Abstract
目的
总结外泌体对缺血再灌注器官损伤的保护作用,为其治疗提供新思路。
方法
广泛查阅近年国内外与外泌体治疗缺血再灌注损伤相关的文献,分析总结其作用机制。
结果
外泌体体积小,存在于血液、脑脊液、尿液等细胞外液中,能够穿透血脑屏障,可通过多种分子机制对心脏、脑等器官的缺血再灌注损伤起到保护作用,并且无肝、肾副作用。
结论
外泌体治疗可能成为逆转缺血再灌注器官损伤的新方法,了解外泌体对缺血再灌注损伤的保护作用及可能机制具有重要意义。
Keywords: 外泌体, 缺血再灌注, 器官损伤, 治疗
Abstract
Objective
To investigate the protective effect of the exosome on the organ damage induced by ische-mia-reperfusion (I/R) so as to provide a new way for the treatment of I/R damage.
Methods
The literature related to the treatment of I/R damage was reviewed and analyzed.
Results
The exosome volume is small and it is present in blood, cerebrospinal fluid, and urine, which has the function to cross the blood-brain barrier, and protect the heart, brain and other organs after I/R damage.
Conclusion
Exosome is a new material for the treatment of I/R organ injury, and it is important to understand the protective effect and possible mechanism.
Keywords: Exosome, ischemia-reperfusion, organ injury, treatment
缺血再灌注损伤是指组织发生缺血后,即使恢复供血,组织功能也不能完全恢复[1]。缺血再灌注会导致组织产生大量的氧自由基以及炎性因子等,使细胞发生凋亡或者坏死,造成组织损伤,引起功能障碍,甚至丧失其生理功能[2-4]。研究显示,减少氧自由基和炎性因子的产生可以减轻缺血再灌注对组织的损伤[5-6],这也是目前治疗此类损伤的主要策略,但治疗效果不明显。因此,进一步探索新药物及新治疗方法具有重要意义。研究发现,胚胎干细胞、MSCs 等多种细胞可以分泌外泌体,而外泌体在干细胞发挥促修复功能中起到重要作用[2-3]。因此,了解外泌体对缺血再灌注损伤的保护作用及可能机制极为重要。现就外泌体对缺血再灌注器官保护作用方面的研究进行综述,以期为缺血再灌注的治疗提供新思路。
1. 外泌体特点
细胞通过内吞作用形成早期核内体,再形成晚期核内体,进而融合成胞内囊泡;胞内囊泡一部分被溶酶体吞噬降解,一部分通过胞吐作用释放出来,形成胞外囊泡[7]。细胞分泌的胞外囊泡可分为 3 种类型,即凋亡小体、微泡和外泌体[8]。见图 1。外泌体直径为 30~200 nm,其中直径为 30~110 nm 的外泌体具有重要功能,可以通过血脑屏障[8]。外泌体来源细胞不同,其构成成分也不同,可携带蛋白质[9]、脂质[10]以及核酸[2]等进入受体细胞,进行信号传递,是细胞之间进行交流的重要载体。研究表明,外泌体可作为载药工具,并且对肝、肾无副作用,可用于治疗多种疾病[3, 11]。目前发现外泌体可存在于细胞上清液、尿液[5]、血液、精液、乳汁、唾液、粪便以及脑脊液中[12-13]。
图 1.
The production of the exosome
外泌体产生过程
2. 外泌体对缺血再灌注器官损伤的保护作用
2.1. 心肌
缺血再灌注导致的心肌损伤为不可逆损伤,可能直接引起心力衰竭,甚至死亡。近年来,外泌体对缺血再灌注心肌损伤的保护作用成为研究热点,研究者对于外泌体发挥作用的机制和信号通路进行了深入探索。研究显示,人来源 MSCs 可能含有外泌体的分泌物,作用于缺血心肌后能够改善心室的收缩及舒张功能,而这种分泌物对缺血再灌注心肌的保护作用可能通过减少氧化应激以及抑制 TGF-β 信号传导来实现[14]。另有研究也发现,MSCs 来源的外泌体可降低心肌纤维化,促进细胞增殖及血管生成,提升心肌干细胞的生存能力,改善心肌梗死后的心功能;该研究提出该保护机制可能和 miRNA 相关,但具体机制尚不明确[15]。Zhao 等[16]的研究也证明了外泌体对心肌的保护作用。他们将含 400 μg 蛋白的人脐带血 MSCs 来源的外泌体注入急性心肌梗死大鼠尾静脉,之后连续监测心功能 4 周,结果显示注入外泌体能明显加强心肌梗死大鼠的左心室收缩功能,进一步证实其保护机制可能与调控 Bcl-2 家族的表达相关。也有学者认为这种保护机制可能是通过外泌体中 miR-146a 抑制心肌细胞凋亡实现的[17]。Feng 等[18]认为,心肌细胞发生凋亡时,甲基 CpG 结合蛋白 2(methyl CpG binding protein 2,Mecp2)水平升高,而 MSCs 来源的外泌体中包含 miR-22,可抑制 Mecp2,从而保护心肌细胞。
新生儿来源的心肌祖细胞可以分泌外泌体,这些外泌体可以改善缺血再灌注损伤心肌的心肌功能,而与正常心肌祖细胞分泌的外泌体相比,经缺氧处理的心肌祖细胞分泌的外泌体能进一步减小缺血再灌注导致的心肌梗死面积,其保护机制可能与外泌体下调炎性因子 IL-6 和 IL-1α 相关[19]。外泌体表达热休克蛋白 70(heat shock protein 70,HSP 70),通过与细胞表面的 Toll 样受体结合,激活下游的胞外信号调节蛋白激酶以及 p38 促分裂原蛋白激酶信号通路,从而起到保护心肌的作用[20]。研究发现,缺血再灌注发生时,具有保护作用的 Nanog 蛋白和缺氧诱导因子 1α 水平升高,进而上调 miR-21 和 miR-210,减少心肌细胞凋亡[2, 21-22]。而诱导多能干细胞分泌的外泌体可抑制半胱氨酸天冬氨酸蛋白酶 3 的活化,保护细胞免受氧化应激损伤;进一步研究显示,诱导多能干细胞来源的外泌体中包含 miR-21 和 miR-210[2],因此推测其保护作用可能是由 miR-21 和 miR-210 产生。另外,miR-21 还可以通过调节同源性磷酸酶-张力蛋白(phospha-tase and tensin homolog,PTEN)信号通路起到保护心肌的作用[23]。研究发现心肌细胞缺血再灌注损伤时,会发生能量(ATP)损失,而 MSCs 来源的外泌体可以增加信号通路蛋白 Akt 和 GSK-3β 的磷酸化,增加糖酵解和氧化磷酸化,在再灌注 1 h 内快速恢复 ATP 水平,达到保护心肌的作用,这种作用将持续 24 h[24]。还有研究显示抑制核因子 κB 可减少炎性因子的产生,从而减轻缺血再灌注导致的心肌损伤[25-26]。
2.2. 脑组织
由于血脑屏障的存在,药物难以在脑组织中达到理想浓度[27],影响缺血再灌注脑损伤的治疗效果。缺血再灌注主要通过氧化应激及炎性因子等造成脑组织损伤,而外泌体中包含抑制活性氧和炎症的物质,并可透过血脑屏障,有望作为治疗脑损伤的一种新途径[3]。目前,已有大量研究发现 MSCs 等来源的外泌体对神经损伤有保护作用。Xin 等[28]的研究显示,MSCs 来源的外泌体中包含 miR-17-92,对脑卒中导致的神经损伤具有良好的治疗效果;其对神经损伤的保护作用可能是通过下调引起损伤的 PTEN 通路,激活神经保护的 PI3K/Akt/mTOR 信号通路,进而抑制 GSK-3β,促进轴突生长来实现。炎症可以使细胞变性,还可以使神经细胞髓鞘化减少,进而引起严重的认知障碍,而 MSCs 来源的胞外囊泡可以抵抗炎症带来的损伤,改善长期预后[29]。Xin 等[30-32]的研究认为,外泌体可以促进星型胶质细胞和神经元轴突的塑形和重构,可用于改善脑卒中后受损神经的功能。研究者就这一发现进行了进一步探索,结果显示外泌体中的 miR-133b 可抑制具有细胞损伤作用的结缔组织生长因子和 ras 同源基因家族成员 A,从而在神经保护中起关键作用[30-32]。Guitart 等[33]发现,星型胶质细胞分泌的外泌体含有 Prion 蛋白,可以改善缺血条件下神经元的存活能力,这种保护作用可能是通过减少氧化应激导致的神经元死亡来实现的。在缺氧缺血条件下,星型胶质细胞分泌的外泌体中 Prion 蛋白水平升高,可提升对神经元的保护作用。Guitart 等还认为载脂蛋白 E、核糖体蛋白水平的升高及凝聚素/载脂蛋白 J 水平的降低可能参与了外泌体对神经元的保护,但具体机制还需要进一步研究。另外,已有研究证实将载药外泌体(姜黄素∶外泌体=1∶4)经鼻注入脑室可以提高缺血再灌注脑损伤小鼠的神经行为学评分,缩小病灶面积,保护作用可能是通过减少炎性反应(TNF-α 减少),降低活性氧水平(活性氧减少)而实现[3]。
3. 载药外泌体的制备和用途
外泌体可以装载药物,并且被特定靶器官摄取,达到治疗疾病的作用。已有研究显示,外泌体可以携带姜黄素穿过血脑屏障治疗缺血再灌注脑损伤,改善预后[3]。将药物加载至外泌体有 4 种方法,包括孵育法、冻融循环、超声处理以及挤压法[34]。然而,有研究显示靶细胞是否摄取外泌体主要取决于外泌体粒子大小[35],因此在载药外泌体治疗相关疾病的研究中,特别是用于治疗脑部疾病时,应将加载药物后外泌体的直径纳入考虑范畴。
4. 总结及展望
近年来对于胞外囊泡,特别是对于外泌体的研究已成为热点,目前已经发现外泌体可以介导疾病的发生、发展,并用于疾病的诊断以及治疗。值得注意的是,外泌体具有载药功能,能够运载药物到达靶器官,发挥治疗作用,另外,外泌体还具有穿透血脑屏障的功能,成为脑部疾病治疗的重大突破,可能成为治疗脑损伤、脑肿瘤以及神经退行性病变等脑部疾病的主要措施。
Funding Statement
国家自然科学基金资助项目(81330016、81630038、81270724);国家重点基础研究发展计划项目(973计划)(2013CB967404、2012BAI04B04);四川省科技计划项目(2014SZ0149、2016TD0002)
National Natural Science Foundation of China (81330016, 81630038, 81270724); National Basic Research Program of China (2013CB967404, 2012BAI04B04); Science and Technology Programs of Sichuan Province (2014SZ0149, 2016TD0002)
Contributor Information
冰瑶 康 (Bingyao KANG), Email: Ïkangbingyao2016@163.com.
得志 母 (Dezhi MU), Email: mudz@scu.edu.cn.
References
- 1.Salvadori M, Rosso G, Bertoni E Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant. 2015;5(2):52–67. doi: 10.5500/wjt.v5.i2.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Wang Y, Zhang L, Li Y, et al Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol. 2015;192:61–69. doi: 10.1016/j.ijcard.2015.05.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Kalani A, Chaturvedi P, Kamat PK, et al Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol. 2016;79:360–369. doi: 10.1016/j.biocel.2016.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Zeng M, Wei X, Wu Z, et al Simulated ischemia/reperfusion- induced p65-Beclin 1-dependent autophagic cell death in human umbilical vein endothelial cells. Sci Rep. 2016;6:37448. doi: 10.1038/srep37448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Chen HH, Lai PF, Lan YF, et al Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-1 transcription in renal ischemia-reperfusion. J Cell Physiol. 2014;229(9):1202–1211. doi: 10.1002/jcp.24554. [DOI] [PubMed] [Google Scholar]
- 6.Arslan F, Lai RC, Smeets MB, et al Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301–312. doi: 10.1016/j.scr.2013.01.002. [DOI] [PubMed] [Google Scholar]
- 7.Colombo M, Raposo G, Théry C Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289. doi: 10.1146/annurev-cellbio-101512-122326. [DOI] [PubMed] [Google Scholar]
- 8.Balusu S, Van Wonterghem E, De Rycke R, et al Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016;8(10):1162–1183. doi: 10.15252/emmm.201606271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Willms E, Johansson HJ, Mäger I, et al Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 2016;6:22519. doi: 10.1038/srep22519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Skotland T, Ekroos K, Kauhanen D, et al Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur J Cancer. 2017;70:122–132. doi: 10.1016/j.ejca.2016.10.011. [DOI] [PubMed] [Google Scholar]
- 11.Sun L, Xu R, Sun X, et al Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy. 2016;18(3):413–422. doi: 10.1016/j.jcyt.2015.11.018. [DOI] [PubMed] [Google Scholar]
- 12.Munagala R, Aqil F, Jeyabalan J, et al Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016;371(1):48–61. doi: 10.1016/j.canlet.2015.10.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Lässer C, Alikhani VS, Ekström K, et al Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med. 2011;9:9. doi: 10.1186/1479-5876-9-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Timmers L, Lim SK, Arslan F, et al Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. 2007;1(2):129–137. doi: 10.1016/j.scr.2008.02.002. [DOI] [PubMed] [Google Scholar]
- 15.Zhang ZW, Yang JJ, Yan WY, et al Pretreatment of Cardiac Stem Cells With Exosomes Derived From Mesenchymal Stem Cells Enhances Myocardial Repair. Journal of the American Heart Association. 2016;5:e002856. doi: 10.1161/JAHA.115.002856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Zhao Y, Sun L, Cao W, et al Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury. Stem Cell Int. 2015;(2015):761643. doi: 10.1155/2015/761643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Ibrahim AG, Cheng K, Marbán E Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports. 2014;2(5):606–619. doi: 10.1016/j.stemcr.2014.04.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Feng Y, Huang W, Wani M, et al Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One. 2014;9(2):e88685. doi: 10.1371/journal.pone.0088685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Agarwal U, George A, Bhutani S, et al. Experimental, Systems and Computational Approaches to Understanding the MicroRNA-Mediated Reparative Potential of Cardiac Progenitor Cell-Derived Exosomes From Pediatric Patients. Circ Res, 2016. [Epub ahead of print]
- 20.Vicencio JM, Yellon DM, Sivaraman V, et al Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol. 2015;65(15):1525–1536. doi: 10.1016/j.jacc.2015.02.026. [DOI] [PubMed] [Google Scholar]
- 21.Cappellesso R, Tinazzi A, Giurici T, et al Programmed cell death 4 and microRNA 21 inverse expression is maintained in cells and exosomes from ovarian serous carcinoma effusions. Cancer Cytopathol. 2014;122(9):685–693. doi: 10.1002/cncy.21442. [DOI] [PubMed] [Google Scholar]
- 22.Guo S, Bai R, Liu W, et al MicroRNA-210 is upregulated by hypoxia- inducible factor-1α in the stromal cells of giant cell tumors of bone. Mol Med Rep. 2015;12(4):6185–6192. doi: 10.3892/mmr.2015.4170. [DOI] [PubMed] [Google Scholar]
- 23.Wang K, Jiang Z, Webster KA, et al Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by Exosomal MicroRNA-21. Stem Cells Transl Med. 2016;6(1):209–222. doi: 10.5966/sctm.2015-0386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Arslan F, Lai RC, Smeets MB, et al Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10(3):301–312. doi: 10.1016/j.scr.2013.01.002. [DOI] [PubMed] [Google Scholar]
- 25.Park DR, Ko R, Kwon SH, et al FlexPro MD, a Mixture of Krill Oil, Astaxanthin, and Hyaluronic Acid, Suppresses Lipopolysaccharide-Induced Inflammatory Cytokine Production Through Inhibition of NF-κB. J Med Food. 2016;19(12):1196–1203. doi: 10.1089/jmf.2016.3787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Shi Z, Lian A, Zhang F Nuclear factor-κB activation inhibitor attenuates ischemia reperfusion injury and inhibits Hmgb1 expression. Inflamm Res. 2014;63(11):919–925. doi: 10.1007/s00011-014-0765-x. [DOI] [PubMed] [Google Scholar]
- 27.Miller K, Dixit S, Bredlau AL, et al Delivery of a drug cache to glioma cells overexpressing platelet-derived growth factor receptor using lipid nanocarriers. Nanomedicine (Lond) 2016;11(6):581–595. doi: 10.2217/nnm.15.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Xin H, Katakowski M, Wang F, et al MicroRNA cluster miR-17-92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats. Stroke. 2017;48(3):747–753. doi: 10.1161/STROKEAHA.116.015204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Drommelschmidt K, Serdar M, Bendix I, et al Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammationinduced preterm brain injury. Brain Behav lmmun. 2017;60:220–232. doi: 10.1016/j.bbi.2016.11.011. [DOI] [PubMed] [Google Scholar]
- 30.Xin H, Li Y, Cui Y, et al Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;33(11):1711–1715. doi: 10.1038/jcbfm.2013.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Xin H, Li Y, Liu Z, et al MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells. 2013;31(12):2737–2746. doi: 10.1002/stem.1409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Xin H, Li Y, Buller B, et al Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012;30(7):1556–1564. doi: 10.1002/stem.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Guitart K, Loers G, Buck F, et al Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia. 2016;64(6):896–910. doi: 10.1002/glia.22963. [DOI] [PubMed] [Google Scholar]
- 34.Haney MJ, Klyachko NL, Zhao Y, et al Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30. doi: 10.1016/j.jconrel.2015.03.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Caponnetto F, Manini I, Skrap M, et al Size-dependent cellular uptake of exosomes. Nanomedicine. 2016;13(3):1011–1020. doi: 10.1016/j.nano.2016.12.009. [DOI] [PubMed] [Google Scholar]