Abstract
目的
探讨20例样本ABO血型抗原表达减弱的分子生物学机制。
方法
采用微柱凝集法及盐水试管法进行ABO血型血清学鉴定;对ABO基因第1-7外显子及其上游启动子区域PCR产物直接测序进行基因分型。
结果
11例样本通过家系分析可以确定其基因型(1例ABO*A2.01/ABO*B.01,1例ABO*A2.01/ABO*O01.01,1例A1.02/B3.04,2例B3.04/O.01.01、2例B3.02/ O.01.02,4例Bw.12/O.01.01);3例样本在ABO基因启动子区域发生-35_-18位的碱基缺失,通过家系分析,提示该变异发生在B等位基因;1例样本在ABO基因启动子区域发生-119位C > T变异;1例样本发生第7外显子1054位点缺失碱基C;4例样本在ABO血型基因1-7外显子及其调控区域未发现变异。
结论
启动子区域-119位C > T变异及Exon7 1054del变异可能是导致ABO血型抗原异常表达的新变异;部分ABO亚型可能与内含子异常或mRNA合成异常有关;本地区B亚型明显多于A亚型。
Keywords: ABO血型, 抗原减弱, 血清学检测, 基因测序
Abstract
Objective
To explore the molecular mechanism for weakened expression of ABO blood group antigens in 20 cases.
Methods
Blood samples were collected from 20 cases with weakened expression of ABO blood group antigens, including 12 children undergoing elective surgery and 8 of their parents or grandparents. Serological identification of the ABO blood group was performed using microcolumn agglutination method and saline test tube method. The PCR products of exons 1-7 and their upstream promoter region of the ABO gene were directly sequenced for genotyping.
Results
In 11 of the cases, the ABO genotype could be determined by pedigree analysis (including 1 case of ABO*A2.01/ABO*B.01, 1 case of ABO*A2.01/ ABO*O01.01, 1 case of A1.02/B3.04, 2 cases of B3.04/O.01.01, 2 cases of B3.02/O.01.02, and 4 cases of Bw.12/O.01.01). Pedigree analysis revealed deletion mutation at -35_-18 nt in the ABO promoter region in 3 cases, indicating that the mutation occurred in the B allele; a C > T mutation occurred at -119 nt in the ABO promoter region in 1 case; a C deletion at 1054 nt in exon 7 was identified in 1 case; no mutation was found in exons 1-7 and their regulatory region of ABO gene in 4 cases.
Conclusion
The C > T mutation at-119 nt in the promoter region and the deletion mutation at 1054 nt in exon 7 of ABO gene are probably new mutations leading to abnormal expression of ABO blood group antigens. Some ABO subtypes may be associated with abnormal introns or mRNA synthesis.
Keywords: ABO blood group, ABO antigens, serological test, gene sequencing
ABO血型系统最初由Karl Landsteiner于1990年提出[1],至今仍然是输血医学和器官移植医学中最重要的血型系统,输注ABO不相容血液可能导致急性血管内溶血、肾衰竭甚至死亡。同样,移植ABO不相容器官可能导致急性体液性排斥反应[2]。因此,正确的血型鉴定是保障临床输血安全的重要保障。而在血清学方法进行ABO血型鉴定时,往往表现出正反定型不一致、抗原抗体反应性减弱或出现混合凝集视野等现象,ABO血型定型困难,疑为亚型。目前国内对于ABO亚型的研究报道多为个别案例[3, 4],而且多为ABO血型1-7外显子的基因分析[5, 6]。本研究对20例血清学检测异常的血型样本同时进行了ABO基因1-7外显子编码区及其上游调控区域基因扩增及测序,探讨其ABO血型抗原表达减弱的分子生物学机制。
1. 资料和方法
1.1. 研究对象
12例样本来自南京市儿童医院外科择期手术住院患儿;8例样本来自患儿家属。其中例1和例2(例1之母)、例4例5(例3之母)和例6(例4外婆)、例7和例8(例7之母)、例9和例10(例9之父)、例11和例12(例11之父)、例14和例15(例14之母)、例19和例20(例19之父)间存在家系关系。本研究已通过南京医科大学附属儿童医院医学伦理委员会审查,批件号:202101006-1。
1.2. 材料
1.2.1. 血清学检测
ABO-RhD血型鉴定卡、低离子抗人球蛋白卡(伯乐公司)、抗体筛选红细胞、抗A抗B血型定型试剂、抗D、抗H(上海血液生物医药有限公司)、专用离心机(伯乐公司,ID-Centrifuge 12 S Ⅱ)、专用孵育箱(伯乐公司,ID-Incubator 37 S Ⅰ)。
1.2.2. 分子生物学检测
DNA提取试剂盒(天根生化科技有限公司)、2xGC Buffer、rTaq、dNTP Mixture(takara)、PCR扩增仪(GeneAmp9700PCR系统,ABI)、高速离心机(SIGMA1-14台式小型离心机)、涡旋混匀器(VDRTEX-5)、电泳仪(JY300C、北京君意东方电泳设备有限公司)、凝胶电泳槽(JY-SP3、北京君意东方电泳设备有限公司)、紫外分析仪(JYO2S、北京君意东方电泳设备有限公司)、水浴箱(天津泰斯特三用恒温/电热恒温水箱SHHW21.420AⅡ)。
1.3. 方法
1.3.1. 血清学检测
采用微柱凝集法及盐水试管法对18例样本进行ABO血型血清学鉴定。严格执行操作说明书。
1.3.2. 分子生物学检测
1.3.2.1. DNA提取
取全血200 μL,按照试剂盒操作说明提取DNA。
1.3.2.2. PCR扩增及测序
委托天津吉诺泰普生物科技有限公司设计并合成针对ABO基因第1-7外显子及上游调控区域特异性引物,PCR扩增并直接测序,确定基因型。每个反应总体积50 μL:Taq DNA聚合酶(5 U/μL)0.4 μL,2×GC Buffer I 25 μL,2.5 mmol/L dNTP 4 μL,上、下游引物(20 μmol/L)各1 μL,DNA模板5 μL、ddH<sub>2</sub>O 13.6 μL。反应过程为:96℃ 3 min,1 cycle;96 ℃ 25 s/68 ℃60 s 5 cycles;96 ℃ 25 s/65 ℃ 50 s/72 ℃ 45 s,10 cycles;96 ℃ 25 s/62 ℃ 50 s/72 ℃ 45 s,25 cycles;72 ℃ 3 min,1 cycle。PCR产物经2.5%琼脂糖凝胶鉴定后测序,与NCBI在线比对数据库nucleotide blast(<a href="https://blast.ncbi.nlm.nih.gov/" target="_blank">https://blast.ncbi.nlm.nih.gov/</a>)确定其基因型。
2. 结果
2.1. 血清学检测结果
对20例样本使用微柱凝集法及盐水试管法进行ABO血型鉴定,血清学检测结果显示,ABO血型抗原表达异常,正反定型结果不符合。其中A抗原表达异常3例,B抗原表达异常17例;10例样本红细胞与抗B试剂反应出现混合视野;样本红细胞与抗H试剂反应均有不同程度增强;20例样本均疑为ABO亚型(表 1)。
1.
20例样本ABO血型血清学鉴定结果
Results of serological identification ofABO blood group in the 20 cases
| Samples | Monoclonal antiserum | Reagent of red blood cell | Antibody screening | Self-control group | Results | ||||
| -A | -B | -H | A1c | Bc | Oc | ||||
| 1 | 3+ | 4+ | 1+s | 1+w | 0 | 0 | 0 | 0 | AweakB |
| 2 | 3+ | 0 | 2+ | 1+w | 4+ | 0 | 0 | 0 | Aweak |
| 3 | 1+ | 4+ | 2+ | ± | 0 | 0 | 0 | 0 | AweakB |
| 4 | 4+ | 2+ | 2+ | 0 | 2+ | 0 | 0 | 0 | ABweak |
| 5 | 0 | 2+ | 3+ | 4+ | ± | 0 | 0 | 0 | Bweak |
| 6 | 0 | 3+ | 4+ | 3+s | 0 | 0 | 0 | 0 | Bweak |
| 7 | 4+ | 3+ | 1+s | 0 | 1+w | 0 | 0 | 0 | ABweak |
| 8 | 0 | 3+ | 3+ | 4+ | 0 | 0 | 0 | 0 | Bweak |
| 9 | 0 | 3+w | 4+ | 3+s | 0 | 0 | 0 | 0 | Bweak |
| 10 | 0 | 2+s | 2+s | 2+ | 0 | 0 | 0 | 0 | Bweak |
| 11 | 0 | 3+mf | 3+ | 4+ | 0 | 0 | 0 | 0 | Bweak |
| 12 | 0 | 3+mf | 3+ | 4+ | 0 | 0 | 0 | 0 | Bweak |
| 13 | 4+ | 3+mf | 1+s | 0 | 0 | 0 | 0 | 0 | ABweak |
| 14 | 4+ | 2+mf | 1+s | 0 | 0 | 0 | 0 | 0 | ABweak |
| 15 | 0 | 3+mf | 1+s | 4+ | 0 | 0 | 0 | 0 | Bweak |
| 16 | 4+ | 3+mf | 1+s | 0 | 0 | 0 | 0 | 0 | ABweak |
| 17 | 4+ | 3+mf | 2+ | 0 | 0 | 0 | 0 | 0 | ABweak |
| 18 | 4+ | 3+mf | 2+ | 0 | 0 | 0 | 0 | 0 | ABweak |
| 19 | 0 | 3+mf | 3+s | 4+ | 0 | 0 | 0 | 0 | Bweak |
| 20 | 0 | 4+mf | 3+s | 4+ | 0 | 0 | 0 | 0 | Bweak |
2.2. 分子生物学检测结果
ABO血型基因第1-7外显子及其上游调控区域PCR产物直接测序结果,根据ISBT网站提供的Names for ABO (ISBT 001) blood group alleles v1.1 171023综合结果判定(以ABO*A1.01为参考序列)。结果显示,20例样本中,1例为A2B型,1例为A2型,2例为AB3型,3例为B3型,4例为Bw12型,4例B抗原表达减弱的样本发生启动子区域变异;1例A抗原表达减弱样本发生第7外显子1054delC;另外4例样本ABO血型1-7外显子及其调控区域未发现变异(表 2,图 1)。
2.
20例样本ABO血型PCR直接测序结果
Results of direct PCR sequencing ofABO blood group in the 20 cases
| Samples | Allele gene | Base variation | Amino acid substitution | Phenotype |
| c.467C > T; c.1061delC | p.Pro156Leu; p.Pro354Argfs*23 | |||
| 1 | ABO*A2.01/ABO*B.01 | c.297A > G; c.526C > G; c.657C > T; | p.Arg176Gly; p.Gly235Ser; | A2/B |
| c.703G > A; c.796C > A; c.803G > C; c.930G > A | p丄eu266Met; p.Gly268Ala | |||
| 2 | ABO*A2.01/BO*O01.01 | c.261delG | p.Thr88Profs*31 | A2/O |
| c.297A > G; c.467C > T, c.526C > G; c.657C > T; | p.Val36Phe; p.Pro156Leu | |||
| 3 | ABO*A1.02/ABO*B.01 | c.703G > A; c.796C > A; c.803G > C; c.930G > A; | p.Arg63His; p.Pro74Ser; | Aweak/B |
| 1054 delC | p.Thr88Profs*3 | |||
| c.247G > T; c.297A > G; c.467C > T | p.Asp83Tyr; p.Arg176Gly; | |||
| 4 | ABO*A1.02/ABO*B3.04 | c.526C > G; c.657C > T; c.703G > A; c.796C > A; | p.Pro156Leu | A/B3 |
| c.803G > C; c.930G > A | p.Gly235Ser; p.Leu266Met; p.Gly268Ala | |||
| ABO*O.01.01/BO*B3.04 | c.261delG | p.Thr88Profs*31 | ||
| 5 | c.247G > T; c.297A > G; c.526C > G; c.657C > T; | p.Asp83Tyr; p.Arg176Gly; | B3/O | |
| c.703G > A; c.796C > A; c.803G > C; c.930G > A | p.Gly235Ser; p.Leu266Met; p.Gly268Ala | |||
| 6 | ABO*O. 01.02/BO*B3.04 | c.106G > T; c.188G > A; c.189C > T; c.220C > T; c.247G > T; c.261delG; c.297A > G; |
p.Val36Phe; p.Arg63His; p.Pro74Ser; p.Asp83Tyr | B3/O |
| c.646T > A; c.681G > A; c.771C > T; c.829G > A | p.Thr88Profs*31 | |||
| 7 | ABO*A1.02/ABO*B3.02 | c.467C > T c.646T > A | p.Pro156Leu p.Phe216Ile | A/B3 |
| c.106G > T; c.188G > A; c.189C > T; | p.Val36Phe; p.Arg63His; | |||
| 8 | ABO*B3.02/BO*O.01.02 | c.220C > T; c.247G > T; c.261delG; c.297A > G; | p.Pro74Ser; p.Asp83Tyr | B3/O |
| c.646T > A; c.681G > A; c.771C > T; c.829G > A | p.Thr88Profs*31; p.Phe216Ile | |||
| 9 | ABO*BW.12/BO*O.01.01 | c.278C > T; c.261delG; | p.Pro93Leu; p.Thr88Profs*31 | Bw/O |
| 10 | ABO*BW.12/BO*O.01.01 | c.278C > T; c.261delG | p.Pro93Leu; p.Thr88Profs*31 | Bw/O |
| 11 | ABO*BW.12/BO*O.01.01 | c.278C > T; c.261delG | p.Pro93Leu; p.Thr88Profs*31 | Bw/O |
| 12 | ABO*BW.12/BO*O.01.01 | c.278C > T; c.261delG | p.Pro93Leu; p.Thr88Profs*31 | BwO |
| 13 | ABO*A1.02/ABO*B.01 | c.297A > G; c.467C > T c.526C > G; c.657C > T; c.703G > A; c.796C > A; c.803G > C; c.930G > A; (-35-18)GGCGGAAGGCGGAGGCCGdel |
p.Pro156Leu p.Arg176Gly; p.Gly235Ser; p.Leu266Met; p.Gly268Ala |
A/Bweak |
| 14 | ABO*A1.02/ABO*B.01 | c.297A > G; c.467C > T c.526C > G; c.657C > T; c.703G > A; c.796C > A; c.803G > C; c.930G > A; (-35-18) GGCGGAAGGCGGAGGCCG/del |
p.Pro156Leu p.Arg176Gly; p.Gly235Ser; p.Leu266Met; p.Gly268Ala |
A/Bweak |
| 15 | ABO*O.01.02/BO*B.01 | c.106G > T; c.188G > A; c.189C > T; c.220C > T; c.261delG; c.297A > G; c.526C > G; c.657C > T; c.646T > A; c.681G > A; c.703G > A; c.796C > A; c.771C > T; c.829G > A; c.803G > C; c.930G > A (-35-18)GGCGGAAGGCGGAGGCCG/del |
p.Val36Phe; p.Arg63His; p.Pro74Ser; p.Thr88Profs*31 p.Arg176Gly; p.Gly235Ser; p.Leu266Met; p.Gly268Ala |
Bweak/O |
| 16 | ABO*A1.02/ABO*B.01 | c.297A > G; c.467C > T; c.526C > G; c.657C > T; c.703G > A; c.796C > A; c.803G > C; c.930G > A; -119 C > T |
p.Arg176Gly; p.Gly235Ser; p.Leu266Met; p.Gly268Ala |
A/Bweak |
| c.467C > T; c.297A > G; c.526C > G; c.657C > T; | p.Pro156Leu; | |||
| 17 | ABO*A1.02/ABO*B.01 | c.703G > A; c.796C > A; c.803G > C; c.930G > A | p.Arg176Gly; p.Gly235Ser; | A/Bweak |
| Intron4 1678T > C | p.Leu266Met; p.Gly268Ala | |||
| c.467C > T; c.297A > G; c.526C > G; c.657C > T; | p.Pro156Leu; | |||
| 18 | ABO*A1.02/ABO*B.01 | c.703G > A; c.796C > A; c.803G > C; c.930G > A | p.Arg176Gly; p.Gly235Ser; | A/Bweak |
| Intron4 1678T > C | p.Leu266Met; p.Gly268Ala | |||
| 19 | ABO*B.01/ABO*O.01.01 | c.261delG; c.297A > G; c.526C > G; c.657C > T; | p.Thr88Profs*31; p.Arg176Gly; | Bweak/O |
| c.703G > A; c.796C > A; c.803G > C; c.930G > A | p.Gly235Ser; p.Leu266Met; p.Gly268Ala | |||
| 20 | ABO*B.01/ABO*O.01.01 | c.261delG; c.297A > G; c.526C > G; c.657C > T; | p.Thr88Profs*31; p.Arg176Gly; | Bweak/O |
| c.703G > A; c.796C > A; c.803G > C; c.930G > A | p.Gly235Ser; p.Leu266Met; p.Gly268Ala |
1.

ABO血型基因1~7外显子及启动子区域变异
3. 讨论
ABO基因位于第9号染色体q34.2,由7个外显子组成,共编码354个氨基酸。如果在ABO等位基因编码区发生突变,则可引起ABO基因编码物质的改变,从而导致ABO血型亚型生成[7]。目前研究ABO亚型主要有血清学水平(免疫血液学实验)、基因水平(DNA、mRNA)、蛋白水平(氨基酸、糖基转移酶、蛋白构象)3种模式[8]。国外在蛋白质或氨基酸水平有相关研究[9]。然而因为ABO基因77%编码序列位于第6和第7外显子,这两个编码区是决定ABO基因产物糖基转移酶功能的主要部分[10],因此关于外显子区域,尤其第6、7外显子测序研究的文献报道较多[11-13],针对启动子区域研究较少。本次研究,对20例血清学检测ABO血型抗原表达减弱的样本1-7外显子编码区及其上游调控区域同时进行测序分析,以进一步揭示ABO血型亚型的分子生物学机制。
研究显示,上游调控区碱基变异导致的B抗原减弱样本4例;未见既往报道的碱基变异2例(1例为上游调控区-119位C > T变异,1例为第7外显子1054位点del C);另有4例样本血清学结果明显异常而其上游调控区及1-7外显子基因检测均未见异常,疑为内含子区域变异造成ABO血型抗原异常表达。20例样本中,例1及例2存在家系关系,确定其基因型分别为ABO*A2.01/ ABO*B.01、ABO*A2.01/ABO*O01.01;例4、例5及例6存在家系关系,确定其基因型分别为B3.04/A1.02、B3.04/O.01.01、B3.04/O.01.02;例7及例8存在家系关系,确定其基因型分别为B3.02/A1.02、B3.02/O.01.02;例9及例10存在家系关系,确定其基因型分别为Bw.12/ O.01.01、Bw.12/O.01.01;例11及例12存在家系关系,确定其基因型分别为Bw.12/O.01.01、Bw.12/O.01.01;有4例样本发生启动子区域变异,其中例13、例14及例15发生ABO基因启动子区域-35_-18位点碱基缺失(例14及例15存在家系关系),导致B抗原表达减弱;例16发生启动子区域-119位C > T的异常变异,因对以往正常ABO血型基因分析并未发现此变异,故推测该变异导致了B抗原表达减弱;例3样本发生第7外显子1054位点缺失碱基C,因对以往正常ABO血型基因分析并未发现此变异,故推测该变异导致A抗原表达减弱;例17、例18、例19及例20样本红细胞与抗B试剂血清学反应均呈现混合视野现象,其中例19及例20为父子关系,且二者ABO血型血清学鉴定格局一致,但经ABO血型1-7外显子及其调控区域基因检测,该4例样本均未发现变异。
启动子在转录过程中起调控作用,通过活化RNA聚合酶,使之与DNA模板准确结合并具有转录起始的特异性。同时,ABO基因内含子1的变异可能也影响ABO血型基因的表达。国内关于这方面研究较少。国外文献报道[14],在红细胞生成过程中,miR-331-3p和miR-1908-5p的表达水平与血型抗原水平呈负相关。Sano等[15-17]研究发现,ABO基因内含子1中有基因表达的调控元件,位于ATG翻译起始位点3’方向、+5653和+ 6154核苷酸位点之间,可以增强ABO基因启动子的活性,而删除包含此调控序列的内含子1,会导致Bm亚型表型。Fenne等[18]研究发现,内含子1中GATA碱基突变,会引起ABO血型血清学试验正反定型不符。有文献报道[19-21],ABO基因内含子1中红细胞特异性调控元件(+5.8 kb)负责抗原差异表达,RUNX1基序单点突变可下调+5.8 kb位点的转录活性,导致A或B抗原表达减少。ABO基因内含子1中核昔酸的突变也可使红细胞表面A抗原表达减弱,导致AmB表型出现。
本次研究的20例样本中,7例变异发生在第6外显子;5例发生于第7外显子,其中1054位点del C未见报道,疑为新的变异位点;4例样本碱基变异位于启动子区域,其中-119位C > T未见报道,疑为新的变异位点;4例样本未发现其上游调控区域及外显子1-7明显变异,推测其是否与mRNA合成异常有关,是否由于RUNX1位点突变下调ABO基因内含子1的+5.8 kb位点的转录活性,从而导致B抗原减弱。目前国内对内含子1碱基变异导致ABO血型抗原表达异常的的研究较少,值得进一步关注。
另有资料认为A亚型比B亚型更常见[22],但是本次实验20例亚型中仅有2例A抗原表达异常,B亚型明显较A亚型更常见。分析其原因可能与中国人群血型分布不同于欧美有关,不同地域不同民族人群中血型分布,也是输血医学发展需要关注的方向之一。
Biography
孙文杰,硕士,主管技师,E-mail: 78737577@qq.com
Funding Statement
南京市医学科技发展项目(YKK17159)
Contributor Information
孙 文杰 (Wenjie SUN), Email: 78737577@qq.com.
李 萌 (Meng LI), Email: 1395239217@qq.com.
References
- 1.Bertsch T, Lüdecke J, Antl W, et al. Karl Landsteiner: the discovery of the ABO blood group system and its value for teaching medical students. Clin Lab. 2019;65(6):897–902. doi: 10.7754/Clin.Lab.2018.181218. [Bertsch T, Lüdecke J, Antl W, et al. Karl Landsteiner: the discovery of the ABO blood group system and its value for teaching medical students[J]. Clin Lab, 2019, 65(6): 897-902.] [DOI] [PubMed] [Google Scholar]
- 2.Storry JR, Olsson ML. The ABO blood group system revisited: a review and update. http://www.ncbi.nlm.nih.gov/pubmed/19927620. Immunohematology. 2009;25(2):48–59. [Storry JR, Olsson ML. The ABO blood group system revisited: a review and update[J]. Immunohematology, 2009, 25(2): 48-59.] [PubMed] [Google Scholar]
- 3.孔 永奎, 蔡 晓红, 王 莉, et al. 一例ABO血型Aw33亚型新等位基因的分子生物学鉴定. 中华医学遗传学杂志. 2020;(5):570–2. doi: 10.3760/cma.j.issn.1003-9406.2020.05.019. [孔永奎, 蔡晓红, 王莉, 等. 一例ABO血型Aw33亚型新等位基因的分子生物学鉴定[J]. 中华医学遗传学杂志, 2020, (5): 570-2.] [DOI] [Google Scholar]
- 4.马 程明, 吴 祁生, 于 桐桐, et al. 血液肿瘤患者三例ABO基因亚型鉴定及基因表达分析. 中华医学杂志. 2020;100(43):3443–7. doi: 10.3760/cma.j.cn112137-20200618-01880. [马程明, 吴祁生, 于桐桐, 等. 血液肿瘤患者三例ABO基因亚型鉴定及基因表达分析[J]. 中华医学杂志, 2020, 100(43): 3443-7.] [DOI] [PubMed] [Google Scholar]
- 5.冯 晨晨, 任 伟超, 程 道胜, et al. Bw11亚型家系表现ABO等位基因竞争现象的研究. 中华医学遗传学杂志. 2021;38(1):23–26. doi: 10.3760/cma.j.cn511374-20200103-00004. [冯晨晨, 任伟超, 程道胜, 等. Bw11亚型家系表现ABO等位基因竞争现象的研究[J]. 中华医学遗传学杂志, 2021, 38(1): 23-26.] [DOI] [Google Scholar]
- 6.马 晓莉, 马 宏伟, 金 新莉, et al. 基因分型结合血清学方法鉴定ABO血型亚型. https://www.cnki.com.cn/Article/CJFDTOTAL-BLOO201802016.htm. 中国输血杂志. 2018;31(2):151–3. [马晓莉, 马宏伟, 金新莉, 等. 基因分型结合血清学方法鉴定ABO血型亚型[J]. 中国输血杂志, 2018, 31(2): 151-3.] [Google Scholar]
- 7.赵 桐茂. 基因分型预测ABO亚型的局限性. 临床输血与检验. 2018;20(2):113–6. doi: 10.3969/j.issn.1671-2587.2018.02.001. [赵桐茂. 基因分型预测ABO亚型的局限性[J]. 临床输血与检验, 2018, 20(2): 113-6.] [DOI] [Google Scholar]
- 8.冯智慧胡彬王同显焦淑贤逄淑涛 ABO血型基因及亚型真核表达载体的构建及鉴定. 中华医学遗传学杂志. 2018;(1):64–8. doi: 10.3760/cma.j.issn.1003-9406.2018.01.014. [冯智慧胡彬王同显焦淑贤逄淑涛. ABO血型基因及亚型真核表达载体的构建及鉴定[J]. 中华医学遗传学杂志, 2018, (1): 64-8.] [DOI] [Google Scholar]
- 9.Seltsam A, Grüger D, Just B, et al. Aberrant intracellular trafficking of a variant B glycosyltransferase. Transfusion. 2008;48(9):1898–905. doi: 10.1111/j.1537-2995.2008.01782.x. [Seltsam A, Grüger D, Just B, et al. Aberrant intracellular trafficking of a variant B glycosyltransferase[J]. Transfusion, 2008, 48(9): 1898-905.] [DOI] [PubMed] [Google Scholar]
- 10.杨 晓亚, 李 烛, 阳 绪华, et al. ABO基因转录调控机制研究进展. https://www.cnki.com.cn/Article/CJFDTOTAL-BLOO202003035.htm. 中国输血杂志. 2020;33(3):286–90. [杨晓亚, 李烛, 阳绪华, 等. ABO基因转录调控机制研究进展[J]. 中国输血杂志, 2020, 33(3): 286-90.] [Google Scholar]
- 11.胡 俊华, 聂 志扬, 张 芃, et al. 15例ABO疑难血型基因检测分析. https://www.cnki.com.cn/Article/CJFDTOTAL-BJYX201902015.htm. 北京医学. 2019;41(2):146–50. [胡俊华, 聂志扬, 张芃, 等. 15例ABO疑难血型基因检测分析[J]. 北京医学, 2019, 41(2): 146-50.] [Google Scholar]
- 12.Seltsam A, Hallensleben M, Kollmann A, et al. The nature of diversity and diversification at the ABO locus. Blood. 2003;102(8):3035–42. doi: 10.1182/blood-2003-03-0955. [Seltsam A, Hallensleben M, Kollmann A, et al. The nature of diversity and diversification at the ABO locus[J]. Blood, 2003, 102 (8): 3035-42.] [DOI] [PubMed] [Google Scholar]
- 13.张 钰, 李 炜华, 蔡 杰, et al. 一例B(A)血型的血清学及分子生物学鉴定. https://www.cnki.com.cn/Article/CJFDTOTAL-LCJY202010009.htm. 临床检验杂志. 2020;38(10):758–60. [张钰, 李炜华, 蔡杰, 等. 一例B(A)血型的血清学及分子生物学鉴定[J]. 临床检验杂志, 2020, 38(10): 758-60.] [Google Scholar]
- 14.Kronstein-Wiedemann R, Nowakowska P, Milanov P, et al. Regulation of ABO blood group antigen expression by miR-331-3p and miR-1908-5p during hematopoietic stem cell differentiation. Stem Cells. 2020;38(10):1348–62. doi: 10.1002/stem.3251. [Kronstein-Wiedemann R, Nowakowska P, Milanov P, et al. Regulation of ABO blood group antigen expression by miR-331-3p and miR-1908-5p during hematopoietic stem cell differentiation[J]. Stem Cells, 2020, 38(10): 1348-62.] [DOI] [PubMed] [Google Scholar]
- 15.Sano R, Nakajima T, Takahashi K, et al. Expression of ABO bloodgroup genes is dependent upon an erythroid cell-specific regulatory element that is deleted in persons with the B(m) phenotype. Blood. 2012;119(22):5301–10. doi: 10.1182/blood-2011-10-387167. [Sano R, Nakajima T, Takahashi K, et al. Expression of ABO bloodgroup genes is dependent upon an erythroid cell-specific regulatory element that is deleted in persons with the B(m) phenotype[J]. Blood, 2012, 119(22): 5301-10.] [DOI] [PubMed] [Google Scholar]
- 16.Nakajima T, Sano R, Takahashi Y, et al. ABO alleles are linked with haplotypes of an erythroid cel-specific regulatory element in intron 1 with a few exceptions attributable to genetic recombination. Vox Sang. 2016;110(1):90–2. doi: 10.1111/vox.12312. [Nakajima T, Sano R, Takahashi Y, et al. ABO alleles are linked with haplotypes of an erythroid cel-specific regulatory element in intron 1 with a few exceptions attributable to genetic recombination[J]. Vox Sang, 2016, 110(1): 90-2.] [DOI] [PubMed] [Google Scholar]
- 17.Ogasawara K, Miyazaki T, Ito S, et al. The B allele with a 5 · 8 kb deletion in intron 1 of the ABO gene is the major allele in Japanese individuals with Bm and A1 Bm phenotypes. Vox Sang. 2018;113(4):393–6. doi: 10.1111/vox.12642. [Ogasawara K, Miyazaki T, Ito S, et al. The B allele with a 5 · 8 kb deletion in intron 1 of the ABO gene is the major allele in Japanese individuals with Bm and A1 Bm phenotypes[J]. Vox Sang, 2018, 113 (4): 393-6.] [DOI] [PubMed] [Google Scholar]
- 18.Fennell K, Hoffman R, Yoshida K, et al. Effect on gene expression of three allelic variants in GATA motifs of ABO, RHD, and RHCE regulatory elements. Transfusion. 2017;57(11):2804–8. doi: 10.1111/trf.14299. [Fennell K, Hoffman R, Yoshida K, et al. Effect on gene expression of three allelic variants in GATA motifs of ABO, RHD, and RHCE regulatory elements[J]. Transfusion, 2017, 57(11): 2804-8.] [DOI] [PubMed] [Google Scholar]
- 19.Oda A, Isa K, Ogasawara K, et al. A novel mutation of the GATA site in the erythroid cell-specific regulatory element of theABOgene in a blood donor with the AmB phenotype. Vox Sang. 2015;108(4):425–7. doi: 10.1111/vox.12229. [Oda A, Isa K, Ogasawara K, et al. A novel mutation of the GATA site in the erythroid cell-specific regulatory element of theABOgene in a blood donor with the AmB phenotype[J]. Vox Sang, 2015, 108(4): 425-7.] [DOI] [PubMed] [Google Scholar]
- 20.Takahashi Y, Isa K, Sano R, et al. Deletion of the RUNX1 binding site in the erythroid cell-specific regulatory element of the ABO gene in two individuals with the Amphenotype. Vox Sang. 2014;106(2):167–75. doi: 10.1111/vox.12077. [Takahashi Y, Isa K, Sano R, et al. Deletion of the RUNX1 binding site in the erythroid cell-specific regulatory element of the ABO gene in two individuals with the Amphenotype[J]. Vox Sang, 2014, 106(2): 167-75.] [DOI] [PubMed] [Google Scholar]
- 21.Ying Y, Hong X, Xu X, et al. A novel mutation+5904 C > T of RUNX1 site in the erythroid cell-specific regulatory element decreases the ABO antigen expression in Chinese population. Vox Sang. 2018;113(6):594–600. doi: 10.1111/vox.12676. [Ying Y, Hong X, Xu X, et al. A novel mutation+5904 C > T of RUNX1 site in the erythroid cell-specific regulatory element decreases the ABO antigen expression in Chinese population[J]. Vox Sang, 2018, 113(6): 594-600.] [DOI] [PubMed] [Google Scholar]
- 22.桂荣, 陈秉宇, 黄远帅, 等主译. AABB技术手册[M]. 2019, 10(1): 196.
