Skip to main content
Chinese Journal of Reparative and Reconstructive Surgery logoLink to Chinese Journal of Reparative and Reconstructive Surgery
. 2017 Jun;31(6):665–669. [Article in Chinese] doi: 10.7507/1002-1892.201611127

开放性胫骨骨折外支架二期更换为内固定的安全性研究

Safety evaluation of secondary conversion from external fixation to internal fixation for open tibia fractures

Xi LIU 1, Shiqiang CEN 1,*, Zhou XIANG 1, Gang ZHONG 1, Min YI 1, Yue FANG 1, Lei LIU 1, Fuguo HUANG 1
PMCID: PMC8498309  PMID: 29798646

Abstract

Objective

To evaluate the safety of conversion from external fixation to internal fixation for open tibia fractures.

Methods

Between January 2010 and December 2014, 94 patients (98 limbs) with open tibia fractures were initially treated with external fixators at the first stage, and the clinical data were retrospectively analyzed. In 29 cases (31 limbs), the external fixators were changed to internal fixation for discomfort, pin tract response, Schantz pin loosening, delayed union or non-union after complete wound healing and normal or close to normal levels of erythrocyte sedimentation rate (ESR), C reactive protein (CRP), and the leucocyte count as well as the neutrophil ratio (trial group); in 65 cases (67 limbs), the external fixators were used as the ultimate treatment in the control group. There was no significant difference in gender, age, side of the limbs, interval from injury to the first debridement, initial pathogenic bacteria, the limbs that skin grafting or flap transferring for skin and soft tissue defect between the two groups (P>0.05). The incidence of Gustilo type III fractures in the control group was significantly higher than that in the trial group (P=0.000). The overall incidence of infection was calculated respectively in the two groups. The incidence of infection according to different fracture types and whether skin grafting or flap transferring was compared between the two groups. The information of the pathogenic bacteria was recorded in the infected patients, and it was compared with the results of the initial culture. The incidence of infection in the patients of the trial group using different internal fixation instruments was recorded.

Results

The overall incidences of infection for the trial and control groups were 9.7% (3/31) and 9.0% (6/67) respectively, showing no significant difference (χ2=0.013, P=0.909). No infection occurred in Gustilo type I and type II patients. The incidence of infection for Gustilo type IIIA patients in the trial group and the control group were 14.3% (1/7) and 6.3% (2/32) respectively, showing no significant difference (χ2=0.509, P=0.476); the incidence of infection for type IIIB patients in the two groups were 50.0% (2/4) and 14.3% (2/14) respectively, showing no significant difference (χ2=2.168, P=0.141); and the incidence of infection for type IIIC patients in the two groups were 0 and 16.7% (2/12) respectively, showing no significant difference (χ2=0.361, P=0.548). Of all the infected limbs, only 1 limb in the trial group had the same Staphylococcus Aureus as the result of the initial culture. In the patients who underwent skin grafting or flap transferring, the incidence of infection in the trial and control groups were 33.3% (2/6) and 13.3% (2/15) respectively, showing no significant difference (χ2=1.059, P=0.303). After conversion to internal fixation, no infection occurred in the cases that fixed with nails (11 limbs), and infection occurred in 4 of 20 limbs that fixed with plates, with an incidence of infection of 20%.

Conclusion

Conversion from external fixation to internal fixation for open tibia fractures is safe in most cases. However, for open tibia fractures with extensive and severe soft tissue injury, especially Gustilo type III patients who achieved wound heal after flap transfer or skin grafting, the choice of secondary conversion to internal fixation should carried out cautiously. Careful pre-operative evaluation of soft tissue status, cautious choice of fixation instrument and meticulous intra-operative soft tissue protection are essential for its safety.

Keywords: Open tibial fracture, infection, erythrocyte sedimentation rate, C reactive protein, external fixator, internal fixation


开放性胫骨骨折是下肢常见损伤类型之一,由于胫骨前内侧缺乏软组织包被,其本身血供也较差,故发生感染及不愈合的风险较高,治疗较棘手[1]。对于这类患者,特别是合并多发伤及伤口广泛污染者,按照创伤控制理论,外支架固定是获得骨折早期稳定的有效方法[2]。然而,外支架固定后骨折畸形愈合和不愈合率相对较高,还存在患者主观舒适度差、钉道反应,以及即使使用环状外支架也无法完全避免邻近关节活动度受限等问题[3-4]。因此,出于增强骨折固定稳定性及降低远期畸形愈合率[5]、改善邻近关节功能水平及提高患者主观舒适度,降低并发症发生率[6]等考虑,临床常选择将外支架更换为内固定[7-8],但有时因为患者全身或局部软组织情况欠佳无法在短时间内实施,只有二期手术更换固定方式。目前对于二期更换内固定手术时机以及手术指征的把握仍缺乏清楚认识,二期术后感染,特别是深部感染是手术严重并发症之一[9]。如何在更换内固定时尽量避免感染,以提高手术安全性,是骨科医生一直关心的问题。目前,因深部组织潜伏细菌而仍存在感染风险等问题尚无有效解决方法。

开放性胫骨骨折患者初始骨折类型、创口污染程度和范围以及软组织损伤程度和范围均不同。有研究者报道开放性胫骨骨折 Gustilo 分型是影响术后感染率的重要指标之一[10]。另外,不同内固定方式对术后感染的影响也是值得考虑的问题。为此,我们采用回顾性队列研究,比较分析不同类型开放性胫骨骨折患者,在血清炎性指标及白细胞水平正常条件下,自外支架更换为不同方式内固定后的感染发生率,以期为临床治疗提供理论指导,报告如下。

1. 临床资料

1.1. 患者选择标准

纳入标准:① 开放性胫骨骨折;② 年龄≥18 岁;③ 以外固定支架作为第 1 阶段固定方法。排除标准:① 伤口愈合或修复前发生伤口早期感染者;② 伤后第 1 次入院期间 1 周内死亡者;③ 伤后第 1 次入院期间 1 周内患肢接受截肢手术者;④ 资料不完整者。

2010 年 1 月—2014 年 12 月,共 94 例患者(98 侧患肢)符合选择标准纳入研究。其中 29 例(31 侧患肢)由于患者主观不适、钉道反应、Schanz 针松动及延迟愈合或不愈合等原因,在伤口完全愈合后至少 1 个月,无红肿及窦道形成,红细胞沉降率(eryth-rocyte sedimentation rate,ESR)、C 反应蛋白(C reactive protein,CRP)、白细胞绝对计数及中性粒细胞比例均达正常或接近正常范围后,去除外支架并以石膏临时固定 2 周以上,待钉道完全干燥、无明确感染征象后,行二期手术更换为内固定(试验组);65 例(67 侧患肢)因经济因素等主观原因未进行更换(对照组)。本研究获四川大学华西医院医学伦理委员会批准,患者均知情同意。

1.2. 一般资料

试验组:男 24 例,女 5 例;年龄 25~59 岁,平均 41.1 岁。左侧 9 例,右侧 18 例,双侧 2 例。骨折按 Gustilo 分型:Ⅰ型 5 侧,Ⅱ型 13 侧,ⅢA 型 7 侧,ⅢB 型 4 侧(包含 1 侧因合并骨筋膜室综合征行切开减张和外支架固定的闭合性胫骨骨折患者,需要植皮覆盖创面记作 Gustilo ⅢB 型),ⅢC 型 2 侧。受伤至第 1 次清创时间 3~32 h,平均 17.8 h。初始病原菌包括:铜绿假单胞菌 2 侧、金黄色葡萄球菌 1 侧、溶血性链球菌 1 侧、表皮葡萄球菌 3 侧、正常混合菌群 1 侧,其余无细菌生长。6 侧患肢曾接受植皮或皮瓣移位修复,其中植皮 4 侧、皮瓣移位 2 侧。外支架类型:Orthofix 支架 14 侧,Stryker 支架 17 侧。外支架固定 9~302 d 后更换为内固定,平均 41.3 d。内固定物类型:髓内钉(AO Synthesis 公司,美国)11 侧,钢板(AO Synthesis 公司,美国)20 侧。更换为内固定前 ESR 为 2~24 mm/1 h,平均 16.4 mm/1 h;CRP 为 1.5~8.9 mg/L,平均 5.72 mg/L;白细胞绝对计数为(3.72~9.53)×109/L,平均 5.95×109/L;中性粒细胞比例为 50.7%~82.5%,平均 62.9%。

对照组:男 56 例,女 9 例;年龄 18~72 岁,平均 41.1 岁。左侧 20 例,右侧 43 例,双侧 2 例。骨折按 Gustilo 分型:Ⅱ型 9 侧,ⅢA 型 32 侧,ⅢB 型 14 侧,ⅢC 型 12 侧。受伤至第 1 次清创时间 4~42 h,平均 22.7 h。初始病原菌包括:阴沟肠杆菌 3 侧、鲍曼溶血不动杆菌 1 侧、鲍曼/醋酸钙不动杆菌复合体 1 侧、铜绿假单胞菌 1 侧、枯草杆菌 1 侧、3 种菌 1 侧、体表正常菌 1 侧、普通/彭氏变形杆菌 1 侧、表皮葡萄球菌 1 侧、温和气单胞菌 2 侧,其余无细菌生长。15 侧患肢曾接受植皮或皮瓣修复,其中植皮修复 11 侧、皮瓣修复 4 侧。外支架类型:Orthofix 支架 37 侧,Stryker 支架 30 侧。

两组患者性别、年龄、侧别、受伤至第 1 次清创时间、初始病原菌类型、接受植皮或皮瓣修复肢体数等一般资料比较,差异均无统计学意义(P>0.05);对照组 Gustilo Ⅲ型骨折患者比例明显高于试验组,两组骨折分型比较差异有统计学意义(P=0.000)。

1.3. 研究方法

收集患者病历资料,记录提示感染的症状体征,包括与损伤程度不相符的疼痛、局部红肿、发热、渗出、异味、窦道形成,以及相应的影像学检查结果,按 1992 年疾病预防控制中心(CDC)制定的医院感染标准[11],评定是否发生感染;计算两组感染发生率。比较两组不同骨折类型患者以及曾接受植皮或皮瓣修复手术患者的感染发生率。记录感染患者病原菌信息,并与初始病原菌进行比较。记录试验组患者使用不同内固定物后发生感染情况。采用 χ2 检验或 Fisher 确切概率法比较两组间以及试验组不同内固定后感染发生率。

2. 结果

试验组和对照组总体感染发生率分别为 9.7%(3/31)和 9.0%(6/67),比较差异无统计学意义(χ2=0.013,P=0.909)。GustiloⅠ、Ⅱ型患者均未发生感染;试验组和对照组ⅢA 型患者感染发生率分别为 14.3%(1/7)和 6.3%(2/32),ⅢB 型分别为 50.0%(2/4)和 14.3%(2/14),ⅢC 型分别为 0 和 16.7%(2/12),比较差异均无统计学意义(χ2=0.509,P=0.476;χ2=2.168,P=0.141;χ2=0.361,P=0.548)。发生感染的 9 侧患肢中,病原菌分别为金黄色葡萄球菌 2 侧,大肠杆菌 2 侧,铜绿假单胞菌 1 侧,鲍曼溶血不动杆菌(非光谱耐药菌株)1 侧,阴沟肠杆菌 1 侧,嗜水汽假单胞菌 1 侧,溶血葡萄球菌 1 侧;其中仅试验组 1 侧金黄色葡萄球菌与术前原始致病菌一致。试验组和对照组中接受植皮或皮瓣修复患者感染发生率分别为 33.3%(2/6)和 13.3%(2/15),比较差异无统计学意义(χ2=1.059,P=0.303)。试验组更换为内固定后,采用髓内钉者无感染发生,而采用钢板者中 4 侧发生感染,感染发生率为 20%。

3. 讨论

由于存在二次打击[12]及感染风险[13],对于初期使用外支架固定又未能在 2 周内完成内固定更换的开放性胫骨骨折患者,二期是否更换内固定及更换时机选择,是临床骨科难题之一。目前,临床多采取相对稳妥的态度,待伤口完全愈合足够长时间,通常为 1 个月以上,无发热、红肿、窦道或脓肿形成,且血液 ESR、CRP 等炎性指标及白细胞水平降至正常或接近正常范围后,才考虑将外支架更换为内固定。

ESR、CRP、白细胞绝对计数及中性粒细胞比例一直作为评价围手术期潜在感染风险的指标,特别是需要植入内固定物的骨科手术,包括人工全髋、膝关节置换术及脊柱手术[14-18]。本研究中,试验组患者在更换内固定术前其 ESR、CRP 水平和白细胞绝对计数及中性粒细胞比例均在正常或接近正常范围内。试验组和对照组术后总体感染发生率差异无统计学意义,针对不同骨折类型进一步分析显示,Ⅰ、Ⅱ型患者均未发生感染;试验组和对照组ⅢA 型患者术后感染发生率差异无统计学意义;试验组ⅢB 型患者术后感染率(50.0%)明显高于对照组(14.3%),提示ⅢB 型开放性胫骨骨折患者更换为内固定后感染风险增加,虽然两组差异无统计学意义,分析可能与样本量不足有关;但试验组ⅢC 型患者更换为内固定术后无感染发生,分析可能也与样本量少有关。另外,试验组中既往接受植皮或皮瓣转移修复患者术后感染发生率约为对照组的 3 倍,可能因样本量较少,此差异无统计学意义,但提示在受伤初期软组织损伤及缺损更严重的患者,即使经过创面修复伤口完全愈合且无明显感染征象的条件下二期更换内固定,还是存在更高的感染风险。此外,试验组患者发生感染风险随使用内固定器械种类不同也存在显著差异,使用钢板的感染发生率显著高于使用髓内钉者。

上述结果提示在大多数情况下,开放性胫骨骨折患者从外支架更换为内固定是安全的,这与既往报道[19]一致。其安全性不仅取决于伤口愈合情况及炎性指标水平,还取决于既往开放损伤的严重程度及所使用内固定物类型[8]。对于伴有广泛严重皮肤软组织损伤的开放性胫骨骨折患者,如 Gustilo ⅢB 型或更严重类型骨折,即使伤口已愈合,损伤区软组织床可能已被广泛的瘢痕组织代替,特别是贴骨瘢痕,这类组织对感染的抵抗力差。而钢板植入时骨膜剥离范围往往大于髓内钉,在瘢痕区进行剥离操作会增加伤口愈合不良及感染风险。这可能是本研究中二期采用钢板内固定者感染发生率显著高于髓内钉内固定者的原因,Avilucea 等[20]的研究也有相关报道。但是,也有学者得出了相反结论。Monni 等[7]的研究表明,外支架延迟更换为髓内钉内固定的患者,其感染发生率比更换为钢板内固定者高。但该研究纳入对象除开放性胫骨骨折患者外,也包括其他部位创伤性骨不连及畸形,甚至感染性骨不连患者。结合 Monni 等[7]的研究结果,我们认为本研究结论仅适用于开放性胫骨骨折。

在人工全髋、全膝关节置换及脊柱手术等Ⅰ类切口(指清洁手术切口)手术中,切口周围皮肤及软组织均为健康状态,无挤压、撕扯、污染等因素影响。而开放性骨折在更换内固定时,尤其是 GustiloⅢ型骨折者,即使伤口已经愈合,这些区域的组织在修复后大多已瘢痕化,甚至存在潜在静止感染灶,这可能是二期外支架更换内固定手术与上述手术最大区别。因此,针对伴有严重而广泛的软组织损伤的开放性胫骨骨折患者,特别是 GustiloⅢ型且通过皮瓣转移或植皮修复创面获得愈合的患者,二期将外支架更换为内固定时需要慎重。术前需要仔细评估患者软组织条件,谨慎选择内固定物类型,术中对软组织进行精细保护。

另外本研究也存在一些不足,如采用回顾性队列分析,存在选择偏倚等影响;虽然纳入了本院 2010 年—2014 年所有符合选择标准的患者,但样本量仍偏小,使检验效能偏低,部分组间差异可能未被发现。因此,在以后研究中需要联合更多研究中心共同参与。

References

  • 1.Ktistakis I, Giannoudi M, Giannoudis PV Infection rates after open tibial fractures: are they decreasing? Injury. 2014;45(7):1025–1027. doi: 10.1016/j.injury.2014.03.022. [DOI] [PubMed] [Google Scholar]
  • 2.Xu X, Li X, Liu L, et al A meta-analysis of external fixator versus intramedullary nails for open tibial fracture fixation. J Orthop Surg Res. 2014;9:75. doi: 10.1186/s13018-014-0075-6. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 3.Li Y, Jiang X, Guo Q, et al Treatment of distal tibial shaft fractures by three different surgical methods: a randomized, prospective study. Int Orthop. 2014;38(6):1261–1267. doi: 10.1007/s00264-014-2294-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Feng W, Fu L, Liu J, et al Biomechanical evaluation of various fixation methods for proximal extra-articular tibial fractures. J Surg Res. 2012;178(2):722–727. doi: 10.1016/j.jss.2012.04.014. [DOI] [PubMed] [Google Scholar]
  • 5.Fang X, Jiang L, Wang Y, et al Treatment of Gustilo grade III tibial fractures with unreamed intramedullary nailing versus external fixator: A meta-analysis. Med Sci Monit. 2012;18(4):RA49–RA56. doi: 10.12659/MSM.882610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Joveniaux P, Ohl X, Harisboure A, et al Distal tibia fractures: management and complications of 101 cases. Int Orthop. 2010;34(4):583–588. doi: 10.1007/s00264-009-0832-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Monni T, Birkholtz FF, de Lange P, et al Conversion of external fixation to internal fixation in a non-acute, reconstructive setting: a case series. Strategies Trauma Limb Reconstr. 2013;8(1):25–30. doi: 10.1007/s11751-013-0157-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Roussignol X, Sigonney G, Potage D, et al Secondary nailing after external fixation for tibial shaft fracture: risk factors for union and infection. A 55 case series. Orthop Traumatol Surg Res. 2015;101(1):89–92. doi: 10.1016/j.otsr.2014.10.017. [DOI] [PubMed] [Google Scholar]
  • 9.Kurylo JC, Axelrad TW, Tornetta P 3rd, et al Open fractures of the distal radius: the effects of delayed debridement and immediate internal fixation on infection rates and the need for secondary procedures. J Hand Surg Am. 2011;36(7):1131–1134. doi: 10.1016/j.jhsa.2011.04.014. [DOI] [PubMed] [Google Scholar]
  • 10.Thakore RV, Francois EL, Nwosu SK, et al. The Gustilo-Anderson classification system as predictor of nonunion and infection in open tibia fractures. Eur J Trauma Emerg Surg, 2016. [Epub ahead of print]
  • 11.Horan TC, Gaynes RP, Martone WJ, et al CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol. 1992;13(10):606–608. [PubMed] [Google Scholar]
  • 12.Recknagel S, Bindl R, Wehner T, et al Conversion from external fixator to intramedullary nail causes a second hit and impairs fracture healing in a severe trauma model. J Orthop Res. 2013;31(3):465–471. doi: 10.1002/jor.22242. [DOI] [PubMed] [Google Scholar]
  • 13.Foni NO, Batista FA, Rossato LH, et al Postoperative infection in patients undergoing inspection of orthopedic damage due to external fixation. Rev Bras Ortop. 2015;50(6):625–630. doi: 10.1016/j.rboe.2015.10.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Battistelli S, Fortina M, Carta S, et al Serum C-reactive protein and procalcitonin kinetics in patients undergoing elective total hip arthroplasty. Biomed Res Int. 2014;2014:565080. doi: 10.1155/2014/565080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Yuan K, Li WD, Qiang Y, et al Comparison of procalcitonin and C-reactive protein for the diagnosis of periprosthetic joint infection before revision total hip arthroplasty. Surg Infect (Larchmt) 2015;16(2):146–150. doi: 10.1089/sur.2014.034. [DOI] [PubMed] [Google Scholar]
  • 16.Neumaier M, Scherer MA C-reactive protein levels for early detection of postoperative infection after fracture surgery in 787 patients. Acta Orthop. 2008;79(3):428–432. doi: 10.1080/17453670710015355. [DOI] [PubMed] [Google Scholar]
  • 17.Wright EH, Khan U Serum complement-reactive protein (CRP) trends following local and free-tissue reconstructions for traumatic injuries or chronic wounds of the lower limb. J Plast Reconstr Aesthet Surg. 2010;63(9):1519–1522. doi: 10.1016/j.bjps.2009.08.019. [DOI] [PubMed] [Google Scholar]
  • 18.Ettinger M, Calliess T, Kielstein JT, et al Circulating Biomarkers for Discrimination Between Aseptic Joint Failure, Low-Grade Infection, and High-Grade Septic Failure. Clin Infect Dis. 2015;61(3):332–341. doi: 10.1093/cid/civ286. [DOI] [PubMed] [Google Scholar]
  • 19.Parekh AA, Smith WR, Silva S, et al Treatment of distal femur and proximal tibia fractures with external fixation followed by planned conversion to internal fixation. J Trauma. 2008;64(3):736–739. doi: 10.1097/TA.0b013e31804d492b. [DOI] [PubMed] [Google Scholar]
  • 20.Avilucea FR, Sathiyakumar V, Greenberg SE, et al Open distal tibial shaft fractures: a retrospective comparison of medial plate versus nail fixation. Eur J Trauma Emerg Surg. 2016;42(1):101–106. doi: 10.1007/s00068-015-0519-7. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University

RESOURCES