Abstract
目的
通过观测髌骨上缘不同水平位置股四头肌横截面积(cross-sectional area,CSA)与体积(quadriceps muscle volume,QMV)的相关性,探讨评估股四头肌肌肉参数的最佳测量位置。
方法
对22例单侧前交叉韧带(anterior cruciate ligament,ACL)断裂男性患者行双侧大腿磁共振成像检查,患者平均年龄(29±6)岁,分别选取髌骨上缘18、15和12 cm处,利用半自动分割和医学影像处理软件确定QMV和各水平位置CSA。通过拟合回归方程建立模型估计QMV,采用Bland-Altman分析评价两者之间的一致性。
结果
受试者健侧QMV平均为(1 944.45±323.77) cm3。髌骨上缘18、15和12 cm处的股四头肌CSA分别为(80.80±12.16) cm2、(77.53±12.03) cm2和(72.68±10.51) cm2,拟合方程R2分别为0.819、0.755、0.684(P均<0.001),QMV估计值的标准误(standard error of the estimate,SEE)分别为7.4%、8.7%、9.8%(以体积的百分比表示)。三个水平位置的拟合方程均较好,但以髌骨上缘18 cm处的拟合度最高。Bland-Altman散点图结果显示,髌骨上缘18、15和12 cm处的QMV差值平均值分别为0.8 cm3、-1.1 cm3、0.9 cm3,95%一致性界限分别为(-268.8,270.5)、(-315.2,313.1)、(-355.7,357.5),髌骨上缘18 cm处QMV的估计值与实测值一致性最好,患侧与健侧结果一致。
结论
以髌骨上缘作为基线探讨青年男性QMV与CSA的相关性具有可靠性和一致性,其中以髌骨上缘18 cm处的股四头肌CSA与QMV的相关性最好,但对于股四头肌的不同损伤部位,可选择不同观测位置。
Keywords: 磁共振成像, 股四头肌, 横截面积, 测量
Abstract
Objective
To investigate the correlation between the quadriceps cross-sectional area (CSA) and quadriceps muscle volume (QMV) at different horizontal levels from the upper edge of the patella, and to determine the best observation position.
Methods
Thigh magnetic resonance imaging (MRI) images of 22 Chinese young men [age: (29±6) years] with anterior cruciate ligament (ACL) rupture were examined. The CSA was measured at 18, 15, and 12 cm above the upper edge of the pate-lla (denoted by CSA-18, CSA-15 and CSA-12 respectively), and the QMV and CSA were determined by semiautomatic segmentation. A curve model was established to estimate QMV. Bland-Altman analysis was performed to determine the confidence limits of the volumes.
Results
On the unaffected side, the mean QMV was (1 944.45±323.77) cm3. The quadriceps CSA at the upper edge of the patella at 18, 15, and 12 cm was (80.80±12.16) cm2, (77.53±12.03) cm2, and (72.68±10.51) cm2, respectively. The coefficients of determination (R2), ascertained using curve estimation models, for the 3 positions were 0.819, 0.755, and 0.684 (P < 0.001), and the standard deviations of the volume estimated value (SEE) were 7.4%, 8.7%, and 9.8%. The fitting equations of the three horizontal positions were all good, but the fitting degree of CSA-18 was the highest. The Bland-Altman scatter plot showed that the arithmetic means of the QMV at 18, 15 and 12 cm from the upper edge of the patella 0.8 cm3, -1.1 cm3, and 0.9 cm3 and 95% limits of agreement (LoA) were (-268.8, 270.5), (-315.2, 313.1), and (-355.7, 357.5), respectively. The estimated QMV was in good agreement with the measured value. The difference between the estimated CSA-18 and measured values was the smallest. The results on the affected side were consistent.
Conclusion
The correlation between QMV and CSA in the young men with the upper edge of patella as baseline was reliable and consistent. Among them, CSA-18 had the highest correlation with the QMV. However, different observation sites could be selected for different injuries of the quadriceps.
Keywords: Magnetic resonance imaging, Quadriceps muscle, Cross-sectional area, Measurement
肌肉健康在保证机体新陈代谢和抵抗身体虚弱中起重要作用[1-3]。对我国大学生的调查显示,有52.1%报告发生过与身体活动有关的损伤,尤其以下肢损伤为主[4]。体育活动减少也会导致进行性肌肉量下降[5],通过影像学测量股四头肌,可以解释股四头肌萎缩是导致股四头肌弱化和功能障碍的因素[6]。肌肉的测量包括肌力、肌肉质量和肌肉功能。股四头肌的肌肉质量常常作为评估运动损伤后康复效果和肌肉衰减综合征等慢性病的重要临床指标,在运动损伤、衰老和慢性病的诊断中有较强的应用价值[7-9]。
近年的研究多通过股四头肌横截面积(cross-sectional area,CSA)来反映股四头肌的体积大小[10]。已有研究证明,使用磁共振成像(magnetic resonance imaging,MRI)通过手动或自动分割技术来获得肌肉面积和体积具有可靠性[11-12],即通过手动圈定感兴趣区域(region of interest,ROI),在多个连续的轴向解剖MRI上描绘肌肉的边缘,分割股四头肌以确定总肌肉体积[13]。但由于该体积测量方法繁琐且耗时长,目前多将单个轴向解剖CSA的评估作为定量肌肉参数的方法,并已被证明具有极好的灵敏性和可靠性[14-15]。不同国家和地区、不同种族人群因体格大小的差异,反映股四头肌体积(quadriceps muscle volume,QMV)的最佳水平位置可能不同。已有的研究多考虑使用股骨长度的相对距离来定义横截面位置,或直接利用大腿中段CSA来观察股四头肌萎缩情况[16-17],但两种方法都需要包含整个大腿长度的MRI图像采集。
本研究以髌骨上缘为基线探讨膝上不同位置的股四头肌CSA与QMV的关系,以期简化MRI检查操作、节省时间,为中国人群应用MRI评估股四头肌肌肉参数的最佳位置提供参考依据。
1. 资料与方法
1.1. 研究对象
研究对象来源于我们先前的研究,选取自2015年7月至2018年4月在北京大学第三医院运动医学门诊招募的单侧单纯前交叉韧带(anterior cruciate ligament,ACL)断裂男性患者[18]。纳入标准:(1)年龄18~40周岁;(2)急性期已过,关节炎症不明显,关节活动没有明显受限,出现股四头肌肌力下降和肌肉萎缩;(3)有完整清晰大腿MRI图像。排除标准:(1)ACL断裂合并其他损伤,出现炎症和关节活动受限;(2)Ⅱ~Ⅲ度复合韧带松弛、双侧膝关节损伤、严重肢体或下腰部损伤(如神经损伤、骨折、椎间盘突出);(3)常规MRI诊断并发可修复半月板损伤、全层关节软骨损伤;(4)体重指数(body mass index,BMI)>28 kg/m2。该研究通过北京大学第三医院医学科学研究伦理委员会批准,批准号为[2013]070(2),所有志愿者均充分了解研究目的和风险获益后自愿参加,并签署知情同意书。
共纳入符合标准的患者22例,平均年龄(29.5±5.9)岁,身高(175.9±5.5) cm,体质量(76.9±11.9) kg,BMI为(25.1±3.0) kg/m2。
1.2. MRI检查
采用西门子MRI系统(Magnetom Trio A Tim,3T型)进行双侧大腿肌肉MRI扫描。患者仰卧位,足先进,脚尖朝前,确保线圈下端包全髌骨,轴位,序列T1-VIBE-FS,3D,层厚3 mm,层间距0.6 mm,相位编码A/P,视野400 mm×275.2 mm,TR 11.3 ms,TE 4.79 ms。所有序列如果出现运动伪影,重新扫描。
1.3. 体积和横截面积的测量
采用Mimics 21.0(Materialise Inc.,Leuven,Belgium)进行图像分析,导入大腿MRI图像(DICOM格式),在窗口选择大腿部位,选择合适的阈值(本研究中为60),建立包含所有肌肉的初始肌肉掩膜(图 1A),设定阈值可以减少肌肉掩膜中的肌肉内脂肪成分和肌间间隙,仅保留肌肉成分。以髌骨上缘18 cm、15 cm、12 cm为感兴趣层面,进行ROI手动圈定面积(图 1B),获得股四头肌CSA(cm2),分别用CSA-18、CSA-15和CSA-12表示;在每层划取ROI并叠加肌肉轮廓,使用软件计算QMV(cm3)。根据已有文献提供的分割边界[12],分别划取股直肌、股内侧肌、股外侧肌和股中间肌,并获得CSA(图 1C)。所有分析由同一研究人员进行手动纠正,同一平面重复测量3次取平均值。
图 1.
图像分析软件中的受试者MRI图像
The MRI images of the participants in the image analysis software
A, the establishment of the quadriceps mask (the threshold is 60); B, the area encircled in color shows the quadriceps CSA in both sides; C, the regions with red line show the rectus femoris (RF), vastus medialis (VM), vastus internus (Ⅵ), vastus lateralis (VL), respectively.
1.4. 统计学方法
采用SPSS 24.0软件和MedCalc 19.1软件进行统计分析,采用Shapiro-Wilk对数据进行正态性检验,符合正态分布者用均数±标准差表示,同侧3个水平的CSA采用重复测量的方差分析进行比较,三个横截面比较采用重复测量的方差分析。采用Pearson相关对CSA和QMV进行相关性分析。通过单个CSA建立回归模型估计QMV,采用Bland-Altman分析对CSA拟合模型的QMV估计值与实测值的一致性进行评价。P<0.05为差异有统计学意义。
2. 结果
2.1. 研究对象股四头肌一般情况
志愿者双侧大腿基本情况如表 1所示,健患侧股四头肌CSA在三个水平位置间差异均具有统计学意义(P均<0.001)。在不同水平横截面上分别测量股直肌、股内侧肌、股外侧肌和股中间肌的CSA,其中股内侧肌CSA-12最大,股直肌、股外侧肌和股中间肌CSA-18最大。
表 1.
股四头肌横截面积(n=22,x±s)
CSA of quadriceps (n=22, x±s)
| Items | CSA of quadriceps/cm2 | F value | P value | ||
| CSA-18 | CSA-15 | CSA-12 | |||
| RF, rectus femoris; VM, vastus medialis; VL, vastus lateralis; Ⅵ, vastus internus; CSA, cross-sectional area. CSA-18, CSA-15, CSA-12 represent quadriceps CSA at the upper edge of the patella at 18, 15 and 12 cm, respectively. | |||||
| Unaffected side | |||||
| Quadriceps | 80.80±12.16 | 77.53±12.03 | 72.68±10.51 | 92.876 | <0.001 |
| RF | 9.53±2.36 | 7.01±1.67 | 3.66±1.28 | 209.987 | <0.001 |
| VM | 14.97±3.46 | 20.09±4.51 | 23.04±4.90 | 336.556 | <0.001 |
| VL | 28.71±4.93 | 25.84±4.71 | 22.06±3.85 | 121.180 | <0.001 |
| Ⅵ | 27.59±4.58 | 24.60±4.11 | 21.19±3.95 | 132.113 | <0.001 |
| Affected side | |||||
| Quadriceps | 73.79±15.83 | 71.16±15.25 | 66.41±14.02 | 58.739 | <0.001 |
| RF | 9.49±2.34 | 7.05±1.86 | 4.24±1.19 | 226.089 | <0.001 |
| VM | 13.43±3.89 | 17.78±4.37 | 22.29±5.46 | 239.172 | <0.001 |
| VL | 26.07±6.73 | 23.63±5.90 | 20.23±5.35 | 58.258 | <0.001 |
| Ⅵ | 24.80±5.10 | 22.70±5.08 | 19.64±4.48 | 101.731 | <0.001 |
2.2. 股四头CSA与身高、体质量、体积的相关性分析
双侧股四头肌CSA-18、CSA-15、CSA-12均与QMV存在较好线性关系,但相关系数随横截面的下降而减小。QMV和身高、体质量的相关性较低,CSA和身高无显著相关性,但与体质量有一定相关性(表 2)。
表 2.
CSA与QMV、身高、体质量之间的相关性分析
Correction analysis between CSA and QMV, height and weight
| Items | Unaffected side | Affected side | ||||||||||||||||||||||||||||||||||
| r | R 2 | P value | r | R 2 | P value | |||||||||||||||||||||||||||||||
| QMV, quadriceps muscle volume. CSA-18, CSA-15, CSA-12 represent quadriceps cross-sectional area (CSA) at the upper edge of the patella at 18 cm, 15 cm and 12 cm, respectively. | ||||||||||||||||||||||||||||||||||||
| QMV | ||||||||||||||||||||||||||||||||||||
| CSA-18 | 0.891 | 0.793 | <0.001 | 0.953 | 0.909 | <0.001 | ||||||||||||||||||||||||||||||
| CSA-15 | 0.843 | 0.711 | <0.001 | 0.926 | 0.857 | <0.001 | ||||||||||||||||||||||||||||||
| CSA-12 | 0.808 | 0.652 | <0.001 | 0.904 | 0.818 | <0.001 | ||||||||||||||||||||||||||||||
| Height | 0.404 | 0.163 | 0.062 | 0.447 | 0.199 | 0.037 | ||||||||||||||||||||||||||||||
| Weight | 0.705 | 0.497 | <0.001 | 0.658 | 0.433 | 0.001 | ||||||||||||||||||||||||||||||
| Height | ||||||||||||||||||||||||||||||||||||
| CSA-18 | 0.135 | 0.018 | 0.548 | 0.247 | 0.061 | 0.268 | ||||||||||||||||||||||||||||||
| CSA-15 | 0.058 | 0.003 | 0.796 | 0.197 | 0.039 | 0.378 | ||||||||||||||||||||||||||||||
| CSA-12 | -0.025 | 0.001 | 0.912 | 0.196 | 0.038 | 0.383 | ||||||||||||||||||||||||||||||
| Weight | ||||||||||||||||||||||||||||||||||||
| CSA-18 | 0.657 | 0.432 | 0.001 | 0.571 | 0.326 | 0.005 | ||||||||||||||||||||||||||||||
| CSA-15 | 0.597 | 0.357 | 0.003 | 0.567 | 0.322 | 0.006 | ||||||||||||||||||||||||||||||
| CSA-12 | 0.509 | 0.259 | 0.016 | 0.508 | 0.258 | 0.016 | ||||||||||||||||||||||||||||||
2.3. 股四头肌的拟合模型
将CSA-18、CSA-15和CSA-12分别拟合模型估计体积,其二阶回归模型的拟合度均较线性模型更好(与线性模型R2相比,表 2),其中健侧和患侧均为CSA-18的R2最大。三个横截面QMV估计值的标准误(standard error of the estimate,SEE)以体积的百分比表示,健侧分别为7.4%、8.7%、9.8%,患侧分别为7.0%、8.7%、9.1%,两侧相似,CSA-18的SEE最小(表 3)。根据拟合方程建立的曲线模型见图 2。
表 3.
QMV的曲线拟合模型
Fitting equation of the QMV
| R 2 | SEE | F value | P value | Constant | b1 | b2 | |
| SEE, standard error of the estimate; Other abbreviations as in Table 2. Constant, b1, b2 were parameter estimate. | |||||||
| Unaffected side | |||||||
| CSA-18 | 0.819 | 144.64 | 43.111 | <0.001 | -2 221.800 | 79.618 | -0.340 |
| CSA-15 | 0.755 | 168.51 | 29.265 | <0.001 | -2 506.692 | 92.559 | -0.443 |
| CSA-12 | 0.684 | 191.29 | 20.580 | <0.001 | -2 311.765 | 93.240 | -0.468 |
| Affected side | |||||||
| CSA-18 | 0.923 | 123.05 | 114.104 | <0.001 | -1 423.204 | 62.000 | -0.247 |
| CSA-15 | 0.883 | 151.52 | 72.009 | <0.001 | -1 766.642 | 75.312 | -0.349 |
| CSA-12 | 0.871 | 159.67 | 63.904 | <0.001 | -1 992.903 | 87.521 | -0.451 |
图 2.
QMV的曲线模型建立(A~C,健侧;D~F,患侧)
Establishment of the curve model of QMV (A-C, unaffected side; D-F, affected side)
Abbreviations as in Table 2.
2.4. 拟合模型的一致性检验
QMV实测值为健侧(1 944.45±323.77) cm3,患侧(1 747.36±422.18) cm3。分别根据拟合方程估算QMV,并进行一致性检验,绘制Bland-Altman散点图。与实测值相比,双侧CSA-18、CSA-15、CSA-12的QMV估计值落在95%一致性界限(limits of agreement, LoA)外的样本数均为4.5%。三者中健侧的差值平均值分别为0.8 cm3、-1.1 cm3、0.9 cm3,95%LoA分别为(-268.8,270.5)、(-315.2,313.1)、(-355.7,357.5),95%LoA可信区间分别为(-374.71,376.37)、(-438.56,436.44)、(-495.74,497.57)。患侧的差值平均值分别为-0.4 cm3、-0.5 cm3、-1.6 cm3,95%LoA分别为(-229.0,229.8)、(-283.0,282.0)、(-296.1,299.2),95%LoA的可信区间分别为(-319.86,319.07)、(-393.87,392.94)、(-413.00,416.11)(图 3)。95%LoA可信区间较小者的一致性更好,说明无论是健侧还是患侧都是CSA-18的QMV估计值与实测值一致性更好。
图 3.
QMV实测值和估计值的Bland-Altman散点图(A~C,健侧;D~F,患侧)
The Bland-Altman scatter plots indicate the difference between estimated value of CSA-18, CSA-15, and CSA-12 and the measured value of QMV in bilateral quadriceps (A-C, unaffected side; D-F, affected side)
Abbreviations as in Table 2. Mean values of QMV = (estimated value + measured value)/2; Difference of QMV = measured value-estimated value.
表 4.
QMV的实测值和估计值(n=22,x±s)
The estimated value and the measured value of QMV (n=22, x±s)
| QMV | Unaffected side | Affected side |
| Abbreviations as in Table 2. | ||
| Measured value/cm3 | 1 944.45±323.77 | 1 747.36±422.18 |
| Estimated value of CSA-18/cm3 | 1 943.62±292.85 | 1 747.76±405.79 |
| Estimated value of CSA-15/cm3 | 1 945.52±281.62 | 1 747.83±396.99 |
| Estimated value of CSA-12/cm3 | 1 943.54±267.56 | 1 745.81±393.31 |
3. 讨论
股四头肌是维持膝关节稳定的重要肌肉,是膝关节伸直活动的重要动力肌。不同运动损伤情况导致的肌肉萎缩程度不同,测量肌肉的CSA相对容易、快速,且有较高的内部一致性,其高重复性可以更好地应用于临床[12, 19-20], 但不同国家和地区、不同种族因体格大小的差异,反映QMV的最佳横截面水平可能不同。本研究通过单一横截面建立回归模型估算QMV,发现对于青年男性,通过髌骨上缘12 cm、15 cm和18 cm水平处的CSA估计QMV的SEE均小于10%,表明三个水平的CSA均可反映QMV大小,但在髌骨上缘18 cm处的CSA拟合度最好,Bland-Altman一致性检验95%LoA可信区间最小,因此,相对而言,髌骨上缘18 cm水平作为观测位置更佳,此结论对于有肌肉损伤的患者同样适用(CSA-18回归模型健侧R2=0.819,SEE=7.4%;患侧R2=0.923,SEE=7.0%)。
以前的研究证明,大腿中部的CSA与QMV的相关性最好[21],故本研究选取大腿中部附近的三个水平位置,结果发现,无论是健侧还是患侧,青年男性髌骨上缘18 cm水平处的CSA与QMV的相关性最佳。从解剖位置来看,以髌骨上缘作为基线选择股四头肌横截面简便易行。Marcon等[19]以34例ACL断裂患者(包括男女,年龄范围20~52岁)膝关节线为基线,在上方选择了三个不同平面进行测量,发现膝关节线上方25 cm处的CSA与QMV的相关性最高(膝关节线为基线,位于股骨的51.0%~ 67.5%处r=0.956)。Yamauchi等[22]发现,对于65~80岁的日本老年人来说,股骨长度60%处(大转子顶部为基线)是估计QMV的最佳位置。然而,在实际的体格检查中不能直接确定膝关节线,且测量股骨长度需要完整的股骨MRI图像,其MRI测量成本过高。本研究CSA-18平面位于股骨总长度的43.2%~49.6%处(膝关节线为基线),与Yamauchi等[22]的研究结果相似。本研究结果表明,使用髌骨上缘作为比较的基线更能节省时间和人力资源,并能够确定与QMV的强相关性。
本研究还对三个层面的股四头肌四部分进行分割,由于股外侧肌和股中间肌的边界很难分清,在测量上误差会较大,故较少见同时在三个横截面上进行股四头肌各部分CSA的测量研究[12]。本研究青年男性的股内侧肌CSA在髌骨上缘12 cm处相对更大,说明股四头肌的测量位置可能需要根据损伤部位决定,对股内侧肌损伤较大的患者,降低股四头肌的观察位置,测量髌骨上缘12 cm处可能更有意义。股内侧肌的CSA是骨关节炎相关的肌肉萎缩的最佳指标[23],膝骨关节炎患者患侧股内侧肌、股直肌和股外侧肌的收缩速度减慢,收缩力量减小[24];而ACL断裂患者会在股内侧肌、股中间肌和股外侧肌表现出肌肉萎缩和肌力下降[25]。日本一项研究对65~80岁老年骨关节炎患者的研究也表明,在大腿中部以下30%处的股内侧肌体积和QMV的相关性最高(r=0.95,P<0.05)[22]。由于股内侧肌的最大肌腹层面靠近髌骨,对于股内侧肌的评估可以选择以髌骨上缘为基线以节约测量成本,髌骨上缘12 cm处即可以作为观测位置。本研究中相关性分析表明身高和体质量与QMV的相关性较弱,因此,骨长度对CSA预测QMV的影响也较小。
另外,本研究还通过曲线模型估计QMV,通过Bland-Altman分析确定一致性,从而进一步确定CSA-18的拟合方程最佳,且一致性检验95%LoA可信区间最小。但其95%LoA大于测量体积的10%,略高于临床应用的可接受范围,因此,本方法可能在预期QMV变化较大的情况下有较好的应用。一般QMV实测值是通过影像处理软件处理连续扫描的MRI图像并获取ROI后求和得到的。Henninger等[26]通过简单的线性方程来估计肩部肌肉体积,与实测值进行检验得到了良好的一致性(SEE<10%),并认为可以在MRI数据中通过常规的临床图像分析软件测量肌肉面积,以此估算肌肉体积。Morse等[17]对平均年龄(23.9±3.4)岁的青年男性进行观测,并建立了三阶回归方程,结果表明股骨长度60%处(股骨远端作为基线)的CSA估计QMV的误差最小,但SEE为10%。Tomlinson等[27]使用多个CSA估算了儿童和青少年的QMV,认为这种方法对儿童和青少年的估计错误率较高(13.9%~39.6%),提出估算时必须考虑体质量偏倚。本研究对18~40岁的青年男性进行讨论,通过确定回归方程拟合度选择二阶回归方程估计QMV,SEE均小于10%,且CSA-18估计QMV的误差最小。本研究对青年男性通过公式预测的方式来估算QMV的误差相对较小,且小于既往研究,说明在评估预测方程式时还应考虑年龄和性别的差异[28],本研究均为青年男性,所以误差较小。
本研究的局限性主要有以下几个方面:首先,测量样本例数较少,受试者均为一侧ACL断裂患者,且术后随访脱落率较高;其次,由于本研究缺乏关于股骨长度的完整数据,不能与以往的研究直接进行比较。但本研究也存在一些优势,如本组患者的同质性高,接受测量的受试者年龄差异小,而且由于目前中国人群中股四头肌体积测量的相关数据较少,本研究结果可为以后的研究提供参考。将来应进一步研究股四头肌各部分的体积测量及其相关性,并对不同年龄组和性别进行补充研究。
综上,以髌骨上缘作为基线探讨青年男性QMV与CSA的相关性具有可靠性和一致性,对于18~40岁的青年男性,髌骨上缘18 cm处的股四头肌CSA与QMV的相关性最高,可以用其更好地估计QMV,以节约临床实践中的扫描时间和后处理的时间成本。但对于股四头肌的不同损伤部位,需选择不同的观测位置。
Funding Statement
国家重点研发计划项目(2019YFF0301700)和国家体育总局重点研究项目(2014B003)
Supported by the Key Technologies Research and Development Program (2019YFF0301700) and the Key Research Project of the State Sports General Administration (2014B003)
References
- 1.Francis P, Lyons M, Piasecki M, et al. Measurement of muscle health in aging. Biogerontology. 2017;18(6):901–911. doi: 10.1007/s10522-017-9697-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Leenders M, Verdijk LB, van der Hoeven L, et al. Prolonged leucine supplementation does not augment muscle mass or affect glycemic control in elderly type 2 diabetic men. J Nutr. 2011;141(6):1070–1076. doi: 10.3945/jn.111.138495. [DOI] [PubMed] [Google Scholar]
- 3.Wang SY, Shamliyan TA, Talley KM, et al. Not just specific diseases: Systematic review of the association of geriatric syndromes with hospitalization or nursing home admission. Arch Gerontol Geriatr. 2013;57(1):16–26. doi: 10.1016/j.archger.2013.03.007. [DOI] [PubMed] [Google Scholar]
- 4.Cai W, Gao L, Li L, et al. Epidemiology of physical activity-related injuries in Chinese university students. Scand J Med Sci Sports. 2019;29(9):1331–1339. doi: 10.1111/sms.13440. [DOI] [PubMed] [Google Scholar]
- 5.Gao Y, Cai W, Gao L, et al. Physical activity-related injuries among university students: A multicentre cross-sectional study in China. BMJ Open. 2018;8(9):e021845. doi: 10.1136/bmjopen-2018-021845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Birchmeier T, Lisee C, Kane K, et al. Quadriceps muscle size following ACL injury and reconstruction: A systematic review. J Orthop Res. 2020;38(3):598–608. doi: 10.1002/jor.24489. [DOI] [PubMed] [Google Scholar]
- 7.Lindstrom M, Strandberg S, Wredmark T, et al. Functional and muscle morphometric effects of ACL reconstruction. A prospective CT study with 1 year follow-up. Scand J Med Sci Sports. 2013;23(4):431–442. doi: 10.1111/j.1600-0838.2011.01417.x. [DOI] [PubMed] [Google Scholar]
- 8.Williams GN, Snyder-Mackler L, Barrance PJ, et al. Quadriceps femoris muscle morphology and function after ACL injury: A diffe-rential response in copers versus non-copers. J Biomech. 2005;38(4):685–693. doi: 10.1016/j.jbiomech.2004.04.004. [DOI] [PubMed] [Google Scholar]
- 9.Young A, Stokes M, Crowe M. The size and strength of the qua-driceps muscles of old and young men. Clin Physiol. 1985;5(2):145–154. doi: 10.1111/j.1475-097X.1985.tb00590.x. [DOI] [PubMed] [Google Scholar]
- 10.Thomas AC, Wojtys EM, Brandon C, et al. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J Sci Med Sport. 2016;19(1):7–11. doi: 10.1016/j.jsams.2014.12.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Pons C, Borotikar B, Garetier M, et al. Quantifying skeletal muscle volume and shape in humans using MRI: A systematic review of validity and reliability. PLoS One. 2018;13(11):e0207847. doi: 10.1371/journal.pone.0207847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Barnouin Y, Butler-Browne G, Voit T, et al. Manual segmentation of individual muscles of the quadriceps femoris using MRI: A reappraisal. J Magn Reson Imaging. 2014;40(1):239–247. doi: 10.1002/jmri.24370. [DOI] [PubMed] [Google Scholar]
- 13.Holzbaur KR, Murray WM, Gold GE, et al. Upper limb muscle volumes in adult subjects. J Biomech. 2007;40(4):742–749. doi: 10.1016/j.jbiomech.2006.11.011. [DOI] [PubMed] [Google Scholar]
- 14.Mersmann F, Bohm S, Schroll A, et al. Muscle shape consistency and muscle volume prediction of thigh muscles. Scand J Med Sci Sports. 2015;25(2):e208–e213. doi: 10.1111/sms.12285. [DOI] [PubMed] [Google Scholar]
- 15.Strandberg S, Wretling ML, Wredmark T, et al. Reliability of computed tomography measurements in assessment of thigh muscle cross-sectional area and attenuation. BMC Med Imaging. 2010;(10):18. doi: 10.1186/1471-2342-10-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.甄 希成, 陈 新, 白 巍. 传统按摩结合持续被动运动训练对脑卒中患者股四头肌横截面积的影响研究. 中国全科医学. 2012;15(29):3366–3368. doi: 10.3969/j.issn.1007-9572.2012.28.053. [DOI] [Google Scholar]
- 17.Morse CI, Degens H, Jones DA. The validity of estimating quadriceps volume from single MRI cross-sections in young men. Eur J Appl Physiol. 2007;100(3):267–274. doi: 10.1007/s00421-007-0429-4. [DOI] [PubMed] [Google Scholar]
- 18.Zhang X, Huang H, Yu Y, et al. Impact of whey protein isolate and eccentric training on quadriceps mass and strength in patients with anterior cruciate ligament rupture: A randomized controlled trial. J Rehabil Med. 2020;52(3):jrm00035. doi: 10.2340/16501977-2664. [DOI] [PubMed] [Google Scholar]
- 19.Marcon M, Ciritsis B, Laux C, et al. Cross-sectional area mea-surements versus volumetric assessment of the quadriceps femoris muscle in patients with anterior cruciate ligament reconstructions. Eur Radiol. 2015;25(2):290–298. doi: 10.1007/s00330-014-3424-2. [DOI] [PubMed] [Google Scholar]
- 20.Strandberg S, Lindstrom M, Wretling ML, et al. Muscle morphometric effect of anterior cruciate ligament injury measured by computed tomography: Aspects on using non-injured leg as control. BMC Musculoskelet Disord. 2013;(14):150. doi: 10.1186/1471-2474-14-150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Yang YX, Chong MS, Lim WS, et al. Validity of estimating muscle and fat volume from a single MRI section in older adults with sarcopenia and sarcopenic obesity. Clin Radiol. 2017;72(5):427.e9–427.e14. doi: 10.1016/j.crad.2016.12.011. [DOI] [PubMed] [Google Scholar]
- 22.Yamauchi K, Yoshiko A, Suzuki S, et al. Estimation of indivi-dual thigh muscle volumes from a single-slice muscle cross-sectional area and muscle thickness using magnetic resonance imaging in patients with knee osteoarthritis. J Orthop Surg (Hong Kong) 2017;25(3):2309499017743101. doi: 10.1177/2309499017743101. [DOI] [PubMed] [Google Scholar]
- 23.Yamauchi K, Suzuki S, Kato C, et al. Atrophy of individual thigh muscles measured by MRI in older adults with knee osteoarthritis: A cross-sectional study. Ann Phys Rehabil Med. 2020;63(1):38–45. doi: 10.1016/j.rehab.2019.06.018. [DOI] [PubMed] [Google Scholar]
- 24.师 东良, 王 宁华, 谢 斌. 膝骨关节炎患者与正常人股内侧肌、股直肌和股外侧肌收缩特征的对照研究. 中国康复理论与实践. 2009;15(6):508–513. doi: 10.3969/j.issn.1006-9771.2009.06.003. [DOI] [Google Scholar]
- 25.Macleod TD, Snyder-Mackler L, Buchanan TS. Differences in neuromuscular control and quadriceps morphology between potential copers and noncopers following anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2014;44(2):76–84. doi: 10.2519/jospt.2014.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Henninger HB, Christensen GV, Taylor CE, et al. The muscle cross-sectional area on MRI of the shoulder can predict muscle volume: An MRI study in Cadavers. Clin Orthop Relat Res. 2020;478(4):871–883. doi: 10.1097/CORR.0000000000001044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Tomlinson OW, Barker AR, Fulford J, et al. Quantification of thigh muscle volume in children and adolescents using magnetic resonance imaging. Eur J Sport Sci. 2020;20(9):1215–1224. doi: 10.1080/17461391.2019.1707292. [DOI] [PubMed] [Google Scholar]
- 28.Nakatani M, Takai Y, Akagi R, et al. Validity of muscle thickness-based prediction equation for quadriceps femoris volume in middle-aged and older men and women. Eur J Appl Physiol. 2016;116(11/12):2125–2133. doi: 10.1007/s00421-016-3464-1. [DOI] [PubMed] [Google Scholar]



