Skip to main content
Journal of Peking University (Health Sciences) logoLink to Journal of Peking University (Health Sciences)
. 2020 Dec 18;53(5):942–945. [Article in Chinese] doi: 10.19723/j.issn.1671-167X.2021.05.022

腕表式睡眠监测仪与多导睡眠监测的睡眠参数比较和相关性分析

Comparison and correlation analysis of sleep parameters between watch-type sleep monitor (Actiwatch) and polysomnography

霍 阳 1, 周 兵 2, 何 红彦 3, 赵 龙 2, 张 雪丽 2, 李 静 2, 左 玉花 2, 郑 宇 1, 任 正洪 4, 韩 芳 2, 张 俊 1,*
PMCID: PMC8517689  PMID: 34650299

Abstract

目的

随着睡眠医学的飞速发展,检测睡眠疾病的方法多种多样,各具优势。本研究以“金标准”多导睡眠监测(polysomnography,PSG)的结果为标准,探索在中国人群中使用小巧轻便的腕表式睡眠监测仪(Actiwatch)获得相关指标的可靠性,以期为Actiwatch的临床应用提供依据。

方法

选取北京大学人民医院睡眠中心2018年8月至2019年12月的121例受试者,受试者进行PSG的同时佩戴Actiwatch,并于第2天清晨填写睡眠日志。收集监测获得的指标进行线性相关分析,并用配对t检验比较两者的差异。

结果

Actiwatch在低灵敏度条件下,PSG和Actiwatch总睡眠时间(total sleep time,TST)的相关系数为0.53(P<0.05),配对t检验表明PSG和Actiwatch的TST差异无统计学意义(t=-0.890,P=0.36)。按年龄分层发现,年龄越小,两者的TST相关性越强,系数最高可达0.92(P<0.05),配对t检验表明两者TST的差异无统计学意义(t=-1.057,P=0.35)。按诊断分层发现,PSG正常组中两者的TST相关系数可高达0.79(P<0.05),配对t检验表明PSG正常组中两者TST的差异无统计学意义(t=-0.784,P=0.44)。

结论

作为一种可穿戴的居家体动记录仪,腕表式睡眠监测仪Actiwatch的分析参数设定为低灵敏度时,PSG和Actiwatch的TST相关性最高;年龄越小,PSG与Actiwatch的TST相关性越强;PSG正常的受试者PSG和Actiwatch的TST相关性更高。

Keywords: 睡眠, 腕表式睡眠监测仪, 体动描记术, 多导睡眠监测


随着睡眠医学的飞速发展,检测睡眠疾病的方法层出不穷。多导睡眠监测(polysomnography,PSG)作为检测睡眠疾病的“金标准”,因其监测时需要连接多种数据记录设备,不同程度地影响受试者的睡眠状态,加之价格昂贵,故而应用受限[1]。另一种常用的睡眠监测方法是体动记录仪(actigraphy,ACT),它通过客观记录、整合受试者肢体活动的发生和程度,进而判断其睡眠情况。ACT小巧轻便,可持续监测,腕表式睡眠监测仪(Actiwatch)就是其中一种。Actiwatch在国外历经近20年的临床实践,已获得美国睡眠协会推荐作为健康成人和特定睡眠疾病患者的居家睡眠监测方法[2-3]。腕表式睡眠监测仪在中国人群中使用的相关研究较少,本研究比较了中国人群中使用Actiwatch和PSG的监测结果,并对两者的相关性进行了分析,以期为临床应用提供更多依据。

1. 资料与方法

1.1. 研究对象

选取2018年8月至2019年12月于北京大学人民医院睡眠中心同时进行PSG和佩戴Actiwatch的121例受试者。排除标准:(1)患有严重心、肝、肾功能障碍和神经系统疾病者;(2)患有精神疾病不能配合检查者;(3)正在进行无创通气治疗或服用镇静等精神类药物者;(4)拒绝实验入组者。

1.2. 方法

收集受试者的出生日期、性别、身高、体质量、颈围、腰围、臀围、既往疾病史和过敏史等基本信息。全部受试者均应用PSG仪(澳大利亚康迪公司Compmedics E型)进行夜间持续不小于7 h的睡眠呼吸监测,同步记录脑电图、眼动图、下颌肌电图、心电图、口鼻气流、胸腹运动、鼾声、血氧饱和度、睡前和醒后血压等。应用美国睡眠医学会制定的《睡眠及其相关事件判读手册》标准进行PSG结果判读。PSG分析指标包括:总在床时间,总睡眠时间,睡眠效率,睡眠分期N1、N2、N3和快动眼(rapid eye movement, REM)睡眠期的百分比,入睡潜伏期,REM潜伏期等。

全部受试者均佩戴Actiwatch (Phillips Respiro-nics Inc., Bend, OR, USA),使用Actiware软件(Philips Respironics Inc., Bend, OR, USA)进行分析。Actiwatch佩戴于受试者优势侧手腕,将肢体活动情况记录储存在设备中。腕表式睡眠监测仪的分析指标包括:总监测时间(total rest time,TRT)、总睡眠时间(total sleep time,TST)、睡眠效率(sleep efficiency,SE)。

全部受试者第2天清晨均填写睡眠日志,内容包括上床时间、睡着时间、夜间觉醒次数、夜间觉醒时间、早晨醒来时间、起床时间等。根据受试者填写的上床时间和起床时间设定Actiwatch的分析间隔。

1.3. 统计学分析

采用SPSS 18.0软件包进行统计分析,数据近似正态分布,故使用x±s描述,两种监测方法的对应数据进行线性相关分析,并用配对t检验比较两者差异,以P<0.05为差异有统计学意义。

2. 结果

2.1. 受试者一般情况

121例受试者中,男性78例,女性43例,年龄6~81岁,平均年龄(45.55±14.88)岁,其中18岁以下5人,19~40岁45人,41岁~65岁62人,66岁及以上9人。受试者的颈围为(37.68±4.07) cm,腹围为(92.74±12.11) cm,臀围为(99.47±8.96) cm。121例受试者中,发作性睡病(narcolepsy)15例,PSG正常者30例,睡眠呼吸暂停综合征(obstructive sleep apnea syndrome, OSAS)者76例。

2.2. PSG和Actiwatch的相关睡眠参数比较

按照121例受试者自述的上床和起床时间设定监测时间,按照Actiware软件的低、中、高三种灵敏度设定分别得出相应的TST和SE,与PSG的TST和SE进行配对t检验分析,结果见表 1

表 1.

PSG与不同灵敏度条件下Actiwatch的相关睡眠参数比较

Comparison of related sleep parameters between PSG and Actiwatch (different sensitivities)

Group TRT/min TST/min SE/%
x±s r x±s r x±s r
* P<0.05, compared with the corresponding indicators of PSG. PSG, polysomnography; TRT, total resting time; TST, total sleep time; SE, sleep efficiency; r, correlation coefficient.
PSG 486.88±35.54 394.48±64.00 81.22±12.94
Actiwatch (low) 517.42±48.47* 0.47 399.59±66.67* 0.53 77.40±12.17* 0.46
Actiwatch (medium) 517.42±48.47* 0.47 420.75±62.55* 0.51 81.48±11.12* 0.45
Actiwatch (high) 517.42±48.47* 0.47 440.94±62.63* 0.47 85.37±10.90* 0.42

低灵敏度条件下,PSG和Actiwatch的TST相关系数为0.53(P<0.05),SE相关系数为0.46(P<0.05)。配对t检验分析表明,低灵敏度条件下,PSG和Actiwatch的TST间差异无统计学意义(t=-0.890,P=0.36),而SE间差异有统计学意义(t=3.212,P<0.05)。

2.3. 不同年龄组PSG和低灵敏度条件下Actiwatch的相关睡眠参数比较

将121例受试者按年龄18岁及以下、19~40岁、41~65岁和66岁及以上进行分组,对每组受试者的PSG和Actiwatch的TRT、TST和SE进行相关性比较(表 2),结果发现年龄越小,两者的TST相关性越强,系数最高可达0.92(P<0.05)。19~40岁组PSG和Actiwatch的TRT间相关系数最高(r=0.55, P<0.05)。配对t检验分析表明,18岁以下组PSG和Actiwatch的TST差异无统计学意义(t=-1.057,P=0.35),19~40岁组PSG和Actiwatch的TRT差异有统计学意义(t=-4.815,P<0.05)。

表 2.

年龄分组后PSG与低灵敏度条件下Actiwatch的相关睡眠参数比较

Comparison of related sleep parameters between PSG and Actiwatch (low sensitivity) after age grouping

Age group/years Monitoring TRT/min TST/min SE/%
x±s r x±s r x±s r
* P<0.05, compared with the corresponding indicators of PSG. Abbreviations as in Table 1.
≤18 PSG 519.28±45.61 442.30±61.74 85.81±14.36
Actiwatch 551.80±61.53 0.20 356.40±76.96* 0.92 65.54±7.10 0.77
19-40 PSG 448.12±39.68 396.54±68.21 81.37±13.50
Actiwatch 517.27±45.56* 0.55 400.71±67.57* 0.67 77.53±12.07* 0.60
41-65 PSG 481.35±29.93 390.96±61.04 81.48±12.91
Actiwatch 514.69±50.21 0.46 400.73±64.02* 0.47 78.02±11.54* 0.38
≥66 PSG 500.71±36.00 381.94±61.72 76.09±9.62
Actiwatch 517.89±43.65 0.17 410.11±77.74 0.45 78.99±12.76 0.48

2.4. 不同诊断的PSG和低灵敏度条件下Actiwatch的相关睡眠参数比较

将121例受试者按发作性睡病、PSG正常和OSAS分为三组,对每组受试者PSG和Actiwatch的TRT、TST和SE的相关性进行比较(表 3),结果发现PSG正常组中PSG和Actiwatch的TST相关性最强,系数最高可达0.79(P<0.05),SE的相关系数为0.72(P<0.05)。配对t检验结果表明,PSG正常组中PSG和Actiwatch的TST差异无统计学意义(t=-0.784,P=0.44),SE差异也无统计学意义(t=0.491,P=0.63)。

表 3.

按诊断分组后PSG与低灵敏度条件下Actiwatch的相关睡眠参数比较

Comparison of related sleep parameters between PSG and Actiwatch (low sensitivity) after diagnosis grouping

Group Monitoring TRT/min TST/min SE/%
x±s r x±s r x±s r
* P<0.05, compared with the corresponding indicators of PSG. OSAS, obstructive sleep apnea syndrome; Other abbreviations as in Table 1.
Narcolepsy PSG 488.28±39.36 416.23±55.72 85.58±10.41
Actiwatch 518.80±69.54* 0.71 373.20±77.05 0.45 72.06±12.93 0.38
Normal PSG PSG 482.40±24.38 388.29±70.50 80.40±14.00
Actiwatch 497.30±41.61* 0.51 394.90±72.94* 0.79 79.46±13.92* 0.72
OSAS PSG 488.37±36.41 392.63±62.76 80.68±12.95
Actiwatch 525.09±44.32* 0.37 406.64±61.22* 0.47 77.63±11.10* 0.40

3. 讨论

客观的睡眠监测方法各有优势,PSG可以同步记录脑电图、肌电图、眼动图等生理指标,分析受试者的睡眠结构、呼吸状态等情况,是最为公认的标准化方法。腕表式睡眠监测仪Actiwatch作为一种可穿戴的居家体动记录仪,经济方便,可连续多晚监测真实睡眠情况[4]。本研究对比了两种监测方法的结果发现,Actiwatch的分析参数设定为低灵敏度时,PSG和Actiwatch的TST相关性最高;受试者年龄越小,二者的TST相关性越高,相关系数甚至高达0.92(P<0.05);PSG正常的受试者与发作性睡病和OSAS患者相比,PSG和Actiwatch的TST相关性更高(r=0.79,P<0.05)。

Actiwatch是应用无线三轴活动记录仪来测量、存储和分析身体活动水平和模式,如何精准地区分睡眠和觉醒最为关键。多数学者认为,腕表式睡眠监测仪会高估睡眠时间,这与本研究结果相符[5-6]。我们以低灵敏度、中灵敏度、高灵敏度三种分析方式与PSG的对应指标进行相关性研究,发现低灵敏度的相关性最高,这与其他研究报道的低灵敏度更为接近PSG的相应指标结果一致[7-8]。有研究表明,Actiwatch的高灵敏度设置似乎更适合检测认知障碍的老年人[9],导致研究结论不一致的原因可能有受试者混杂的因素,提示了分层研究的必要性。

另外需要提及的一点是,虽然腕表式睡眠监测仪对于上床时间和起床时间大部分截取准确,但仍有些病例需要微调,因而同步睡眠日记非常重要,依据睡眠日记提供的上床时间和起床时间来界定Actiwatch的分析时间段,结果更为准确。

本研究将121例受试者分层后发现,不同年龄的人群应用Actiwatch的情况有所差别,年龄越小,PSG与Actiwatch的TST相关性越强。Meltzer等[10]也认为PSG与Actiwatch的相关性受年龄影响,可能是因为随着年龄增长,睡眠结构发生变化,合并其他睡眠疾患的概率增加,例如老人夜间醒来,躺在床上肢体不动,这时Actiwatch就会仍将其视为睡眠状态,降低了判断准确性[11]。神经运动障碍性疾病通常会影响肢体运动,进而影响Actiwatch的判读结果,且此类疾病随年龄增长更为多见。

将受试者按诊断分层后发现,PSG正常的受试者与发作性睡病和OSAS患者相比,PSG和Actiwatch的TST相关性更高,这也提示有必要进一步探讨Actiwatch在不同睡眠疾病中的应用[12]。李清华等[13]研究了体动记录仪在睡眠呼吸暂停低通气综合征(sleep apnea hypopnea syndrome,SAHS)中的应用情况,结果显示其可应用于无SAHS和轻度SAHS受试者,对于中、重度患者,体动记录仪的TST偏短。

腕表式睡眠监测仪是颇有前景的一种记录方式,随着可穿戴技术的进步,其精准性已经大幅提升。本研究探讨了Actiwatch在临床中的应用情况,不足之处在于样本量偏小,还需进一步完善Actiwatch在中国不同年龄人群和不同睡眠疾患人群中的临床实用性。

References

  • 1.Rundo JV, Downey R 3rd. Polysomnography. Handb Clin Neurol. 2019;160:381–392. doi: 10.1016/B978-0-444-64032-1.00025-4. [DOI] [PubMed] [Google Scholar]
  • 2.Morgenthaler T, Alessi C, Friedman L, et al. Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders: An update for 2007. Sleep. 2007;30(4):519–529. doi: 10.1093/sleep/30.4.519. [DOI] [PubMed] [Google Scholar]
  • 3.Smith MT, McCrae CS, Cheung J, et al. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: An American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2018;14(7):1231–1237. doi: 10.5664/jcsm.7230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Park KS, Choi SH. Smart technologies toward sleep monitoring at home. Biomed Eng Lett. 2019;9(1):73–85. doi: 10.1007/s13534-018-0091-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Haghayegh S, Khoshnevis S, Smolensky MH, et al. Performance comparison of different interpretative algorithms utilized to derive sleep parameters from wrist actigraphy data. Chronobiol Int. 2019;36(12):1752–1760. doi: 10.1080/07420528.2019.1679826. [DOI] [PubMed] [Google Scholar]
  • 6.Conley S, Knies A, Batten J, et al. Agreement between actigra-phic and polysomnographic measures of sleep in adults with and without chronic conditions: A systematic review and meta-analysis. Sleep Med Rev. 2019;46(1):151–160. doi: 10.1016/j.smrv.2019.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Tonetti L, Pasquini F, Fabbri M, et al. Comparison of two diffe-rent actigraphs with polysomnography in healthy young subjects. Chronobiol Int. 2008;25(1):145–153. doi: 10.1080/07420520801897228. [DOI] [PubMed] [Google Scholar]
  • 8.Lee PH, Suen LK. The convergent validity of Actiwatch 2 and ActiGraph Link accelerometers in measuring total sleeping period, wake after sleep onset, and sleep efficiency in free-living condition. Sleep Breath. 2017;21(1):209–215. doi: 10.1007/s11325-016-1406-0. [DOI] [PubMed] [Google Scholar]
  • 9.van de Wouw E, Evenhuis HM, Echteld MA. Comparison of two types of Actiwatch with polysomnography in older adults with intellectual disability: a pilot study. J Intellect Dev Disabil. 2013;38(3):265–273. doi: 10.3109/13668250.2013.816274. [DOI] [PubMed] [Google Scholar]
  • 10.Meltzer LJ, Walsh CM, Traylor J, et al. Direct comparison of two new actigraphs and polysomnography in children and adolescents. Sleep. 2012;35(1):159–166. doi: 10.5665/sleep.1608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Martin JL, Hakim AD. Wrist actigraphy. Chest. 2011;139(6):1514–1527. doi: 10.1378/chest.10-1872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Baron KG, Duffecy J, Berendsen MA, et al. Feeling validated yet? A scoping review of the use of consumer-targeted wearable and mobiletechnology to measure and improve sleep. Sleep Med Rev. 2018;40(1):151–159. doi: 10.1016/j.smrv.2017.12.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.李 清华, 王 碧瑛, 董 霄松, et al. 腕动仪结合血氧监测仪在诊断睡眠呼吸暂停低通气综合征中的价值. 中华医学杂志. 2015;95(42):3411–3415. doi: 10.3760/cma.j.issn.0376-2491.2015.42.004. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center

RESOURCES