Abstract
Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behavior. Bacterial biofilms are more than the sum of their parts: single-cell behavior has a complex relation to collective community behavior, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics. Biofilm microbiology is a relatively young field by biology standards, but it has already attracted intense attention from physicists. Sometimes, this attention takes the form of seeing biofilms as inspiration for new physics. In this roadmap, we highlight the work of those who have taken the opposite strategy: we highlight the work of physicists and physical scientists who use physics to engage fundamental concepts in bacterial biofilm microbiology, including adhesion, sensing, motility, signaling, memory, energy flow, community formation and cooperativity. These contributions are juxtaposed with microbiologists who have made recent important discoveries on bacterial biofilms using state-of-the-art physical methods. The contributions to this roadmap exemplify how well physics and biology can be combined to achieve a new synthesis, rather than just a division of labor.
Keywords: biofilms, physiology of microbes, cellular organisation, adhesion, motility
References
- [1].Chawla R, Gupta R, Lele TP and Lele PP 2020. A skeptic’s guide to bacterial mechanosensing J. Mol. Biol 432 523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [2].Belas R 2014. Biofilms, flagella, and mechanosensing of surfaces by bacteria Trends Microbiol 22 517–27 [DOI] [PubMed] [Google Scholar]
- [3].Lele PP, Hosu BG and Berg HC 2013. Dynamics of mechanosensing in the bacterial flagellar motor Proc. Natl Acad. Sci 110 11839–44 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [4].Chawla R, Ford KM and Lele PP 2017. Torque, but not FliL, regulates mechanosensitive flagellar motor-function Sci. Rep 7 5565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [5].McCarter L, Hilmen M and Silverman M 1988. Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus Cell 54 345–51 [DOI] [PubMed] [Google Scholar]
- [6].Hug I, Deshpande S, Sprecher KS, Pfohl T and Jenal U 2017. Second messenger-mediated tactile response by a bacterial rotary motor Science 358 531–4 [DOI] [PubMed] [Google Scholar]
- [7].Diethmaier C, Chawla R, Canzoneri A, Kearns DB, Lele PP and Dubnau D 2017. Viscous drag on the flagellum activates Bacillus subtilisentry into the K-state Mol. Microbiol 106 367–80 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [8].Waters CM and Bassler BL 2005. Quorum sensing: cell-to-cell communication in bacteria Annu. Rev. Cell Dev. Biol 21 319–46 [DOI] [PubMed] [Google Scholar]
- [9].Berg HC and Purcell EM 1977. Physics of chemoreception Biophys. J 20 193–219 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [10].Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP and Lim WA 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell 152 1173–83 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [11].Nan B and Zusman DR 2016. Novel mechanisms power bacterial gliding motility Mol. Microbiol 101 186–93 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [12].Faure LM et al. 2016. The mechanism of force transmission at bacterial focal adhesion complexes Nature 539 530–5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [13].Fu G, Bandaria JN, Le Gall AV, Fan X, Yildiz A, Mignot T, Zusman DR and Nan B 2018. MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility Proc. Natl Acad. Sci. USA 115 2484–9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [14].Nan B, Chen J, Neu JC, Berry RM, Oster G and Zusman DR 2011. Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force Proc. Natl Acad. Sci 108 2498–503 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [15].Treuner-Lange A et al. 2015. The small G-protein MglA connects to the MreB actin cytoskeleton at bacterial focal adhesions J. Cell Biol 210 243–56 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [16].Nan B, Bandaria JN, Moghtaderi A, Sun I-H, Yildiz A and Zusman DR 2013. Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories Proc. Natl Acad. Sci 110 E1508–13 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [17].Nan B 2017. Bacterial gliding motility: rolling out a consensus model Curr. Biol 27 R154–6 [DOI] [PubMed] [Google Scholar]
- [18].Wartel M. et al. A versatile class of cell surface directional motors gives rise to gliding motility and sporulation in Myxococcus xanthus. PLoS Biol. 2013;11:e1001728. doi: 10.1371/journal.pbio.1001728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [19].Zhang H, Mulholland GA, Seef S, Zhu S, Liu J, Mignot T and Nan B 2020. Establishing rod shape from spherical, peptidoglycan-deficient bacterial spores Proc. Natl Acad. Sci. USA 117 14444–52 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [20].Jakobczak B, Keilberg D, Wuichet K and Søgaard-Andersen L 2015. Contact- and protein transfer-dependent stimulation of assembly of the gliding motility machinery in Myxococcus xanthus PLoS Genet 11 e1005341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [21].Talà L, Fineberg A, Kukura P and Persat A 2019. Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements Nat. Microbiol 4 774–80 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [22].Chang Y-W, Rettberg LA, Treuner-Lange A, Iwasa J, Søgaard-Andersen L and Jensen GJ 2016. Architecture of the type IVa pilus machine Science 351 aad2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [23].Wang F, Coureuil M, Osinski T, Orlova A, Altindal T, Gesbert G, Nassif X, Egelman EH and Craig L 2017. Cryoelectron microscopy reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae type iv pili at sub-nanometer resolution Structure 25 1423–35 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [24].Persat A, Inclan YF, Engel JN, Stone HA and Gitai Z 2015. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa Proc. Natl Acad. Sci. USA 112 7563–8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [25].Lee CK et al. 2018. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities Proc. Natl Acad. Sci. USA 115 4471–6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [26].Ellison CK et al. 2017. Obstruction of pilus retraction stimulates bacterial surface sensing Science 358 535–8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [27].Adams DW, Stutzmann S, Stoudmann C and Blokesch M 2019. DNA-uptake pili of Vibrio cholerae are required for chitin colonization and capable of kin recognition via sequence-specific self-interaction Nat. Microbiol 4 1545–57 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [28].Koch MD, Fei C, Wingreen NS, Shaevitz JW and Gitai Z 2021. Competitive binding of independent extension and retraction motors explains the quantitative dynamics of type IV pili Proc. Natl. Acad. Sci 118 e2014926118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [29].Maier B, Potter L, So M, Seifert HS and Sheetz MP 2002. Single pilus motor forces exceed 100 pN Proc. Natl Acad. Sci 99 16012–7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [30].Beaussart A, Baker AE, Kuchma SL, El-Kirat-Chatel S, O’Toole GA and Dufrêne YF 2014. Nanoscale Adhesion forces of Pseudomonas aeruginosa type IV pili ACS Nano 8 10723–33 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [31].Dufrêne YF and Persat A 2020. Mechanomicrobiology: how bacteria sense and respond to forces Nat. Rev. Microbiol 18 227–40 [DOI] [PubMed] [Google Scholar]
- [32].Mitchison TJ and Cramer LP 1996. Actin-based cell motility and cell locomotion Cell 84 371–9 [DOI] [PubMed] [Google Scholar]
- [33].Denis K et al. 2019. Targeting type IV pili as an antivirulence strategy against invasive meningococcal disease Nat. Microbiol 4 972–84 [DOI] [PubMed] [Google Scholar]
- [34].Hampton HG, Watson BNJ and Fineran PC 2020. The arms race between bacteria and their phage foes Nature 577 327–36 [DOI] [PubMed] [Google Scholar]
- [35].Bru J-L, Rawson B, Trinh C, Whiteson K, Høyland-Kroghsbo NM and Siryaporn A 2019. PQS produced by the Pseudomonas aeruginosa stress response repels swarms away from bacteriophage and antibiotics J. Bacteriol 201 e00383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [36].Testa S, Berger S, Piccardi P, Oechslin F, Resch G and Mitri S 2019. Spatial structure affects phage efficacy in infecting dual-strain biofilms of Pseudomonas aeruginosa Commun. Biol 2 405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [37].Díaz-Pascual F. et al. Breakdown of Vibrio cholerae biofilm architecture induced by antibiotics disrupts community barrier function. Nat. Microbiol. 2019;4:2136. doi: 10.1038/s41564-019-0579-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [38].Miller C, Kong J, Tran TT, Arias CA, Saxer G and Shamoo Y 2013. Adaptation of Enterococcus faecalis to daptomycin reveals an ordered progression to resistance Antimicrob. Agents Chemother 57 5373–83 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [39].Walters MC, Roe F, Bugnicourt A, Franklin MJ and Stewart PS 2003. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin Antimicrob. Agents Chemother 47 317–23 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [40].Perinbam K, Chacko JV, Kannan A, Digman MA and Siryaporn A 2020. A shift in central metabolism accompanies virulence activation in Pseudomonas aeruginosa mBio 11 e02730–18 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [41].Huh D, Hamilton GA and Ingber DE 2011. From 3D cell culture to organs-on-chips Trends Cell Biol 21 745–54 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [42].Park SE, Georgescu A and Huh D 2019. Organoids-on-a-chip Science 364 960–5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [43].Gon S, Kumar K-N, Nüsslein K and Santore MM 2012. How bacteria adhere to brushy PEG surfaces: clinging to flaws and compressing the brush Macromolecules 45 8373–81 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [44].Sharma S et al. 2016. Subnanometric roughness affects the deposition and mobile adhesion of Escherichia coli on silanized glass surfaces Langmuir 32 5422–33 [DOI] [PubMed] [Google Scholar]
- [45].Friedlander RS, Vlamakis H, Kim P, Khan M, Kolter R and Aizenberg J 2013. Bacterial flagella explore microscale hummocks and hollows to increase adhesion Proc. Natl Acad. Sci 110 5624–9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [46].Rosenberg M 2006. Microbial adhesion to hydrocarbons: twenty-five years of doing MATH FEMS Microbiol. Lett 262 129–34 [DOI] [PubMed] [Google Scholar]
- [47].Abbasnezhad H, Gray M and Foght JM 2011. Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons Appl. Microbiol. Biotechnol 92 653–75 [DOI] [PubMed] [Google Scholar]
- [48].Deng J, Molaei M, Chisholm NG and Stebe KJ 2020. Motile bacteria at oil–water interfaces: Pseudomonas aeruginosa Langmuir 36 6888–902 [DOI] [PubMed] [Google Scholar]
- [49].Dewangan NK and Conrad JC 2020. Bacterial motility enhances adhesion to oil droplets Soft Matter 16 8237–44 [DOI] [PubMed] [Google Scholar]
- [50].Zhao K, Tseng BS, Beckerman B, Jin F, Gibiansky ML, Harrison JJ, Luijten E, Parsek MR and Wong GCL 2013. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms Nature 497 388–91 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [51].Sharma S and Conrad JC 2014. Attachment from flow of Escherichia coli bacteria onto silanized glass substrates Langmuir 30 11147–55 [DOI] [PubMed] [Google Scholar]
- [52].Song L, Sjollema J, Sharma PK, Kaper HJ, van der Mei HC and Busscher HJ 2014. Nanoscopic vibrations of bacteria with different cell–wall properties adhering to surfaces under flow and static conditions ACS Nano 8 8457–67 [DOI] [PubMed] [Google Scholar]
- [53].Vissers T. et al. Bacteria as living patchy colloids: phenotypic heterogeneity in surface adhesion. Sci. Adv. 2018;4:eaao1170. doi: 10.1126/sciadv.aao1170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [54].Xia A, Yang S, Zhang R, Ni L, Xing X and Jin F 2019. Imaging the separation distance between the attached bacterial cells and the surface with a total internal reflection dark-field microscope Langmuir 35 8860–6 [DOI] [PubMed] [Google Scholar]
- [55].McLay RB, Nguyen HN, Jaimes-Lizcano YA, Dewangan NK, Alexandrova S, Rodrigues DF, Cirino PC and Conrad JC 2018. Level of fimbriation alters the adhesion of Escherichia coli bacteria to interfaces Langmuir 34 1133–42 [DOI] [PubMed] [Google Scholar]
- [56].Wang A, Garmann RF and Manoharan VN 2016. Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy Opt. Express 24 23719–25 [DOI] [PubMed] [Google Scholar]
- [57].Azam F and Malfatti F 2007. Microbial structuring of marine ecosystems Nat. Rev. Microbiol 5 782–91 [DOI] [PubMed] [Google Scholar]
- [58].Kiørboe T, Grossart HP, Ploug H and Tang K 2002. Mechanisms and rates of bacterial colonization of sinking aggregates Appl. Environ. Microbiol 68 3996–4006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [59].Cram JA, Weber T, Leung SW, McDonnell AMP, Liang J-H and Deutsch C 2018. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea Global Biogeochem. Cycles 32 858–76 [Google Scholar]
- [60].Enke TN, Datta MS, Schwartzman J, Cermak N, Schmitz D, Barrere J, Pascual-García A and Cordero OX 2019. Modular assembly of polysaccharide-degrading marine microbial communities Curr. Biol 29 1528–35 [DOI] [PubMed] [Google Scholar]
- [61].Dang H and Lovell CR 2016. Microbial surface colonization and biofilm development in marine environments Microbiol. Mol. Biol. Rev 80 91–138 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [62].Yawata Y, Carrara F, Menolascina F and Stocker R 2020. Constrained optimal foraging by marine bacterioplankton on particulate organic matter Proc. Natl Acad. Sci. USA 117 25571–9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [63].Yan J, Nadell CD and Bassler BL 2017. Environmental fluctuation governs selection for plasticity in biofilm production ISME J 11 1569–77 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [64].Bianchi D, Weber TS, Kiko R and Deutsch C 2018. Global niche of marine anaerobic metabolisms expanded by particle microenvironments Nat. Geosci 11 263–8 [Google Scholar]
- [65].Zhang W. et al. Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nat. Commun. 2019;10:517. doi: 10.1038/s41467-019-08463-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [66].Lambert BS et al. 2017. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities Nat. Microbiol 2 1344–9 [DOI] [PubMed] [Google Scholar]
- [67].Burrows LL 2012. Pseudomonas aeruginosa twitching motility: type IV pili in action Annu. Rev. Microbiol 66 493–520 [DOI] [PubMed] [Google Scholar]
- [68].Snyder RA, Ellison CK, Severin GB, Whitfield GB, Waters CM and Brun YV 2020. Surface sensing stimulates cellular differentiation in Caulobacter crescentus Proc. Natl Acad. Sci. USA 117 17984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [69].Luo Y, Zhao K, Baker AE, Kuchma SL, Coggan KA, Wolfgang MC, Wong GCL and O’Toole GA 2015. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors mBio 6 e02456–14 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [70].Siryaporn A, Kuchma SL, O’Toole GA and Gitai Z 2014. Surface attachment induces Pseudomonas aeruginosa virulence Proc. Natl Acad. Sci. USA 111 16860–5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [71].Medico LD, Cerletti D, Schächle P, Christen M and Christen B 2020. The type IV pilin PilA couples surface attachment and cell-cycle initiation in Caulobacter crescentus Proc. Natl Acad. Sci. USA 117 9546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [72].Armbruster CR. et al. Heterogeneity in surface sensing suggests a division of labor in Pseudomonas aeruginosa populations. eLife. 2019;8:e45084. doi: 10.7554/eLife.45084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [73].Ellison CK, Dalia TN, Vidal Ceballos A, Wang JC-Y, Biais N, Brun YV and Dalia AB 2018. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae Nat. Microbiol 3 773–80 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [74].Ellison CK, Dalia TN, Dalia AB and Brun YV 2019. Real-time microscopy and physical perturbation of bacterial pili using maleimide-conjugated molecules Nat. Protocols 14 1803–19 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [75].Cairns LS, Marlow VL, Bissett E, Ostrowski A and Stanley-Wall NR 2013. A mechanical signal transmitted by the flagellum controls signalling in Bacillus subtilis Mol. Microbiol 90 6–21 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [76].Laventie B-J et al. 2019. A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa Cell Host Microbe 25 140–52 [DOI] [PubMed] [Google Scholar]
- [77].Utada AS, Bennett RR, Fong JCN, Gibiansky ML, Yildiz FH, Golestanian R and Wong GCL 2014. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment Nat. Commun 5 4913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [78].Gelimson A, Zhao K, Lee CK, Kranz WT, Wong GCL and Golestanian R 2016. Multicellular self-organization of P. aeruginosa due to interactions with secreted trails Phys. Rev. Lett 117 178102. [DOI] [PubMed] [Google Scholar]
- [79].Gibiansky ML. et al. Bacteria use type IV pili to walk upright and detach from surfaces: fig. 1. Science. 2010;330:197. doi: 10.1126/science.1194238. [DOI] [PubMed] [Google Scholar]
- [80].Teschler JK, Zamorano-Sánchez D, Utada AS, Warner CJA, Wong GCL, Linington RG and Yildiz FH 2015. Living in the matrix: assembly and control of Vibrio cholerae biofilms Nat. Rev. Microbiol 13 255–68 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [81].Conner JG, Zamorano-Sánchez D, Park JH, Sondermann H and Yildiz FH 2017. The ins and outs of cyclic di-GMP signaling in Vibrio cholerae Curr. Opin. Microbiol 36 20–9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [82].Jones CJ, Utada A, Davis KR, Thongsomboon W, Zamorano Sanchez D, Banakar V, Cegelski L, Wong GCL and Yildiz FH 2015. c-di-GMP regulates motile to sessile transition by modulating MshA pili biogenesis and near-surface motility behavior in Vibrio cholerae PLoS Pathog 11 1–27 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [83].Kitts G et al. 2019. A conserved regulatory circuit controls large adhesins in Vibrio cholerae mBio 10 1–22 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [84].Floyd KA. et al. c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae. Nat. Commun. 2020;11:1549. doi: 10.1038/s41467-020-15331-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [85].Zamorano-Sánchez D, Xian W, Lee CK, Salinas M, Thongsomboon W, Cegelski L, Wong GCL and Yildiz FH 2019. Functional specialization in Vibrio cholerae diguanylate cyclases: distinct modes of motility suppression and c-di-GMP production mBio 10 e00670–19 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [86].Zhou H, Zheng C, Su J, Chen B, Fu Y, Xie Y, Tang Q, Chou SH and He J 2016. Characterization of a natural triple-tandem c-di-GMP riboswitch and application of the riboswitch-based dual-fluorescence reporter Sci. Rep 6 20871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [87].Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR and Miller SI 2010. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division Science 328 1295–7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [88].Caro F, Place NM and Mekalanos JJ 2019. Analysis of lipoprotein transport depletion in Vibrio cholerae using CRISPRi Proc. Natl Acad. Sci. USA 116 17013–22 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [89].Hengge R. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 2009;7:263. doi: 10.1038/nrmicro2109. [DOI] [PubMed] [Google Scholar]
- [90].Ryu M-H and Gomelsky M 2014. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications ACS Synth. Biol 3 802–10 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [91].Barends TRM et al. 2009. Structure and mechanism of a bacterial light-regulated cyclic nucleotide phosphodiesterase Nature 459 1015–8 [DOI] [PubMed] [Google Scholar]
- [92].Cao Z, Livoti E, Losi A and Gärtner W 2010. A blue light-inducible phosphodiesterase activity in the cyanobacterium Synechococcus elongatus Photochem. Photobiol 86 606–11 [DOI] [PubMed] [Google Scholar]
- [93].Enomoto G, Ni-Ni-Win W, Narikawa R and Ikeuchi M 2015. Three cyanobacteriochromes work together to form a light color-sensitive input system for c-di-GMP signaling of cell aggregation Proc. Natl Acad. Sci. USA 112 8082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [94].Ryu M-H, Fomicheva A, Moskvin OV and Gomelsky M 2017. Optogenetic module for dichromatic control of c-di-GMP signaling J. Bacteriol 199 e00014–17 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [95].Neal L, Ryu M-H, Gomelsky M and Alexandre G 2017. Optogenetic manipulation of cyclic di-GMP (c-di-GMP) levels reveals the role of c-di-GMP in regulating aerotaxis receptor activity in Azospirillum brasilense J. Bacteriol 199 e00020–17 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [96].Pu L, Yang S, Xia A and Jin F 2018. Optogenetics manipulation enables prevention of biofilm formation of engineered Pseudomonas aeruginosaon surfaces ACS Synth. Biol 7 200–8 [DOI] [PubMed] [Google Scholar]
- [97].Huang Y, Xia A, Yang G and Jin F 2018. Bioprinting living biofilms through optogenetic manipulation ACS Synth. Biol 7 1195–200 [DOI] [PubMed] [Google Scholar]
- [98].Shao J. et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med. 2017;9:eaal2298. doi: 10.1126/scitranslmed.aal2298. [DOI] [PubMed] [Google Scholar]
- [99].Whiteley M, Diggle SP and Greenberg EP 2017. Progress in and promise of bacterial quorum sensing research Nature 551 313–20 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [100].Dickey SW, Cheung GYC and Otto M 2017. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance Nat. Rev. Drug Discovery 16 457–71 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [101].D’Angelo F et al. 2018. Identification of FDA-approved drugs as antivirulence agents targeting the pqs quorum-sensing system of Pseudomonas aeruginosa Antimicrob. Agents Chemother 62 e01296–18 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [102].Mashburn LM and Whiteley M 2005. Membrane vesicles traffic signals and facilitate group activities in a prokaryote Nature 437 422–5 [DOI] [PubMed] [Google Scholar]
- [103].Brameyer S et al. 2018. Outer membrane vesicles facilitate trafficking of the hydrophobic signaling molecule CAI-1 between Vibrio harveyi cells J. Bacteriol 200 e00740–17 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [104].Toyofuku M, Morinaga K, Hashimoto Y, Uhl J, Shimamura H, Inaba H, Schmitt-Kopplin P, Eberl L and Nomura N 2017. Membrane vesicle-mediated bacterial communication ISME J 11 1504–9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [105].Morinaga K, Yamamoto T, Nomura N and Toyofuku M 2018. Paracoccus denitrificans can utilize various long-chain N-acyl homoserine lactones and sequester them in membrane vesicles Environ. Microbiol. Rep 10 651–4 [DOI] [PubMed] [Google Scholar]
- [106].Toyofuku M, Roschitzki B, Riedel K and Eberl L 2012. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix J. Proteome Res 11 4906–15 [DOI] [PubMed] [Google Scholar]
- [107].Schooling SR and Beveridge TJ 2006. Membrane vesicles: an overlooked component of the matrices of biofilms J. Bacteriol 188 5945–57 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [108].Turnbull L. et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat. Commun. 2016;7:11220. doi: 10.1038/ncomms11220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [109].Toyofuku M, Nomura N and Eberl L 2019. Types and origins of bacterial membrane vesicles Nat. Rev. Microbiol 17 13–24 [DOI] [PubMed] [Google Scholar]
- [110].Chong GW, Karbelkar AA and El-naggar MY 2018. Nature’s conductors: what can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion? Curr. Opin. Chem. Biol 47 7–17 [DOI] [PubMed] [Google Scholar]
- [111].Zacharoff LA and El-Naggar MY 2017. Redox conduction in biofilms: from respiration to living electronics Curr. Opin. Electrochem 4 182 [Google Scholar]
- [112].Wang F et al. 2019. Structure of microbial nanowires reveals stacked hemes that transport electrons over micrometers Cell 177 361–9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [113].Yee MO, Snoeyenbos-West OL, Thamdrup B and Ottosen LDM 2019. Extracellular electron uptake by two methanosarcina species Front. Energy Res 7 29 [Google Scholar]
- [114].Røder HL, Olsen NMC, Whiteley M and Burmølle M 2020. Unraveling interspecies interactions across heterogeneities in complex biofilm communities Environ. Microbiol 22 5. [DOI] [PubMed] [Google Scholar]
- [115].Light SH, Su L, Rivera-Lugo R, Cornejo JA, Louie A, Iavarone AT, Ajo-Franklin CM and Portnoy DA 2018. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria Nature 562 140–4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [116].Yates MD. et al. Toward understanding long-distance extracellular electron transport in an electroautotrophic microbial community. Energy Environ. Sci. 2016;9:3544. [Google Scholar]
- [117].Yuan S. et al. A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe. Sci. Rep. 2013;3:1315. doi: 10.1038/srep01315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [118].Hong G, Yang X, Zhou T and Lieber CM 2018. Mesh electronics: a new paradigm for tissue-like brain probes Curr. Opin. Neurobiol 50 33–41 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [119].Lee DD, Prindle A, Liu J and Süel GM 2017. SnapShot: electrochemical communication in biofilms Cell 170 214. [DOI] [PubMed] [Google Scholar]
- [120].Malvankar NS et al. 2011. Tunable metallic-like conductivity in microbial nanowire networks Nat. Nanotech 6 573–9 [DOI] [PubMed] [Google Scholar]
- [121].Qian F and Li Y 2011. A natural source of nanowires Nat. Nanotech 6 538–9 [DOI] [PubMed] [Google Scholar]
- [122].Yalcin SE et al. 2020. Electric field stimulates production of highly conductive microbial OmcZ nanowires Nat. Chem. Biol 16 1136–42 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [123].Holmes DE et al. 2006. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens Environ. Microbiol 8 1805–15 [DOI] [PubMed] [Google Scholar]
- [124].Nevin KP. et al. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One. 2009;4:e5628. doi: 10.1371/journal.pone.0005628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [125].Leang C, Malvankar NS, Franks AE, Nevin KP and Lovley DR 2013. Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production Energy Environ. Sci 6 1901–8 [Google Scholar]
- [126].Chadwick GL, Jiménez Otero F, Gralnick JA, Bond DR and Orphan VJ 2019. NanoSIMS imaging reveals metabolic stratification within current-producing biofilms Proc. Natl Acad. Sci. USA 116 20716–24 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [127].Yalcin SE and Malvankar NS 2020. The blind men and the filament: understanding structures and functions of microbial nanowires Curr. Opin. Chem. Biol 59 193–201 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [128].Shipps C. et al. Intrinsic electronic conductivity of individual atomically resolved amyloid crystals reveals micrometer-long hole hopping via tyrosines. 118. Proc. Natl Acad. Sci. USA. 2020:e2014139118. doi: 10.1073/pnas.2014139118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [129].Belianinov A, Ievlev AV, Lorenz M, Borodinov N, Doughty B, Kalinin SV, Fernández FM and Ovchinnikova OS 2018. Correlated materials characterization via multimodal chemical and functional imaging ACS Nano 12 11798–818 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [130].Scheer E 2014. Nat. Nanotechnol 9 1012–217 [DOI] [PubMed] [Google Scholar]
- [131].Malvankar NS, Yalcin SE, Tuominen MT and Lovley DR 2014. Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy Nat. Nanotech 9 1012–7 [DOI] [PubMed] [Google Scholar]
- [132].Zdrojek M, Mélin T, Diesinger H, Stíevenard D, Gebicki W and Adamowicz L 2006. Phys. Rev. Lett 96 039703. [DOI] [PubMed] [Google Scholar]
- [133].Yalcin SE, Legg BA, Yesşilbaş M, Malvankar NS and Boily J-F 2020. Direct observation of anisotropic growth of water films on minerals driven by defects and surface tension Sci. Adv 6 eaaz9708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [134].Stewart PS and Franklin MJ 2008. Physiological heterogeneity in biofilms Nat. Rev. Microbiol 6 199–210 [DOI] [PubMed] [Google Scholar]
- [135].Nguyen D et al. 2011. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria Science 334 982–6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [136].Lopatkin AJ, Stokes JM, Zheng EJ, Yang JH, Takahashi MK, You L and Collins JJ 2019. Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate Nat. Microbiol 4 2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [137].Balaban NQ. et al. Publisher correction: definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 2019;17:460. doi: 10.1038/s41579-019-0207-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [138].Levin-Reisman I, Brauner A, Ronin I and Balaban NQ 2019. Epistasis between antibiotic tolerance, persistence, and resistance mutations Proc. Natl Acad. Sci. USA 116 14734–9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [139].Chadwick GL, Jiménez Otero F, Gralnick JA, Bond DR and Orphan VJ 2019. NanoSIMS imaging reveals metabolic stratification within current-producing biofilms Proc. Natl Acad. Sci. USA 116 20716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [140].Liu J, Prindle A, Humphries J, Gabalda-Sagarra M, Asally M, Lee D-y D, Ly S, Garcia-Ojalvo J and Süel GM 2015. Metabolic co-dependence gives rise to collective oscillations within biofilms Nature 523 550–4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [141].Kholodenko BN 2006. Cell-signalling dynamics in time and space Nat. Rev. Mol. Cell Biol 7 165–76 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [142].DePas WH, Starwalt-Lee R, Van Sambeek L, Ravindra Kumar S, Gradinaru V and Newman DK 2016. Exposing the three-dimensional biogeography and metabolic states of pathogens in cystic fibrosis sputum via hydrogel embedding, clearing, and rRNA labeling mBio 7 e00796–16 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [143].McLean JS, Ona ON and Majors PD 2008. Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy ISME J 2 121–31 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [144].Schiessl KT, Hu FH, Jo J, Nazia SZ, Wang B, Price-Whelan A, Min W and Dietrich LEP 2019. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms Nat. Commun 10 762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [145].Bhattacharjee A, Datta R, Gratton E and Hochbaum AI 2017. Metabolic fingerprinting of bacteria by fluorescence lifetime imaging microscopy Sci. Rep 7 3743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [146].Ghannoum M, Parsek M, Whiteley M and Mukherjee P 2015. Microbial Biofilms (ASM Press; ) [Google Scholar]
- [147].Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE and Borisy GG 2016. Biogeography of a human oral microbiome at the micron scale Proc. Natl Acad. Sci. USA 113 E791–800 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [148].Stewart EJ, Satorius AE, Younger JG and Solomon MJ 2013. Role of environmental and antibiotic stress on Staphylococcus epidermidis biofilm microstructure Langmuir 29 7017–24 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [149].Drescher K, Dunkel J, Nadell CD, van Teeffelen S, Grnja I, Wingreen NS, Stone HA and Bassler BL 2016. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution Proc. Natl Acad. Sci. USA 113 E2066–72 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [150].Yan J, Sharo AG, Stone HA, Wingreen NS and Bassler BL 2016. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging Proc. Natl Acad. Sci. USA 113 E5337–43 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [151].Beroz F, Yan J, Meir Y, Sabass B, Stone HA, Bassler BL and Wingreen NS 2018. Verticalization of bacterial biofilms Nat. Phys 14 954–60 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [152].Keller PJ, Schmidt AD, Wittbrodt J and Stelzer EHK 2018. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy Science 322 1065–9 [DOI] [PubMed] [Google Scholar]
- [153].Kumar A et al. 2014. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging Nat. Protocols 9 2555–73 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [154].Young KD 2006. The selective value of bacterial shape Microbiol. Mol. Biol. Rev 70 660–703 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [155].Bjarnsholt T, Jensen PØ, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M and Høiby N 2009. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients Pediatr. Pulmonol 44 547–58 [DOI] [PubMed] [Google Scholar]
- [156].Qin B, Fei C, Bridges AA, Mashruwala AA, Stone HA, Wingreen NS and Bassler BL 2020. Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy Science 369 71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [157].Butler MT, Wang Q and Harshey RM 2010. Cell density and mobility protect swarming bacteria against antibiotics Proc. Natl Acad. Sci. USA 107 3776–81 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [158].Zuo W and Wu Y 2020. Dynamic motility selection drives population segregation in a bacterial swarm Proc. Natl Acad. Sci. USA 117 4693–700 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [159].Shrivastava A, Patel VK, Tang Y, Yost SC, Dewhirst FE and Berg HC 2018. Cargo transport shapes the spatial organization of a microbial community Proc. Natl Acad. Sci. USA 115 8633–8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [160].Xu H, Dauparas J, Das D, Lauga E and Wu Y 2019. Self-organization of swimmers drives long-range fluid transport in bacterial colonies Nat. Commun 10 1792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [161].Chen C, Liu S, Shi X-q, Chaté H and Wu Y 2017. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions Nature 542 210–4 [DOI] [PubMed] [Google Scholar]
- [162].Cates ME and Tailleur J 2015. Motility-induced phase separation Annu. Rev. Condens. Matter Phys 6 219–44 [Google Scholar]
- [163].Liu G. et al. Self-driven phase transitions drive Myxococcus xanthus fruiting body formation. Phys. Rev. Lett. 2019;122:248102. doi: 10.1103/PhysRevLett.122.248102. [DOI] [PubMed] [Google Scholar]
- [164].Schwarz-Linek J, Valeriani C, Cacciuto A, Cates ME, Marenduzzo D, Morozov AN and Poon WCK 2012. Phase separation and rotor self-assembly in active particle suspensions Proc. Natl Acad. Sci 109 4052–7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [165].Cotter CR, Schüttler H-B, Igoshin OA and Shimkets LJ 2017. Data-driven modeling reveals cell behaviors controlling self-organization during Myxococcus xanthus development Proc. Natl Acad. Sci. USA 114 E4592–601 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [166].Möbius W and Laan L 2015. Physical and mathematical modeling in experimental papers Cell 163 1577–83 [DOI] [PubMed] [Google Scholar]
- [167].Nadell CD, Drescher K and Foster KR 2016. Spatial structure, cooperation and competition in biofilms Nat. Rev. Microbiol 14 589–600 [DOI] [PubMed] [Google Scholar]
- [168].Stewart PS and Franklin MJ 2008. Physiological heterogeneity in biofilms Nat. Rev. Microbiol 6 199–210 [DOI] [PubMed] [Google Scholar]
- [169].Hartmann R, Singh PK, Pearce P, Mok R, Song B, Díaz-Pascual F, Dunkel J and Drescher K 2019. Emergence of three-dimensional order and structure in growing biofilms Nat. Phys 15 251–6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [170].Pearce P. et al. Flow-induced symmetry breaking in growing bacterial biofilms. Phys. Rev. Lett. 2019;123:258101. doi: 10.1103/PhysRevLett.123.258101. [DOI] [PubMed] [Google Scholar]
- [171].Díaz-Pascual F et al. 2019. Breakdown of Vibrio cholerae biofilm architecture induced by antibiotics disrupts community barrier function Nat. Microbiol 4 2136–45 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [172].Hartmann R et al. 2021. Quantitative image analysis of microbial communities with BiofilmQ Nat. Microbiol 6 151–6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [173].Zhao H, Storey BD, Braatz RD and Bazant MZ 2020. Learning the physics of pattern formation from images Phys. Rev. Lett 124 060201. [DOI] [PubMed] [Google Scholar]
- [174].Brunton SL, Proctor JL, Kutz JN and Bialek W 2016. Discovering governing equations from data by sparse identification of nonlinear dynamical systems Proc. Natl Acad. Sci. USA 113 3932–7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- [175].Skinner DJ, Song B, Jeckel H, Jelly E, Drescher K and Dunkel J 2021. Topological metric detects hidden order in disordered media Phys. Rev. Lett 126 048101. [DOI] [PubMed] [Google Scholar]
Figure 1.
Linking of flagella on multiple singly-flagellated (monotrichous) cells with antibodies fails to stall the motors as the cell bodies are free to rotate.