Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Oct 15;65(4):1103–1111. doi: 10.1007/s40843-021-1790-1

Multi-responsive deep-ultraviolet emission in praseodymium-doped phosphors for microbial sterilization

镨掺杂的多响应型深紫外荧光粉与杀菌应用

Xinquan Zhou 1, Jianwei Qiao 1, Yifei Zhao 1, Kai Han 1, Zhiguo Xia 1,2,
PMCID: PMC8527286  PMID: 34692172

Abstract

Perusing multimode luminescent materials capable of being activated by diverse excitation sources and realizing multi-responsive emission in a single system remains a challenge. Herein, we utilize a heterovalent substituting strategy to realize multimode deep-ultraviolet (UV) emission in the defect-rich host Li2CaGeO4 (LCGO). Specifically, the Pr3+ substitution in LCGO is beneficial to activating defect site reconstruction including the generation of cation defects and the decrease of oxygen vacancies. Regulation of different traps in LCGO:Pr3+ presents persistent luminescence and photo-stimulated luminescence in a synergetic fashion. Moreover, the up-conversion luminescence appears with the aid of the 4f discrete energy levels of Pr3+ ions, wherein incident visible light is partially converted into germicidal deep-UV radiation. The multi-responsive character enables LCGO:Pr3+ to response to convenient light sources including X-ray tube, standard UV lamps, blue and near-infrared lasers. Thus, a dual-mode optical conversion strategy for inactivating bacteria is fabricated, and this multi-responsive deep-UV emitter offers new insights into developing UV light sources for sterilization applications. Heterovalent substituting in trap-mediated host lattice also provides a methodological basis for the construction of multi-mode luminescent materials.

Keywords: phosphor, deep ultraviolet, multi-mode luminescence, sterilization

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51961145101 and 51972118), the International Cooperation Project of National Key Research and Development Program of China (2021YFE0105700), Guangzhou Science & Technology Project (202007020005), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01X137). The authors also thank Jiarong Liang and Prof. Bingfu Lei at South China Agricultural University for assistance with bactericidal inactivation.

Author contributions Zhou X performed the experiments and wrote the paper with support from Xia Z. Zhao Y performed the theoretical simulations. All authors contributed to the general discussion.

Conflict of interest The authors declare that they have no conflict of interest.

Footnotes

Xinquan Zhou is a PhD student at the South China University of Technology. He completed his bachelor degree at the University of Jinan in 2017 and received the master degree from Guangdong University of Technology in 2020. His research mainly focuses on the rare-earth-ions-activated long persistent phosphors and luminescent materials for LEDs.

Zhiguo Xia is currently a professor of materials chemistry and physics at the South China University of Technology. He obtained his bachelor degree in 2002 and master degree in 2005 from Beijing Technology and Business University, and he received his PhD degree from Tsinghua University in 2008. His research interests are in designing of new rare-earth phosphors and luminescent metal halides for emerging photonics applications by integrating structural discovery, modification and structure-property relation studies.

References

  • 1.Zhou X, Qiao J, Xia Z. Learning from mineral structures toward new luminescence materials for light-emitting diode applications. Chem Mater. 2021;33:1083–1098. doi: 10.1021/acs.chemmater.1c00032. [DOI] [Google Scholar]
  • 2.Lyu T, Dorenbos P. Vacuum-referred binding energies of bismuth and lanthanide levels in ARE(Si,Ge)O4 (A = Li, Na; RE = Y, Lu): Toward designing charge-carrier-trapping processes for energy storage. Chem Mater. 2020;32:1192–1209. doi: 10.1021/acs.chemmater.9b04341. [DOI] [Google Scholar]
  • 3.Wang X, Chen Y, Liu F, et al. Solar-blind ultraviolet-C persistent luminescence phosphors. Nat Commun. 2020;11:2040. doi: 10.1038/s41467-020-16015-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Song K, Mohseni M, Taghipour F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. Water Res. 2016;94:341–349. doi: 10.1016/j.watres.2016.03.003. [DOI] [PubMed] [Google Scholar]
  • 5.Baron ED, Stevens SR. Phototherapy for cutaneous T-cell lymphoma. Dermatol Ther. 2003;16:303–310. doi: 10.1111/j.1396-0296.2003.01642.x. [DOI] [PubMed] [Google Scholar]
  • 6.Chen J, Loeb S, Kim JH. LED revolution: Fundamentals and prospects for UV disinfection applications. Environ Sci-Water Res Technol. 2017;3:188–202. doi: 10.1039/C6EW00241B. [DOI] [Google Scholar]
  • 7.Sharma VK, Tan ST, Haiyang Z, et al. On-chip mercury-free deep-UV light-emitting sources with ultrahigh germicidal efficiency. Adv Opt Mater. 2021;9:2100072. doi: 10.1002/adom.202100072. [DOI] [Google Scholar]
  • 8.Shining a light on COVID-19 Nat Photonics. 2020;14:337. doi: 10.1038/s41566-020-0650-9. [DOI] [Google Scholar]
  • 9.Ronda C. Challenges in application of luminescent materials, a tutorial overview. Prog Electromagn Res. 2014;147:81–93. doi: 10.2528/PIER14051103. [DOI] [Google Scholar]
  • 10.Yan S, Liu F, Zhang J, et al. Persistent emission of narrowband ultraviolet-B light upon blue-light illumination. Phys Rev Appl. 2020;13:044051. doi: 10.1103/PhysRevApplied.13.044051. [DOI] [Google Scholar]
  • 11.Yan S, Gao Q, Zhao X, et al. Charging Gd3Ga5O12:Pr3+ persistent phosphor using blue lasers. J Lumin. 2020;226:117427. doi: 10.1016/j.jlumin.2020.117427. [DOI] [Google Scholar]
  • 12.Yan S, Liang Y, Chen Y, et al. Ultraviolet-C persistent luminescence from the Lu2SiO5:Pr3+ persistent phosphor for solar-blind optical tagging. Dalton Trans. 2021;50:8457–8466. doi: 10.1039/D1DT00791B. [DOI] [PubMed] [Google Scholar]
  • 13.Yang YM, Li ZY, Zhang JY, et al. X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions. Light Sci Appl. 2018;7:88. doi: 10.1038/s41377-018-0089-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Yin Z, Yuan P, Zhu Z, et al. Pr3+ doped Li2SrSiO4: An efficient visible-ultraviolet C up-conversion phosphor. Ceramics Int. 2021;47:4858–4863. doi: 10.1016/j.ceramint.2020.10.058. [DOI] [Google Scholar]
  • 15.Qiao J, Xia Z, Zhang Z, et al. Near UV-pumped yellow-emitting Sr9MgLi(PO4)7:Eu2+ phosphor for white-light LEDs. Sci China Mater. 2018;61:985–992. doi: 10.1007/s40843-017-9207-2. [DOI] [Google Scholar]
  • 16.Wickleder MS. Inorganic lanthanide compounds with complex anions. Chem Rev. 2002;102:2011–2088. doi: 10.1021/cr010308o. [DOI] [PubMed] [Google Scholar]
  • 17.Qin X, Liu X, Huang W, et al. Lanthanide-activated phosphors based on 4f-5d optical transitions: Theoretical and experimental aspects. Chem Rev. 2017;117:4488–4527. doi: 10.1021/acs.chemrev.6b00691. [DOI] [PubMed] [Google Scholar]
  • 18.Zhang JC, Pan C, Zhu YF, et al. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting. Adv Mater. 2018;30:1804644. doi: 10.1002/adma.201804644. [DOI] [PubMed] [Google Scholar]
  • 19.Ren Y, Yang Z, Wang Y, et al. Reversible multiplexing for optical information recording, erasing, and reading-out in photochromic BaMgSiO4:Bi3+ luminescence ceramics. Sci China Mater. 2020;63:582–592. doi: 10.1007/s40843-019-1230-4. [DOI] [Google Scholar]
  • 20.Du Y, Ai X, Li Z, et al. Visible-to-ultraviolet light conversion: Materials and applications. Adv Photo Res. 2021;2:2000213. doi: 10.1002/adpr.202000213. [DOI] [Google Scholar]
  • 21.Du Y, Wang Y, Deng Z, et al. Blue-pumped deep ultraviolet lasing from lanthanide-doped Lu6O5F8 upconversion nanocrystals. Adv Opt Mater. 2020;8:1900968. doi: 10.1002/adom.201900968. [DOI] [Google Scholar]
  • 22.Tanner PA, Mak CSK, Faucher MD, et al. 4f-5d transitions of Pr3+ in elpasolite lattices. Phys Rev B. 2003;67:115102. doi: 10.1103/PhysRevB.67.115102. [DOI] [Google Scholar]
  • 23.Hu C, Sun C, Li J, et al. Visible-to-ultraviolet upconversion in Pr3+: Y2SiO5 crystals. Chem Phys. 2006;325:563–566. doi: 10.1016/j.chemphys.2006.01.037. [DOI] [Google Scholar]
  • 24.Cates EL, Wilkinson AP, Kim JH. Delineating mechanisms of upconversion enhancement by Li+ codoping in Y2SiO5:Pr3+ J Phys Chem C. 2012;116:12772–12778. doi: 10.1021/jp302515t. [DOI] [Google Scholar]
  • 25.Cates EL, Cho M, Kim JH. Converting visible light into UVC: Microbial inactivation by Pr3+-activated upconversion materials. Environ Sci Technol. 2011;45:3680–3686. doi: 10.1021/es200196c. [DOI] [PubMed] [Google Scholar]
  • 26.Cates EL, Wilkinson AP, Kim JH. Visible-to-UVC upconversion efficiency and mechanisms of Lu7O6F9:Pr3+ and Y2SiO5:Pr3+ ceramics. J Lumin. 2015;160:202–209. doi: 10.1016/j.jlumin.2014.11.049. [DOI] [Google Scholar]
  • 27.Dorenbos P. The 5d level positions of the trivalent lanthanides in inorganic compounds. J Lumin. 2000;91:155–176. doi: 10.1016/S0022-2313(00)00229-5. [DOI] [Google Scholar]
  • 28.Srivastava AM. Aspects of Pr3+ luminescence in solids. J Lumin. 2016;169:445–449. doi: 10.1016/j.jlumin.2015.07.001. [DOI] [Google Scholar]
  • 29.Li Y, Gecevicius M, Qiu J. Long persistent phosphors—From fundamentals to applications. Chem Soc Rev. 2016;45:2090–2136. doi: 10.1039/C5CS00582E. [DOI] [PubMed] [Google Scholar]
  • 30.Li H, Liu Q, Ma J, et al. Theory-guided defect tuning through topo-chemical reactions for accelerated discovery of UVC persistent phosphors. Adv Opt Mater. 2020;8:1901727. doi: 10.1002/adom.201901727. [DOI] [Google Scholar]
  • 31.Zhou X, Ju G, Dai T, et al. Li5Zn8Ga5Ge9O36:Cr3+, Ti4+: A long persistent phosphor excited in a wide spectral region from UV to red light for reproducible imaging through biological tissue. Chem Asian J. 2019;14:1506–1514. doi: 10.1002/asia.201900158. [DOI] [PubMed] [Google Scholar]
  • 32.Gard JA, West AR. Preparation and crystal structure of Li2CaSiO4 and isostructural Li2CaGeO4. J Solid State Chem. 1973;7:422–427. doi: 10.1016/0022-4596(73)90171-0. [DOI] [Google Scholar]
  • 33.Blasse G. Interaction between optical centers and their surroundings: An inorganic chemist’s approach. Adv Inorg Chem. 1990;35:319–402. doi: 10.1016/S0898-8838(08)60165-8. [DOI] [Google Scholar]
  • 34.Ogasawara H, Kotani A, Potze R, et al. Praseodymium 3d- and 4d-core photoemission spectra of Pr2O3. Phys Rev B. 1991;44:5465–5469. doi: 10.1103/PhysRevB.44.5465. [DOI] [PubMed] [Google Scholar]
  • 35.Yang W, Li J, Liu B, et al. Multi-wavelength tailoring of a ZnGa2O4 nanosheet phosphor via defect engineering. Nanoscale. 2018;10:19039–19045. doi: 10.1039/C8NR05072D. [DOI] [PubMed] [Google Scholar]
  • 36.Ueda J, Leaño JL, Richard C, et al. Broadband near-infrared persistent luminescence of Ba[Mg2Al2N4] with Eu2+ and Tm3+ after red light charging. J Mater Chem C. 2019;7:1705–1712. doi: 10.1039/C8TC06090H. [DOI] [Google Scholar]
  • 37.Simmons EL. Diffuse reflectance spectroscopy: A comparison of the theories. Appl Opt. 1975;14:1380–1386. doi: 10.1364/AO.14.001380. [DOI] [PubMed] [Google Scholar]
  • 38.van Pieterson L, Reid MF, Wegh RT, et al. 4fn. Phys Rev B. 2002;65:045113. doi: 10.1103/PhysRevB.65.045113. [DOI] [Google Scholar]
  • 39.Kowalski W. UV Surface Disinfection. In: Kowalski W, editor. Ultraviolet Germicidal Irradiation Handbook. Berlin, Heidelberg: Springer; 2009. pp. 233–254. [Google Scholar]
  • 40.Sasaki N, Yamashita T, Kasahara K, et al. UVB exposure prevents atherosclerosis by regulating immunoinflammatory responses. Arterioscler Thromb Vasc Biol. 2017;37:66–74. doi: 10.1161/ATVBAHA.116.308063. [DOI] [PubMed] [Google Scholar]
  • 41.Maldiney T, Bessière A, Seguin J, et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat Mater. 2014;13:418–426. doi: 10.1038/nmat3908. [DOI] [PubMed] [Google Scholar]
  • 42.Chen X, Li Y, Huang K, et al. Trap energy upconversion-like near-infrared to near-infrared light rejuvenateable persistent luminescence. Adv Mater. 2021;33:2008722. doi: 10.1002/adma.202008722. [DOI] [PubMed] [Google Scholar]
  • 43.Klasens HA, Garlick GFJ, Gibson AF. Discussion on “the electron trap mechanism of luminescence in sulphide and silicate phosphors”. Proc Phys Soc. 1948;61:101–102. doi: 10.1088/0959-5309/61/1/317. [DOI] [Google Scholar]
  • 44.Van den Eeckhout K, Bos AJJ, Poelman D, et al. Revealing trap depth distributions in persistent phosphors. Phys Rev B. 2013;87:045126. doi: 10.1103/PhysRevB.87.045126. [DOI] [Google Scholar]
  • 45.Chen R. On the calculation of activation energies and frequency factors from glow curves. J Appl Phys. 1969;40:570–585. doi: 10.1063/1.1657437. [DOI] [Google Scholar]
  • 46.Chen F, Di H, Wang Y, et al. Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence. Nat Chem Biol. 2016;12:174–179. doi: 10.1038/nchembio.2003. [DOI] [PubMed] [Google Scholar]

Articles from Science China Materials are provided here courtesy of Nature Publishing Group

RESOURCES