Abstract
The transcription factor cyclic-AMP response element-binding protein 1 (CREB1) responds to cAMP level and controls the expression of target genes, which regulates nutrition partitioning. The promoters of CREB1-targeted genes responsive to cAMP have been extensively investigated and characterized with the presence of both cAMP response element and TATA box. Compelling evidence demonstrates that CREB1 also plays an essential role in promoting tumor development. However, only very few genes required for cell survival, proliferation and migration are known to be constitutively regulated by CREB1 in tumors. Their promoters mostly do not harbor any cAMP response element. Thus, it is very likely that CREB1 regulates the expressions of distinct sets of target genes in normal tissues and tumors. The whole gene network constitutively regulated by CREB1 in tumors has remained unrevealed. Here, we employ a systematical and integrative approach to decipher this gene network in the context of both tissue cultured cancer cells and patient samples. We combine transcriptomic, Rank-Rank Hypergeometric Overlap, and Chipseq analysis, to define and characterize CREB1-regulated genes in a multidimensional fashion. A strong cancer relevance of those top-ranked targets, which meet the most stringent criteria, is eventually verified by overall survival analysis of cancer patients. These findings strongly suggest the importance of genes constitutively regulated by CREB1 for their implicative involvement in promoting tumorigenesis.
Supplementary Information
The online version contains supplementary material available at 10.1186/s12935-021-02224-z.
Keywords: CREB1, Cancer, Transcription factor, RRHO, Kaplan–Meier analysis
Background
CREB1(cAMP response element-binding protein) belongs to a family of transcription factors whose activities are induced by increased intracellular cAMP [1, 2]. The protein consists of a kinase-inducible domain, two glutamine-rich domains, and a bZIP domain [1]. Upon PKA-mediated reversible phosphorylation at serine 133 [3], CREB1 binds to DNA via a bZIP domain that recognizes cAMP response element (CRE), TGACGTCA, and half CRE, TGACG/CGTCA [4, 5]. The cAMP responsiveness of CREB1 target genes, whose promoters contain CRE and half CRE, is also dependent on the presence of TATA box in their promoters [6]. Although more than 4000 CREB1 affinity bonded promoters have been identified by Chip-seq, only 339 genes’ promoters contain both CRE and TATA box, and less than 100 genes are validated as CREB1 target genes in a cAMP-responsive manner [7]. This suggests that many other putative CREB1 target genes might be regulated in a cAMP-independent or even CRE-independent manner. Moreover, given that many transcription factors are downstream targets of CREB1 [7], the gene network regulated by CREB1 tends to be even more complex.
In accordance with this complexity, CREB1 has pleiotropic functions and is implicated in many physiological and pathological processes, e.g., muscle hypertrophy [8], metabolic adaptions to exercise [8], mitochondrial biogenesis [9], beta cell fitness [10]. Importantly, CREB1 also plays a role in cancers, and its expression level is associated with the overall survival and therapy response of tumor patients. Increased expression of CREB1 has been reported in acute lymphoblastic leukemia [11], acute myeloid leukemia [12], melanoma [13], hepatocellular [14], renal cell [15], ovarian [16], prostate [17], lung [18], and breast carcinoma [19], brain tumors [20], etc. compared to their counterpart healthy tissues [2]. CREB1-regulated target genes promote cell proliferation, migration, survival, and chemotherapy resistance in cancer cells. Consistently, the most frequent consequences of suppressing CREB1 by either knockdown or inhibitors are cell death, metastatic defect, failure to form colony and filopodia, and inhibition of tumor growth [15, 20–23]. Contrary to the widely acknowledged essential role of CREB1 in cancers, a comprehensive and in-depth investigation of the gene network mediated by CREB1 is less explored. Only a limited number of CREB1-targeted genes, including CCNA1, CCND1, BCL2, MMP2, MMP9, GSK3A [12, 20, 21, 24–26], were shown to contribute to tumor development. Many of them are tumor type-specific. For example, CCNA1 is a target of CREB1 and is upregulated in acute myeloid leukemia while BCL2 is not [12]. However, BCL2 is a validated CREB1 target and promotes cell survival in glioma cells [20]. Such kind of discrepancies is important for understanding distinct functions of CREB1 in different types of cancer and providing guidance for tailored anti-tumor strategies. In addition, as the classic function of CREB1 is to regulate nutrient partitioning in metabolic tissues [8], most previous studies about CREB1 targets mainly focus on those genes that are cAMP-responsive [6, 7]. Whereas in cancer cells, there might be more genes constitutively regulated by CREB1 regardless of cAMP activation. CCNA1 is a typical example whose promoter has no CRE. But its expression is significantly increased by overexpression of CREB1 in leukemia cells [12]. Thus, the gene network mediated by CREB1 in tumors could be rather distinct from normal tissues.
To investigate this complex gene network and identify essential CREB1 target genes with strong cancer relevance in a systematic manner, we designed and performed the present study. Traditional strategies to uncover the gene network mediated by a transcription factor mainly rely on transcriptomic and Chipseq analyses. The cancer relevance of each target gene needs to be accessed by examining various cancerous hallmarks after modulating the expression level of the target gene in preclinical models. Due to a large number of target genes and a variety of cancer types, this is a long-lasting process, ranging from 3 to 10 years. We develop a novel strategy with a more straightforward and shortened workflow. Firstly, transcriptomic analysis of HeLa (cervical cancer) cells with CREB1 deficiency or rescued CREB1 expression was carried out to identify the CREB1-mediated gene network. The cancer relevance of these genes was determined by a Rank-Rank Hypergeometric Overlap (RRHO) analysis with patients’ transcriptomic data from TCGA. We further categorized CREB1-regulated genes into different groups according to Chiqseq, RNAseq, and RRHO analysis and confirmed the significances of several novel CREB1 target genes, whose expressions matter for the overall survival of cancer patients. Consistent with our initial hypothesis, most of the top-ranked CREB1 target genes have no CRE. This strongly underscores the novelty, necessity, and importance of our present study.
Results
Generation of CREB1 knockout (KO) cells and the corresponding CREB1 rescue cells
To identify a transcription factor-regulated gene network, comparing expression patterns between cells with and without the transcription factor is an effective and routine methodology. This becomes particularly handy because of the CRISPR/Cas9 technology [27]. However, due to the essential function of CREB1 in normal and some cancer cells, CREB1 knockout via CRISPR/Cas9 has not been quite successfully established [2]. To circumvent this dilemma, we chose an experimentally robust cervical cancer cell line (HeLa), which has a comparable expression of CREB1 to many CREB1 sensitive cancer cell lines, to generate the CREB1 KO cells. We adopted a more efficient and predictive CRISPR knockout strategy [28], and two sgRNAs were designed to target CREB1 intron 1 and the proximal promoter (including the TATA box) (Fig. 1A). After screening 14 clones, we obtained three parallel HeLa CREB1 KO clones with deletion of all alleles (Fig. 1A). To rescue CREB1 expression in the KO cells, we constructed a lentiviral expression plasmid of CREB1 (Fig. 1B). Following a standard infection method, we obtained corresponding CREB1 rescue cells for all three KO clones (Fig. 1B). Western blot further confirmed the absence and presence of CREB1 protein in the KO and rescue cell lines respectively (Fig. 1C).
Gene expression analysis of wild type (WT) cells, CREB1 KO cells, and the corresponding CREB1 rescue cells
To identify the CREB1-mediated gene network in HeLa cells, we performed RNA sequencing (RNAseq) and transcriptomic analysis of the above-obtained cells and control WT cells. Hierarchical clustering heatmap showed high similarities among the replicates of the same clone (Additional file 1: Figure S1A). Moreover, principal components analysis clearly separated WT cells from KO cells, and rescue cells from KO cells (Additional file 1: Figure S1B), indicating that the transcriptomic alteration is genotype-dependent.
Next, we analyzed differentially expressed genes (DEG) among different genotypes [adjusted p value ≤ 0.05 and Fold Change(FC) ≥ 2]. WT cells were compared with each KO clone and each KO clone was compared with its corresponding rescue cells. Global visualization of fold changes of genes from each paired comparison is shown in volcano plots (Fig. 2A). Those DEGs are further displayed with heatmaps, which indicate that there are more genes downregulated than upregulated along with the loss of CREB1 (Fig. 2B). The same trend is also observed when we summarize the list of DEGs shared by all paired comparisons and with opposite expression profiles between CREB1 KO clones vs WT cells (KO vs WT) and CREB1 rescue cells vs CREB1 KO clones (Rescue vs KO) (Fig. 2C). Two exemplified genes, BDKRB2 and NCALD, are labeled in the volcano plots as well (Fig. 2A). Consistently, between KO clones and WT cells, 225 genes are commonly downregulated while 107 genes are commonly upregulated (Additional file 1: Figure S1C). Within comparisons between CREB1 rescue cell lines and their corresponding KO clones, 443 genes are commonly upregulated while 108 genes are commonly downregulated (Additional file 1: Figure S1D). Collectively, our results suggest that more genes are positively regulated by CREB1.
To gain more insights into the enriched gene sets of the CREB1-regulated gene network, we summarized a CREB1 commonly regulated gene list and performed Gene Ontology (GO) analysis. This list contains genes showing similar differential expression patterns in at least two pairs of rescue clone vs its corresponding KO clone (Additional file 3: Table S2). The top ten biological processes were identified in upregulated genes and downregulated genes respectively (Fig. 2D). It shows that the CREB1-mediated gene network mainly promotes the regulation of transcription and signal transduction. Furthermore, we applied KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis, which provided us a detailed dissection of the CREB1-regulated signaling pathways. From the top upregulated ones, cAMP signaling pathway was significantly enriched even though none of our deep-sequenced cell lines had been treated with cAMP agonist (Fig. 2E). This might be due to the upregulated calcium signaling pathway (Fig. 2E), as subsequent occurrences of calcium activation and cAMP activation have been observed in cancer cells treated by cationic amphiphilic drugs [29]. Another interesting observation is that the PI3K-Akt signaling pathway was enriched in both upregulated and downregulated genes (Fig. 2E). Out of 47 DEGs from the PI3K-Akt signaling pathway, 12 cancer-relevant genes are upregulated while 6 are downregulated. Thus, it is more likely that CREB1 promotes the PI3K-Akt pathway in cancer cells. This inference is also supported by the fact that the aberrant activation of the PI3K-Akt pathway and overexpression of CREB1 occurs simultaneously to promote the survival and proliferation in many human cancer cells [2, 30].
Cancer relevance determined by RRHO analysis
To determine the cancer relevance of CREB1 commonly regulated genes, we sought to compare the gene expression change caused by the presence of CREB1 and the gene expression change between tumor and control (ctrl) tissue. This analysis requires paired normal and tumor tissue data from the same patient. We thus downloaded TCGA RNA-seq data for patients of 24 types of cancer, for which such paired data was available. For each type of cancer, we ranked genes according to the tumor vs. ctrl. tissue RNA-seq log2FC (Fig. 3E, Additional file 4: Table S3, Additional file 6: Table S5). Employing a threshold-free algorithm, Rank-rank Hypergeometric Overlap (RRHO) [31, 32], we made a genome-wide expression profile comparison among 3 pairs of Rescue vs KO or between Rescue vs KO and tumor vs ctrl. tissue. As the 3 pairs of Rescue vs KO are experimental repeats, it is reasonable that their mutual overlap patterns resemble good overlap with the most significant (red) area across the bottom left to top right diagonal of the map (Fig. 3A–D). In contrast, in the case of cholangiocarcinoma (CHOL), the overlap pattern between the two expression profiles shows that the most significant area is the bottom left. This demonstrates that upregulated gene lists in the two ranks share more in common (Fig. 3F–H), which implies that CREB1 upregulated genes tend to be overexpressed in CHOL. All the overlapped genes shared by at least two paired comparisons between Rescue vs KO and tumor vs ctrl. tissue are included in the RRHO concordant gene list. A similar analysis was applied to other types of cancer (Additional file 1: Figure S2). Eventually, we summarized the number of DEG (thresholds of both log2FC ≥ 1 and 1.5) from the RRHO concordant gene list of 24 types of cancer (Fig. 3I, Additional file 5: Table S4). Interestingly, unlike most types of cancer, in which CREB1 commonly regulated genes are mainly upregulated, stomach adenocarcinoma (STAD) and sarcoma (SARC) upregulate and downregulate CREB1 commonly regulated genes on a comparable scale (Fig. 3I). This suggests that there are both diversity and commonality in the CREB1-regulated gene network across different cancer types.
Defining and categorizing CREB1-regulated genes by integrating transcriptomic, RRHO, and Chipseq analysis
Since a group of CREB1 target genes are transcription factors [7], many differentially expressed genes in CREB1 KO cells compared to WT cells or rescue cells might be indirectly regulated by CREB1. To further define and categorize CREB1-regulated genes, we sought to integrate transcriptomic, RRHO, and Chipseq analysis and made an intersection analysis of 4 lists of genes: (1) CREB1 commonly upregulated/downregulated genes (Rescue vs KO), (2) RRHO concordantly upregulated/downregulated genes, (3) Commonly opposite regulated genes (genes with opposite differential expression patterns between KO vs WT and Rescue vs KO in at least two paired comparisons), (4) CREB1 binding genes identified by Chipseq (Fig. 4A). The list of CREB1 binding genes was obtained from the previous database [7]. It provides us not only an important filter to distinguish CREB1 directly and indirectly regulated genes, but also the information about binding sequences. To identify CREB1 target genes with potential cancer relevance, we combined genes exclusively intersected by all 4 lists and by lists 1, 2, 4 as the top-ranked genes (Fig. 4B).
Our analysis obtained 29 top-ranked upregulated genes, which are further displayed with no. of tumor occurrence and their average expression fold change of CREB1 Rescue vs KO (Fig. 4B, D). Moreover, the characteristic of promoters of these top-ranked upregulated genes was summarized in Fig. 4C. Importantly, only three genes (VGF, HOXA1, NCALD) harbor a CRE-TATA motif in their promoters. This is consistent with our original hypothesis that CREB1 might constitutively regulate a set of genes independent of cAMP response. These top-ranked upregulated genes are mainly involved in signal transduction, regulation of transcription, RNA phosphodiester bond hydrolysis, viral carcinogenesis, and positive regulation of ubiquitination (Fig. 4D). To better describe these cancer-relevant CREB1 targeted genes, we further included intersection, fold change (CREB1 rescue cells vs corresponding CREB1 KO clone), and NO. of tumor occurrence into the ranking and generated a new rank list showed in Additional file 7: Table S6, in which BRCA1 is the only confirmed CREB1 target gene [33] and there are 12 genes ranked higher than the BRCA1. Meanwhile, we chose the top upregulated gene, BDKRB2, to check its protein level accordingly. Compared to WT cells, BDKRB2 protein was greatly reduced in CREB1 KO cells, and this phenotype was reversed in CREB1 Rescue cells, further confirming BDKRB2 as a novel CREB1 target gene (Additional file 1: Figure S5).
In parallel, we identified 20 top-ranked downregulated genes in total (Additional file 1: Figure S3A). Their average expression fold change of CREB1 Rescue vs KO, NO. of tumor occurrence, and promoters’ characteristics are displayed (Additional file 1: Figure S3B, C). Akin to top-ranked upregulated genes, the majority of top-ranked downregulated genes are independent of cAMP response. Moreover, they are mainly involved in cGMP-PKG signaling pathway, metabolic pathways, and positive regulation of epithelial cell proliferation. Interestingly, most of these genes, except SEMA6A which is also downregulated in kidney renal papillary cell carcinoma (KIRP), are exclusively downregulated in SARC and STAD (Additional file 1: Figure S3E).
Altogether, we conclude that CREB1 regulates expressions of targets positively in most cancer types except SARC and STAD, in which CREB1 appears to upregulate and downregulate distinct sets of genes simultaneously.
Further validation of the significant cancer relevance of CREB1 target genes by Kaplan–Meier analysis
Lastly, to evaluate the influence of these top-ranked CREB1 target genes over cancer development, we performed Kaplan–Meier analysis of cancer patient's overall survival. For each gene, patients were divided into a high expression group and a low expression group according to their RNAseq data from TCGA database. In this manner, overall survival curves of the two groups were plotted accordingly. We selected BDKRB2, CLGN, VGF, STC2, EGLN3, HOXA4 as representative CREB1-upregulated targets and SERPINI1, SLC22A4 as representative CREB1-downregulated targets. Our results showed that CREB1-upregulated targets are associated with poor prognosis while expressions of CREB1-downregulated targets are associated with improved prognosis (Fig. 5 and Additional file 1: Figure S4). Hazard ratios derived from Kaplan–Meier curves would further estimate the risk of patients’ death over the entire trial period. Consistently, hazard ratios of CREB1-upregulated targets are significantly higher than 1 while hazard ratios of CREB1-downregulated targets are significantly lower than 1. Interestingly, among the aforementioned genes, only VGF’s promoter has both TATA box and CRE, implying all others are cAMP irresponsive.
Furthermore, we reviewed the literature about top-ranked CREB1 targets. Many of their aberrant expressions are associated with angiogenesis, cell survival, resistance to cancer therapy, migration, etc. For example, as top-ranked CREB1-upregulated targets, STC2 and ABCG2 promote proliferation and metastasis of pancreatic cancer cells and hepatocellular carcinoma respectively [34, 35], while as top-ranked CREB1-downregulated targets, SERPINI1 and SEMA6A are lowly expressed and fail to exert tumor-suppressive effects in gastric and lung cancer cells respectively [36, 37]. Moreover, some of these CREB1 targets are regarded as prognostic indicators and biomarkers for distinct types of cancer. For example, BDKRB2, the NO.1 CREB1-upregulated target, is the receptor of Bradykinin that is a diagnostic marker for cervical cancer [38]. Overexpression of SIX1, another top-ranked CREB1-upregulated target, is an independent poor prognostic marker for stage I–III colorectal cancer [39]. In this regard, we summarize the information about all top-ranked CREB1 targets that are reported as cancer biomarkers (Table 1). To our knowledge, we are the first to establish the transcriptomic correlation between CREB1 and most of these essential cancer-relevant genes.
Table 1.
Gene | Up-/down-regulated | Oncogene (+)/tumor suppressor gene (−) | Biomarker/potential biomarker |
---|---|---|---|
BDKRB2 | ↑ | + | Cervical cancer [38] |
HLA-F | ↑ | + | Breast cancer [40]; glioma [41] |
VGF | ↑ | + | Pulmonary neuroendocrine tumors [42]; urothelial cell carcinoma [43] |
STC2 | ↑ | + | Esophageal squamous cell carcinoma [44]; renal cell carcinoma [45]; colorectal cancer [46] |
NCALD | ↑ | + | Cytogenetic normal acute myeloid leukemia [47]; ovarian cancer [48] |
BRCA1 | ↑ | − | Sporadic epithelial ovarian carcinoma [49]; breast cancer[50] |
HOXA4 | ↑ | − | Lung cancer [51] |
SIX1 | ↑ | + | Stage I–III colorectal cancer [39]; cervical cancer [52]; KRAS/LKB1-mutant lung cancer [53] |
BTN3A2 | ↑ | − | Triple-negative breast cancer [54]; pancreatic ductal [55]; adenocarcinoma [56] |
ABCG2 | ↑ | + | Cancer stem cell [57] |
UBE2D1 | ↑ | + | Lung adenocarcinoma [58] |
TAF1A | ↑ | + | Cervical cancer [59] |
EPHA7 | ↓ | − | Immune checkpoint inhibitors in multiple cancers [60] |
USP11 | ↓ | + | Colorectal cancer [60, 61]; breast cancer [62] |
RBM3 | ↓ | − | Head and neck squamous cell carcinoma [63] |
Taken together, the above data strongly suggests that CREB1 constitutively regulates a set of its target genes to promote tumorigenesis.
Conclusions
CREB1 is a multi-functional transcription factor whose activity is tightly regulated by the level of the intracellular cAMP. Due to its physiological importance, the CREB1-regulated gene network in response to increased cAMP has been extensively studied, particularly in normal neuronal tissues and metabolic tissues [64–67]. The genome-wide analysis revealed that the cAMP responsiveness of CREB1 target genes requires a simultaneous presence of TATA box and CRE in promoters [6]. However, among more than 4000 Chipseq-identified CREB1 target genes, only 339 genes meet this criterion, and even less than 100 genes are validated. This may be partially due to the conditional recruitment of the coactivator proteins to those promoters in different physiological contexts. For example, in 293 T cells, induction of CREB1 target genes by cAMP requires the recruitment of both CREB1 and CBP to the promoters [7]. In another instance, CREB1 associates with CRTC2 to activate autophagy genes in fasting mice while it associates with FXR to suppress autophagy genes in fed mice [66]. Besides, there exists another possibility, that is CREB1 can constitutively regulate a set of target genes independent of cAMP response. This might be true, particularly in the context of tumors, as only a few CREB1 target genes essential for cancer cell survival, proliferation and metastasis have been identified and most of them are regulated in this manner. Most importantly, compelling evidence demonstrates that CREB1 plays an essential role in promoting tumor development. So a comprehensive and in-depth analysis of the gene network constitutively regulated by CREB1 can be necessary and important for understanding how CREB1 functions in cancer cells and providing a theoretical basis for tailored cancer therapies.
Prompt by this, we firstly generated CREB1 KO cervical cancer cells and corresponding rescue cells. Transcriptomic analysis of these cells without any cAMP agonists enabled us to obtain a CREB1 commonly regulated gene list, which was further processed to gain general knowledge about the signaling pathways controlled by CREB1. Moreover, we extract a CREB1 concordantly regulated gene list by applying RRHO analysis with both our data and RNAseq data of cancer patients from TCGA. This list summarized the genes upregulated/downregulated in both CREB1 rescue cells compared to CREB1 KO cells and patients’ tumors compared to adjacent normal tissues. Importantly, the RRHO analysis patterns also demonstrate that there is a significant rank overlap between some CREB1-upregulated genes and highly expressed genes in most types of tumors. As CREB1 overexpression was found in many tumor types [68], it is very likely that CREB1 is mainly responsible for controlling these CREB1 concordantly regulated genes in cancer cells. To pinpoint CREB1 direct target genes with strong cancer relevance, we brought previous CREB1 Chipseq data into our analysis. After a mutual exclusive intersection analysis of four lists (CREB1 commonly upregulated/downregulated genes, RRHO concordantly upregulated/downregulated genes, commonly opposite regulated genes, and CREB1 Chipseq genes), we got 29 top-ranked CREB1-upregulated targets and 20 top-ranked CREB1-downregulated targets. Because of CREB1’s role as a proto-oncogene, it is presumable that the top-ranked CREB1-upregulated targets are prone to promote tumors while the top-ranked CREB1-downregulated targets are prone to suppress tumors. We affirmed this inference by comparing the overall survival and hazard ratios of cancer patients with high and low expression of selected genes from the top-ranked CREB1 target list, meaning that our methodology is very reliable. Interestingly, most of these genes have no simultaneous presence of TATA box and CRE in their promoters, implying that they are cAMP irresponsive. More importantly, after reviewing the functions of these genes, many of their aberrant expressions are found to be associated with more aggressive characteristics of cancers. This is in agreement with our initial hypothesis, that CREB1 constitutively regulates a set of targets to promote cancer development in a cAMP-independent manner.
Our systematic and integrative approach to decipher the CREB1-mediated gene network in cancer is an effective and powerful tool that can be applied in other transcription factor-related research. This method can substantially shorten the studies with similar purposes which usually take 3–10 years. The major limitation is that our approach relies on resourceful expression databases derived from patients samples. The more stratified expression databases are, the more informative our approach turns out to be. Thus, in terms of cancer research, RNAseq databases with more details about tumor stages, molecular subtypes, and therapeutic outcomes are preferred, especially for a prognosis purpose. Moreover, to verify any transcription factor-regulated biomarkers for diagnosis and prognosis, more solid preclinical and clinical studies are still of necessity. Since our approach can narrow down the scope of candidate genes in a faster way, its application will greatly promote the identification of novel biomarkers for any disease with resourceful expression databases.
Taken together, our current work highlights the importance of the gene network constitutively regulated by CREB1 in cancer cells. Moreover, the whole in-depth bioinformatics analysis provides a valuable and comprehensive reference to any further investigation about CREB1 and its targets. Our methodology can be applied to study other transcription factors and investigate the disease relevance of their target genes.
Materials and methods
Reagents
Restriction enzymes were purchased from NEB (New England Biolabs Inc.). Oligonucleotides and primers were ordered from BGI-Qingdao (synthetic biology platform), China. In-Fusion HD Cloning Kit (#639649) and Premix ExTaq Version 2.0 (#D332C) were purchased from Takara. Dulbecco’s modified Eagle’s medium (DMEM #12430054), Pfx polymerase (#C11708-021) and GlutaMAX (#A12860-01) was purchased from Invitrogen. Fetal bovine serum (FBS #16000044), 1 × phosphate buffered saline (PBS #14190500BT), Opti-MEM (#31985062), Penicillin–Streptomycin (#15140122) and 0.25% Trypsin–EDTA (#25200072) were purchased from Gibco. PEI 40,000 (#24765-1) and PEG-itTM (#LV810A-1) Virus Precipitation Solution were purchased from Polysciences and System Biosciences respectively. Protamine sulfate (#P3369-10G), and proteinase K (#P6556) were purchased from Sigma-Aldrich. Puromycin (#58-58-2) and hygromycin B (#97064-454) was purchased from InvivoGen and VWR respectively. Lipofectamine 3000 transfection agents (# L3000015), NP40 (#FNN0021) Trizol solution (#15596026) and KCl (#AM9640G) were purchased from Thermo Fisher. Cell Lysate Buffer (#P0013), Pierce Bicinchoninic acid (BCA) Protein Assay Kit (#P0011), 1 M Tris–Hcl pH7.6 (#ST776), Primary and Secondary Antibody Dilution Buffer (#P0023A, #P0023D) and SDS-PAGE Protein Staining and Loading Buffer (5X) (#P0280) for Western Blot were purchased from Beyotime. MgCl2 (#20–303), ECL WB Detection Kit (#GERPN2232) and PVDF membranes (# IPVH00010) were purchased from Merck. Tween-20 (#DH358-2) was purchased from Dingguo, China. Non-fat powdered milk (#A600669-0250) and Tris (#0497-500 g) were purchased from BBI Life Science.
Cell culture
HeLa cervix carcinoma (HeLa) cells were gift from Ocean University of China and cultured in DMEM supplemented with 10% FBS, 1% GlutaMAX at 37 °C with 5% CO2 atmosphere and maximum humidity. They were passaged every 1–2 days at 1:4 ratio. This process was done by gently washing cells twice with equal volume as growth medium of 1 × PBS without calcium and magnesium, followed by cell detachment by 0.25% Trypsin–EDTA for 3 min at 37 °C. HeLa cells were used within 6 months after thawing.
Plasmids
Lentivirus packaging plasmids including PSRV-REV, PMD.2G and PMDGp-lg/p-RRE were gifts from Biomedicine department in Aarhus University, Denmark. The pMAX-GFP (VDF-1012) plasmid was supplied by the Amaxa nucleofection kit (#VPI-1003, Lonza) and used as a fluorescence control plasmid during transfection.
Two sgRNAs targeting the upstream and downstream sequences of CREB1 exon 1 (including TATA box area) were designed by the online software tool CRISPOR (http://crispor.tefor.net). Accordingly, two pairs of oligos (SS1: CACCGCACCTCTCCTTGTTAGTAG, AS1: AAACCTACTAACAAGGAGAGGTGC; SS2: AAACCTACTAACAAGGAGAGGTGC, AS2: AAACTATCTGAGAGCACCATTTAC) were annealed and ligated into lentiCRISPRv2 vector (Addgene plasmid #52961) at BamHI site according to the optimized golden gate assembly protocol [69]. The resulting plasmids were named as lenti CREB1SgRNA1 and lenti CREB1SgRNA2.
CREB1 cDNA was cloned into lentiCRISPRv2 via XbaI and BamHI sites, by which the Cas9 cDNA was replaced. Thereafter, hygromycin-resistance gene driven by EF1 promoter from PB-TRE-dCas9-VPR plasmid (Addgene plasmid #63800) was further introduced into the above plasmid using In-Fusion HD Cloning Kit. The resulting plasmid is named as lentiCREB1hygro.
Generation of HeLa CREB1 KO cells
The efficacy of two sgRNAs targeting CREB1 were examined and confirmed by Ccheck system[70]. HeLa cells were co-transfected with lenti CREB1SgRNA1 and lenti CREB1SgRNA2 by Lipofectamine 3000 according to the manufacture’s instruction. Potential knockout clones were selected by culturing the transfected cells in a growth medium supplemented with puromycin (1 μg/mL) for 3 weeks. Single-cell clones were manually picked under a stereomicroscope and cultured in 96-well plates until 70–80% confluence. Thereafter, authentic clones carrying homozygous deletion of CREB1 exon 1 were verified by PCR screening and sanger sequencing (forward primer: GGCAACAGAGCAAGACCTCA; Reverse primer: AGTTGAGGAGAATGCATGCA) after they were lysed by cell lysis buffer (KCl 50 mM, MgCl2 1.5 mM, 0.5% NP40 and 0.5% Tween 20, 10 mM Tris pH 8.5) [71].
Generation of HeLa CREB1 rescue cells
LentiCREB1hygro and 3 lentivirus packaging plasmids were co-transfected into HEK293T cells by PEI 40,000 transfection reagent according to the manufacture’s instruction. 48 h later, viral particles were collected and precipitated by PEG-itTM Virus Precipitation Solution according to the manufacture’s instruction. Thereafter, CREB1 KO cells growing on a 6-well plate were infected in virus-containing medium supplemented with 8 μg/ml protamine sulfate through spin-infection (2400 × g for 90 min). After another 48 h, infected cells were transferred to 10 cm petri-dishes with growth medium supplemented with 200 μg/mL hygromycin B. Finally, CREB1 rescue cell lines were obtained by 3-weeks selection in hygromycin-containing medium. Western Blots were performed to confirm the success of infections and re-expression of CREB1 in each corresponding CREB1 KO clones.
Western Blot analysis
Cells were lysed by Western Blot Cell Lysate Buffer according to the manufacture’s instruction. Protein concentrations of cell lysates were determined by using BCA Protein Assay Kit. After denaturing proteins by heat-inactivation in loading buffer, each sample was loaded on SDS polyacrylamide gels and separated by electrophoresis. Thereafter, proteins were transferred to PVDF membranes by using Bio-Rad Trans-Blot Turbo system. Subsequently, membranes were blocked with Tris-buffered saline buffer containing 5% non-fat milk and 0.1% Tween-20 at 4 °C overnight. Then membranes were incubated with primary antibodies (CREB1 #9197, cell signaling, and anti-LaminB1 #ab194109, Abcam) and anti-rabbit peroxidase-conjugated secondary antibody (#7074, cell signaling) stepwise. Between any steps, membranes were washed by TBS–Tween buffer extensively. Finally, the signal was detected with ECL WB Detection Kit by Azure600 Western Blot Imaging System (Azure Biosystems).
RNA-seq analysis
HeLa cells were detached from 10 cm petri-dishes and total RNA was isolated and separated from DNA and protein after extraction with Trizol solution. RNA-library preparation and sequencing were done by BGI-Qingdao, producing 100 bp paired-end non-stranded libraries with ~ 30 M reads per library using BGI-500 sequencer. 21 libraries were prepared, including clones CREB1 KO1, CREB1 KO2, CREB1 KO3, CREB1 rescue1, CREB1 rescue2, CREB1 rescue3 and WT, and each sample had 3 replicates. RNA sequencing results can be found in the Additional file 2: Table S1. RNA-seq reads were aligned to human genome (GRCh37/hg19) using Bowtie2 [72] within FASTQ file with default settings after removing the low-quality and short reads with SOAPnuke v1.5.6 [73] (Additional file 2: Table S1). Unique mapped reads were kept for further analysis. The read counts were quantified by Expectation–Maximization (RSEM v1.3.2) [74], which were used for statistical analyses of differential expressed genes (DEGs) by using DESeq2 package [75] in R. The overall similarities between samples showed in the hierarchical samples clustering heatmaps and principal components analysis (PCA) plots (Additional file 1: Figure S1) were calculated by Euclidean sample distance and ordination method that come with DESeq2 package to visualize sample-to-sample distance. DEGs were defined as genes with a Benjamini-Hochberg–adjusted p-value (p-adj) ≤ 0.05 and log2 Fold Change (log2 FC) ≥ 1 in comparing CREB1 KO cells vs WT cells, and CREB1 rescue cells vs CREB1 KO cells (Additional file 3: Table S2).
GO enrichment analysis and KEGG pathway analysis
Enrichment tests for GO (Gene Ontology) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis were performed on CREB1 commonly expressed gene list (Additional file 3: Table S2) that were selected as defined using David website (david.ncifcrf.gov). The background gene set was set to Homo species. The significance threshold was set to Benjiamini-Hochberg false discovery rate (FDR) ≤ 0.05 for KEGG pathway analysis and ≤ 0.01 for GO enrichment analysis.
RRHO analysis
All expressed genes from RNA-seq experiments in three CREB1 rescue cell lines vs corresponding CREB1 KO cell lines were ranked according to fold change value. For every type of cancer, genes expressed both in carcinomas and para-carcinoma tissues (PCT) were ranked according to fold change value (Additional file 4: Table S3). The paired CREB1 rescue/KO ranked gene lists were compared to paired cancer/PCT ranked gene lists of 24 types of cancer from Cancer Genome Atlas (TCGA) (https://www.cancer.gov/tcga) using Rank-Rank Hypergeometric Overlap (RRHO) function (https://bioconductor.org/packages/RRHO) [31] in R. Heatmaps were obtained from each comparison, showing rank-rank correlations. The gradient color was calculated by log10-transformed hypergeometric p-value of local rank overlaps between gene lists. 1362 overlap genes (719 upregulated and 643 downregulated DEGS in CREB1 rescue/KO comparison) were selected to RRHO concordant gene list (Additional file 5: Table S4).
Patient survival analysis
Kaplan–Meier analysis was performed to estimate the overall survival (OS) of patients on online tool GEPIA2 (http://gepia2.cancer-pku.cn/#survival). Patients were categorized into high and low gene expression groups according to the cut-off value determined either by median or quartile gene expression. p values were calculated using the log-rank test and considered statistically significant when p value ≤ 0.05.
Statistical analysis
DESeq2 and RRHO analyses were performed in R (4.0.2). For identification of DEGs, we used an adjusted p value (Padj) ≤ 0.05 and fold change (FC) ≤ 2 as cut-off. GO terms with p ≤ 0.01 were included.
Supplementary Information
Acknowledgements
We thank the China National GeneBank for providing supports for data storage and sharing.
Authors' contributions
TZ performed the great majority of experiments and analyzed the data. JH facilitated with bioinformatics analysis. XX, SL, JY, KQ, ZX, PH, ZD, YL, FX provided technical help and guidance. HY and MJ are involved in project design. YL and BL designed and supervised the overall study and wrote the final draft of the manuscript. All authors read and approved the final manuscript.
Funding
This project is partially supported by the Sanming Project of Medicine in Shenzhen (SZSM201612074).
Availability of data and materials
All the RNAseq data are stored in CNGB database (https://db.cngb.org/). The accession number is CNP0001581. All data generated or analyzed during this study are included in this published article [and its supplementary information files].
Declarations
Ethics approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Competing interests
There is no competing interests.
Footnotes
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Yonglun Luo, Email: luoyonglun@genomics.cn.
Bin Liu, Email: liu@cancer.dk.
References
- 1.Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001;2(8):599–609. doi: 10.1038/35085068. [DOI] [PubMed] [Google Scholar]
- 2.Steven A, et al. What turns CREB on? And off? And why does it matter? Cell Mol Life Sci. 2020;77(20):4049–4067. doi: 10.1007/s00018-020-03525-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 1989;59(4):675–680. doi: 10.1016/0092-8674(89)90013-5. [DOI] [PubMed] [Google Scholar]
- 4.Dwarki VJ, Montminy M, Verma IM. Both the basic region and the ‘leucine zipper’ domain of the cyclic AMP response element binding (CREB) protein are essential for transcriptional activation. EMBO J. 1990;9(1):225–232. doi: 10.1002/j.1460-2075.1990.tb08099.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Schumacher MA, Goodman RH, Brennan RG. The structure of a CREB b ZIP·somatostatin CRE complex reveals the basis for selective dimerization and divalent cation-enhanced DNA binding. J Biol Chem. 2000;275(45):35242–7. doi: 10.1074/jbc.M007293200. [DOI] [PubMed] [Google Scholar]
- 6.Conkright MD, et al. Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol Cell. 2003;11(4):1101–1108. doi: 10.1016/S1097-2765(03)00134-5. [DOI] [PubMed] [Google Scholar]
- 7.Zhang X, et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA. 2005;102(12):4459–4464. doi: 10.1073/pnas.0501076102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Berdeaux R, Hutchins C. Anabolic and pro-metabolic functions of CREB-CRTC in skeletal muscle: advantages and obstacles for type 2 diabetes and cancer cachexia. Front Endocrinol. 2019;10:535. doi: 10.3389/fendo.2019.00535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Than TA, et al. Role of cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3) in the initiation of mitochondrial biogenesis and stress response in liver cells. J Biol Chem. 2011;286(25):22047–22054. doi: 10.1074/jbc.M111.240481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Van de Velde S, et al. CREB promotes beta cell gene expression by targeting its coactivators to tissue-specific enhancers. Mol Cell Biol. 2019 doi: 10.1128/MCB.00200-19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.van der Sligte NE, et al. Essential role for cyclic-AMP responsive element binding protein 1 (CREB) in the survival of acute lymphoblastic leukemia. Oncotarget. 2015;6(17):14970–14981. doi: 10.18632/oncotarget.3911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Shankar DB, et al. The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell. 2005;7(4):351–362. doi: 10.1016/j.ccr.2005.02.018. [DOI] [PubMed] [Google Scholar]
- 13.Xie S, et al. Dominant-negative CREB inhibits tumor growth and metastasis of human melanoma cells. Oncogene. 1997;15(17):2069–2075. doi: 10.1038/sj.onc.1201358. [DOI] [PubMed] [Google Scholar]
- 14.Kovach SJ, et al. Role of cyclic-AMP responsive element binding (CREB) proteins in cell proliferation in a rat model of hepatocellular carcinoma. J Cell Physiol. 2006;206(2):411–419. doi: 10.1002/jcp.20474. [DOI] [PubMed] [Google Scholar]
- 15.Wang X, et al. Decrease of phosphorylated proto-oncogene CREB at Ser 133 site inhibits growth and metastatic activity of renal cell cancer. Expert Opin Ther Targets. 2015;19(7):985–995. doi: 10.1517/14728222.2015.1053208. [DOI] [PubMed] [Google Scholar]
- 16.Linnerth NM, et al. cAMP response element-binding protein is expressed at high levels in human ovarian adenocarcinoma and regulates ovarian tumor cell proliferation. Int J Gynecol Cancer. 2008;18(6):1248–1257. doi: 10.1111/j.1525-1438.2007.01177.x. [DOI] [PubMed] [Google Scholar]
- 17.Sunkel B, et al. Integrative analysis identifies targetable CREB1/FoxA1 transcriptional co-regulation as a predictor of prostate cancer recurrence. Nucleic Acids Res. 2016;44(9):4105–4122. doi: 10.1093/nar/gkv1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Xia Y, et al. Targeting CREB pathway suppresses small cell lung cancer. Mol Cancer Res. 2018;16(5):825–832. doi: 10.1158/1541-7786.MCR-17-0576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Son J, et al. cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction. Biochem Biophys Res Commun. 2010;398(2):309–314. doi: 10.1016/j.bbrc.2010.06.087. [DOI] [PubMed] [Google Scholar]
- 20.Zheng KB, et al. Knockdown of CERB expression inhibits proliferation and migration of glioma cells line U251. Bratisl Lek Listy. 2019;120(4):309–315. doi: 10.4149/BLL_2019_049. [DOI] [PubMed] [Google Scholar]
- 21.Park SA, et al. GSK-3alpha is a novel target of CREB and CREB-GSK-3alpha signaling participates in cell viability in lung cancer. PLoS ONE. 2016;11(4):e0153075. doi: 10.1371/journal.pone.0153075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Dimitrova N, et al. InFlo: a novel systems biology framework identifies cAMP-CREB1 axis as a key modulator of platinum resistance in ovarian cancer. Oncogene. 2017;36(17):2472–2482. doi: 10.1038/onc.2016.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Rao M, et al. Knockdown of CREB1 inhibits tumor growth of human gastric cancer in vitro and in vivo. Oncol Rep. 2017;37(6):3361–3368. doi: 10.3892/or.2017.5636. [DOI] [PubMed] [Google Scholar]
- 24.Xie S, et al. Dominant-negative CREB inhibits tumor growth and metastasis of human melanoma cells. Oncogene. 1997;15(17):2069–2075. doi: 10.1038/sj.onc.1201358. [DOI] [PubMed] [Google Scholar]
- 25.Huang S, et al. The transcription factor creb is involved in sorafenib-inhibited renal cancer cell proliferation migration and invasion. Acta Pharm. 2018;68(4):497–506. doi: 10.2478/acph-2018-0033. [DOI] [PubMed] [Google Scholar]
- 26.Wang X, et al. Cyclic AMP responsive element-binding protein induces metastatic renal cell carcinoma by mediating the expression of matrix metallopeptidase-2/9 and proteins associated with epithelial-mesenchymal transition. Mol Med Rep. 2017;15(6):4191–4198. doi: 10.3892/mmr.2017.6519. [DOI] [PubMed] [Google Scholar]
- 27.Jinek M, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–821. doi: 10.1126/science.1225829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Xiang X, et al. Efficient correction of Duchenne muscular dystrophy mutations by SpCas9 and dual gRNAs. Mol Ther Nucleic Acids. 2021;24:403–415. doi: 10.1016/j.omtn.2021.03.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Anand A, et al. Cell death induced by cationic amphiphilic drugs depends on lysosomal Ca(2+) release and cyclic AMP. Mol Cancer Ther. 2019;18(9):1602–1614. doi: 10.1158/1535-7163.MCT-18-1406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol. 2014;4:64. doi: 10.3389/fonc.2014.00064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Plaisier SB, et al. Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res. 2010;38(17):e169. doi: 10.1093/nar/gkq636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Cahill KM, et al. Improved identification of concordant and discordant gene expression signatures using an updated rank-rank hypergeometric overlap approach. Sci Rep. 2018;8(1):9588. doi: 10.1038/s41598-018-27903-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.San-Marina S, et al. Lyl1 interacts with CREB1 and alters expression of CREB1 target genes. Biochim Biophys Acta. 2008;1783(3):503–517. doi: 10.1016/j.bbamcr.2007.11.015. [DOI] [PubMed] [Google Scholar]
- 34.Lin C, et al. STC2 is a potential prognostic biomarker for pancreatic cancer and promotes migration and invasion by inducing epithelial-mesenchymal transition. Biomed Res Int. 2019;2019:8042489. doi: 10.1155/2019/8042489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Zhang G, et al. Expression of potential cancer stem cell marker ABCG2 is associated with malignant behaviors of hepatocellular carcinoma. Gastroenterol Res Pract. 2013;2013:782581. doi: 10.1155/2013/782581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Yamanaka S, et al. MicroRNA-21 inhibits Serpini1, a gene with novel tumour suppressive effects in gastric cancer. Dig Liver Dis. 2012;44(7):589–596. doi: 10.1016/j.dld.2012.02.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Chen LH, et al. Semaphorin 6A attenuates the Migration capability of lung cancer cells via the NRF2/HMOX1 axis. Sci Rep. 2019;9(1):13302. doi: 10.1038/s41598-019-49874-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Zhou Y, et al. Serum bradykinin levels as a diagnostic marker in cervical cancer with a potential mechanism to promote VEGF expression via BDKRB2. Int J Oncol. 2019;55(1):131–141. doi: 10.3892/ijo.2019.4792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Yu T, et al. Nuclear TEAD4 with SIX1 overexpression is an independent prognostic marker in the stage I–III colorectal cancer. Cancer Manag Res. 2021;13:1581–1589. doi: 10.2147/CMAR.S260790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Harada A, et al. Clinical implication of human leukocyte antigen (HLA)-F expression in breast cancer. Pathol Int. 2015;65(11):569–574. doi: 10.1111/pin.12343. [DOI] [PubMed] [Google Scholar]
- 41.Chen X, et al. Targeting HLA-F suppresses the proliferation of glioma cells via a reduction in hexokinase 2-dependent glycolysis. Int J Biol Sci. 2021;17(5):1263–1276. doi: 10.7150/ijbs.56357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Matsumoto T, et al. A new possible lung cancer marker: VGF detection from the conditioned medium of pulmonary large cell neuroendocrine carcinoma-derived cells using secretome analysis. Int J Biol Markers. 2009;24(4):282–285. doi: 10.1177/172460080902400411. [DOI] [PubMed] [Google Scholar]
- 43.Hayashi M, et al. Epigenetic inactivation of VGF associated with urothelial cell carcinoma and its potential as a non-invasive biomarker using urine. Oncotarget. 2014;5(10):3350–3361. doi: 10.18632/oncotarget.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Kita Y, et al. STC2: a predictive marker for lymph node metastasis in esophageal squamous-cell carcinoma. Ann Surg Oncol. 2011;18(1):261–272. doi: 10.1245/s10434-010-1271-1. [DOI] [PubMed] [Google Scholar]
- 45.Meyer HA, et al. Identification of stanniocalcin 2 as prognostic marker in renal cell carcinoma. Eur Urol. 2009;55(3):669–678. doi: 10.1016/j.eururo.2008.04.001. [DOI] [PubMed] [Google Scholar]
- 46.Arabzadeh AHS, Estiar M, et al. Identification of stanniocalcin 2 as marker in colorectal cancer. Nationalpark Forsch Der Schweiz. 2014;2014:104. [Google Scholar]
- 47.Song Y, et al. High NCALD expression predicts poor prognosis of cytogenetic normal acute myeloid leukemia. J Transl Med. 2019;17(1):166. doi: 10.1186/s12967-019-1904-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Dong C, et al. NCALD affects drug resistance and prognosis by acting as a ceRNA of CX3CL1 in ovarian cancer. J Cell Biochem. 2020;121(11):4470–4483. doi: 10.1002/jcb.29670. [DOI] [PubMed] [Google Scholar]
- 49.Weberpals JI, et al. Breast cancer 1 (BRCA1) protein expression as a prognostic marker in sporadic epithelial ovarian carcinoma: an NCIC CTG OV16 correlative study. Ann Oncol. 2011;22(11):2403–2410. doi: 10.1093/annonc/mdq770. [DOI] [PubMed] [Google Scholar]
- 50.James CR, et al. BRCA1, a potential predictive biomarker in the treatment of breast cancer. Oncologist. 2007;12(2):142–150. doi: 10.1634/theoncologist.12-2-142. [DOI] [PubMed] [Google Scholar]
- 51.Cheng S, et al. HOXA4, down-regulated in lung cancer, inhibits the growth, motility and invasion of lung cancer cells. Cell Death Dis. 2018;9(5):465. doi: 10.1038/s41419-018-0497-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Sun SH, et al. SIX1 coordinates with TGFbeta signals to induce epithelial-mesenchymal transition in cervical cancer. Oncol Lett. 2016;12(2):1271–1278. doi: 10.3892/ol.2016.4797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Kim J, et al. CPS1 maintains pyrimidine pools and DNA synthesis in KRAS/LKB1-mutant lung cancer cells. Nature. 2017;546(7656):168–172. doi: 10.1038/nature22359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Cai P, et al. BTN3A2 serves as a prognostic marker and favors immune infiltration in triple-negative breast cancer. J Cell Biochem. 2020;121(3):2643–2654. doi: 10.1002/jcb.29485. [DOI] [PubMed] [Google Scholar]
- 55.Benyamine A, et al. BTN3A is a prognosis marker and a promising target for Vgamma9Vdelta2 T cells based-immunotherapy in pancreatic ductal adenocarcinoma (PDAC) Oncoimmunology. 2017;7(1):e1372080. doi: 10.1080/2162402X.2017.1372080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Ding XW, Wu JH, Jiang CP. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 2010;86(17–18):631–637. doi: 10.1016/j.lfs.2010.02.012. [DOI] [PubMed] [Google Scholar]
- 57.Hou L, et al. UBE2D1 RNA expression was an independent unfavorable prognostic indicator in lung adenocarcinoma, but not in lung squamous cell carcinoma. Dis Markers. 2018;2018:4108919. doi: 10.1155/2018/4108919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Wang M, et al. TAF1A and ZBTB41 serve as novel key genes in cervical cancer identified by integrated approaches. Cancer Gene Ther. 2020 doi: 10.1038/s41417-020-00278-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Zhang Z, et al. EPHA7 mutation as a predictive biomarker for immune checkpoint inhibitors in multiple cancers. BMC Med. 2021;19(1):26. doi: 10.1186/s12916-020-01899-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Huang YY, et al. USP11 facilitates colorectal cancer proliferation and metastasis by regulating IGF2BP3 stability. Am J Transl Res. 2021;13(2):480–496. [PMC free article] [PubMed] [Google Scholar]
- 61.Sun H, et al. USP11 promotes growth and metastasis of colorectal cancer via PPP1CA-mediated activation of ERK/MAPK signaling pathway. EBioMedicine. 2019;48:236–247. doi: 10.1016/j.ebiom.2019.08.061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Dwane L, et al. A functional genomic screen identifies the deubiquitinase USP11 as a novel transcriptional regulator of eralpha in breast cancer. Cancer Res. 2020;80(22):5076–5088. doi: 10.1158/0008-5472.CAN-20-0214. [DOI] [PubMed] [Google Scholar]
- 63.Wang S, Chen X, Qiao T. Long noncoding RNA MIR44352HG promotes the progression of head and neck squamous cell carcinoma by regulating the miR3835p/RBM3 axis. Oncol Rep. 2021 doi: 10.3892/or.2021.8050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Wallace DL, et al. CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat Neurosci. 2009;12(2):200–209. doi: 10.1038/nn.2257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Oehlke O, et al. Acidosis-induced V-ATPase trafficking in salivary ducts is initiated by cAMP/PKA/CREB pathway via regulation of Rab11b expression. Int J Biochem Cell Biol. 2012;44(8):1254–1265. doi: 10.1016/j.biocel.2012.04.018. [DOI] [PubMed] [Google Scholar]
- 66.Seok S, et al. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature. 2014;516(7529):108–111. doi: 10.1038/nature13949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Herzig S, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001;413(6852):179–183. doi: 10.1038/35093131. [DOI] [PubMed] [Google Scholar]
- 68.Steven A, Seliger B. Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget. 2016;7(23):35454–35465. doi: 10.18632/oncotarget.7721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Xiang X, et al. LION: a simple and rapid method to achieve CRISPR gene editing. Cell Mol Life Sci. 2019;76(13):2633–2645. doi: 10.1007/s00018-019-03064-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Zhou Y, et al. Enhanced genome editing in mammalian cells with a modified dual-fluorescent surrogate system. Cell Mol Life Sci. 2016;73(13):2543–2563. doi: 10.1007/s00018-015-2128-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Abbott NJ, Nicholson C, Verkhratsky A. Introduction: special issue in honor of Eva Sykova. Neurochem Res. 2020;45(1):1–4. doi: 10.1007/s11064-019-02924-z. [DOI] [PubMed] [Google Scholar]
- 72.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359. doi: 10.1038/nmeth.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Chen Y, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience. 2018;7(1):1–6. doi: 10.1093/gigascience/gix120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323. doi: 10.1186/1471-2105-12-323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Data Availability Statement
All the RNAseq data are stored in CNGB database (https://db.cngb.org/). The accession number is CNP0001581. All data generated or analyzed during this study are included in this published article [and its supplementary information files].