 Runx2 和骨钙素的表达,增强 ADSCs 成骨分化的能力[34]。
2.2. 抑制 ADSCs 成骨分化的 miRNA
BMP 信号可以通过调控成骨分化特异性转录因子 Runx2 和 Osterix 的表达,促进 ADSCs 向成骨分化。过表达 miR-100 通过抑制靶基因 Ⅱ 型 BMP 受体,从而降低 ADSCs 成骨分化的能力[35]。有实验表明,ADSCs 在机械张力刺激下,miR-154-5p 可以抑制靶基因 Wnt 11,通过抑制非经典 Wnt 信号通路,负向调控 ADSCs 成骨分化[36]。Li 等[37]研究发现,从小鼠 ADSCs 成骨分化第 7 天开始,miR-26a-5p 的表达显著下降,miR-26a-5p 通过抑制靶基因 Wnt5a 的表达,从而抑制成骨分化作用。而在人 ADSCs 成骨分化时,miR-26a 的表达却增加,它通过抑制 BMP 信号通路下游分子 Smad1,抑制成骨分化[38]。但是,Wang 等[39]研究发现,miR-26a 直接靶向糖原合成酶激酶 3β(glycogen synthase kinase 3β,GSK3β)的 3’UTR,使其蛋白表达水平下降,过表达 miR-26a 或干涉 GSK3β 后,可以促进人 ADSCs 向成骨分化;在大鼠体内,利用过表达 miR-26a 的 ADSCs 和多孔羟基磷灰石支架的组织工程材料,可以显著提高大鼠胫骨临界缺损的新生骨形成[40]。这表明 miR-26a 通过调控不同的信号通路调节 ADSCs 的分化。
2.3. 促进 ADSCs 成骨分化并抑制 ADSCs 成脂分化的 miRNA
有文献报道[41],miR-22 的表达随 ADSCs 成骨分化升高,随成脂分化降低。过表达 miR-22 后,一方面抑制成脂分化相关基因的表达,减少脂滴形成;另一方面促进成骨分化相关基因的表达,使 ALP 活性提高,基质骨钙化显著增加。并且当抑制组蛋白去乙酰化酶 6(histone deacetylase 6,HDAC6)时,成脂分化被抑制,这和过表达 miR-22 作用相类似,表明 miR-22 可能通过靶向 HDAC6,抑制成脂分化而促进成骨分化[41]。
3. miRNA 调控 ADSCs 成软骨分化
Zhang 等[42]利用基因芯片鉴定 ADSCs 成软骨分化时 miRNA 的表达谱,发现 miR-193b、miR-199a-3p、miR-199b-3p、miR-455-3p、miR-210、miR-381、miR-92a、miR-320c、miR-136 等显著上调表达,miR-490-5p 和 miR-4287 显著下调表达。在 ADSCs 中过表达 miR-490-5p 后,则会增加成软骨分化标志基因Ⅱ型胶原纤维 α1 链、Ⅹ型胶原 α1 链和聚集蛋白聚糖的表达[43]。但是,miR-193b 通过靶向抑制 TGF-β2 和 TGFBR3,抑制 ADSCs 成软骨分化[44]。此外,miR-194 和 miR-92a 的表达与成软骨分化有相关性[45-46]。
4. miRNA 调控 ADSCs 成神经分化
在 ADSCs 成神经分化时,其中 39~101 个 miRNA 上调表达,3~9 个 miRNA 下调表达[47]。利用 3-异丁基-1-甲基黄嘌呤和 IGF-1 可诱导 ADSCs 分化为神经元样细胞,并且它们可以诱导 miR-133b 的表达,但 miR-133b 靶向结合 IGF-1 受体,降低神经细胞标志基因 β-微管蛋白 Ⅲ 和 PITX3(paired-like homeobox 3)的表达量,表明 miR-133b 负反馈地调节 ADSCs 成神经分化[48]。另有研究表明,miR-124 是神经组织特异表达的 miRNA,它在 ADSCs 向成神经分化时表达逐渐升高[49-50]。抑制 miR-124 的表达可以阻止 ADSCs 向成神经分化,并且 miR-124 直接靶向 RhoA,抑制 RhoA/ROCK1 信号通路,促进 ADSCs 成神经分化[50]。此外,miR-218 和 FGF-2 可共同调节 ADSCs 成神经分化[51]。动物体内实验表明,将过表达 miR-34a 的 ADSCs 移植至大鼠坐骨神经损伤部位后,可以改善大鼠坐骨神经损伤的修复能力[52]。
5. miRNA 调控 ADSCs 成肝细胞分化
miRNA 也参与了 ADSCs 成肝细胞分化的调控。当抑制 let-7 家族成员的 let-7b 表达后,能上调肝细胞核因子 4α(hepatocyte nuclear factor 4 alpha,HNF4α)和 HNF6 的表达,促进 ADSCs 成肝细胞分化[53];let-7f 是成肝细胞分化负调控因子,抑制 let-7f 的表达可以诱导 ADSCs 成肝细胞分化[54]。随 ADSCs 成肝细胞分化,肝脏特异性 miR-122 的表达增加,过表达 miR-122 可以显著提高肝细胞标志基因的表达,促进 ADSCs 向成肝细胞分化[55]。此外,miR-27 在肝再生和肝移植免疫反应中发挥重要功能,当切除大鼠 70% 肝脏后,向大鼠注射过表达 miR-27b 的 ADSCs,可显著降低炎性细胞因子的表达,增加肝细胞生长因子的表达,促进肝脏的再生[56-57]。
6. miRNA 调控 ADSCs 其他谱系的分化
在 ADSCs 向其他类型细胞分化时,也有 miRNA 的表达改变。如在 ADSCs 向平滑肌细胞分化时,miR-145 的表达显著增加,转染 miR-145 模拟物导致 Krüppel 样因子 4(Krüppel-like factor 4,KLF4)的表达降低,促进了平滑肌细胞特异基因 α-平滑肌肌动蛋白、平滑肌 22α 蛋白和肌球蛋白的表达。而抑制 ADSCs 中的 miR-145 后,就会降低平滑肌细胞特异基因的表达,表明 miR-145 可以促进 ADSCs 向平滑肌细胞分化[58]。
ADSCs 也可以调控血管再生。Kalinina 等[59]发现 miR-92a 与成血管相关,过表达 miR-92a 后,抑制血管生长因子的分泌,最终抑制血管生成。在 ADSCs 中过表达 miR-21,可下调 TGFBR2 的表达,从而抑制肿瘤血管生成,因此在裸鼠下肢缺血模型中,移植敲除 miR-21 的 ADSCs,可以改善缺血下肢的血液循环[60]。研究报道,全反式维甲酸可诱导 ADSCs 分化为肾上皮细胞,并且 let-7e 的表达显著增加,过表达 let-7e 可促进肾上皮细胞标志基因细胞角蛋白 18 和早期肾器官标志基因的表达[61]。有研究利用双荧光素酶报告基因检测系统,发现 let-7e 的靶基因是基质金属蛋白酶 9(matrix metalloproteinase 9,MMP-9),表明 let-7e 通过靶向抑制 MMP-9,调控 ADSCs 向肾上皮细胞的分化[61]。此外,从糖尿病患者脂肪提取的 ADSCs,过表达 miR-375 后,会促进胰岛素基因和胰十二指肠同源盒基因 1 的表达,使 ADSCs 分化为胰岛素样细胞[62]。
7. ADSCs 旁分泌对疾病的治疗作用
脂肪组织可以旁分泌信号分子,调控 ADSCs 成脂分化。如脂肪组织外泌体中高量表达的 miR-450-5p,能够靶向抑制 Wnt1 诱导分泌蛋白 2,从而促进 ADSCs 成脂分化[63]。Mallinson 等[64]发现,接受同种异体 ADSCs 治疗的类风湿性关节炎(rheumatoid arthritis,RA)患者,其血清中 miRNA 表达会发生改变,如 miR-26b-5p、miR-487b-3p、miR-495-3p 表达上升,这些 miRNA 可作为 RA 患者接受 ADSCs 治疗而引发免疫反应相关的候选生物标志物。最近研究发现[65],血液外泌体中的 miRNA 主要由脂肪组织产生,并且脂肪组织产生的 miRNA 可以通过胞外囊泡和外泌体,远程调控机体其他组织基因的表达。这提示我们可以利用外泌体作为载体,将 miRNA 递送至靶组织或器官,达到有效治疗疾病的目的。
在细胞治疗中,胞外囊泡和外泌体是重要的组织修复载体。如肥胖患者的 ADSCs 胞外囊泡中 miR-126 表达降低,会导致内皮细胞中 ERK/MAPK 信号通路失活,使内皮细胞的血管生成能力下降[66]。有研究报道,当把 ADSCs 和转移性前列腺癌细胞系(PC3M-luc2 细胞)共培养时,ADSCs 借助外泌体中的 miR-145,促进 PC3M-luc2 细胞凋亡,最终抑制转移性前列腺癌的生长[67]。ADSCs 通过旁分泌 TGF-β1,调控乳腺癌 MCF7 细胞发生上皮细胞间质转型(epithelial-mesenchymal transition,EMT),当 TGF-β1 的表达下降后,锌指 E-盒结合同源异形盒蛋白的表达也降低,而 miR-200b 和 miR-200c 的表达上升,从而抑制 MCF7 细胞发生 EMT 转换过程[68]。转染 miR-122 的 ADSCs 能够有效地把 miR-122 分泌到外泌体中,使得肝癌细胞对化学试剂的敏感性增加,利用外泌体作为 miR-122 的递送载体,可能是一个治疗肝细胞性肝癌的良好策略[69]。把正常组 ADSCs 的细胞质注入肥胖组 ADSCs 后,通过调控 Lin28/let-7 表达,可恢复肥胖 ADSCs 对胰岛素的敏感性,改善肥胖糖代谢和脂代谢等紊乱症状[70]。
8. 小结与展望
目前已有很多研究表明 miRNA 在 ADSCs 分化中起着重要的调控作用,并且部分调控机制已被阐明,甚至得到体外实验和动物实验的验证。将来要更进一步研究 miRNA 对 ADSCs 的分子调控机制,为 ADSCs 在干细胞治疗中奠定基础。此外,需合理利用 miRNA 对 ADSCs 分化的调控作用,构建符合需求的组织工程种子细胞,以促进 ADSCs 在临床上的应用。
Funding Statement
国家重点研发计划项目(2017YFC1105000)
National Key Research and Development Program of China (2017YFC1105000)
References
- 1.Zuk PA, Zhu M, Mizuno H, et al Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–228. doi: 10.1089/107632701300062859. [DOI] [PubMed] [Google Scholar]
- 2.Zuk PA, Zhu M, Ashjian P, et al Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–4295. doi: 10.1091/mbc.E02-02-0105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Dai R, Wang Z, Samanipour R, et al Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells International. 2016;2016:6737345. doi: 10.1155/2016/6737345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Krol J, Loedige I, Filipowicz W The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610. doi: 10.1038/nrg2843. [DOI] [PubMed] [Google Scholar]
- 5.Li N, Long B, Han W, et al microRNAs: important regulators of stem cells. Stem Cell Res Ther. 2017;8(1):110. doi: 10.1186/s13287-017-0551-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Kim DY, Sung JH Regulatory role of microRNAs in the proliferation and differentiation of adipose-derived stem cells. Histol Histopathol. 2017;32(1):1–10. doi: 10.14670/HH-11-798. [DOI] [PubMed] [Google Scholar]
- 7.Uzbas F, May ID, Parisi AM, et al Molecular physiognomies and applications of adipose-derived stem cells. Stem Cell Rev. 2015;11(2):298–308. doi: 10.1007/s12015-014-9578-0. [DOI] [PubMed] [Google Scholar]
- 8.Chen J, Deng S, Zhang S, et al The role of miRNAs in the differentiation of adipose-derived stem cells. Curr Stem Cell Res Ther. 2014;9(3):268–279. doi: 10.2174/1574888x09666140213203309. [DOI] [PubMed] [Google Scholar]
- 9.Shi C, Huang F, Gu X, et al Adipogenic miRNA and meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget. 2016;7(26):40830–40845. doi: 10.18632/oncotarget.8518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Tang YF, Zhang Y, Li XY, et al Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells. OMICS. 2009;13(4):331–336. doi: 10.1089/omi.2009.0017. [DOI] [PubMed] [Google Scholar]
- 11.Zaragosi LE, Wdziekonski B, Brigand KL, et al Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol. 2011;12(7):R64. doi: 10.1186/gb-2011-12-7-r64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Chen L, Cui J, Hou J, et al A novel negative regulator of adipogenesis: microRNA-363. Stem Cells. 2014;32(2):510–520. doi: 10.1002/stem.1549. [DOI] [PubMed] [Google Scholar]
- 13.Kim YJ, Hwang SJ, Bae YC, et al MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells. 2009;27(12):3093–3102. doi: 10.1002/stem.235. [DOI] [PubMed] [Google Scholar]
- 14.Karbiener M, Neuhold C, Opriessnig P, et al MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol. 2011;8(5):850–860. doi: 10.4161/rna.8.5.16153. [DOI] [PubMed] [Google Scholar]
- 15.Chen K, He H, Xie Y, et al miR-125a-3p and miR-483-5p promote adipogenesis via suppressing the RhoA/ROCK1/ERK1/2 pathway in multiple symmetric lipomatosis. Sci Rep. 2015;5:11909. doi: 10.1038/srep11909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Shi C, Zhang M, Tong M, et al miR-148a is Associated with Obesity and Modulates Adipocyte Differentiation of Mesenchymal Stem Cells through Wnt Signaling. Sci Rep. 2015;5:9930. doi: 10.1038/srep09930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.He H, Chen K, Wang F, et al miR-204-5p promotes the adipogenic differentiation of human adipose-derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/beta-catenin signaling. Int J Mol Med. 2015;35(6):1587–1595. doi: 10.3892/ijmm.2015.2160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Yang Z, Bian C, Zhou H, et al MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. Stem Cells Dev. 2011;20(2):259–267. doi: 10.1089/scd.2010.0072. [DOI] [PubMed] [Google Scholar]
- 19.Chen L, Hou J, Ye L, et al MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling. Sci Rep. 2014;4:3819. doi: 10.1038/srep03819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Lee EK, Lee MJ, Abdelmohsen K, et al miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol. 2011;31(4):626–638. doi: 10.1128/MCB.00894-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Kang T, Lu W, Xu W, et al MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem. 2013;288(48):34394–34402. doi: 10.1074/jbc.M113.514372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Karbiener M, Fischer C, Nowitsch S, et al microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun. 2009;390(2):247–251. doi: 10.1016/j.bbrc.2009.09.098. [DOI] [PubMed] [Google Scholar]
- 23.Chen L, Chen Y, Zhang S, et al MiR-540 as a novel adipogenic inhibitor impairs adipogenesis via suppression of PPARgamma. J Cell Biochem. 2015;116(6):969–976. doi: 10.1002/jcb.25050. [DOI] [PubMed] [Google Scholar]
- 24.Yang L, Shi CM, Chen L, et al The biological effects of hsa-miR-1908 in human adipocytes. Mol Biol Rep. 2015;42(5):927–935. doi: 10.1007/s11033-014-3830-1. [DOI] [PubMed] [Google Scholar]
- 25.Li H, Li T, Wang S, et al miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res. 2013;10(3):313–324. doi: 10.1016/j.scr.2012.11.007. [DOI] [PubMed] [Google Scholar]
- 26.Zhang ZJ, Zhang H, Kang Y, et al miRNA expression profile during osteogenic differentiation of human adipose-derived stem cells. J Cell Biochem. 2012;113(3):888–898. doi: 10.1002/jcb.23418. [DOI] [PubMed] [Google Scholar]
- 27.Zhang WB, Zhong WJ, Wang L A signal-amplification circuit between miR-218 and Wnt/beta-catenin signal promotes human adipose tissue-derived stem cells osteogenic differentiation. Bone. 2014;58:59–66. doi: 10.1016/j.bone.2013.09.015. [DOI] [PubMed] [Google Scholar]
- 28.Kim YJ, Bae SW, Yu SS, et al miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res. 2009;24(5):816–825. doi: 10.1359/jbmr.081230. [DOI] [PubMed] [Google Scholar]
- 29.Fan C, Jia L, Zheng Y, et al MiR-34a Promotes Osteogenic Differentiation of Human Adipose-Derived Stem Cells via the RBP2/NOTCH1/CYCLIN D1 Coregulatory Network. Stem Cell Reports. 2016;7(2):236–248. doi: 10.1016/j.stemcr.2016.06.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Chen S, Zheng Y, Zhang S, et al Promotion Effects of miR-375 on the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. Stem Cell Reports. 2017;8(3):773–786. doi: 10.1016/j.stemcr.2017.01.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Liao YH, Chang YH, Sung LY, et al Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials. 2014;35(18):4901–4910. doi: 10.1016/j.biomaterials.2014.02.055. [DOI] [PubMed] [Google Scholar]
- 32.Xie Q, Wei W, Ruan J, et al Effects of miR-146a on the osteogenesis of adipose-derived mesenchymal stem cells and bone regeneration. Sci Rep. 2017;7:42840. doi: 10.1038/srep42840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Li H, Li T, Fan J, et al miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death Differ. 2015;22(12):1935–1945. doi: 10.1038/cdd.2015.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Hoseinzadeh S, Atashi A, Soleimani M, et al MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold. In Vitro Cell Dev Biol Anim. 2016;52(4):479–487. doi: 10.1007/s11626-015-9992-x. [DOI] [PubMed] [Google Scholar]
- 35.Zeng Y, Qu X, Li H, et al MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett. 2012;586(16):2375–2381. doi: 10.1016/j.febslet.2012.05.049. [DOI] [PubMed] [Google Scholar]
- 36.Li J, Hu C, Han L, et al MiR-154-5p regulates osteogenic differentiation of adipose-derived mesenchymal stem cells under tensile stress through the Wnt/PCP pathway by targeting Wnt11. Bone. 2015;78:130–141. doi: 10.1016/j.bone.2015.05.003. [DOI] [PubMed] [Google Scholar]
- 37.Li S, Hu C, Li J, et al Effect of miR-26a-5p on the Wnt/Ca(2+) Pathway and Osteogenic Differentiation of Mouse Adipose-Derived Mesenchymal Stem Cells. Calcif Tissue Int. 2016;99(2):174–186. doi: 10.1007/s00223-016-0137-3. [DOI] [PubMed] [Google Scholar]
- 38.Luzi E, Marini F, Sala SC, et al Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res. 2008;23(2):287–295. doi: 10.1359/jbmr.071011. [DOI] [PubMed] [Google Scholar]
- 39.Wang Z, Xie Q, Yu Z, et al A regulatory loop containing miR-26a, GSK3beta and C/EBPalpha regulates the osteogenesis of human adipose-derived mesenchymal stem cells. Sci Rep. 2015;5:15280. doi: 10.1038/srep15280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Wang Z, Zhang D, Hu Z, et al MicroRNA-26a-modified adipose-derived stem cells incorporated with a porous hydroxyapatite scaffold improve the repair of bone defects. Mol Med Rep. 2015;12(3):3345–3350. doi: 10.3892/mmr.2015.3795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Huang S, Wang S, Bian C, et al Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev. 2012;21(13):2531–2540. doi: 10.1089/scd.2012.0014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Zhang Z, Kang Y, Zhang Z, et al Expression of microRNAs during chondrogenesis of human adipose-derived stem cells. Osteoarthritis Cartilage. 2012;20(12):1638–1646. doi: 10.1016/j.joca.2012.08.024. [DOI] [PubMed] [Google Scholar]
- 43.Yang Z, Hao J, Hu ZM MicroRNA expression profiles in human adipose-derived stem cells during chondrogenic differentiation. Int J Mol Med. 2015;35(3):579–586. doi: 10.3892/ijmm.2014.2051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Hou C, Yang Z, Kang Y, et al MiR-193b regulates early chondrogenesis by inhibiting the TGF-beta2 signaling pathway. FEBS Lett. 2015;589(9):1040–1047. doi: 10.1016/j.febslet.2015.02.017. [DOI] [PubMed] [Google Scholar]
- 45.Hou C, Zhang Z, Zhang Z, et al Presence and function of microRNA-92a in chondrogenic ATDC5 and adipose-derived mesenchymal stem cells. Mol Med Rep. 2015;12(4):4877–4886. doi: 10.3892/mmr.2015.4008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Xu J, Kang Y, Liao WM, et al MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5. PLoS One. 2012;7(3):e31861. doi: 10.1371/journal.pone.0031861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Cho JA, Park H, Lim EH, et al MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells. J Genet. 2011;90(1):81–93. doi: 10.1007/s12041-011-0041-6. [DOI] [PubMed] [Google Scholar]
- 48.Ning H, Huang YC, Banie L, et al MicroRNA regulation of neuron-like differentiation of adipose tissue-derived stem cells. Differentiation. 2009;78(5):253–259. doi: 10.1016/j.diff.2009.07.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Mondanizadeh M, Arefian E, Mosayebi G, et al MicroRNA-124 regulates neuronal differentiation of mesenchymal stem cells by targeting Sp1 mRNA. J Cell Biochem. 2015;116(6):943–953. doi: 10.1002/jcb.25045. [DOI] [PubMed] [Google Scholar]
- 50.Wang Y, Wang D, Guo D MiR-124 Promote Neurogenic Transdifferentiation of Adipose Derived Mesenchymal Stromal Cells Partly through RhoA/ROCK1, but Not ROCK2 Signaling Pathway. PLoS One. 2016;11(1):e146646. doi: 10.1371/journal.pone.0146646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Hu F, Sun B, Xu P, et al MiR-218 Induces Neuronal Differentiation of ASCs in a Temporally Sequential Manner with Fibroblast Growth Factor by Regulation of the Wnt Signaling Pathway. Sci Rep. 2017;7:39427. doi: 10.1038/srep39427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.He X, Ao Q, Wei Y, et al Transplantation of miRNA-34a overexpressing adipose-derived stem cell enhances rat nerve regeneration. Wound Repair Regen. 2016;24(3):542–550. doi: 10.1111/wrr.12427. [DOI] [PubMed] [Google Scholar]
- 53.Alizadeh E, Akbarzadeh A, Eslaminejad MB, et al Up regulation of liver-enriched transcription factors HNF4a and HNF6 and liver-specific microRNA (miR-122) by inhibition of let-7b in mesenchymal stem cells. Chem Biol Drug Des. 2015;85(3):268–279. doi: 10.1111/cbdd.12398. [DOI] [PubMed] [Google Scholar]
- 54.Davoodian N, Lotfi AS, Soleimani M, et al Let-7f microRNA negatively regulates hepatic differentiation of human adipose tissue-derived stem cells. J Physiol Biochem. 2014;70(3):781–789. doi: 10.1007/s13105-014-0346-z. [DOI] [PubMed] [Google Scholar]
- 55.Davoodian N, Lotfi AS, Soleimani M, et al MicroRNA-122 overexpression promotes hepatic differentiation of human adipose tissue-derived stem cells. J Cell Biochem. 2014;115(9):1582–1593. doi: 10.1002/jcb.24822. [DOI] [PubMed] [Google Scholar]
- 56.Chen KD, Huang KT, Lin CC, et al MicroRNA-27b Enhances the Hepatic Regenerative Properties of Adipose-Derived Mesenchymal Stem Cells. Mol Ther Nucleic Acids. 2016;5:e285. doi: 10.1038/mtna.2015.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Chen KD, Hsu LW, Goto S, et al Regulation of heme oxygenase 1 expression by miR-27b with stem cell therapy for liver regeneration in rats. Transplant Proc. 2014;46(4):1198–1200. doi: 10.1016/j.transproceed.2013.12.013. [DOI] [PubMed] [Google Scholar]
- 58.Aji K, Zhang Y, Aimaiti A, et al MicroRNA-145 regulates the differentiation of human adipose-derived stem cells to smooth muscle cells via targeting Kruppel-like factor 4. Mol Med Rep. 2017;15(6):3787–3795. doi: 10.3892/mmr.2017.6478. [DOI] [PubMed] [Google Scholar]
- 59.Kalinina N, Klink G, Glukhanyuk E, et al miR-92a regulates angiogenic activity of adipose-derived mesenchymal stromal cells. Exp Cell Res. 2015;339(1):61–66. doi: 10.1016/j.yexcr.2015.10.007. [DOI] [PubMed] [Google Scholar]
- 60.Shin KK, Lee AL, Kim JY, et al miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo . Biochem Biophys Res Commun. 2012;422(4):633–638. doi: 10.1016/j.bbrc.2012.05.040. [DOI] [PubMed] [Google Scholar]
- 61.Ventayol M, Viñas JL, Sola A, et al miRNA let-7e targeting MMP9 is involved in adipose-derived stem cell differentiation toward epithelia. Cell Death Dis. 2014;5:e1048. doi: 10.1038/cddis.2014.2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Piran M, Enderami SE, Piran M, et al Insulin producing cells generation by overexpression of miR-375 in adipose-derived mesenchymal stem cells from diabetic patients. Biologicals. 2017;46:23–28. doi: 10.1016/j.biologicals.2016.12.004. [DOI] [PubMed] [Google Scholar]
- 63.Zhang Y, Yu M, Dai M, et al miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2. J Cell Sci. 2017;130(6):1158–1168. doi: 10.1242/jcs.197764. [DOI] [PubMed] [Google Scholar]
- 64.Mallinson DJ, Dunbar DR, Ridha S, et al Identification of Potential Plasma microRNA Stratification Biomarkers for Response to Allogeneic Adipose-Derived Mesenchymal Stem Cells in Rheumatoid Arthritis. Stem Cells Transl Med. 2017;6(4):1202–1206. doi: 10.1002/sctm.16-0356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Thomou T, Mori MA, Dreyfuss JM, et al Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542(7642):450–455. doi: 10.1038/nature21365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Togliatto G, Dentelli P, Gili M, et al Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. Int J Obes (Lond) 2016;40(1):102–111. doi: 10.1038/ijo.2015.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Takahara K, Ii M, Inamoto T, et al microRNA-145 Mediates the Inhibitory Effect of Adipose Tissue-Derived Stromal Cells on Prostate Cancer. Stem Cells Dev. 2016;25(17):1290–1298. doi: 10.1089/scd.2016.0093. [DOI] [PubMed] [Google Scholar]
- 68.Xu Q, Wang L, Li H, et al Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-beta. Int J Oncol. 2012;41(3):959–968. doi: 10.3892/ijo.2012.1541. [DOI] [PubMed] [Google Scholar]
- 69.Lou G, Song X, Yang F, et al Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8:122. doi: 10.1186/s13045-015-0220-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Pérez LM, Bernal A, San MN, et al Metabolic rescue of obese adipose-derived stem cells by Lin28/Let7 pathway. Diabetes. 2013;62(7):2368–2379. doi: 10.2337/db12-1220. [DOI] [PMC free article] [PubMed] [Google Scholar]