Skip to main content
ACS Omega logoLink to ACS Omega
. 2021 Sep 28;6(40):25940–25949. doi: 10.1021/acsomega.1c02645

Ultrasound-Assisted Iodination of Imidazo[1,2-α]pyridines Via C–H Functionalization Mediated by tert-Butyl Hydroperoxide

Hua Yang , Ning Huang , Nengqing Wang , Haicheng Shen , Fan Teng , Xiaoying Liu , Hongmei Jiang , Mei-Chen Tan , Qing-Wen Gui ‡,*
PMCID: PMC8515396  PMID: 34660956

Abstract

graphic file with name ao1c02645_0012.jpg

A novel metal catalyst-free and environmentally friendly method for the regioselective iodination of imidazo[1,2-α]pyridines at their C3 position is disclosed, which has a wide substrate scope and could be sustainable. This reaction proceeds through ultrasound acceleration in the presence of a green alcohol solvent. Compared with a conventional heating system, the reaction efficiency and the rate are significantly improved and the iodine atom economy is maximized using ultrasound techniques.

Introduction

In the past 20 years, with the development of the chemical and pharmaceutical industries, novel approaches to the synthesis of heterocycles have rapidly emerged.13 The development of more green and effective methods to heterocycle synthesis has been a major research interest for green and sustainable chemists because more than 70% of major commercially available synthetic drugs contain at least one N-fused heterocyclic scaffold.46 It is worth mentioning that the imidazo[1,2-α]pyridine derivatives exhibit a wide range of biological and pharmacological activities, such as antibacterial, antiulcer, antiviral, and antitumor (Scheme 1).713 As a result, tremendous efforts have been devoted to the synthesis and functionalization of N-fused heterocyclic scaffolds.1433 Among them, 3-halo imidazo[1,2-α]pyridines are great potential intermediates for their diverse reactivity in many types of reactions.

Scheme 1. Selected Examples of Biologically Relevant Imidazo[1,2-α]pyridines.

Scheme 1

Compared to a C–Br or C–Cl bond, a C–I bond easily undergoes an oxidative addition in metal-catalyzed coupling reactions due to its low bond dissociation energy.3439 Despite wide application, N-fused heterocyclic iodides are important and have limited commercial availability.40,41 On account of the importance of such molecules, protocols for constructing these compounds have been widely studied, especially the iodination of imidazo[1,2-α]pyridines.4248 Generally, their iodination reactions of imidazo[1,2-α]pyridines rely upon the use of stoichiometric inorganic oxidants such as K2S2O8, PhI(OAc)2, and so on. However, both excessive iodine reagents and a large amount of toxic petroleum-derived solvents are required, which is against the general requirements of green chemistry. Therefore, in I2-mediated iodination, the vital challenge is how to increase the iodine atom economy and improve electrophilicity of iodine to imidazo[1,2-α]pyridines using organocatalyst in ecofriendly conditions. More recently, several environmentally benign oxidants, such as hydrogen peroxide or tert-butyl hydroperoxide (TBHP), have been independently used in activation of I2.4951 Sun et al., Wang et al., and Jain et al. reported regioselective oxidative iodination of quinolines in the presence of molecular iodine and TBHP, respectively (Scheme 2a,b).52,53 As far as we know, the development of novel, economic, and green synthetic methods to iodinate imidazo[1,2-α]pyridines is still of great interest.

Scheme 2. Oxidative Iodination of N-Fused Heterocyclic Scaffolds.

Scheme 2

Results and Discussion

To the best of our knowledge, the development of alternative, atom economic, and environment friendly protocols to iodinate imidazo[1,2-α]pyridines is still in high demand. In recent years, ultrasonic irradiation (USI) has developed rapidly in modern synthetic chemistry owing to the inherent green character of the adiabatic collapse of transient cavity bubbles, high reactivity, and good functional-group tolerance.4561 The energy generated by the cavity effect is responsible for solubility, mass transportation, diffusivity, accelerates the reaction, and reduces reaction times at ambient temperature. Chancharunee et al. and Gámez-Montaño et al. discovered an efficient USI-assisted green direct synthesis of imidazo[1,2-α]pyridines, respectively (Scheme 2c,d).60,61 Although these advances have been made in recent years, development on the functionalization of imidazo[1,2-α]pyridines is still highly desirable. In this context, there has been an increasing interest in the use of ultrasonic irradiation for halogenation reactions as tools for green chemistry.6266 On the basis of the abovementioned points, our group continued ongoing research on sustainable organic synthesis and halogenation of imidazo[1,2-α]pyridines.6770 Herein, we report the first example of the oxidative iodination of imidazo[1,2-α]pyridines with molecular I2 in an innocuous solvent accelerated by ultrasonic irradiation, which produced 3-iodinated products in very high yields within a short time (Scheme 2e).

Initially, we conducted the iodination reaction of imidazo[1,2-α]pyridines (1a) using tetrabutylammonium iodide (TBAI) as an iodine reagent in the presence of TBHP as an oxidation system in a green alcohol solvent at room temperature (RT); the desired product 2-phenylimidazo[1,2-a]pyridine (2a) was obtained in a trace yield after 8 h (Table 1, entry 1). Under the same conditions, we screened different iodine reagents including NH4I, PhI(OAc)2, NaI, and I2; the best result was obtained with I2 as an iodine reagent (Table 1, entries 2–5). Next, a series of oxidants were detected and the experimental results revealed that TBHP was the best choice for the present oxidative iodination reaction (Table 1, entries 6–9). In addition, no improvement was found when the reaction temperature or the amount of oxidant was increased (Table 1, entries 10–12). Therefore, there was no obvious improvement in the efficiency of this chemical process by changing conventional conditions. The iodination reaction was further optimized under ultrasonic irradiation by employing I2/TBHP as the reaction system. To our delight, when ultrasonic irradiation (40 kHz/40 W) was employed for 0.5 h, the desired product was obtained in a 86% yield (Table 1, entry 13). This exciting result may be owing to the cavitation effect of ultrasonic irradiation. The experiments showed that the ultrasonic irradiation energy is essential for this transformation and 40 kHz/50 W was the suitable energy for this iodination reaction (Table 1, entries 14–15). When the iodine reagent was decreased from 1 to 0.6 equiv, the yield was almost constant (90%, Table 1, entry 16).

Table 1. Screening of the Reaction Conditionsa.

graphic file with name ao1c02645_0007.jpg

entry iodine (equiv) oxidant (equiv) conditions yield (%)b
1 TBAI (1) TBHP (2) stirring, RT trace
2 NH4I (1) TBHP (2) stirring, RT nr
3 PIDA (1) TBHP (2) stirring, RT nr
4 NaI (1) TBHP (2) stirring, RT nr
5 I2(1) TBHP (2) stirring, RT 28
6c I2(1) TBHP (2) stirring, RT 25
7 I2(1) DCP (2) stirring, RT 20
8 I2(1) H2O2 (2) stirring, RT <10
9 I2(1) K2S2O8 (2) stirring, RT trace
10 I2(1) TBHP (5) stirring, RT 34
11 I2(1) TBHP (2) stirring, 50 60
12 I2(1) TBHP (2) stirring, 80 68
13 I2(1) TBHP (2) US (40 kHz/40 W), rt, 30 min 86
14 I2(1) TBHP (2) US (40 kHz/50 W), rt, 30 min 91
15 I2(1) TBHP (2) US (40 kHz/60 W), rt, 30 min 90
16 I2(0.6) TBHP (2) US (40 kHz/50 W), rt, 30 min 90
a

Reaction conditions: unless otherwise specified: 1a (0.2 mmol), iodine reagent, TBHP in water (0.4 mmol), and EtOH (2.0 mL) in a Schlenk tube; RT; US = ultrasonic irradiation.

b

Isolated yield.

c

TBHP in decane.

With these optimal reaction conditions, we evaluated the generality of this regioselective oxidative iodination reaction with different substituent positions on the pyridyl ring (Table 2). Both electron-donating and electron-withdrawing substituents on the C7 position of the imidazole ring of 2-phenyl-imidazo[1,2-α]pyridines were well tolerated on the success of transformation, with fluoro, chloro, bromo, trifluoro, methoxyl, and methyl groups. The corresponding C3-iodinated products 2bg were given in the range of good to excellent yields. In addition, 2-phenyl-imidazo[1,2-α]pyridines bearing various substituents, including halogens, trifluoro, methyl, methoxy, and cyano, on the C6 or C8 position of the imidazole ring could also provide the desired products 2hq in 65–95% yields. It is worth noting that this reaction tolerated several functional groups, including cyano and most halogens, which may be beneficial for further structural modification. Furthermore, 6-phehlimidazo[2,1-b]thiazole also proceeded smoothly to afford the corresponding product 2r in a 79% yield.

Table 2. Scope of the Pyridyl Ring of 2-Phenyl-imidazo[1,2-a]pyridinesa,b.

graphic file with name ao1c02645_0008.jpg

graphic file with name ao1c02645_0009.jpg

a

Reagents and conditions: 1 (0.2 mmol), I2 (0.12 mmol), TBHP in water (0.4 mmol), and EtOH (2.0 mL) in a Schlenk tube; ultrasonic irradiation for 30 min.

b

Isolated yield.

Subsequently, we investigated the scope of substituents on the phenyl ring of 2-phenylimidazo[1,2-a]pyridines (Table 3). Substrates with an electron-deficient functional group such as a halogen substituent (F, Cl, Br), CN, NO2, and CF3 at the para position of the C2 phenyl ring could all be efficiently converted into the desired products in moderate to good yields (3af). Meanwhile, electron-donation groups like methyl, methoxy, or phenyl groups also worked smoothly, thus generating the corresponding iodination products in high yields (3gi). Moreover, sterically hindered substrates with a meta-chloro or a naphthyl group were also produced in good yield (3jk). With 2-(thien-2-yl)imidazo[1,2-a]pyridines and 2-ethylimidazo[1,2-a]pyridines as starting materials, we found that they were subjected to our optimal conditions and high yields can be provided (3lm).

Table 3. Scope of the Phenyl Ring of 2-Phenyl-imidazo[1,2-a]pyridinesa,b.

graphic file with name ao1c02645_0010.jpg

graphic file with name ao1c02645_0011.jpg

a

Reagents and conditions: 1 (0.2 mmol), I2 (0.12 mmol), TBHP in water (0.4 mmol), and EtOH (2.0 mL) in a Schlenk tube; ultrasonic irradiation for 30 min.

b

Isolated yields.

To demonstrate the practicality of this approach, we conducted the gram-scale iodination of imidazo[1,2-a]pyridines under the optimized conditions, which gave the desired product 3-iodoimidazo[1,2-a]pyridines (2n) in an 80% yield (Scheme 3a). The C–I bond of 2n was subsequently regioselectively converted into the C–C bond catalyzed by Pd(PPh3)4, which gave the desired product 4 in a 62% yield (Scheme 3b). Further synthetic utilization of the iodination reaction was also presented in the preparation of derivative product 5 in a 65% yield. The compound 5 could be readily converted into selective melatonin receptor ligands (Scheme 3c).

Scheme 3. Gram-Scale Experiments and Application of 3-Iodo-imidazo[1,2-a]pyridine Derivatives.

Scheme 3

Next, we investigated several experiments to probe the reaction mechanism. It is found that the product was not detected or significantly decreased with varying stoichiometries of the radical inhibitor 2,2,6,6-tetra-methylpiperidine-N-oxyl (TEMPO) under standard conditions (Scheme 4a,b). When the reaction was tried with KI, no product formation was observed, which explicitly excludes iodide ions as active intermediates in this oxidative iodination process (Scheme 4c). Therefore, all of these results demonstrated that this reaction most likely proceeds via a free-radical-initiated process.

Scheme 4. Control Experiments.

Scheme 4

Based on the abovementioned results from the control experiments and previous reports studies,52,53,66,67 we proposed a plausible mechanism for this transformation in Scheme 5. Initially, molecular iodine reacted with TBHP to form tBuOI and HOI. Subsequently, the iodination reaction of 1a with tBuOI or HOI occurred to generate intermediate A by ultrasonic irradiation. Finally, product 2a was obtained from intermediate A, followed by the abstraction of a hydrogen atom induced by tert-butoxy groups or hydroxyl radicals.

Scheme 5. Proposed Catalytic Cycle.

Scheme 5

Conclusions

In conclusion, we have reported a sustainable, economic, and efficient method for the ultrasound-accelerated synthesis of 3-iodoimidazo[1,2-a]pyridine derivatives (31 examples, 65–95% yield). These 3-iodoimidazo[1,2-a]pyridine derivatives are useful intermediates for organic synthesis through a metal-catalyzed coupling process. This reaction features good functional-group tolerance, high selectivity, is transition-metal free, and can occur under mild conditions. Compared with previously reported systems, this protocol is promoted by tert-butyl hydroperoxide without any additive, base, metal, or an inorganic oxidant. We hope the present finding will be an ideal strategy for preparing the regioselective iodination of imidazo[1,2-α]pyridines at their C3 position.

Experimental Section

General

All reactions were carried out in an anhydrous solvent and commercially available reagents were used as received unless otherwise stated. Analytical thin-layer chromatography (TLC) was performed on precoated aluminum-backed silica gel 60 F254 plates (EMD Millipore, 200 μm thickness). TLC plates were visualized with ultraviolet light and treated with KMnO4 or vanillin stains followed by heating. Flash column chromatography was performed using a Tsingtao silica gel (200–300). 1H and 13C NMR spectra were recorded on a Bruker Avance DRX-400 spectrometer; chemical shifts (δ) are given in ppm and calibrated using the signal of a residual undeuterated solvent as an internal reference (CDCl3: δH = 7.26 ppm and δC = 77.16 ppm). Data for 1H NMR and 13C NMR are reported as follows: chemical shift (δ, ppm), multiplicity, integration, and coupling constant (Hz). Compounds for high-resolution mass spectrometry (HRMS) were analyzed by positive mode electrospray ionization (ESI) using an Agilent quadrupole time-of-flight (QTOF) mass spectrometer.

General Experimental Procedure for the Iodination Reaction Of Imidazo[1,2-α]pyridines

Imidazo[1,2-α]pyridines (0.20 mmol), molecular iodine (0.12 mmol), TBHP in water (0.40 mmol), and EtOH (2.0 mL) were placed in a Schlenk tube, and then the reaction mixture was reacted under ultrasonic irradiation. Upon completion, the reaction mixture was quenched by addition of 10 mL of water. The aqueous layer was extracted three times with EtOAc (10 mL × 3), and the combined organic layers were dried over sodium sulfate, evaporated to dryness, and the desired products were obtained.

3-Iodo-2-phenylimidazo[1,2-a]pyridine (2a)42

A yellow solid, mp = 160–162 °C, yield: 90% (58.24 mg); 1H NMR (400 MHz, CDCl3) δ 8.20 (d, J = 6.8 Hz, 1 H), 8.06 (d, J = 7.6 Hz, 2 H), 7.61 (d, J = 9.2 Hz, 1 H), 7.48 (t, J = 7.6 Hz, 2 H), 7.39 (t, J = 7.4 Hz, 1 H), 7.24 (t, J = 8.0 Hz, 1 H), 6.90 (t, J = 6.8 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 148.23, 148.18, 133.64, 129.03, 128.70, 128.49, 126.69, 125.76, 117.71, 113.36, 59.64; MS: m/z 320 (M+).

7-Fluoro-3-iodo-2-phenylimidazo[1,2-a]pyridine (2b)

A yellow solid, mp = 161–166 °C, yield: 78% (52.73 mg); 1H NMR (400 MHz, CDCl3) δ 8.19 (t, J = 4.2 Hz, 1 H), 8.04 (d, J = 4.8 Hz, 2 H), 7.48 (t, J = 5.0 Hz, 2 H), 7.40 (t, J = 5.0 Hz, 1 H), 7.29 (d, J = 6.0 Hz, 1 H), 6.81 (t, J = 5.4 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 160.97 (d, J = 169.3 Hz), 149.32, 147.93 (d, J = 9.1 Hz), 133.34, 128.65, 128.53, 128.51, 128.10 (d, J = 7.2 Hz), 105.64 (d, J = 19.6 Hz), 101.39 (d, J = 15.8 Hz), 58.63; HRMS (ESI-TOF) m/z calcd for C13H9FIN2 [M + H]+: 338.9789, found: 338.9793.

7-Chloro-3-iodo-2-phenylimidazo[1,2-a]pyridine (2c)43

A brown solid, mp = 150–152 °C, yield: 80% (56.72 mg); 1H NMR (400 MHz, CDCl3) δ 8.24 (t, J = 4.0 Hz, 2 H), 8.22 (s, 1 H), 7.76 (d, J = 8.0 Hz, 2 H), 7.64 (d, J = 8.8 Hz, 1 H), 7.32 (t, J = 8.2 Hz, 1 H), 6.89 (t, J = 6.8 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 148.43, 145.89, 132.30, 128.92, 126.80, 126.48, 119.05, 117.99, 113.91, 111.77, 60.68; MS: m/z 354 (M+).

7-Bromo-3-iodo-2-phenylimidazo[1,2-a]pyridine (2d)

A brown solid, mp = 153–155 °C, yield: 86% (68.61 mg); 1H NMR (400 MHz, CDCl3) δ 8.08 (d, J = 4.8 Hz, 1 H), 8.03 (d, J = 4.8 Hz, 2 H), 7.81 (s, 1 H), 7.48 (t, J = 5.0 Hz, 2 H), 7.41 (t, J = 4.8 Hz, 1 H), 7.02 (dd, J = 4.8, 0.8 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 148.96, 148.11, 133.18, 128.75, 128.61, 128.56, 126.88, 119.79, 119.52, 117.18, 59.99; HRMS (ESI-TOF) m/z calcd for C13H9BrIN2 [M + H]+: 398.8988, found: 398.8993.

3-Iodo-2-phenyl-7-(trifluoromethyl)imidazo[1,2-a]pyridine (2e)69

A yellow solid, mp = 188–190 °C, yield: 70% (54.32 mg); 1H NMR (400 MHz, CDCl3) δ 8.39 (d, J = 7.2 Hz, 1 H), 8.11 (d, J = 7.2 Hz, 2 H), 7.98 (s, 1 H), 7.55 (t, J = 7.4 Hz, 2 H), 7.48 (t, J = 7.2 Hz, 1 H), 7.15 (dd, J = 7.6, 1.6 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 150.31, 146.41, 132.98, 129.00, 128.70, 128.65, 127.47, 124.66, 121.96, 115.54 (d, J = 9.7 Hz), 109.20 (d, J = 2.8 Hz), 62.08; MS: m/z 388 (M+).

3-Iodo-7-methoxy-2-phenylimidazo[1,2-a]pyridine (2f)

A brown solid, mp = 146–148 °C, yield: 94% (65.80 mg); 1H NMR (400 MHz, CDCl3) δ 8.09 (d, J = 7.2 Hz, 2 H), 7.86 (d, J = 6.8 Hz, 1 H), 7.45 (t, J = 7.6 Hz, 2 H), 7.36 (t, J = 7.2 Hz, 1 H), 6.81 (t, J = 7.6 Hz, 1 H), 6.55 (d, J = 7.4 Hz, 1 H), 4.02 (s, 3 H); 13C NMR (101 MHz, CDCl3) δ 148.90, 147.29, 142.43, 133.50, 128.76, 128.29, 128.24, 119.53, 112.90, 101.72, 60.51, 56.17; MS: m/z 350 (M+).

3-Iodo-7-methyl-2-phenylimidazo[1,2-a]pyridine (2g)42

A brown solid, mp = 161–163 °C, yield: 90% (60.12 mg); 1H NMR (400 MHz, CDCl3) δ 8.07–8.05 (m, 2 H), 8.04 (s, 1 H), 7.47 (t, J = 7.6 Hz, 2 H), 7.39 (d, J = 7.2 Hz, 1 H), 7.36 (s, 1 H), 6.72 (d, J = 6.8 Hz, 1 H), 2.42 (s, 3 H); 13C NMR (101 MHz, CDCl3) δ 148.43, 147.75, 136.85, 133.71, 128.53, 128.42, 128.32, 125.73, 116.03, 115.89, 58.41, 21.38; MS: m/z 334 (M+).

8-Bromo-3-iodo-2-phenylimidazo[1,2-a]pyridine (2h)45

A brown solid, mp = 126–128 °C, yield: 87% (69.40 mg); 1H NMR (400 MHz, CDCl3) δ 8.20 (d, J = 4.4 Hz, 1 H), 8.07 (d, J = 4.8 Hz, 2 H), 7.51 (d, J = 4.8 Hz, 1 H), 7.48 (t, J = 5.0 Hz, 2 H), 7.40 (t, J = 5.0 Hz, 1 H), 6.80 (t, J = 4.8 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 149.00, 145.93, 133.24, 128.93, 128.68, 128.46, 128.00, 126.09, 113.10, 111.55, 61.68; MS: m/z 398 (M+).

3-Iodo-8-methoxy-2-phenylimidazo[1,2-a]pyridine (2i)45

A yellow solid, mp = 174–175 °C, yield: 95% (66.30 mg); 1H NMR (400 MHz, CDCl3) δ 8.22 (d, J = 6.8 Hz, 1 H), 8.01 (d, J = 8.8 Hz, 2 H), 7.64 (d, J = 9.2 Hz, 1 H), 7.29 (d, J = 7.2 Hz, 1 H), 7.02 (d, J = 8.8 Hz, 2 H), 6.95 (t, J = 6.8 Hz, 1 H), 3.87 (s, 3 H); 13C NMR (101 MHz, CDCl3) δ 159.99, 147.98, 147.77, 129.98, 126.64, 125.89, 125.85, 117.39, 113.98, 113.38, 59.05, 55.47; HRMS (ESI-TOF) m/z calcd for C14H12OIN2 [M + H]+: 350.9989, found: 350.9996.

3-Iodo-8-methyl-2-phenylimidazo[1,2-a]pyridine (2j)

A black solid, mp = 127–129 °C, yield: 86% (57.45 mg); 1H NMR (400 MHz, CDCl3) δ 8.11 (d, J = 4.4 Hz, 1 H), 8.05 (d, J = 4.8 Hz, 2 H), 7.48 (t, J = 5.2 Hz, 2 H), 7.39 (t, J = 5.0 Hz, 1 H), 7.06 (d, J = 4.4 Hz, 1 H), 6.85 (t, J = 4.6 Hz, 1 H), 2.68 (s, 3 H); 13C NMR (101 MHz, CDCl3) δ 148.60, 147.83, 134.00, 128.85, 128.49, 128.34, 127.79, 124.57, 124.40, 113.19, 60.06, 16.73; HRMS (ESI-TOF) m/z calcd for C14H12IN2 [M + H]+: 349.0196, found: 349.0199.

6-Fluoro-3-iodo-2-phenylimidazo[1,2-a]pyridine (2k)45

A yellow solid, mp = 182–184 °C, yield: 68% (45.97 mg); 1H NMR (400 MHz, CDCl3) δ 8.18–8.17 (m, 1 H), 8.04–8.03 (m, 2 H), 7.60 (dd, J = 6.4, 3.2 Hz, 1 H), 7.49–7.47 (m, 2 H), 7.41–7.39 (m, 1 H), 7.18–7.15 (m, 1 H); 13C NMR (101 MHz, CDCl3) δ 153.94 (d, J = 159.4 Hz), 149.43 (d, J = 1.4 Hz), 145.83, 133.37, 128.62, 128.52, 128.50, 118.20 (d, J = 6.0 Hz), 117.62 (d, J = 17.1 Hz), 113.72 (d, J = 28.4 Hz), 61.05; MS: m/z 338 (M+).

6-Chloro-3-iodo-2-phenylimidazo[1,2-a]pyridine (2l)19

A yellow solid, mp = 173–175 °C, yield: 77% (54.59 mg); 1H NMR (400 MHz, CDCl3) δ 8.27 (dd, J = 6.0 Hz, 1.2 Hz, 1 H), 8.05–8.03 (m, 2 H), 7.56 (dd, J = 6.4 Hz, 0.4 Hz, 1 H), 7.50–7.47 (m, 2 H), 7.42–7.39 (m, 1 H), 7.22 (dd, J = 6.0 Hz, 1.2 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 149.10, 146.63, 133.21, 128.72, 128.58, 128.54, 127.09, 124.67, 121.72, 118.04, 60.22; MS: m/z 354 (M+).

6-Bromo-3-iodo-2-phenylimidazo[1,2-a]pyridine (2m)43

A brown solid, mp = 171–173 °C, yield: 81% (64.62 mg); 1H NMR (400 MHz, CDCl3) δ 8.36–8.35 (m, 1 H), 8.04–8.03 (m, 2 H), 7.51 (d, J = 6.0 Hz, 1 H), 7.48 (t, J = 5.0 Hz, 2 H), 7.42–7.39 (m, 1 H), 7.30 7.30 (dd, J = 6.4 Hz, 1.6 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 148.85, 146.67, 133.13, 129.17, 128.72, 128.58, 128.53, 126.82, 118.25, 108.16, 60.05; MS: m/z 398 (M+).

3,6-Diiodo-2-phenylimidazo[1,2-a]pyridine (2n)

A brown solid, mp = 165–167 °C, yield: 86% (76.69 mg); 1H NMR (400 MHz, CDCl3) δ 8.62 (s, 1 H), 8.12 (d, J = 5.2 Hz, 2 H), 7.72 (d, J = 6.4 Hz, 1 H), 7.51 (t, J = 5.0 Hz, 2 H), 7.44 (t, J = 4.8 Hz, 1 H), 7.37 (d, J = 6.0 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 145.25, 144.81, 131.76, 130.17, 129.32, 128.83, 128.12, 125.10, 118.70, 116.39, 99.62; MS: m/z 446 (M+).

3-Iodo-2-phenyl-6-(trifluoromethyl)imidazo[1,2-a]pyridine (2o)

Yellow solid, mp = 193–195 °C, yield: 67% (52.07 mg); 1H NMR (400 MHz, CDCl3) δ 8.59 (s, 1 H), 8.07 (d, J = 8.0 Hz, 2 H), 7.72 (d, J = 9.6 Hz, 1 H), 7.50 (t, J = 7.6 Hz, 2 H), 7.45–7.40 (m, 2 H); 13C NMR (101 MHz, CDCl3) δ 150.13, 148.13, 132.95, 129.03, 128.69, 128.65, 125.76 (q, J = 5.7 Hz), 123.54 (d, J = 272.7 Hz), 121.65 (d, J = 2.5 Hz), 118.44, 117.80 (d, J = 34.4 Hz), 61.61; HRMS (ESI-TOF) m/z calcd for C14H9FIN2 [M + H]+: 388.9757, found: 388.9761.

3-Iodo-2-phenylimidazo[1,2-a]pyridine-6-carbonitrile (2p)47

A yellow solid, mp = 194–196 °C, yield: 65% (44.85 mg); 1H NMR (400 MHz, CDCl3) δ 8.68–8.67 (m, 1 H), 8.07–8.05 (m, 2 H), 7.69 (dd, J = 6.0, 0.4 Hz, 1 H), 7.52–7.49 (m, 2 H), 7.46–7.43 (m, 1 H), 7.36 (dd, J = 6.4, 1.2 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 150.58, 147.59, 132.72, 132.50, 129.28, 128.70, 128.67, 125.33, 118.61, 116.46, 99.61, 61.62; MS: m/z 345 (M+).

3-Iodo-6-methyl-2-phenylimidazo[1,2-a]pyridine (2q)19

A brown solid, mp = 194–196 °C, yield: 88% (58.79 mg); 1H NMR (400 MHz, CDCl3) δ 8.05–8.03 (m, 2 H), 7.98 (s, 1 H), 7.51 (d, J = 6.4 Hz, 2 H), 7.47 (dd, J = 5.2, 1.2 Hz, 1 H), 7.39–7.37 (m, 1 H), 7.09 (dd, J = 6.0, 1.2 Hz, 1 H), 2.39 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 147.72, 147.17, 133.71, 128.73, 128.47, 128.33, 128.22, 124.28, 123.00, 116.92, 59.04, 18.39; MS: m/z 334 (M+).

5-Iodo-6-phenylimidazo[2,1-b]thiazole (2r)43

A yellow solid, mp = 195–197 °C, yield: 79% (51.59 mg); 1H NMR (400 MHz, CDCl3) δ 7.95 (d, J = 8.4 Hz, 2 H), 7.45 (t, J = 5.2 Hz, 2 H), 7.43 (s, 1 H) 7.35 (t, J = 7.2 Hz, 1 H), 6.92 (d, J = 4.8 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 150.97, 149.52, 133.69, 128.49, 128.07, 127.69, 119.39, 112.39; MS: m/z 326 (M+).

2-(4-Fluorophenyl)-3-iodoimidazo[1,2-a]pyridine (3a)69

A brown solid, mp = 169–171 °C, yield: 71% (48.01 mg); 1H NMR (400 MHz, CDCl3) δ 8.23 (d, J = 6.8 Hz, 1 H), 8.09–8.06 (m, 2 H), 7.64 (d, J = 9.2 Hz, 1 H), 7.29 (t, J = 7.8 Hz, 1 H), 7.21 (t, J = 8.6 Hz, 2 H), 6.95 (t, J = 6.8 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 163.50 (d, J = 165.9 Hz), 148.17, 147.26, 130.44, 130.39, 126.63, 125.86, 117.62, 115.46 (d, J = 14.3 Hz), 113.39, 59.43; MS: m/z 338 (M+).

2-(4-Chlorophenyl)-3-iodoimidazo[1,2-a]pyridine (3b)69

A yellow solid, mp = 155–157 °C, yield: 74% (52.39 mg); 1H NMR (400 MHz, CDCl3) δ 8.18 (d, J = 6.8 Hz, 1 H), 8.01 (d, J = 8.4 Hz, 2 H), 7.60 (d, J = 8.8 Hz, 1 H), 7.44 (d, J = 8.4 Hz, 2 H), 7.27–7.23 (m, 1 H), 6.91 (t, J = 7.2 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 148.18, 146.90, 134.39, 132.12, 129.81, 128.67, 126.63, 125.94, 117.66, 113.45, 59.69; MS: m/z 356 (M+).

2-(4-Bromophenyl)-3-iodoimidazo[1,2-a]pyridine (3c)69

A brown solid, mp = 148–150 °C, yield: 84% (67.01 mg); 1H NMR (400 MHz, CDCl3) δ 8.19 (d, J = 6.8 Hz, 1 H), 7.95 (d, J = 8.4 Hz, 2 H), 7.60 (d, J = 8.8 Hz, 3 H), 7.28–7.24 (m, 1 H), 6.92 (t, J = 7.2 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 148.25, 146.97, 132.60, 131.64, 130.11, 126.67, 126.00, 122.72, 117.71, 113.51, 59.71; HRMS (ESI-TOF) m/z calcd for C13H9FIN2 [M + H]+: 398.8988, found: 398.8996.

4-(3-Iodoimidazo[1,2-a]pyridin-2-yl)benzonitrile (3d)69

A black solid, mp = 153–155 °C, yield: 67% (46.25 mg); 1H NMR (400 MHz, CDCl3) δ 8.13 (d, J = 6.0 Hz, 1 H), 8.03 (d, J = 6.0 Hz, 2 H), 7.63 (d, J = 1.2 Hz, 1 H), 7.48 (t, J = 6.0 Hz, 2 H), 7.41 (t, J = 6.0 Hz, 1 H), 6.90 (dd, J = 5.6, 1.6 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 149.26, 147.78, 133.29, 132.32, 128.77, 128.64, 128.57, 126.94, 126.36, 116.48, 114.91, 59.70; MS: m/z 345 (M+).

3-Iodo-2-(4-nitrophenyl)imidazo[1,2-a]pyridine (3e)19

A yellow solid, mp = 188–190 °C, yield: 60% (43.82 mg); 1H NMR (400 MHz, CDCl3) δ 8.32 (d, J = 9.2 Hz, 2 H), 8.29 (d, J = 9.2 Hz, 2 H), 8.24 (d, J = 6.8 Hz, 1 H), 7.64 (d, J = 8.8 Hz, 1 H), 7.32 (t, J = 8.0 Hz, 1 H), 6.99 (t, J = 6.8 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 148.46, 147.52, 145.55, 140.12, 129.08, 126.84, 126.63, 123.78, 118.04, 114.03, 61.12; MS: m/z 365 (M+).

3-Iodo-2-(4-(trifluoromethyl)phenyl)imidazo[1,2-a]pyridine (3f)69

A yellow solid, mp = 179–181 °C, yield: 72% (55.86 mg); 1H NMR (400 MHz, CDCl3) δ 8.22 (t, J = 8.2 Hz, 3 H), 7.73 (d, J = 8.0 Hz, 2 H), 7.63 (d, J = 8.8 Hz, 1 H), 7.31–7.26 (m, 1 H), 6.96 (t, J = 6.8 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 148.33, 146.54, 137.20, 130.23 (q, J = 21.7 Hz), 128.78, 126.77, 126.23, 125.44 (q, J = 2.3 Hz), 123.43, 117.90, 113.72, 60.33; MS: m/z 388 (M+).

3-Iodo-2-(p-tolyl)imidazo[1,2-a]pyridine (3g)69

A brown solid, mp = 96–98 °C, yield: 85% (56.81 mg); 1H NMR (400 MHz, CDCl3) δ 8.25 (d, J = 6.8 Hz, 1 H), 8.01 (d, J = 8.0 Hz, 2 H), 7.66 (d, J = 8.8 Hz, 1 H), 7.35 (d, J = 7.6 Hz, 2 H), 7.30–7.26 (m, 1 H), 6.95 (t, J = 6.8 Hz, 1 H), 2.47 (s, 3 H); 13C NMR (101 MHz, CDCl3) δ 148.10, 148.08, 138.30, 130.67, 129.16, 128.47, 126.53, 125.58, 117.49, 113.17, 59.38, 21.45; MS: m/z 334 (M+).

3-Iodo-2-(4-methoxyphenyl)imidazo[1,2-a]pyridine (3h)

A brown solid, mp = 116–118 °C, yield: 90% (63.00 mg); 1H NMR (400 MHz, CDCl3) δ 8.23 (d, J = 4.4 Hz, 1 H), 8.02 (d, J = 5.6 Hz, 2 H), 7.61 (d, J = 6.0 Hz, 1 H), 7.27 (d, J = 4.8 Hz, 1 H), 7.04 (d, J = 6.0 Hz, 2 H), 6.94 (t, J = 4.6 Hz, 1 H), 3.89 (s, 3 H); 13C NMR (101 MHz, CDCl3) δ 159.92, 148.01, 147.85, 129.96, 126.61, 125.94, 125.80, 117.36, 113.93, 113.29, 59.10, 55.44; MS: m/z 350 (M+).

2-([1,1′-Biphenyl]-4-yl)-3-iodoimidazo[1,2-a]pyridine (3i)69

An orange solid, mp = 197–199 °C, yield: 80% (63.36 mg); 1H NMR (400 MHz, CDCl3) δ 8.24 (d, J = 6.8 Hz, 1 H), 8.18 (d, J = 8.4 Hz, 2 H), 7.73 (d, J = 8.4 Hz, 2 H), 7.68 (t, J = 8.4 Hz, 2 H), 7.64 (d, J = 8.8 Hz, 1 H), 7.47 (t, J = 7.4 Hz, 2 H), 7.37 (t, J = 7.2 Hz, 1 H), 7.275–7.250 (m, 1 H), 6.953–6.99 (m, 1 H); 13C NMR (101 MHz, CDCl3) δ 148.21, 147.62, 141.17, 140.77, 132.48, 128.98, 128.93, 127.57, 127.22, 127.19, 126.67, 125.90, 117.65, 113.43, 59.73; HRMS (ESI-TOF) m/z calcd for C19H13IN2 [M + H]+: 397.0196, found: 397.0204.

2-(3-Chlorophenyl)-3-iodoimidazo[1,2-a]pyridine (3j)

A green solid, mp = 152–154 °C, yield: 72% (51.06 mg); 1H NMR (400 MHz, CDCl3) δ 8.22 (d, J = 6.8 Hz, 1 H), 8.10 (s, 1 H), 7.99 (d, J = 8.0 Hz, 1 H), 7.63 (d, J = 9.2 Hz, 1 H), 7.44–7.36 (m, 2 H), 7.30–7.26 (m, 1 H), 6.96–6.93 (m, 1 H); 13C NMR (101 MHz, CDCl3) δ 148.27, 146.72, 135.55, 134.51, 129.70, 128.64, 128.47, 126.70, 126.65, 125.98, 117.85, 113.53, 59.88; MS: m/z 354 (M+).

3-Iodo-2-(naphthalen-2-yl)imidazo[1,2-a]pyridine (3k)71

A brown solid, mp = 142–144 °C, yield: 84% (62.19 mg); 1H NMR (400 MHz, CDCl3) δ 8.47 (s, 1 H), 8.11 (t, J = 4.4 Hz, 2 H), 7.85 (d, J = 5.2 Hz, 2 H), 7.77–7.76 (m, 1 H), 7.56 (d, J = 6.0 Hz, 1 H), 7.41–7.39 (m, 2 H), 7.15 (t, J = 5.0 Hz, 1 H), 6.79 (t, J = 4.4 Hz, 1 H); 13C NMR (101 MHz, CDCl3) δ 148.25, 147.94, 133.32, 133.24, 131.01, 128.55, 128.06, 127.90, 127.79, 126.61, 126.45, 126.30, 126.29, 125.80, 117.63, 113.34, 60.03; MS: m/z 370 (M+).

3-Iodo-2-(thiophen-2-yl)imidazo[1,2-a]pyridine (3l)19

A brown liquid, mp = 110–112 °C, yield: 85% (55.45 mg); 1H NMR (400 MHz, CDCl3) δ 8.12 (d, J = 4.8 Hz, 1 H), 7.94 (d, J = 1.6 Hz, 1 H), 7.57 (d, J = 6.0 Hz, 1 H), 7.38 (d, J = 2.8 Hz, 1 H), 7.21 (t, J = 5.2 Hz, 1 H), 7.15–7.13 (m, 1 H), 6.86 (t, J = 4.4 Hz,1 H); 13C NMR (101 MHz, CDCl3) δ 147.82, 143.45, 136.61, 127.66, 126.41, 126.33, 125.91, 125.78, 117.34, 113.32, 58.58; MS: m/z 326 (M+).

3-Iodo-2-ethylimidazole[1,2-a]pyridine (3m)

A yellow solid, mp = 158–160 °C, yield: 81% (44.21 mg); 1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 7.2 Hz, 1 H), 7.51 (d, J = 9.2 Hz, 1 H), 7.198–7.155 (m, 1 H) 6.85 (t, J = 7.4 Hz, 1 H), 2.81 (dd, J = 15.2, 7.6 Hz, 2 H), 1.33 (t, J = 7.6 Hz, 3 H); 13C NMR (101 MHz, CDCl3) δ 152.51, 148.00, 126.09, 125.01, 117.18, 112.89, 60.52, 22.52, 13.78; HRMS (ESI-TOF) m/z calcd for C9H10IN2 [M + H]+: 272.9883, found: 272.9889.

3,6-Bis(3-methoxyphenyl)-2-phenylimidazo[1,2-a]pyridine (4)

A yellow solid, mp = 139–141 °C, yield: 62%; 1H NMR (400 MHz, CDCl3) δ 8.14 (s, 1 H), 7.82 (d, J = 9.2 Hz, 1 H), 7.71 (d, J = 6.8 Hz, 1 H), 7.52–7.47 (m, 3 H), 7.40–7.31 (m, 4 H), 7.10 (d, J = 7.6 Hz, 3 H), 7.06–7.02 (m, 2 H), 6.93 (dd, J = 8 Hz, 2 Hz, 1 H), 3.87 (s, 3 H), 3.82 (s, 3 H); 13C NMR (101 MHz, CDCl3) δ 160.61, 160.21, 139.10, 133.81, 130.91, 130.27, 128.46, 128.26, 127.82, 127.13, 125.97, 123.06, 121.50, 120.88, 119.60, 117.37, 117.34, 116.17, 115.01, 113.35, 112.89, 55.53, 55.51; MS: m/z 406 (M+).

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31672457), the Hunan Province Science Foundation for Youths (2018JJ3215), the Research Foundation of Education Bureau of Hunan Province (18C0147), the Hunan Agricultural University Science Foundation for High-Level Personnel (17QN21), and the Double First-Class Construction Project of the Hunan Agricultural University (SYL2019064, SYL2019063 SYL201802003, YB2018007, and CX20190497).

Supporting Information Available

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c02645.

  • Copies of NMR spectra (PDF)

The authors declare no competing financial interest.

Supplementary Material

ao1c02645_si_001.pdf (1.7MB, pdf)

References

  1. Garad D. N.; Viveki A. B.; Mhaske S. B. Pd-Catalyzed Regioselective Mono-Arylation: Quinazolinone as the Inherent Directing Group for C(sp2)–H Activation. J. Org. Chem. 2017, 82, 6366. 10.1021/acs.joc.7b00948. [DOI] [PubMed] [Google Scholar]
  2. Dunn P. J. The importance of Green Chemistry in Process Research and Development. Chem. Soc. Rev. 2012, 41, 1452. 10.1039/c1cs15041c. [DOI] [PubMed] [Google Scholar]
  3. Aricò F. Green Synthesis of Heterocycles. Front. Chem. 2020, 8, 74. 10.3389/fchem.2020.00074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campos J. F.; Berteina-Raboin S. Greener Synthesis of Nitrogen-Containing Heterocycles in Water, PEG, and Bio-Based Solvents. Catalysts 2020, 10, 429. 10.3390/catal10040429. [DOI] [Google Scholar]
  5. Constable D. J.; C Dunn P. J.; Hayler J. D.; Humphrey G. R.; Leazer Jr.; Linderman J. L.; Lorenz K.; Manley J.; Pearlman B. A.; Wells A.; Zaksh A.; Zhang T. Y. Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chem. 2007, 9, 411. 10.1039/b703488c. [DOI] [Google Scholar]
  6. Poechlauer P.; Colberg J.; Fisher F.; Jansen M.; Johnson M. D.; Koenig S. G.; Lawler M.; Laporte T.; Manley J.; Martin B.; O’Kearney-McMullan A. Pharmaceutical Roundtable Study Demonstrates the Value of Continuous Manufacturing in the Design of Greener Processes. Org. Process Res. Dev. 2013, 17, 1472. 10.1021/op400245s. [DOI] [Google Scholar]
  7. Véron J. B.; Enguehard-Gueiffier C.; Snoeck R.; Andrei G.; Clercq E. D.; Gueiffier A. Influence of 6 or 8-substitution on the antiviral activity of 3-phenethylthiomethylimidazo[1,2-a]pyridine against human cytomegalovirus (HCMV) and varicella-zoster virus (VZV). Bioorg. Med. Chem. 2007, 15, 7209. 10.1016/j.bmc.2007.03.061. [DOI] [PubMed] [Google Scholar]
  8. Véron J.-B.; Allouchi H.; Enguehard-Gueiffier C.; Snoeck R.; Andrei G.; Clercq E. D.; Gueiffie A. Influence of 6- or 8-substitution on the antiviral activity of 3-arylalkylthiomethylimidazo[1,2-a]pyridine against human cytomegalovirus (CMV) and varicella-zoster virus (VZV): Part II. Bioorg. Med. Chem. 2008, 16, 9536. 10.1016/j.bmc.2008.09.027. [DOI] [PubMed] [Google Scholar]
  9. Rival Y.; Grassy G.; Taudou A.; Ecalle R. Antifungal activity in vitro of some imidazo[1,2-a]pyrimidine derivatives Activité antifongique in vitro de quelques dérivés de l’imidazo[1,2-a]pyrimidine. Eur. J. Med. Chem. 1991, 26, 13. 10.1016/0223-5234(91)90208-5. [DOI] [Google Scholar]
  10. Fisher M. H.; Lusi A. Imidazo[1,2-a]pyridine anthelmintic and antifungal agents. J. Med. Chem. 1972, 15, 982. 10.1021/jm00279a026. [DOI] [PubMed] [Google Scholar]
  11. East S. P.; White C. B.; Barker O.; Barker S.; Bennett J.; Brown D.; Boyd E. A.; Brennan C.; Chowdhury C.; Collins I. DNA gyrase (GyrB)/topoisomerase IV (ParE) inhibitors: synthesis and antibacterial activity. Bioorg. Med. Chem. Lett. 2009, 19, 894. 10.1016/j.bmcl.2008.11.102. [DOI] [PubMed] [Google Scholar]
  12. Kaminski J. J.; Doweyko A. M. Antiulcer Agents. 6. Analysis of the in Vitro Biochemical and in Vivo Gastric Antisecretory Activity of Substituted Imidazo[1,2-a]pyridines and Related Analogues Using Comparative Molecular Field Analysis and Hypothetical Active Site Lattice Methodologies. J. Med. Chem. 1997, 40, 427. 10.1021/jm950700s. [DOI] [PubMed] [Google Scholar]
  13. Lhassani M.; Chavignon O.; Chezal J. M.; Teulade J. C.; Chapat J. P.; Snoeck R.; Andrei G.; Balzarini J.; Clercq E. D.; Gueiffier A. Synthesis and antiviral activity of imidazo[1,2-a]pyridines. Eur. J. Med. Chem. 1999, 34, 271. 10.1016/s0223-5234(99)80061-0. [DOI] [PubMed] [Google Scholar]
  14. Zhang J.-R.; Zhan L.-Z.; Wei L.; Ning Y.-Y.; Zhong X. L.; Lai J.-X.; Xu L.; Tang R.-Y. Metal-Free Thiolation of Imidazopyridines with Functionalized Haloalkanes Using Elemental Sulfur. Adv. Synth. Catal. 2018, 360, 533. 10.1002/adsc.201701190. [DOI] [Google Scholar]
  15. Xiao X.; Xie Y.; Bai S.; Deng Y.; Jiang H.; Zeng W. Transition-Metal-Free Tandem Chlorocyclization of Amines with Carboxylic Acids: Access to Chloroimidazo[1,2-α]pyridines. Org. Lett. 2015, 17, 3998. 10.1021/acs.orglett.5b01868. [DOI] [PubMed] [Google Scholar]
  16. Zhou X.; Yan H.; Ma C.; He Y.; Li Y.; Cao J.; Yan R.; Huang G. Copper-Mediated Aerobic Oxidative Synthesis of 3-Bromo-imidazo[1,2-a]pyridines with Pyridines and Enamides. J. Org. Chem. 2016, 81, 25. 10.1021/acs.joc.5b02384. [DOI] [PubMed] [Google Scholar]
  17. Yan H.; Yang Y.; Gao X.; Zhou K.; Ma C.; Yan R.; Huang G. Iron(II)-Catalyzed Denitration Reaction: Synthesis of 3-Methyl-2-arylimidazo[1,2-a]pyridine Derivatives from Aminopyridines and 2-Methylnitroolefins. Synlett 2012, 23, 2961. 10.1055/s-0032-1317685. [DOI] [Google Scholar]
  18. Jian W. Q.; Wang H. B.; Du K. S.; Zhong W. Q.; Huang J. M. Electrochemical Synthesis of 3-Bromoimidazo[1,2-a]pyridines Directly from 2-Aminopyridines and alpha-Bromoketones. ChemElectroChem 2019, 6, 2733. 10.1002/celc.201900406. [DOI] [Google Scholar]
  19. Zhou B.; Yuan Y.; Jin H.; Liu Y. I2O5-Mediated Iodocyclization Cascade of N-(1-Arylallyl)pyridine-2-amines with Concomitant C=C Bond Cleavage: A Synthesis of 3-Iodoimidazo[1,2-a]pyridines. J. Org. Chem. 2019, 84, 5773. 10.1021/acs.joc.9b00765. [DOI] [PubMed] [Google Scholar]
  20. Udavant R. N.; Yadav A. R.; Shinde S. S. One-Pot Sequential Bromination and Fluorination to Access 3-Fluoroimidazo[1,2-a]pyridines from Arylketones. Eur. J. Org. Chem. 2018, 26, 3432. 10.1002/ejoc.201800578. [DOI] [Google Scholar]
  21. Samanta S.; Jana S.; Mondal S.; Monir K.; Chandra S. K.; Hajra A. Switching the regioselectivity in the copper-catalyzed synthesis of iodoimidazo[1,2-a]pyridines. Org. Biomol. Chem. 2016, 14, 5073. 10.1039/c6ob00656f. [DOI] [PubMed] [Google Scholar]
  22. Wen Q.; Lu P.; Wang Y. Copper-mediated three-component synthesis of 3-cyanoimidazo[1,2-a]pyridines. Chem. Commun. 2015, 51, 15378. 10.1039/c5cc05821j. [DOI] [PubMed] [Google Scholar]
  23. Dey A.; Singsardar M.; Sarkar R.; Hajra A. Environment-Friendly Protocol for the Chlorination of Imidazoheterocycles by Chloramine-T. ACS Omega 2018, 3, 3513. 10.1021/acsomega.7b01844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maleki A.; Taheri-Ledari R.; Rahimi J.; Soroushnejad M.; Hajizadeh Z. Facile Peptide Bond Formation: Effective Interplay between Isothiazolone Rings and Silanol Groups at Silver/Iron Oxide Nanocomposite Surfaces. ACS Omega 2019, 4, 10629. 10.1021/acsomega.9b00986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maleki A. An Efficient Magnetic Heterogeneous Nanocatalyst for the Synthesis of Pyrazinoporphyrazine Macrocycles. Polycyclic Aromat. Compd. 2018, 38, 402. 10.1080/10406638.2016.1221836. [DOI] [Google Scholar]
  26. Maleki A. One-pot three-component synthesis of pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolines using Fe3O4@SiO2–OSO3H as an efficient heterogeneous nanocatalyst. RSC Adv. 2014, 4, 64619. 10.1039/C4RA10856F. [DOI] [Google Scholar]
  27. Maleki A. One-pot multicomponent synthesis of diazepine derivatives using terminal alkynes in the presence of silica-supported superparamagnetic iron oxide nanoparticles. Tetrahedron Lett. 2013, 54, 2055. 10.1016/j.tetlet.2013.01.123. [DOI] [Google Scholar]
  28. Maleki A. Fe3O4/SiO2 nanoparticles: an efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron 2012, 68, 7827. 10.1016/j.tet.2012.07.034. [DOI] [Google Scholar]
  29. Shaabani A.; Maleki A.; Rad J. M.; Soleimani E. Cellulose Sulfuric Acid Catalyzed One-Pot Three-Component Synthesis of Imidazoazines. Chem. Pharm. Bull. 2007, 55, 957. 10.1248/cpb.55.957. [DOI] [PubMed] [Google Scholar]
  30. Maleki A. Synthesis of Imidazo[1,2-a]pyridines Using Fe3O4@SiO2 as an Efficient Nanomagnetic Catalyst via a One-Pot Multicomponent Reaction. Helv. Chim. Acta 2014, 97, 587. 10.1002/hlca.201300244. [DOI] [Google Scholar]
  31. Shaabani A.; Soleimani E.; Maleki A.; Moghimi-Rad J. Rapid Synthesis of 3-Aminoimidazo[1,2-a]Pyridines and Pyrazines. Synth. Commun. 2008, 38, 1090. 10.1080/00397910701862931. [DOI] [Google Scholar]
  32. Shaabini A.; Soleimani E.; Maleki A. One-Pot Three-Component Synthesis of 3-Aminoimidazo[1,2-a]pyridines and -pyrazines in the Presence of Silica Sulfuric Acid. Monatsh. Chem. 2007, 138, 73. 10.1007/s00706-006-0561-6. [DOI] [Google Scholar]
  33. Shaabani A.; Soleimani E.; Maleki A. Ionic liquid promoted one-pot synthesis of 3-aminoimidazo[1,2-a]pyridines. Tetrahedron Lett. 2006, 47, 3031. 10.1016/j.tetlet.2006.03.011. [DOI] [Google Scholar]
  34. Zeineddine A.; Estévez L.; Mallet-Ladeira S.; Miqueu K.; Amgoune A.; Bourissou D. Rational development of catalytic Au(I)/Au(III) arylation involving mild oxidative addition of aryl halides. Nat. Commun. 2017, 8, 565 10.1038/s41467-017-00672-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wolter M.; Klapars A.; Buchwald S. L. Synthesis of N-Aryl Hydrazides by Copper-Catalyzed Coupling of Hydrazides with Aryl Iodides. Org. Lett. 2001, 3, 3803. 10.1021/ol0168216. [DOI] [PubMed] [Google Scholar]
  36. Hennessy E. J.; Buchwald S. L. A General and Mild Copper-Catalyzed Arylation of Diethyl Malonate. Org. Lett. 2002, 4, 269. 10.1021/ol017038g. [DOI] [PubMed] [Google Scholar]
  37. Knochel P.; Dohle W.; Gommermann N.; Kneisel F. F.; Kopp F.; Korn T.; Sapountzis I.; Vu V. A. Highly Functionalized Organomagnesium Reagents Prepared through Halogen–Metal Exchange. Angew. Chem., Int. Ed. 2003, 42, 4302. 10.1002/anie.200300579. [DOI] [PubMed] [Google Scholar]
  38. Sheppard T. D. Metal-Catalysed Halogen Exchange Reactions of Aryl Halides. Org. Biomol. Chem. 2009, 7, 1043. 10.1039/b818155a. [DOI] [PubMed] [Google Scholar]
  39. Straub B. F. Organotransition Metal Chemistry. From Bonding to Catalysis. Edited by John F. Hartwig. Angew. Chem., Int. Ed. 2010, 49, 7622. 10.1002/anie.201004890. [DOI] [Google Scholar]
  40. Sharma K.; Patel D. I.; Jain R. Metal-free synthesis of N-fused heterocyclic iodides via C–H functionalization mediated by tert-butylhydroperoxide. Chem. Commun. 2015, 51, 15129. 10.1039/c5cc04013b. [DOI] [PubMed] [Google Scholar]
  41. Dutta U.; Deb A.; Lupton D. W.; Maiti D. The regioselective iodination of quinolines, quinolones, pyridones, pyridines and uracil. Chem. Commun. 2015, 51, 17744. 10.1039/c5cc07799k. [DOI] [PubMed] [Google Scholar]
  42. Katrun P.; Kuhakarn C. K2S2O8-Mediated halogenation of 2-arylimidazo[1,2-a]pyridines using sodium halides as the halogen sources. Tetrahedron Lett. 2019, 60, 989. 10.1016/j.tetlet.2019.03.008. [DOI] [Google Scholar]
  43. Semwal R.; Ravi C.; Kumar R.; Meena R.; Adimurthy S. Sodium Salts (NaI/NaBr/NaCl) for the Halogenation of Imidazo-Fused Heterocycles. J. Org. Chem. 2019, 84, 792. 10.1021/acs.joc.8b02637. [DOI] [PubMed] [Google Scholar]
  44. Indukuri D. R.; Potuganti G. R.; Alla M. Hypervalent Iodine Mediated Efficient Solvent-Free Regioselective Halogenation and Thiocyanation of Fused N-Heterocycles. Synlett 2019, 30, 1573. 10.1055/s-0037-1611856. [DOI] [Google Scholar]
  45. Park J. W.; Kim Y. H.; Kim D. Y. Electrochemical Oxidative Iodination of imidazo[1,2-a]pyridines Using NaI as Iodine Source. Synth. Commun. 2020, 50, 710. 10.1080/00397911.2020.1717539. [DOI] [Google Scholar]
  46. Kazzouli S. E.; Berthaultö A.; Berteina-Baboinö S.; Mouaddib A.; Guillaumetö G. Solution and Solid Phase Functionalization of Imidazo[1,2-a]pyridines. Lett. Org. Chem. 2005, 2, 184. 10.2174/1570178053203017. [DOI] [Google Scholar]
  47. Mondal S.; Samanta S.; Singsardar M.; Mishra S.; Mitra S.; Hajra A. Zwitterionic-Type Molten Salt Catalyzed Iodination in Water: Synthesis of Iodoimidazoheterocycles. Synthesis 2016, 48, 4009. 10.1055/s-0035-1562492. [DOI] [Google Scholar]
  48. Neto J. S. S.; Balaguez R. A.; Franco M. S.; deSáMachado V. C.; Saba S.; Rafique J.; Galetto F. Z.; Braga A. L. Trihaloisocyanuric Acids in Ethanol: An Eco-friendly System for The Regioselective Halogenation of Imidazo-heteroarenes. Green Chem. 2020, 22, 3410. 10.1039/d0gc00137f. [DOI] [Google Scholar]
  49. Gao X.; Yang H.; Cheng C.; Jia Q.; Gao F.; Chen H.; Cai Q.; Wang C. Iodide Reagent Controlled Reaction Pathway of Iodoperoxidation of Alkenes: A High Regioselectivity Synthesis of α- and β-iodoperoxidates under Solvent-free Conditions. Green Chem. 2018, 20, 2225. 10.1039/c8gc00209f. [DOI] [Google Scholar]
  50. Jereb M.; Zupan M.; Stavber S. Hydrogen Peroxide Induced Iodine Transfer into Alkenes. Green Chem. 2005, 7, 100. 10.1039/b407592g. [DOI] [Google Scholar]
  51. Li X.; Wang X.; Wang Z.; Yan X.; Xu X. TBHP-Induced Iodocyclization with I2: Atom Economic Synthesis of Iodinated Isoxazolines in Water under Mild Conditions. ACS Sustainable Chem. Eng. 2019, 7, 1875. 10.1021/acssuschemeng.8b06096. [DOI] [Google Scholar]
  52. Sun K.; Lv Y.; Wang J.; Sun J.; Liu L.; Jia M.; Liu X.; Li Z.; Wang X. Regioselective, Molecular Iodine-Mediated C3 Iodination of Quinolines. Org. Lett. 2015, 17, 4408. 10.1021/acs.orglett.5b01857. [DOI] [PubMed] [Google Scholar]
  53. Sharma K. K.; Patel D. I.; Jain R. Metal-free Synthesis of N-fused Heterocyclic Iodides via C–H Functionalization Mediated by tert-Butylhydroperoxide. Chem. Commun. 2015, 51, 15129. 10.1039/C5CC04013B. [DOI] [PubMed] [Google Scholar]
  54. Maleki A. Green oxidation protocol: Selective conversions of alcohols and alkenes to aldehydes, ketones and epoxides by using a new multiwall carbon nanotube-based hybrid nanocatalyst via ultrasound irradiation. Ultrason. Sonochem. 2018, 40, 460. 10.1016/j.ultsonch.2017.07.020. [DOI] [PubMed] [Google Scholar]
  55. Maleki A.; Aghaie M.; Hafizi-Atabak H. R.; Ferdowsi M. Ultrasonic treatment of CoFe2O4@B2O3-SiO2 as a new hybrid magnetic composite nanostructure and catalytic application in the synthesis of dihydroquinazolinones. Ultrason. Sonochem. 2017, 37, 460. 10.1016/j.ultsonch.2017.01.022. [DOI] [PubMed] [Google Scholar]
  56. Maleki A.; Aghaie M. Sonochemical rate enhanced by a new nanomagnetic embedded core/shell nanoparticles and catalytic performance in the multicomponent synthesis of pyridoimidazoisoquinolines. Ultrason. Sonochem. 2017, 38, 115. 10.1016/j.ultsonch.2017.03.014. [DOI] [PubMed] [Google Scholar]
  57. Maleki A.; Aghaie M. Ultrasonic assisted synergetic green synthesis of polycyclic imidazo(thiazolo)pyrimidines by using Fe3O4@clay core-shell. Ultrason. Sonochem. 2017, 38, 585. 10.1016/j.ultsonch.2016.08.024. [DOI] [PubMed] [Google Scholar]
  58. Maleki A.; Aghaie M. Ultrasonic-assisted environmentally-friendly synergetic synthesis of nitroaromatic compounds in core/shell nanoreactor: A green protocol. Ultrason. Sonochem. 2017, 39, 534. 10.1016/j.ultsonch.2017.05.031. [DOI] [PubMed] [Google Scholar]
  59. Maleki A.; Rahimi J.; Demchuk O. M.; Wilczewska A. Z.; Jasiński R. Green in water sonochemical synthesis of tetrazolopyrimidine derivatives by a novel core-shell magnetic nanostructure catalyst. Ultrason. Sonochem. 2018, 43, 262. 10.1016/j.ultsonch.2017.12.047. [DOI] [PubMed] [Google Scholar]
  60. Paengphua P.; Chancharunee S. Facile synthesis of imidazo[1,2-a]pyridines promoted by room-temperature ionic liquids under ultrasound irradiation. Monatsh. Chem. 2018, 149, 1835. 10.1007/s00706-018-2238-3. [DOI] [Google Scholar]
  61. Kurva M.; Pharande S. G.; Quezada-Soto A.; Gámez-Montaño R. Ultrasound assisted green synthesis of bound type bis-heterocyclic carbazolyl imidazo[1,2-a]pyridines via Groebke-Blackburn-Bienayme reaction. Tetrahedron Lett. 2018, 59, 1596. 10.1016/j.tetlet.2018.03.031. [DOI] [Google Scholar]
  62. Heropoulos G. A.; Cravotto G.; Screttas C. G.; Steele B. R. Contrasting Chemoselectivities in The Ultrasound and Microwave Assisted Bromination Reactions of Substituted Alkylaromatics with N-bromosuccinimide. Tetrahedron Lett. 2007, 48, 3247. 10.1016/j.tetlet.2007.03.023. [DOI] [Google Scholar]
  63. Fujita M.; Lévêque J. M.; Komatsu N.; Kimura T. Sono-bromination of Aromatic Compounds Based on The Ultrasonic Advanced Oxidation Processes. Ultrason. Sonochem. 2015, 27, 247. 10.1016/j.ultsonch.2015.04.030. [DOI] [PubMed] [Google Scholar]
  64. Zhang X.; Wu Y.; Zhang Y.; Liu H.; Xie Z.; Fu S.; Liu F. Ultrasound-assisted Tandem Reaction of Alkynes and Trihaloisocyanuric Acids by Thiourea as Catalyst in Water. Tetrahedron 2017, 73, 4513. 10.1016/j.tet.2017.05.075. [DOI] [Google Scholar]
  65. Wu C.; Lu L.-H.; Peng A.-Z.; Jia G.-K.; Peng C.; Cao Z.; Tang Z.; He W.-M.; Xu X. Ultrasound-promoted Brønsted Acid Ionic Liquid-catalyzed Hydrothiocyanation of Activated Alkynes under Minimal Solvent Conditions. Green Chem. 2018, 20, 3683–3688. 10.1039/C8GC00491A. [DOI] [Google Scholar]
  66. Xie L.-Y.; Li Y.-J.; Qu J.; Duan Y.; Hu J.; Liu K.-J.; Cao Z.; He W.-M. A Base-free, Ultrasound Accelerated One-pot Synthesis of 2-sulfonylquinolines in Water. Green Chem. 2017, 19, 5642–5646. 10.1039/C7GC02304A. [DOI] [Google Scholar]
  67. Zhu S.; Wang B.; Li H.; Xiao W.; Teng F.; Shen H.; Gui Q.-W.; Li Z.; Jiang H. Halogenation of Imidazo[1,2-α]pyridines with DXDMH (X = Cl, Br and I) Using DMSO as a Solvent and an Oxidant. ChemistrySelect 2020, 5, 12329. 10.1002/slct.202003161. [DOI] [Google Scholar]
  68. Jiang H.; Guo D.; Zhang Y.; Shen Q. P.; Tang S.; You J.; Huo Y.; Wang H.; Gui Q.-W. Ultrasound-Promoted and Base-Mediated Regioselective Bromination of Imidazo[1,2-a]pyridines with Pyridinium Tribromide. Synthesis 2020, 52, 2713. 10.1055/s-0040-1707856. [DOI] [Google Scholar]
  69. Jiang H.; Tang X.; Liu S.; Wang L.; Shen H.; Yang J.; Wang H.; Gui Q.-W. Ultrasound Accelerated Synthesis of O-alkylated Hydroximides under Solvent- and Metal-free Conditions. Org. Biomol. Chem. 2019, 17, 10223. 10.1039/c9ob02245g. [DOI] [PubMed] [Google Scholar]
  70. Gui Q. W.; Teng F.; Ying S. N.; Liu Y.; Guo T.; Tang J. X.; Chen J.-Y.; Cao Z.; He W.-M. Ultrasound-assisted Tandem Synthesis of Tri- and Tetra-substituted Pyrrole-2-carbonitriles from Alkenes, TMSCN and N,N-disubstituted formamides. Chin. Chem. Lett. 2020, 31, 3241. 10.1016/j.cclet.2020.07.017. [DOI] [Google Scholar]
  71. Meng X.; Yu C.; Chen G.; Zhao P. Heterogeneous biomimetic aerobic synthesis of 3-iodoimidazo[1,2-a]pyridines via CuOx/OMS-2-catalyzed tandem cyclization/iodination and their late-stage functionalization. Catal. Sci. Technol. 2015, 5, 372. 10.1039/C4CY00919C. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

ao1c02645_si_001.pdf (1.7MB, pdf)

Articles from ACS Omega are provided here courtesy of American Chemical Society

RESOURCES