Skip to main content
AAAS - PMC COVID-19 Collection logoLink to AAAS - PMC COVID-19 Collection
. 2021 Aug 19;6(62):eabl4348. doi: 10.1126/sciimmunol.abl4348

X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19

Takaki Asano 1,*, Bertrand Boisson 1,2,3,*,, Fanny Onodi 4,$, Daniela Matuozzo 2,3,$, Marcela Moncada-Velez 1,$, Majistor Raj Luxman Maglorius Renkilaraj 2,3,$, Peng Zhang 1,$, Laurent Meertens 4,$, Alexandre Bolze 5,$, Marie Materna 2,3,$, Sarantis Korniotis 6, Adrian Gervais 2,3, Estelle Talouarn 2,3, Benedetta Bigio 1, Yoann Seeleuthner 2,3, Kaya Bilguvar 7, Yu Zhang 8,9, Anna-Lena Neehus 2,3, Masato Ogishi 1, Simon J Pelham 1, Tom Le Voyer 2,3, Jérémie Rosain 2,3, Quentin Philippot 2,3, Pere Soler-Palacín 10,11,12, Roger Colobran 12,13,14, Andrea Martin-Nalda 10,11,12, Jacques G Rivière 10,11,12, Yacine Tandjaoui-Lambiotte 15,16, Khalil Chaïbi 17,18, Mohammad Shahrooei 19,20, Ilad Alavi Darazam 21,22, Nasrin Alipour Olyaei 19,20, Davood Mansouri 23,24,25, Nevin Hatipoğlu 26, Figen Palabiyik 26, Tayfun Ozcelik 27, Giuseppe Novelli 28, Antonio Novelli 29, Giorgio Casari 30,31, Alessandro Aiuti 30,32, Paola Carrera 31, Simone Bondesan 31, Federica Barzaghi 32, Patrizia Rovere-Querini 30,33, Cristina Tresoldi 34, Jose Luis Franco 35, Julian Rojas 35, Luis Felipe Reyes 36, Ingrid G Bustos 36, Andres Augusto Arias 1,35,37, Guillaume Morelle 38, Kyheng Christèle 38, Jesús Troya 39, Laura Planas-Serra 40,41, Agatha Schlüter 40,41, Marta Gut 42, Aurora Pujol 40,41,43, Luis M Allende 44,45, Carlos Rodriguez-Gallego 46,47, Carlos Flores 48,49,50,51, Oscar Cabrera-Marante 44, Daniel E Pleguezuelo 44, Rebeca Pérez de Diego 52, Sevgi Keles 53, Gokhan Aytekin 54, Ozge Metin Akcan 53, Yenan T Bryceson 55, Peter Bergman 56, 60, Petter Brodin 57, Daniel Smole 58, CI Edvard Smith 59,60, Anna-Carin Norlin 60, Tessa M Campbell 55, Laura E Covill 55, Lennart Hammarström 61, Qiang Pan-Hammarström 61, Hassan Abolhassani 61,62, Shrikant Mane 63, Nico Marr 64, Manar Ata 64, Fatima Al Ali 64, Taushif Khan 64, András N Spaan 1,65, Clifton L Dalgard 66,67, Paolo Bonfanti 68, Andrea Biondi 69, Sarah Tubiana 70,71, Charles Burdet 70,72, Robert Nussbaum 73, Amanda Kahn-Kirby 73, Andrew L Snow 74; COVID Human Genetic Effort; COVID-STORM Clinicians; COVID Clinicians; Imagine COVID Group; French COVID Cohort Study Group; CoV-Contact Cohort; Amsterdam UMC Covid-19; Biobank; NIAID-USUHS COVID Study Group, Jacinta Bustamante 1,2,3,75, Anne Puel 1,2,3, Stéphanie Boisson-Dupuis 1,2,3, Shen-Ying Zhang 1,2,3, Vivien Béziat 1,2,3, Richard P Lifton 7,76,§, Paul Bastard 2,3,§, Luigi D Notarangelo 8,9,§, Laurent Abel 1,2,3,§, Helen C Su 8,9,77,§, Emmanuelle Jouanguy 1,2,3,§, Ali Amara 4,§, Vassili Soumelis 6,78,§, Aurélie Cobat 1,2,3,#, Qian Zhang 1,#, Jean-Laurent Casanova 1,2,3,79,#,
PMCID: PMC8532080  NIHMSID: NIHMS1744435  PMID: 34413140

Abstract

Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) tested carry such TLR7 variants (p = 3.5 × 10−5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is < 6.5x10−4. We also show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7. The patients’ blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.


TLR7 and plasmacytoid dendritic cells are essential for type I IFN-dependent immunity to SARS-CoV-2 in the lungs.

INTRODUCTION

Interindividual clinical variability in the course of SARS-CoV-2 infection is vast, ranging from silent infection to lethal disease (1). The greatest risk factor for life-threatening COVID-19 pneumonia is age, with a doubling in risk every five years from the age of five years onward, and a sharp rise after the age of 65 years (2, 3). Other epidemiological risk factors, including common genetic variants, have only modest effects, with odds ratios (ORs) < 2 and typically < 1.5 (2). One intriguing observation is the approximately 1.5 times higher risk in men, which seems to be age-independent (24). The COVID Human Genetic Effort consortium (www.covidhge.com) has enrolled an international cohort of patients, with the aim of investigating genetic and immunological causes of life-threatening COVID-19 pneumonia. We previously tested the hypothesis that critical influenza and critical COVID-19 can be allelic (57), and showed that life-threatening COVID-19 pneumonia can be caused by rare inborn errors of autosomal genes controlling TLR3- and IRF7-dependent type I interferon (IFN) immunity (8). These disorders were found in 23 men and women aged 17 to 77 years (mean: 48 years). Remarkably, four unrelated patients aged 25 to 50 years had autosomal recessive IFNAR1 (n=2) or IRF7 (n=2) deficiency. These patients had no previous history of severe viral illness, including influenza pneumonia, implying that these genetic disorders unexpectedly show incomplete penetrance for critical influenza. These findings revealed that TLR3- and IRF7-dependent type I IFN immunity is essential for host defense against SARS-CoV-2 infection in the respiratory tract.

We also found pre-existing neutralizing auto-Abs against type I IFN in at least 10% of the patients from this cohort (9). These auto-Abs were found in 101 patients, mostly men (95%), and older members of the cohort, which included patients with inborn errors, as they were aged 25 to 87 years (mean: 65 years). These findings have been replicated in five other cohorts (1015). These auto-Abs predated SARS-CoV-2 infection and were highly likely to be causal for critical COVID-19 pneumonia, because (i) they were found in samples drawn before infection in some patients (9), (ii) they were found in about 0.3% of the general population before the age of 65 years (9), (iii) they were absent from patients with asymptomatic or paucisymptomatic (mild) SARS-CoV-2 infection (9), (iv) they were of childhood onset in patients with various disorders — including autoimmune polyendocrinopathy type I (APS-1) — known to be at very high risk of life-threatening COVID-19 (16), and (v) they have been shown to underlie a third of adverse reactions to the live attenuated viral vaccine for yellow fever (17). Collectively, these studies showed that type I IFNs are essential for protective immunity to SARS-CoV-2 in the respiratory tract, but are otherwise surprisingly redundant. Auto-Abs against type I IFNs also provide a first explanation for both the biased sex ratio and the higher risk of critical COVID-19 in patients over the age of 65 years. Here, we tested the hypothesis that critical and unexplained COVID-19 pneumonia in men may be due to rare variants on the X- chromosome.

RESULTS

Enrichment for very rare TLR7 non-synonymous variants in male patients

We tested the hypothesis of genetic homogeneity for X-linked recessive disorders in male individuals with critical COVID-19 pneumonia (hereafter referred to as “patients”, see Materials and Methods). We analyzed an international cohort of 1,202 unrelated male patients aged 6 months to 99 years (mean: 52.9 years) that possessed no known inborn errors of TLR3- and IRF7-dependent type I IFN immunity (8) and without neutralizing auto-Abs against type I IFNs (9) (reported in an accompanying paper (79)) (Table S1). We also analyzed 331 asymptomatic or paucisymptomatic infected male subjects aged 1.3 to 102 years (mean: 38.7 years), with positive results for PCR and/or serological screening for SARS-CoV-2 infection (hereafter referred to as “controls”) (Table S1). We sequenced the exomes (n=1,035) or genomes (n=498) of these patients and controls. We selected in-frame and out-of-frame non-synonymous variants of protein-coding exons that are very rare, that is, with a minor allele frequency (MAF) below 10−4 in the full gnomAD database (v2.1.1) containing sequences from both male and female individuals. We compared the proportions of patients and controls carrying at least one qualifying variant, by Firth bias-corrected logistic regression adjusted for age and ethnicity (18) (Fig. S1A). We found non-synonymous variants in at least five patients for 226 of 731 genes on the X chromosome, resulting in a Bonferroni-corrected significance threshold of 2.2x10−4 (Data file S1). TLR7 was the highest ranked of these genes (uncorrected P-value = 3.5×10−5) and the only gene that remained significant after correction for multiple testing (corrected P-value =7.8×10−3), with 21 unrelated patients carrying one very rare (n=4 patients), two very rare (n=1 patient), or one private (n=16 patients) non-synonymous variant (Fig. 1A, Table S2). One variant (L988S) was recurrent, found in three patients, including a patient carrying two very rare variants (M854I;L988S). No such variants were found in the controls. The same analysis performed on very rare (MAF<10−4) synonymous TLR7 variants showed no enrichment in patients (one carrier) relative to controls (three carriers).

Fig. 1.

Fig. 1

Enrichment in rare TLR7 deleterious alleles among men with critical COVID-19 pneumonia. (A) Manhattan plot showing the results of the variant enrichment test for the 190 genes of the X chromosome with at least 5 patients carrying non-synonymous variants. The gray line indicates the corresponding Bonferroni-corrected significance threshold. (B) Western blot of extracts from non-transfected HEK293T cells (mock), HEK293T cells transfected with pCMV6 empty vector (EV), the wild-type (WT) TLR7 allele, or one of the TLR7 variant alleles of interest. All extracts were probed with monoclonal antibodies specific for the leucine-rich repeats to the N terminus (N-ter) or amino-acid 1,000 to the C terminus (C-ter) within the human TLR7 protein. (C) (D) Luciferase assay on HEK293T cells transfected with the pGL4.32 luciferase reporter construct and an expression vector for Renilla luciferase together with no vector (mock), EV, WT, or TLR7 variants: (C) 21 variants found in our cohort and eight previously reported variants, (D) 109 variants found in male individuals from the gnomAD database. After 24 hours, transfected cells were left untreated or were treated by incubation with 1 μg/mL R848 for 24 hours. These data were established from two independent experiments. The y-axis represents NF-κB transcriptional activity as a percentage of the WT. The x-axis indicates the alleles used for transfection. (E) Diagram showing the correlation between allele frequency and NF-κB activity (% of WT). The 20 variants from 21 patients with critical SARS-CoV-2 from our cohort are shown in red, one variant from 2 patients with severe SARS-CoV-2 from our cohort are shown in green, the eight previously reported variants are shown in blue and the 109 variants found in the general population (allele frequency above 10−5 in men) are shown in gray. Activity of all LOF/hypomorphic alleles compared to WT allele were statistically significance (one-way ANOVA with Dunnett’s post hoc test, P < 0.01).

Human TLR7 is an endosomal receptor of ribonucleic acids expressed by B cells and myeloid subsets (1923), the stimulation of which in plasmacytoid dendritic cells (pDCs) results in the production of large amounts of type I IFN (2426). We observed no significant enrichment for coding non-synonymous variants of the X-linked gene TLR8 (P-value = 0.68, Table S2), the product of which, TLR8, is endosomal and can be stimulated by some synthetic TLR7 agonists, with an expression pattern and signaling pathway overlapping those of TLR7 (27, 28). Unlike TLR7, TLR8 is expressed on granulocytes but not on pDCs, possibly accounting for its gain-of-function mutations underlying a phenotype different from type I interferonopathies (2931). Overall, we found an enrichment in very rare or private non-synonymous TLR7 variants among the male patients with critical COVID-19 pneumonia (n=21, 1.7%) of our cohort (n=1,202), including one man over the age of 60 years.

The TLR7 mutant alleles of 16 of the 21 unrelated patients with critical COVID-19 pneumonia are biochemically deleterious

The 21 unrelated patients carried 20 different TLR7 alleles. We expressed the 20 TLR7 mutant proteins in human embryonic kidney (HEK) 293T cells, which have no endogenous TLR7 and TLR8 expression (32), by transient transfection with the corresponding cDNAs. Immunoblotting of protein extracts with a TLR7-specific mAb showed an absence of TLR7 protein for p.N158Tfs*11 and p.L227fs* and the presence of truncated proteins for K684* and F670Lfs*8 (Fig. 1B). The other mutant TLR7 proteins were produced in normal amounts (Fig. 1B). We tested their function by cotransfection with an NF-κB-specific luciferase reporter. We measured luciferase activity upon stimulation with R848, an agonist of both TLR7 and TLR8 (Fig. 1C). Twelve of the 20 alleles were loss-of-function (LOF) (including L988S in two patients, and M854I;L988S in another), three (p.L372M, p.I657T and p.P715S) were hypomorphic (activity < 25%), and the remaining five were neutral (Fig. 1C, Data file S2). Similar results were obtained with imiquimod and CL264, two TLR7-specific agonists (Fig. S1B, S1C). We also tested eight other private (p.S301P, p.Q710Rfs*18, p.V795F), very rare (MAF <10−4; p.A288V) or rare (MAF between 10−4 and 10−2; p.V219I, p.A448V, p.R920K, p.A1032T) TLR7 variants previously reported in patients with critical COVID-19 (33, 34). These variants were expressed as truncated or full-length proteins (Fig. S1D). The proteins encoded by the three private variants were found to be LOF, that encoded by the very rare variant (p.A288V) was hypomorphic, and those encoded by the four rare variants were neutral (Fig. 1C, Fig. S1B). Collectively, these findings suggest that 16 of the 21 patients in our cohort (Table 1), as well as only 6 of the previously reported 12 patients carry deleterious TLR7 variants.

Table 1. X-linked TLR7 deleterious variants in 16 unrelated male patients with life-threatening COVID-19 pneumonia.

Patient Genotype Age [years] Ethnicity Ancestry/residence Outcome
P1 L134P/Y 45 Admixed American Paraguay/Spain Survived
P2 N158Tfs11*/Y 60 European France Deceased
P3 L227fs*/Y 34 Middle East Iran Survived
P4 D244Y/Y 13 Middle East Turkey Survived
P5 F310L/Y 39 Middle East Iran Survived
P6 L372M 7 Caucasian (Central Asia based on GME Variome) Iran Survived
P7 I505T/Y 55 European Italy Survived
P8 H630Y/Y 50 European Spain Survived
P9 I657T/Y 18 European Italy Survived
P10 F670Lfs*8 31 European Sweden Survived
P11* F670Lfs*8 29 European Sweden Survived
P12 K684*/Y 30 European Spain Survived
P13 P715S/Y 40 Latino Colombia Survived
P14 H781L/Y 13 Middle East Russia/France Survived
P15 L988S/Y 26 Middle East Iran Deceased
P16 L988S/Y 20 Middle East Turkey Survived
P17 M854I;L988S/Y 71 European Italy Survived

* P10’s brother (not included in the cohort of 1,202 critical patients with critical COVID-19 pneumonia).

GME Variome, Greater Middle Eastern Variome Project

The cumulative MAF of deleterious TLR7 alleles is < 6.5x10−4

We also investigated the production and function of all 100 remaining non-synonymous TLR7 variants identified in the general population (141,456 individuals in gnomAD v2.1) that had been reported in men or had a general MAF > 10−5 (Fig. 1D and Fig. S1E, Data file S2). In total, 96 of these variants were missense and three were in-frame small deletions; 10 were weakly expressed, whereas the others had normal levels of expression (Fig. S1F, Data file S2). One variant was a small deletion creating a frameshift found in one man and resulting in an absence of protein production (Fig. S1F, Data file S2). Seven of the 100 variants were LOF and 15 were hypomorphic (< 25% activity) (Data file S2). There were, thus, 24 deleterious TLR7 variants, including the L988S and A288V variants found in four patients with critical COVID-19 pneumonia. Each of these 24 deleterious variants had an individual MAF < 1.3x10−4 in men and their cumulative MAF in men was 6.5 x10−4 (Data file S2, Table S3). The cumulative MAF of strictly LOF TLR7 alleles (excluding hypomorphic alleles) in men is about 2.2 x10−4 (Data file S2). Overall, we found 12 LOF and three hypomorphic TLR7 alleles in 16 unrelated men with critical COVID-19 pneumonia, whereas deleterious alleles were not found in men with asymptomatic or paucisymptomatic infection. Moreover, deleterious TLR7 alleles in the general population had individual and cumulative MAF values in men of < 1.3x10−4 and < 6.5x10−4, respectively (Fig. 1E, Data file S2). The rarity of TLR7 deficiency in the general population is consistent with TLR7 deficiency underlying critical COVID-19. Collectively, these findings suggest that X-linked recessive (XR) TLR7 deficiency is a genetic etiology of life-threatening COVID-19 pneumonia in men.

High clinical penetrance of inherited TLR7 deficiency in the patients’ families

The 16 patients were of three major ethnic origins, as confirmed by principal component analysis (PCA) of their exomes or genomes (35), and they were resident in seven countries (France n=2, Spain n=3, Italy n=3, Turkey n=2, Sweden n=1, Iran n=4, Colombia n=1) (Fig. 2A, Fig. 2C, Fig. S1, Table 1, Data file S3). The patients were hospitalized for critical COVID-19 between March 2020 and June 2021. Blood samples (diluted 1/10) from these 16 patients contained no auto-Abs neutralizing 10 ng/mL IFN-α2 and/or -ω (9) (79). The patients were aged 7 to 71 years and their mean age was lower than that of the total cohort (mean age of 34.4 years, versus 52.9 years for the total cohort, in which age ranged from 0.5 to 99 years). TLR7-deficient patients accounted for about 1.8% of the patients below the age of 60 years (15 patients) and 1.3% of the entire cohort (16 patients). Two patients died and 14 survived (Fig. 2A, Table 1). Sanger sequencing of the TLR7 locus in the relatives of these patients identified the deleterious alleles in 16 heterozygous women from eleven families and seven hemizygous men from seven families (Fig. 2A). Based on the ten DNA samples available from the patients’ mothers, only one of the TLR7 variants (L372M) was de novo in the index case. Five of the seven hemizygous relatives of the index cases had antibodies against SARS-CoV-2 (Fig. 2A, Data file S3). One 29-year-old adult (Kindred J, P11) was hospitalized for critical pneumonia, and another 27-year-old adult (L.II.3) was hospitalized for severe pneumonia (with low-flow oxygen (<6L/min)). The remaining three were two five-year-old boys, one of whom had been hospitalized for moderate COVID-19 pneumonia (without oxygen therapy) (D.II.2), the other having no relevant clinical history (M.II.2), and one 38-year-old adult with no relevant clinical history (E.II.4) (Data file S3). The other two male carriers did not report SARS-CoV-2 infection and had negative serological results for antibodies against the SARS-CoV-2 S and N proteins.

Fig. 2.

Fig. 2

X-linked recessive TLR7 deficiency in 16 kindreds. (A) Pedigrees of the 16 kindreds containing 17 patients with life-threatening COVID-19 pneumonia (P1-17) bearing deleterious TLR7 alleles. The mutations are indicated above each pedigree. Solid black symbols indicate patients with critical COVID-19, and solid dark gray symbols indicate severe cases and solid light gray symbols indicate mild/moderate cases. The genotype is indicated under each symbol, with M corresponding to the mutation found in each kindred. ‘+’ and ‘-’ indicate the presence and absence, respectively, of antibodies against SARS-CoV-2 in the serum of the individual. Asymptomatic or paucisymptomatic family members hemizygous for the mutation are indicated by bold vertical lines. (B) Pedigree of one kindred containing two patients with severe COVID-19. (C) Schematic representation of TLR7. The upper part represents the genomic organization of the TLR7 locus, with rectangles for the various exons of the gene, and exon numbers indicated within the rectangle. The bottom part shows the primary structure of TLR7. The N-terminal portion and the leucine-rich repeat containing 26 leucine residues are located in the lumen of the endosome, and TM indicates the transmembrane domain. The Toll/interleukin-1 (IL-1) receptor (TIR) domain is cytoplasmic. The deleterious mutations reported in this study are indicated. (D) TLR7 expression in unstimulated EBV-B cells from two patients with XR TLR7 deficiency (P12 and P14), the fathers of P12 and P14, and the mother of P12, and three healthy donors (Control 1 to 3), determined by Western blotting with detection with a specific TLR7 antibody. (E) TNF production by XR TLR7-deficient EBV-B cells from two independent experiments. Cells were either left untreated or were stimulated with 5 μg/mL imiquimod (gray), or 25 ng/mL PMA and 0.25 μM ionomycin (black) for 24 hours and TNF production were measured by ELISA. (F) TNF production in XR TLR7-deficient EBV-B cells re-expressing WT TLR7 from three independent experiments. EBV-B cells from a control, P12, P14, or an UNC-93B-deficient patient, cultured in the presence of IRAK4 inhibitor (PF06650833- 5 μM) were transduced with lentiviral particles that were empty or contained the WT TLR7 or mutant TLR7 cDNA. The cells were incubated for 24 hours without IRAK4 inhibitor and were then left untreated or were stimulated with 5 μg/mL imiquimod (light gray), 1 μg/mL R848 (dark gray), or 25 ng/mL PMA and 0.25 μM ionomycin (black) for 24 hours, and TNF production were measured by ELISA. Statistical tests were performed using one-way ANOVA with Dunnett’s post hoc test (*: P < 0.05, ns: not significant).

Inherited TLR7 deficiency in patients with severe COVID-19 pneumonia

Given these results, we also analyzed 262 other, unrelated male patients with severe (but not critical) COVID-19 pneumonia (mean age: 51.0 years). We identified a new private LOF variant (p.N75H) in two male patients from two Turkish families (P18 and P19), aged 12 and 7 years, respectively, who were subsequently found to be fourth-degree relatives (Fig. 1B, 1C, 1D, Fig. 2B, Fig. S1B, Data file S2, Data file S3). Their mothers are heterozygous for this variant. The clinical penetrance of critical COVID-19 in men is therefore high, but not complete, and TLR7 deficiency can also underlie severe COVID-19. The absence of biochemically deleterious TLR8 variants in our cohort of patients with critical COVID-19 (Fig. S2) and its lack of expression on pDCs suggest that TLR8 is not a modifier of the SARS-CoV-2-related clinical phenotype of TLR7 deficiency, although it is adjacent to TLR7 on the X chromosome and can be stimulated by overlapping molecules. Perhaps more relevant to the understanding of the incomplete penetrance is the age of the patients. Of the 23 male patients carrying deleterious alleles of TLR7 infected with SARS-CoV-2, the 20 patients who developed severe (n=3) or critical (n=17) COVID-19 were aged 7-71 years (mean: 32.4 years) whereas the three patients who developed asymptomatic, mild, or moderate infection were younger: 5, 5, and 38 years (mean: 16 years). Blood pDC counts decrease with age (3638), and this may contribute to the apparent increase in penetrance with age. In addition, a VirScan study of the serum samples of five index cases and three TLR7 hemizygous relatives revealed prior infection with diverse viruses (Fig. S3). None had previously been hospitalized for a severe viral illness, including influenza pneumonia. This cohort of patients thus suggests that TLR7 deficiency does not underlie severe disease caused by common viral infections other than SARS-CoV-2, or if so, with lower penetrance.

Deleterious TLR7 alleles abolish B cell responses to TLR7 agonists

As a first approach to testing the impact of deleterious TLR7 alleles in the patients’ cells, we tested Epstein-Barr virus-transformed B cell lines (EBV-B cells) from healthy controls and patients carrying the hemizygous p.K684* (P12) or p.H781L (P14) variants. The endogenous expression of the p.H781L TLR7 protein was normal, whereas p.K684* generated a truncated protein (Fig. 2D). In response to agonists of TLR7 (imiquimod) or TLR7 plus TLR8 (R848), the EBV-B cell lines carrying these two mutations failed to produce TNF (Fig. 2E, Fig. S4A, S4B). The lentiviral transduction of these TLR7-deficient EBV-B cells (from P12 and P14) with a WT TLR7 cDNA was unsuccessful, despite numerous attempts, and this was also the case for control EBV-B cells, perhaps because the overproduction of TLR7 is toxic in B cells (39). Consistent with this view, we were able to express this cDNA in IRAK4- or MyD88-deficient EBV-B cells. We therefore investigated whether the addition of an IRAK4 inhibitor (PF06650833) would permit the expression of WT TLR7 in control and TLR7-mutated EBV-B cells. This approach was successful, and WT TLR7 expression restored responses to TLR7 agonists (after removal of the inhibitor) (Fig. 2F, Fig. S4C). Hemizygosity for LOF TLR7 alleles thus abolished responses to TLR7 stimulation in EBV-B cells, a phenotype that was rescued by WT TLR7 expression. Collectively, these findings further suggest that XR TLR7 deficiency is a genetic etiology of severe/critical COVID-19 pneumonia.

The TLR7-mutated patients’ myeloid cells, including pDCs, do not respond to TLR7 agonists

Human TLR7 is known to be expressed and functional only in leukocyte subsets: plasmacytoid and classical dendritic cells (pDCs and mDCs), monocytes (classical, intermediate, and non-classical), and B cells (27, 32, 40). TLR8 is expressed in mDCs but not pDCs, monocytes but not B cells, and neutrophils (unlike TLR7) (27, 32, 40). Neither TLR7 nor TLR8 mRNAs have been detected in the lung or pulmonary epithelial cells (41). Deep immunophenotyping by CyTOF in seven patients with TLR7 deficiency revealed no major abnormalities in 18 peripheral blood leukocyte subsets, including pDCs, mDCs, monocytes, and B cells (Fig. 3A, Fig. S5A). We previously reported inherited IRF7 deficiency in a child with critical influenza pneumonia (5) and two unrelated adults with critical COVID-19 pneumonia (8). This defect disrupts the amplification of type I IFNs in all cell types, including pDCs, which are normally the main producers of type I IFN upon blood cell stimulation with TLR7 agonists or viruses, due to their constitutive expression of IRF7 (27, 4244). We hypothesized that TLR7 deficiency in pDCs impairs the production of type I IFN by these cells in response to ssRNA. We confirmed that TLR7 was expressed on pDCs, and that TLR8 was not (Fig. 3B, S5B, S5C). We measured the production of type I IFNs by purified leukocyte subsets (pDCs, mDCs, monocytes, B cells, T cells), in response to TLR7, TLR8 and TLR9 agonists (Fig. 3C, Fig. S5D). We confirmed that pDCs produced 100-1,000 times more type I IFN per cell than other leukocyte subsets upon TLR7 stimulation (Fig. 3C, Fig. S5D). We purified pDCs from P8 and P14 and analyzed their production of type I IFNs in response to CL264 and class C CpG oligonucleotide (CpG-c), relative to that of pDCs from healthy relatives, using a cytometric bead array (CBA) (Fig. 3D). pDCs from P8 and P14 did not produce type I IFNs (or IL-6) upon stimulation with a TLR7 agonist, whereas they responded to a TLR9 agonist (Fig. 3D). Moreover, agonist-induced up-regulation of PD-L1 and CD80 defines the maturation of pDCs into the S1 (PD-L1high/CD80low), S2 (PD-L1high/CD80high), and S3 (PD-L1low/CD80high) subsets (45). This maturation was not observed in the pDCs of P8 and P14, but was detected in the pDCs of healthy relatives and controls (Fig. 3E, Fig. S5E). Thus, pDCs from patients with TLR7 mutations do not respond to TLR7 agonists in terms of maturation into specialized subsets and type I IFN production.

Fig. 3.

Fig. 3

Type I IFN responses to TLR7 agonist in TLR7-deficient pDCs and leukocytes. (A) Frequencies of five leukocyte subsets in whole blood, determined by CyTOF. Healthy donors (black rectangles), relatives not carrying deleterious TLR7 alleles (blue rectangles) and hemizygous TLR7 variant carriers (red rectangles) are depicted. (B) TLR7 and TLR8 expression in different leukocyte subsets, determined by flow cytometry for the healthy control (C1). The result for another healthy control (C2) is shown in Figure S5C. Gating strategy for the classification in each cell subset is shown in Data file S6. (C) IFN-α production in purified leukocyte subsets from two healthy donors (blue or yellow dot) with and without stimulation with various TLR7, 8, or 9 agonists (1 μg/mL CL264, 100 ng/mL TL8-506, 1 μg/mL R848, or 2 μM CpG-c) for 24 hours. The y-axis shows IFN-α production on a logarithmic scale. The red bar corresponds to pDCs. (D) pDCs isolated from healthy donors and TLR7-deficient patients (P8, P14) were either left untreated (medium) or were stimulated with CL264 or CpG-c, and the production of IFN-α2 and IL-6 was assessed with CBAs on the supernatant. (E) Dotplot showing pDC diversification into subsets S1, S2, and S3 from magnetically sorted blood. pDCs from a TLR7-deficient patient (P14) and a healthy relative (M.I.1) were cultured for 24 hours with medium alone or with 1 μg/mL CL264 or 2 μM CpG-c. Statistical tests were performed using unpaired two-sample t test (*: P < 0.05).

The TLR7-deficient patients’ pDCs respond poorly to SARS-CoV-2

A plausible mechanism accounting for the severity of COVID-19 in TLR7-deficient patients is the impairment of type I IFN production by pDCs upon stimulation with SARS-CoV-2, which can enter these cells, but cannot replicate productively within them (45, 46). Indeed, we previously showed that the activation of human pDCs by SARS-CoV-2 depends on IRAK4 and UNC-93B, but not TLR3 (45). We tested the hypothesis that TLR7 is an essential pDC sensor of SARS-CoV-2, upstream from IRAK4 and UNC-93B, by infecting pDCs and pDC-depleted leukocytes from healthy controls and TLR7-deficient patients with SARS-CoV-2 for 24 hours. Control pDC-depleted leukocytes infected with SARS-CoV-2 displayed no significant up- or down-regulation of gene expression (Fig. S6A). By contrast, transcriptomic analysis showed a strong up-regulation of the type I IFN transcriptional module in pDCs from healthy controls, which was greatly reduced in pDCs from TLR7-deficient patients (Fig. 4A). Induction of the 17 type I IFN genes in pDCs from TLR7-deficient patients was 10 to 100 times weaker than that in pDCs from healthy individuals (Fig. 4B, S6B). We also analyzed the functional specialization of pDC subsets (S1-, S2-, and S3-pDC subsets) in response to SARS-CoV-2 activation (45, 47). pDCs from P14 cultured with SARS-CoV-2 for 24 hours displayed abnormally low levels of maturation into the S1-subset —the pDC subset principally responsible for IFN-α production upon SARS-CoV-2 infection (Fig. S6C). Finally, we evaluated the amount of type I IFNs secreted by SARS-CoV-2-infected pDCs. All 13 individual IFN-α forms were produced in significantly smaller amounts by TLR7-deficient pDCs than by control pDCs (Fig. 4C, S6D). However, IFN-α production by TLR7-deficient pDCs upon SARS-CoV-2 infection was impaired, but not entirely abolished, as in UNC-93B- or IRF7-deficient pDCs (8, 45), implying that there are also TLR7-independent sensors of SARS-CoV-2 in pDCs and suggesting that TLR9 is involved. The TLR7-deficient pDCs’ normal response to TLR9 agonists (Fig. 3D, 4A, 4B, S6D) is consistent with this hypothesis, while also suggesting that genetic or epigenetic variations of TLR9 responses may contribute to the apparently age-dependent penetrance of TLR7 deficiency. Thus, SARS-CoV-2 triggers type I IFN induction in pDCs in a manner that is dependent on TLR7, but not exclusively so. As pDCs are normally the main leukocytes producing type I IFN in such conditions, and type I IFN is essential for protective immunity to SARS-CoV-2 (8, 9), these findings suggest that XR TLR7 deficiency underlies critical or severe COVID-19 pneumonia by disrupting TLR7-and pDC-dependent type I IFN production.

Fig. 4. Type I IFN responses to SARS-CoV-2 infection in TLR7-deficient pDCs.

Fig. 4

(A) pDCs isolated from healthy relatives and TLR7-deficient patients (P8, P14) were either left untreated or were infected with SARS-CoV-2 for 24 hours. RNA profiles were then determined by RNA-seq. Genes with expression >2.0-fold higher or lower in controls after stimulation or infection are plotted as the fold-change in expression. (B) Induction of the type I and III IFN genes from (A) infected with SARS-CoV-2 for 24 hours (top) or stimulated with CpG-c (bottom). (C) pDCs isolated from healthy relatives and TLR7-deficient patients (P8, P14) were either left untreated or were infected with SARS-CoV-2 for 24 hours and the production of IFN-α2, IP-10, IL-6 and IL-8 was measured with CBAs on the supernatant. Statistical tests were performed using unpaired two-sample t test (*: P < 0.05, ****: P < 0.0001, ns: not significant).

DISCUSSION

We report XR TLR7 deficiency as a genetic etiology of severe/critical COVID-19 pneumonia in 20 unrelated male patients, aged 7 to 71 years, from seven countries. Only one of these 20 patients (5%) was older than 60 years, consistent with our previous observation that only five of 23 patients (21.7%) with inborn errors of TLR3-dependent type I IFN immunity were older than 60 years (8). This suggests that these genetic defects are mostly found in the youngest patients. This contrasts with the situation for auto-Abs against type I IFNs, which are found mostly in patients over the age of 60 years (8, 9) (79). Importantly, patients with these auto-Abs do not overlap with those bearing inborn errors of TLR3- or TLR7-dependent type I IFNs. TLR7-deficient patients accounted for about 1.8% of the unrelated male patients with critical COVID-19 pneumonia below the age of 60 years in our cohort and accounted for 1.3% of the total cohort. This proportion remained around the same when severe COVID-19 pneumonia was also taken into account (1.7% males below 60 years; 1.2% of all the male patients in the total cohort). We also found that six of the 12 previously reported patients with a TLR7 variant had TLR7 deficiency (33, 34). It would be interesting to test experimentally the undisclosed TLR7 variants reported to be enriched in another study (48). Our discovery provides an explanation for the higher risk of severe and critical disease in men than in women under the age of 60 years, complementing our previous observation of a much higher frequency of neutralizing auto-Abs against type I IFNs in men than in women with critical COVID-19 pneumonia for patients over the age of 60 years (9).

Previous reports of patients with critical COVID-19 pneumonia due to inborn errors of TLR3-dependent type I IFN immunity (8), including autosomal recessive IRF7 or IFNAR1 deficiency (5, 6), or due to auto-Abs neutralizing type I IFNs (9, 1114, 16, 17), strongly suggest that critical disease in TLR7-deficient patients is a consequence of impaired type I IFN production upon SARS-CoV-2 infection. The absence of biochemically deleterious X-linked TLR8 variants in our cohort of patients suggests that TLR8 is not essential for host defense against SARS-CoV-2. This is consistent with the modest capacity of TLR8 to induce type I IFN and its lack of expression on pDCs (27), and with the inflammatory phenotype of TLR8 gain-of-function mutations, which do not underlie a type I interferonopathy (2931). Patients with inherited IRAK4 or MyD88 deficiency, whose cells do not respond to the stimulation of IL-1Rs and TLRs other than TLR3, including TLR7, have not been reported to display any severe viral illness over the almost 20 years since the discovery of IRAK-4 deficiency (4952). Moreover, UNC-93B-deficient pDCs produced normal amounts of type I IFN in response to seasonal influenza virus (5). This was intriguing, as strong negative selection operates at the human TLR7, TLR8, and TLR9 loci (49, 53). Our study provides an answer to this riddle, by establishing that TLR7 is essential for protective immunity to SARS-CoV-2. Patients with IRAK4, MyD88, or UNC93B deficiency are now predicted to be vulnerable to SARS-CoV-2 (5456). Critical COVID-19 and seasonal influenza can be caused by inborn errors of TLR3-dependent type I IFN immunity (58), but susceptibility to these infections is not allelic at the TLR7 locus. It is, nevertheless, tempting to speculate that TLR7 might also be essential for host defense against more virulent, pandemic viruses, including both coronaviruses and influenza viruses.

Through the discovery of the essential nature of TLR7 for the induction of type I IFN in response to SARS-CoV-2, our study also reveals the essential function of human pDCs in host defense. The constitutively high levels of IRF7 in these cells make them the most potent producers of type I IFN in the blood, and perhaps in the entire human body, and this has long suggested a possible key role in antiviral immunity (25). However, the essential and redundant roles of this leukocyte subset have yet to be determined, in the absence of human pDC-specific deficiencies causally underlying a clinical phenotype. It has long been suspected, but never proved, that pDCs are essential for host defense in natural conditions (26, 5759). Inherited IRF7 deficiency, which underlies critical influenza or COVID-19 pneumonia, disrupts the production of type I IFNs not only by pDCs (5, 8), but also by all other cell types, including pulmonary epithelial cells (5). Likewise, patients with GATA2 deficiency, who are prone to critical influenza (60), lack pDCs, but these patients also lack many other blood cell subsets (6164). Inherited IFNAR1 deficiency underlies critical COVID-19 probably due to its broad cellular impact (5, 6, 8). By contrast, inborn errors of the TLR3 pathway underlie critical influenza or COVID-19 pneumonia by impairing the production of type I IFNs by cells other than pDCs, such as pulmonary epithelial cells (58, 65). Our study indicates that pulmonary epithelial cells are not sufficient for host defense against SARS-CoV-2, as these cells do not express TLR7. Inborn errors of TLR7 are pathogenic by impairing the production of type I IFNs by blood pDCs, which are unique in their production of large amounts of both TLR7 and IRF7 (66, 67). pDCs express other viral sensors, including TLR9 (for DNA), MDA5 and RIG-I (for dsRNA) (68), but TLR7 deficiency impairs their capacity to produce large enough amounts of type I IFN in response to SARS-CoV-2 in the respiratory tract. Overall, by disrupting pDC-dependent type I IFN production, XR TLR7 deficiency accounts for at least 1% of cases of life-threatening COVID-19 pneumonia in men under 60 years.

MATERIALS AND METHODS

Study design

We searched for X-linked inborn errors of immunity in male patients with critical SARS-CoV-2 pneumonia. We screened our WES database of 1,202 male patients with critical SARS-CoV-2 pneumonia (‘patients’) and 331 male subjects with asymptomatic or paucisymptomatic infection (‘controls’). We tested the association of X-linked genes with critical SARS-CoV-2 pneumonia using a Firth bias-corrected logistic regression model including the first five principal components of the PCA to account for the ethnic heterogeneity of the cohorts and age in years. We then tested the activity of TLR7 variants in transduced cell lines and of TLR7 genotypes in hemizygous patients’ cell lines. Lastly, we tested the patients’ pDCs for their response to both TLR7 agonists and SARS-CoV-2.

Cohort recruitment and consent

This study included 1,202 male patients with life-threatening COVID-19 pneumonia, defined as patients with pneumonia who developed critical disease, whether pulmonary with high-flow oxygen (> 6L/min) or mechanical ventilation (CPAP, BIPAP, intubation), septic shock, or any other type of organ damage requiring ICU admission. This study also included patients with severe COVID-19 pneumonia, defined as hospitalized patients with pneumonia that required low-flow oxygen (<6L/min); moderate COVID-19 pneumonia, defined as patients with pneumonia but did not require oxygen therapy; and mild COVID-19, defined as patients with mild upper respiratory symptoms but without pneumonia. Patients who developed Kawasaki-like syndrome were excluded. The age of the patients ranged from 0.5-99 years, with a mean age of 52.9 years (SD 16.4 years). Asymptomatic or paucisymptomatic individuals (n= 331) were recruited on the basis of positive PCR or serological tests for SARS-CoV-2 in the absence of symptoms. These individuals were close contacts of patients or were recruited after clinical screening. The age of the asymptomatic or paucisymptomatic individuals ranged from 1.3-102 years, with a mean age of 38.7 years (SD: 17.2 years).

All the enrolled subjects provided written informed consent and were collected through protocols conforming to local ethics requirements. For patients enrolled in the French COVID cohort (clinicaltrials.gov NCT04262921), ethics approval was obtained from the CPP IDF VI (ID RCB: 2020-A00256-33) or the Ethics Committee of Erasme Hospital (P2020/203). For subjects enrolled in the COV-Contact study (clinicaltrials.gov NCT04259892), ethics approval was obtained from the CPP IDF VI (ID RCB: 2020-A00280-39). For patients enrolled in the Italian cohort, ethics approval was obtained from the University of Milano-Bicocca School of Medicine, San Gerardo Hospital, Monza – Ethics Committee of the National Institute of Infectious Diseases Lazzaro Spallanzani (84/2020) (Italy), and the Comitato Etico Provinciale (NP 4000 – Studio CORONAlab). STORM-Health care workers were enrolled in the STudio OsseRvazionale sullo screening dei lavoratori ospedalieri per COVID-19 (STORM-HCW) study, with approval from the local IRB obtained on June 18, 2020. Patients and relatives from San Raffaele Hospital (Milan) were enrolled in protocols COVID-BioB/Gene-COVID and, for additional studies, TIGET-06, which were approved by local ethical committee. For patients enrolled in Spain, the study was approved by the Committee for Ethical Research of the Infanta Leonor University Hospital, code 008-20, Committee for Ethical Research of the University Hospital 12 de Octubre, code 16/368 and the Bellvitge University Hospital code PR127/20, the University Hospital of Gran Canaria Dr. Negrín code 2020-200-1 COVID-19 and the Vall d’Hebron University Hospital, code PR(AMI)388/2016. Anonymized samples were sequenced at the NIAID through USUHS/TAGC under non-human subject research conditions; no additional IRB consent was required at the NIH. For patients enrolled in the Swedish COVID cohort, ethics approval was obtained from the Swedish Ethical Review Agency (2020-01911 05).

Next-generation sequencing

Genomic DNA was extracted from whole blood. For the 1,533 patients included, the whole exome (n=1035) or whole genome (n=498) was sequenced at several sequencing centers, including the Genomics Core Facility of the Imagine Institute (Paris, France), the Yale Center for Genome Analysis (USA), the New-York Genome Center (NY, USA), and the American Genome Center (TAGC, USUHS, Bethesda, USA), and the Genomics Division-ITER of the Canarian Health System sequencing hub (Canary Islands, Spain).

For WES, libraries were generated with the Twist Bioscience kit (Twist Human Core Exome Kit), the xGen Exome Research Panel from Integrated DNA Technologies (IDT xGen), the Agilent SureSelect V7 kit or the SeqCap EZ MedExome kit from Roche, and the Nextera Flex for Enrichment-Exome kit (Illumina). Massively parallel sequencing was performed on a HiSeq4000 or NovaSeq6000 system (Illumina). For WES analysis performed at CNAG Barcelona, Spain, capture was performed with the SeqCap EZ Human Exome Kit v3.0 (Roche Nimblegen, USA) and 100-bp paired-end read sequences were obtained on a HiSeq 2000-4000 platform (Illumina, Inc. USA). For the OSR Italian cohort, WES was performed with the Agilent SureSelect V7 kit on a NovaSeq6000 system (Illumina).

For WGS on patients of the Italian cohort (TAGC), genomic DNA samples were dispensed into the wells of a Covaris 96 microTUBE plate (1,000 ng per well) and sheared with the Covaris LE220 Focused-ultrasonicator, at settings targeting a peak size of 410 bp (t:78; Duty:18; PIP:450; 200 cycles). Sequencing libraries were generated from fragmented DNA with the Illumina TruSeq DNA PCR-Free HT Library Preparation Kit, with minor modifications for automation (Hamilton STAR Liquid Handling System), with IDT for Illumina TruSeq DNA UD Index (96 indices, 96 samples) adapters. Library size distribution was assessed and the absence of free adapters or adapter dimers was checked by automated capillary gel electrophoresis (Advanced Analytical Fragment Analyzer). Library concentration was determined by qPCR with the KAPA qPCR Quantification Kit (Roche Light Cycler 480 Instrument II). Sequencing libraries were normalized and combined as 24-plex pools and quantified as above, before dilution to 2.9 nM and sequencing on an Illumina NovaSeq 6000 with the S4 Reagent Kit (300 cycles) and 151+8+8+151 cycle run parameters. Primary sequencing data were demultiplexed with the Illumina HAS2.2 pipeline and sample-level quality control was performed for base quality, coverage, duplicates and contamination (FREEMIX < 0.05 by VerifyBamID). For patients enrolled in the Swedish COVID cohort, sequencing was performed at the Clinical Genomics Stockholm unit of the SciLifeLab (Stockholm, Sweden).

We used the Genome Analysis Software Kit (GATK) (version 3.4-46 or 4) best-practice pipeline to analyze our WES data (69). We aligned the reads obtained with the human reference genome (hg19), using the maximum exact matches algorithm in the Burrows–Wheeler Aligner (BWA) (70). PCR duplicates were removed with Picard tools (picard.sourceforge.net). The GATK base quality score recalibrator was applied to correct sequencing artifacts. Genotyping was performed with GATK GenotypeGVCFs in the interval intersecting all the capture kits ± 50 bp. Sample genotypes with a coverage < 8X, a genotype quality (GQ) < 20, or a ratio of reads for the less covered allele (reference or variant allele) over the total number of reads covering the position (minor read ratio, MRR) < 20% were filtered out. We filtered out variant sites (i) with a call rate <50% in gnomAD genomes and exomes, (ii) a non-PASS filter in the gnomAD database, (iii) falling in low-complexity or decoy regions, (iv) that were multi-allelic with more than four alleles, (v) with more than 20% missing genotypes in our cohort, and (vi) spanning more than 20 nucleotides. Variant effects were predicted with the Ensembl Variant Effect Predictor (VEP) (71) and the Ensembl GRCh37.75 reference database, retaining the most deleterious annotation obtained from Ensembl canonical transcripts overlapping with RefSeq transcripts.

Statistical analysis

We performed an enrichment analysis focusing on X chromosome genes on our cohort of 1,202 male patients with life-threatening COVID-19 pneumonia without known inborn errors of TLR3- and IRF7-dependent type I IFN immunity (8) and without neutralizing auto-Abs against type I IFNs (9), and 331 male individuals with asymptomatic or paucisymptomatic infection (Table S1). We considered variants that were predicted to be loss-of-function or missense, with a MAF below 0.0001 (gnomAD v2.1.1). We compared the proportion of patients and controls carrying at least one non-synonymous using the Firth bias-corrected logistic likelihood ratio test implemented in EPACTS (https://genome.sph.umich.edu/wiki/EPACTS) extended to gene based enrichment analysis. In Firth’s regression, a penalty term is placed on the standard maximum likelihood function used to estimate parameters of a logistic regression model (18). Firth’s can handle genes with no carriers among cases or controls. With no covariates, this corresponds to adding 0.5 in every cell of a 2x2 table of allele counts versus case-control status. We accounted for the ethnic heterogeneity of the cohorts by including the first five principal components of the PCA in the Firth’s logistic regression model. Analyses were also adjusted for age in years. We checked that our adjusted burden test was well-calibrated by also performing an analysis of enrichment in rare (MAF < 0.0001) synonymous variants. PCA was performed with Plink v1.9 software on whole-exome and whole-genome sequencing data, with the 1000 Genomes (1kG) Project phase 3 public database as a reference, using 18,917 exonic variants with a minor allele frequency > 0.01 and a call rate > 0.99.

Cell culture

EBV-B cell lines derived from the patients were grown in complete RPMI 1640 (Life Technologies) supplemented with 10% heat-inactivated fetal bovine serum (FBS). HEK293T cells, derived from the human embryonic kidney 293 cell line, which expresses a mutant version of the SV40 large T antigen, were grown in complete DMEM (Life Technologies) supplemented with 10% FBS. Cells were incubated at 37°C in the presence of 5% CO2.

Expression vectors and transfection experiments

All the TLR7 variants in our analysis were generated by site-directed mutagenesis (Data file S4). The WT or variant alleles were re-introduced into a Myc-DDK-pCMV6 vector (Origene). HEK293T cells, which have no endogenous TLR7 or TLR8 expression, were transfected with the Myc-DDK-pCMV6 vector, empty or containing the WT or a variant allele, in the presence of X-tremeGENE 9 DNA Transfection Reagent (Sigma-Aldrich), according to the manufacturer’s instructions.

Western blotting

For whole-cell extracts, the cells were lysed by incubation in the following buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% NP40), supplemented with a mixture of protease inhibitors (Sigma-Aldrich), for 30 min at 4°C. The lysates were then centrifuged at 21,000 x g for 20 min at 4°C. The supernatants were processed directly for Western blotting. Western blotting was performed on 10 μg of total extract from transfected HEK293T cells, with monoclonal antibodies specific for the leucine-rich repeats to the N terminus within the human TLR7 protein (Cell Signaling Technology; clone, D7), or for amino-acid 1,000 to the C terminus with the human TLR7 protein (Abcam; clone, EPR2088(2)).

Luciferase reporter assay

HEK293T cells, which have no endogenous TLR7 expression, were transfected with the pCMV6 vector bearing wild-type or variant TLR7 (50 ng), the reporter construct pGL4.32 (100 ng), and an expression vector for Renilla luciferase (10 ng), with the X-tremeGENE 9 DNA Transfection Reagent kit (Sigma-Aldrich). The pGL4.32 [luc2P/NF-κB-RE/Hygo] (Promega) reporter vector contains five copies of the NF-κB-responsive element (NF-κB-RE) linked to the luciferase reporter gene luc2P. After 24 hours, the transfected cells were left unstimulated or were stimulated with 1 μg/mL R848 (Resquimod), for activation via TLR7/8 (Invivogen), or 5 μg/mL R837 (Imiquimod) (Invivogen), or 5 μg/mL CL264 (Invivogen), human TLR7-specific agonists, for 24 hours. Relative luciferase activity was then determined by normalizing the values against the firefly:Renilla luciferase signal ratio.

RNA extraction and reverse transcription-quantitative PCR (RT-qPCR)

Total RNA was extracted with the RNeasy Mini Kit (Qiagen), according to the manufacturer’s instructions. Reverse transcription was performed on 1 μg of RNA with random primers and the SuperScript® III reverse transcriptase (Invitrogen), according to the manufacturer’s protocol. Quantitative PCR was then performed with the TaqMan Fast Universal PCR Master Mix (2X) and the FAM-MGB TaqMan TNF exons 1-2 (Hs99999-43_m1) probes. The VIC-TAMRA probe for GUSB (Applied Biosystems, Cat: 4310888E) was used as an endogenous control. Real-time PCR amplification was monitored with the 7500 Fast Real-Time PCR System (Applied Biosystems). Relative expression levels were determined according to the ΔCt method.

ELISA analysis of TNF production in EBV-B cells

ELISA was performed as previously described (50). We suspended 1x106 EBV-B cells per well in RPMI 1640 supplemented with 10% FBS. The cells were activated by incubation with 1 μg/mL R848, and 5 μg/mL imiquimod for 24 hours. The supernatants were harvested after 24 hours of activation. ELISA determinations of TNF in cell culture supernatants were performed with a kit (Thermo Fisher Scientific), according to the manufacturer’s instructions.

Stable transduction

The WT coding sequence of TLR7 was inserted into pTRIP-CMV-puro-2A. For lentivirus production, HEK293T cells were transfected with 1.6 μg pTRIP-CMV-puro-2A-TLR7-WT (or Mutant: K684*), 0.2 μg pCMV-VSV-G (Addgene), 0.2 μg pHXB2 (NIH-AIDS Reagent 22 Program) and 1 μg psPAX2 (Addgene), with X-treme gene 9 (Roche), according to the manufacturer's instructions. Supernatants were harvested after 24 hours and 8 μg/mL protamine sulfate was added. The lentiviral suspension obtained was used to transduce 2x105 EBV-B cells by spinoculation at 1,200 x g for 2 hours. The transduced cells were selected by incubation on medium containing 1 μg/mL puromycin for two days. The cells were then selected by incubation for a further two days on medium containing 2 μg/mL puromycin. During viral transduction, the cells were cultured with 5 μM IRAK4 inhibitor (PF06650833) (Bio-techne) to prevent cell death due to the overproduction of TLR7. Selected transduced cells were then stimulated with 1 μg/mL R848 or 5 μg/mL imiquimod for 24 hours without IRAK4 inhibitor. The supernatants were harvested after 24 hours of activation. ELISA determinations of TNF in cell culture supernatants were performed with a kit (Thermo Fisher Scientific), according to the manufacturer’s instructions.

VirScan analysis

Patient serum was analyzed by VirScan in two independent experiments as previously described (78). Briefly, an oligonucleotide library encoding 56 amino acid peptides tiling across the genomes of 206 viral species was synthesized on a releasable DNA microarray and cloned into T7 phage. Patient serum containing 2 μg of IgG was added to the phage library, and immunoprecipitation was performed with Protein A and G beads. Enriched peptides were identified by PCR and Illumina sequencing of the peptide cassette from the immunoprecipitated phage.

Deep immunophenotyping by mass cytometry (CyTOF)

CyTOF was performed on whole blood with the Maxpar Direct Immune Profiling Assay (Fluidigm), according to the manufacturer’s instructions. Cells were frozen at -80°C after overnight staining to eliminate dead cells, and acquisition was performed on a Helios machine (Fluidigm). All the samples were processed within 24 hours of sampling. Data analysis was performed with OMIQ software. Antibody information is listed in supplemental material (Data file S5).

PBMC enrichment using MACS system

Blood were collected from two healthy individuals and separated by the concentration gradient method with Ficoll®️ Paque Plus (Cytiva). After isolations of PBMCs, leucocyte subset (T cell, B cell, monocyte, pDC, and mDC) were purified by negative selection using MACS beads system (Milteni Biotec). Cells were plated into a U-bottomed 96-well plate at a density of 2×104 cells/well for T cells, B cells, monocytes, pDCs, or mDCs in 200 μL/well RPMI-1640 with GlutaMAX supplemented with 10% FBS or 10×104 cells/well for whole blood and PBMCs. Cells were left unstimulated or stimulated with 1μg/mL CL264, 100ng/ml TL8-506 (Invivogen), 1μg/mL R848, 2μM CpG-c (Invivogen), or 12.5ng/ml PMA and 0.125μM ionomycin for 24 hours. The supernatants were harvested after 24 hours of activation. Cytokines production were determined by ELISA (IFN-α - PBL Assay Science, IFN-β- PBL Assay Science, IFN- λ1 (IL-29) - Invivogen, IFN-ω- Invitrogen or IL-8 - R&D SYSTEMS); according to the manufacturer’s instructions.

Analysis for TLR7 and TLR8 expression pattern in peripheral blood mononuclear cells (PBMCs) by flow cytometry

Freshly thawed PBMCs from healthy donors were dispensed into a V-bottomed 96-well plate at a density of 1×106 cells/well, in 200 μL PBS/well. In brief, cells were stained by incubation with the LIVE/DEAD fixable blue dead-cell staining kit (Thermo Fisher Scientific, 1:800) and FcR blocking reagent (Miltenyi Biotec, 1:25) on ice for 15 min. For surface staining, cells were incubated with anti-γδTCR-BUV611 (BD Biosciences, 1:50), anti-CD183-BV750 (BD Biosciences, 1:20), and anti-CD194-BUV615 (BD Biosciences, 1:20) antibodies on ice for 30 min in 0.1% BSA and 0.01% sodium azide in PBS. They were then incubated with anti-CD141-BB515 (BD Biosciences, 1:40), anti-CD57-FITC (Biolegend, 1:83), anti-TCR Vδ2-PerCP (Biolegend, 1:166), anti-TCR Vα7.2-PerCP/Cyanine5.5 (Biolegend, 1:40), anti-TCR Vδ1-PerCP-Vio 700 (Miltenyi Biotec, 1:100), anti-CD14-Spark Blue 550 (Biolegend, 1:40), anti-CD1c-Alexa Fluor 647 (Biolegend, 1:50), anti-CD38-APC/Fire 810 (Biolegend, 1:30), anti-CD27-APC-H7 (BD Biosciences, 1:50), anti-CD127-APC-R700 (BD Biosciences, 1:50), anti-CD19-Spark NIR 685 (Biolegend, 1:83), anti-CD45RA-BUV395 (BD Biosciences, 1:83), anti-CD16-BUV496 (BD Biosciences, 1:166), anti-CD11b-BUV563 (BD Biosciences, 1:100), anti-CD56-BUV737 (BD Biosciences, 1:83), anti-CD8-BUV805 (BD Biosciences, 1:83), anti-hMR1-BV421 (NIH tetramer facility, 1:100), anti-CD11c-BV480 (BD Biosciences, 1:40), anti-CD45-BV510 (Biolegend, 1:83), anti-CD33-BV570 (Biolegend, 1:83), anti-iNKT-BV605 (Biolegend, 1:25), anti-CD161-BV650 (BD Biosciences, 1:25), anti-CCR6-BV711 (Biolegend, 1:83), anti-CCR7- BV785 (Biolegend, 1:40), anti-CD3-Pacific Blue (Biolegend, 1:83), anti-CD20-Pacific Orange (Life Technologies, 1:50), anti-CD123-Super Bright 436 (Invitrogen, 1:40), anti-CD24-PE-Alexa Fluor 610 (Life Technologies, 1:25), anti-CD25-PE-Alexa Fluor 700 (Life Technologies, 1:25), anti-CD294-Biotin (Invitrogen, 1:50), anti-CD209-PE/Cyanine7 (Biolegend, 1:25), anti-CD117-PE/Dazzle 594 (Biolegend, 1:83), anti-HLA-DR-PE/Fire 810 (Biolegend, 1:50), and anti-CD4-cFluorTM YG584 (Cytek, 1:83) antibodies on ice for at least 30 min. The cells were then washed and stained by incubation with streptavidin-PE/Cy5 (Biolegend, 1:3000) on ice for 30 min. The cells were then fixed and permeabilized for intracellular staining with anti-TLR7-PE (Invitrogen) and anti-TLR8-APC (Biolegend) antibodies, with the eBioscience Foxp3/Transcription Factor Staining Buffer Set (Invitrogen), according to the manufacturer’s instructions. The cells were then washed and acquired with a five-laser Cytek Aurora (Cytek) flow cytometer. Antibody clone information is added in a supplemental material (Data file S6).

pDC activation

Freshly purified pDCs were cultured in 96-well plates at a concentration of 5 × 105 cells per mL in the presence of medium alone (RPMI 1640 Medium with GlutaMAX, 10% FBS, 1% MEM NEAA, 1% sodium pyruvate, and 1% penicillin/streptomycin), CL264 (Invivogen, 1 μg/mL), or the SARS-CoV-2 primary strain 220_95 (45) at a multiplicity of infection (MOI) of 1. After 24 hours of culture, the pDC supernatant was collected for cytokine quantification, and the PDCs were collected for diversification assessment by flow cytometry. In some experiments, RNA was purified from the pDCs were analyzed by RNA-seq (see below).

Flow cytometry analysis for human pDCs

For assessments of pDC diversification, cells were stained with Zombie Violet fixable viability dye (Biolegend), BV711 anti-CD123 (Biolegend, clone 6H6), PE anti-CD80 (BD, clone L307.4), and PerCP-efluor 710 anti-PD-L1 (eBioscience, clone MIH1) antibodies. Data were acquired with an LSR Fortessa (BD Biosciences) flow cytometer and analyzed with FlowJo software (Tree Star). Flow cytometry analyses were performed at the flow cytometry core facility of IRSL (Paris, France).

RNA-Sequencing

We collected cells from five individuals in two families: one patient (P8) and two healthy controls (H.II.2, H.II.3) from family H, and one patient (P14) and one healthy control (M.I.1)) from family M. These cells were stimulated with three conditions: non-stimulation, SARS CoV-2, and CpG-c. Total RNA was extracted from pDC cells with RNeasy Micro kits (QIAGEN). RNA-Seq libraries were prepared with the Illumina SMART-Seq® v4 PLUS Kit (TaKaRa) and sequenced on the Illumina NextSeq 4000 platform with single-end 75 bp configuration. The RNA-Seq fastq raw data were inspected with multiQC v1.10 (72) to ensure the high quality of data. The sequencing reads were mapped onto the human reference genome GRCh38 with STAR aligner v2.7 (73), and the mapped reads were then quantified to determine the gene-level read counts with featureCounts V2.0.2 (74) and GENCODE human gene annotation GRCh38.p13 (75). The gene-level read counts were normalized and log2-transformed by DESeq2 (76), to obtain the gene expression profile of all samples for differential expression analysis. The differential gene expression was analyzed by applying TMM normalization and gene-wise generalized linear model regression with edgeR (77). The genes displaying significant differential expression were selected on the basis of |log2-FoldChange| ≥ 2 and FDR ≤ 0.05. The gene-level read counts of IFN genes were transformed to RPKM (Reads Per Kilobase of transcript, per Million mapped reads) by our own scripts, to compare the IFN gene expression of different samples under different stimulations.

Determination of secreted inflammatory cytokines

We measured the production, by pDCs, of IFN-α2, IL-8, IL-6, and IP-10, by determining the levels of these cytokines in culture supernatants with the BD cytometric bead array (CBA), according to the manufacturer’s protocol, with a limit of detection of 20 pg/mL. Acquisitions were performed on an LSR Fortessa (BD Biosciences) flow cytometer, and cytokine concentrations were determined with FCAP Array Software (BD Biosciences).

Acknowledgments

We thank the patients and families; the members the Laboratory of Human Genetics of Infectious Diseases; Y. Nemirovskaya, M. Woollett, D. Liu, S. Boucherit, C. Rivalain, M. Chrabieh and L. Lorenzo for administrative assistance. Funding: The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI088364), the National Center for Advancing Translational Sciences (NCATS), NIH Clinical and Translational Science Award (CTSA) program (UL1TR001866), a Fast Grant from Emergent Ventures, Mercatus Center at George Mason University, the Yale Center for Mendelian Genomics and the GSP Coordinating Center funded by the National Human Genome Research Institute (NHGRI) (UM1HG006504 and U24HG008956), the Fisher Center for Alzheimer’s Research Foundation, the Meyer Foundation, the JPB Foundation, the French National Research Agency (ANR) under the “Investments for the Future” program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the FRM and ANR GENCOVID project, the ANRS-COV05, ANR GENVIR (ANR-20-CE93-003) and ANR AABIFNCOV (ANR-20-CO11-0001) projects, the European Union’s Horizon 2020 research and innovation program under grant agreement no. 824110 (EASI-genomics), the Square Foundation, Grandir - Fonds de solidarité pour l’enfance, the SCOR Corporate Foundation for Science, Fondation du Souffle, Institut National de la Santé et de la Recherche Médicale (INSERM) and the University of Paris. The French COVID Cohort study group was sponsored by Inserm and supported by the REACTing consortium and by a grant from the French Ministry of Health (PHRC 20-0424). The Cov-Contact Cohort was supported by the REACTing consortium, the French Ministry of Health, and the European Commission (RECOVER WP 6). The Neurometabolic Diseases Laboratory received funding from the European Union’s Horizon 2020 research and innovation program (EasiGenomics grant no. 824110 COVID-19/PID12342). A.P. R.P.D., C.R.G. and C.F. were funded by Instituto de Salud Carlos III (COV20_01333 and COV20_01334), the Spanish Ministry of Science and Innovation (RTC-2017-6471-1; AEI/FEDER, UE), Grupo DISA (OA18/017), and Cabildo Insular de Tenerife (CGIEU0000219140 and “Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19”). The laboratories of G.N. and A.N. were supported by a grant awarded to Regione Lazio (PROGETTI DI GRUPPI DI RICERCA 2020) no. A0375-2020-36663, GecoBiomark. A.Am.’s laboratory was supported by ANR under the “Investments for the Future” program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the FRM (EQU202003010193), ANR (ANR-20-COVI-000 project IDISCOVR and ANR-20-CO11-0004 project FISHBP) and the University of Paris (Plan de Soutien Covid-19: RACPL20FIR01-COVID-SOUL). This work was supported in part by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH (grants 1ZIAAI001265 to H.C.S and ZIA AI001270 to L.D.N.). The G.C. laboratory was supported by the Italian Ministry of Health (grant COVID-2020-12371617) and the intramural COVID Host Genetics program. The J.L.F. laboratory was supported in part by the Coopération Scientifique France-Colciencias (ECOS-Nord/COLCIENCIAS/MEN/ICETEX (806-2018) and Colciencias contract 713-2016 (no. 111574455633). The V.S. laboratory was supported by ANR DENDRISEPSIS (ANR-17-CE15-0003) and ANR APCOD (ANR-17-CE15-0003-01), a Fast Grant from the Mercatus Center, FRM, University of Paris PLAN D’URGENCE COVID19. A.-L.N. was supported by the Bettencourt Schueller Foundation and the International PhD program of the Imagine Institute. Author contributions: A.K.-K., A.Am., A.C., A.G., A.-L.N., Be.Bo., E.J., F.A.A. F.O., J.R., L.M., M.A., M.M-V., M.M., M.O., MRL.MR., N.M., Pa.Ba., Q.P., Q.Z., S.J.P., Sa.Ko., S.M., T.A., T.K., T.Le V., V.B., V.S., P.Z. and Y.Z. performed or supervised experiments, generated and analyzed data, and contributed to the manuscript by providing figures and tables. A.C., A.B., Au.Pu., Be.Bi., Da.Mat., K.B., L.A., and Y.S. performed computational analyses of data. A.Ai., A.Ar., A.-C.N., A.M.N., A.N., A.N.S., A.S., Au.Pu., C.B., C.F., C.K., C.L.D., C.T., D.E.P., Da.Man., D.S., E.J., E.S., F.B., F.P., G.C., G.M., G.N., H.A., H.S., I.A.D., I.G.B., J.C.R.G., J.G.R., J.L.F., J.R., J.T., K.C., L.F.R., L.E.C., L.H., L.N., L.P-S., M.G., L.M.A., M.S., N.A.O., N.H., O.C., P.Be., P.Br., P.C., P.R-Q., P.S-P., Pa.Ba., Pa.Bo., Q.P.-H., Q.Z., R.C., R.N., R.P., S.A., S.B., S.T., Se.Ke.,, T.M.C., T.O., Y.T.B., and Y.T-L. evaluated and recruited patients to the COVID and/or control cohorts. Be.Bo., Q.Z., A.C., L.A. and J.-L.C. wrote the manuscript. All the authors edited the manuscript. J.-L.C. supervised the project. Competing interests: K.B. is appointed at Acibadem University School of Medicine, Istanbul, Turkey. H.C.S. is adjunct faculty at the University of Pennsylvania. R.N. and A.K.-K. are employees of Invitae and hold equity in the company. V.S. received speaker fees from GILEAD. R.P.L. is a non-executive director of Roche and its subsidiary Genentech. The authors declare no other competing interests. Data and materials availability: The RNA-seq data for this study have been deposited in the Gene Expression Omnibus database under accession number GSE181787. For patients enrolled in the Italian cohort, patient specimens may be available from Monza, subject to approval by their local IRB, through an MTA. All other data needed to evaluate the conclusions in the paper are present in the paper or the Supplementary Materials. This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. This license does not apply to figures/photos/artwork or other content included in the article that is credited to a third party; obtain authorization from the rights holder before using such material.

Supplementary materials

immunology.sciencemag.org/cgi/content/full/6/62/eabl4348/DC1

- Figure S1; Ethnicity information and TLR7 allele activity

- Figure S2; Allele activity for the TLR8 variants found in our cohort

- Figure S3; VirScan analysis of specific anti-viral antibodies detected in patient sera

- Figure S4; Levels of TNF induction in EBV-B cells derived from two patients with XR TLR7 deficiency

- Figure S5; Analysis of peripheral blood mononuclear cells from TLR7-deficient men

- Figure S6; Functional analysis in pDCs infected with SARS-CoV-2

- Table S1; Characteristics of the cohort of patients with life-threatening COVID-19 pneumonia and the control cohort of asymptomatic or paucisymptomatic individuals

- Table S2; Statistical analysis of non-synonymous rare variants of TLR7 and TLR8 in our cohorts

- Table S3; Summary of TLR7 variants

- Data file S1; Selection of genes on chromosome X with 5 or more hemizygous carriers (Excel file).

- Data file S2; TLR7 variant activity reported in this study, in previous studies and in gnomAD (Excel file).

- Data file S3; TLR7-deficient patients with severe/critical COVID-19 in our cohort (clinical information, laboratory findings, and immunological findings) (Excel file).

- Data file S4; Primer sequences for mutagenesis (Excel file).

- Data file S5; Antibody information for CyTOF (Excel file).

- Data file S6; Gating strategy and antibody clone information for 40 color immunophenotyping (Excel file).

- Data file S7; Raw data files (Excel file).

COVID Human Genetic Effort

Laurent Abel1, Alessandro Aiuti2, Saleh Al-Muhsen3, Fahd Al-Mulla4, Mark S. Anderson5, Evangelos Andreakos6, Andrés A. Arias7, Hagit Baris Feldman8, Alexandre Belot9, Catherine M. Biggs10, Dusan Bogunovic11, Alexandre Bolze12, Anastasiia Bondarenko13, Ahmed A. Bousfiha14, Petter Brodin15, Yenan Bryceson16, Carlos D. Bustamante17, Manish J. Butte18, Giorgio Casari19, Samya Chakravorty20, John Christodoulou21, Antonio Condino-Neto22, Stefan N. Constantinescu23, Megan A. Cooper24, Clifton L. Dalgard25, Murkesh Desai26, Beth A. Drolet27, Jamila El Baghdadi28, Sara Espinosa-Padilla29, Jacques Fellay30, Carlos Flores31, José Luis Franco7, Antoine Froidure32, Peter K. Gregersen33, Filomeen Haerynck34, David Hagin35, Rabih Halwani​36, Lennart Hammarström37, James R. Heath38, Sarah E. Henrickson39, Elena W.Y. Hsieh40, Eystein Husebye41, Kohsuke Imai42, Yuval Itan43, Erich D. Jarvis44, Timokratis Karamitros45, Kai Kisand46, Cheng-Lung Ku47, Yu-Lung Lau48, Yun Ling49, Carrie L. Lucas50, Tom Maniatis51, Davood Mansouri52, László Maródi53, Isabelle Meyts54, Joshua D. Milner55, Kristina Mironska56, Trine H. Mogensen57, Tomohiro Morio58, Lisa F.P. Ng59, Luigi D. Notarangelo60, Antonio Novelli61, Giuseppe Novelli62, Cliona O'Farrelly63, Satoshi Okada64, Tayfun Ozcelik65, Qiang Pan-Hammarström37, Rebeca Perez de Diego66, Anna M. Planas67, Carolina Prando68, Aurora Pujol69, Lluis Quintana-Murci70, Laurent Renia59, Igor Resnick71, Carlos Rodríguez-Gallego72, Vanessa Sancho-Shimizu73, Anna Sediva74, Mikko R.J. Seppänen75, Mohammed Shahrooei76, Anna Shcherbina77, Ondrej Slaby78, Andrew L. Snow79, Pere Soler-Palacín80, András N. Spaan81, Ivan Tancevski82, Stuart G. Tangye83, Ahmad Abou Tayoun84, Sathishkumar Ramaswamy84, Stuart E Turvey85, K M Furkan Uddin86, Mohammed J. Uddin87, Diederik van de Beek88, Donald C. Vinh89, Horst von Bernuth90, Mayana Zatz91, Pawel Zawadzki92, Helen C. Su60, Jean-Laurent Casanova93

1INSERM U1163, University of Paris, Imagine Institute, Paris, France. 2San Raffaele Telethon Institute for Gene Therapy, IRCCS Ospedale San Raffaele, and Vita Salute San Raffaele University, Milan, Italy. 3Immunology Research Laboratory, Department of Pediatrics, College of Medicine and King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia. 4Dasman Diabetes Institute, Department of Genetics and Bioinformatics, Dasman, Kuwait. 5Diabetes Center, University of California San Francisco, San Francisco, CA, USA. 6Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece. 7Universidad de Antioquia, Group of Primary Immunodeficiencies, Antioquia UdeA, Medellín, Colombia. 8The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. 9Pediatric Nephrology, Rheumatology, Dermatology, HFME, Hospices Civils de Lyon, National Referee Centre RAISE, and INSERM U1111, Université de Lyon, Lyon, France. 10Department of Pediatrics, British Columbia Children’s Hospital, The University of British Columbia, Vancouver, BC, Canada 11Icahn School of Medicine at Mount Sinai, New York, NY, USA. 12Helix, San Mateo, CA, USA. 13Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine. 14Clinical Immunology Unit, Department of Pediatric Infectious Disease, CHU Ibn Rushd and LICIA, Laboratoire d'Immunologie Clinique, Inflammation et Allergie, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco. 15SciLifeLab, Department Of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden 16Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden. 17Stanford University, Stanford, CA, USA. 18Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and the Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA. 19Clinical Genomics, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy 20Department of Pediatrics and Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, USA. 21Murdoch Children's Research Institute and Department of Pediatrics, University of Melbourne, Australia 22Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. 23de Duve Institute and Ludwig Cancer Research, Brussels, Belgium 24Washington University School of Medicine, St. Louis, MO, USA. 25Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. 26Bai Jerbai Wadia Hospital for Children, Mumbai, India. 27School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA. 28Genetics Unit, Military Hospital Mohamed V, Rabat, Morocco. 29Instituto Nacional de Pediatria (National Institute of Pediatrics), Mexico City, Mexico. 30School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland. 31Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain; Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain. 32Pulmonology Department, Cliniques Universitaires Saint-Luc ; Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium. 33Feinstein Institute for Medical Research, Northwell Health USA, Manhasset, NY, USA. 34Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent (CPIG), PID Research Laboratory, Jeffrey Model Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium. 35The Genetics Institute Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. 36Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates. 37Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden. 38Institute for Systems Biology, Seattle, WA, USA. 39Department of Pediatrics, Division of Allergy Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 40Departments of Pediatrics, Immunology and Microbiology, University of Colorado, School of Medicine, Aurora, Colorado, USA 41Department of Medicine, Haukeland University Hospital, Bergen, Norway. 42Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University (TMDU) 43Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 44Laboratory of Neurogenetics of Language and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA. 45Bioinformatics and Applied Genomics Unit, Hellenic Pasteur Institute, Athens, Greece 46Molecular Pathology, Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu Estonia. 47Chang Gung University, Taoyuan County, Taiwan. 48Department of Pediatrics & Adolescent Medicine, The University of Hong Kong, Hong Kong, China. 49Shanghai Public Health Clinical Center, Fudan University, Shanghai, China. 50Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. 51Columbia University Zuckerman Institute, New York, NY 52Department of Clinical Immunology and Infectious Diseases, National Research Institute of Tuberculosis and Lung Diseases, The Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 53Primary Immunodeficiency Clinical Unit and Laboratory, Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary. 54Department of Pediatrics, University Hospitals Leuven; KU Leuven, Department of Microbiology, Immunology and Transplantation; Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium. 55Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA. 56University Clinic for Children's Diseases, Department of Pediatric Immunology, Medical Faculty, University “St.Cyril and Methodij” Skopje, North Macedonia. 57Department of Biomedicine, Aarhus University, Aarhus, Denmark 58Tokyo Medical & Dental University Hospital, Tokyo, Japan. 59A*STAR Infectious Disease Labs, Agency for Science, Technology and Research, Singapore; Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore. 60National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. 61Laboratory of Medical Genetics, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy. 62Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy. 63Comparative Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland. 64Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan. 65Department of Molecular Biology and Genetics, Bilkent University, Bilkent - Ankara, Turkey. 66Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain. 67IIBB-CSIC, IDIBAPS, Barcelona, Spain. 68Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil. 69Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII, Barcelona, Spain. 70Human Evolutionary Genetics Unit, CNRS U2000, Institut Pasteur, Paris, France; Human Genomics and Evolution, Collège de France, Paris, France. 71University Hospital St. Marina, Varna, Bulgaria. 72Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain; Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain 73Department of Pediatric Infectious Diseases and Virology, Imperial College London, London, UK; Centre for Pediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK. 74Department of Immunology, Second Faculty of Medicine Charles University, V Uvalu, University Hospital in Motol, Prague, Czech Republic. 75Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Rare Diseases Center and Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland 76Saeed Pathobiology and Genetics Lab, Tehran, Iran; Department of Microbiology and Immunology, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium. 77Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia. 78Central European Institute of Technology & Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. 79Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. 80Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain. 81St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands 82Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria. 83Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia. 84Al Jalila Children's Hospital, Dubai, UAE 85BC Children's Hospital, The University of British Columbia, Vancouver, Canada 86Centre for Precision Therapeutics, Genetic and Genomic Medicine Centre, NeuroGen Children Healthcare, Dhaka, Bangladesh; Holy Family Red Crescent Medical College, Dhaka, Bangladesh 87College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE; Cellular Intelligence (Ci) Lab, GenomeArc Inc., Toronto, ON, Canada 88Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands. 89Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montréal, Québec, Canada; Infectious Disease Susceptibility Program, Research Institute, McGill University Health Centre, Montréal, Québec, Canada. 90Department of Pediatric Pneumology, Immunology and Intensive Care, Charité Universitätsmedizin, Berlin University Hospital Center, Berlin, Germany; Labor Berlin GmbH, Department of Immunology, Berlin, Germany; Berlin Institutes of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany. 91Biosciences Institute, University of São Paulo, São Paulo, Brazil. 92Molecular Biophysics Division, Faculty of Physics, A. Mickiewicz University, Poznań, Poland. 93The Rockefeller University & Howard Hughes Medical Institute, New York, NY, USA; Necker Hospital for Sick Children & INSERM, Paris, France.

COVID-STORM Clinicians

Giuseppe Foti1, Giacomo Bellani1, Giuseppe Citerio1, Ernesto Contro1, Alberto Pesci2, Maria Grazia Valsecchi3, Marina Cazzaniga4

1Department of Emergency, Anesthesia and Intensive Care, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. 2Department of Pneumology, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. 3Center of Bioinformatics and Biostatistics, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. 4Phase I Research Center, School of Medicine and Surgery, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy.

COVID Clinicians

Jorge Abad1, Giulia Accordino2, Cristian Achille3, Sergio Aguilera-Albesa4, Aina Aguiló-Cucurull5, Alessandro AIUTI6, Esra Akyüz Özkan7, Ilad Alavi Darazam8, Jonathan Antonio Roblero Albisures9, Juan C Aldave10, Miquel Alfonso Ramos11, Taj Ali Khan12, Anna Aliberti13, Seyed Alireza Nadji14, Gulsum Alkan15, Suzan A. AlKhater16, Jerome Allardet-Servent17, Luis M Allende18, Rebeca ALONSO-ARIAS19, Mohammed S Alshahrani20, Laia Alsina21, Marie-Alexandra Alyanakian22, Blanca Amador Borrero23, Zahir Amoura24, Arnau Antolí25, Romain Arrestier26, Mélodie Aubart27, Teresa Auguet28, Iryna Avramenko29, Gökhan Aytekin30, Axelle Azot31, Seiamak Bahram32, Fanny Bajolle33, Fausto Baldanti34, Aurélie Baldolli35, Maite Ballester36, Hagit Baris Feldman37, Benoit Barrou38, Federica BARZAGH6, Sabrina Basso39, Gulsum Iclal BAYHAN40, Alexandre Belot41, Liliana BEZRODNIK42, Agurtzane Bilbao43, Geraldine Blanchard-Rohner44, Ignacio Blanco45, Adeline Blandinières46, Daniel Blázquez-Gamero47, Alexandre Bleibtreu48, Marketa Bloomfield49, Mireia Bolivar-Prados50, Anastasiia BONDARENKO51, Alessandro Borghesi3, Raphael Borie52, Elisabeth Botdhlo-Nevers53, Ahmed A Bousfiha54, Aurore Bousquet55, David Boutolleau56, Claire Bouvattier57, Oksana Boyarchuk58, Juliette Bravais59, M. Luisa Briones60, Marie-Eve Brunner61, Raffaele Bruno62, Maria Rita P Bueno63, Huda Bukhari64, Jacinta Bustamante33, Juan José Cáceres Agra65, Ruggero Capra66, Raphael Carapito67, Maria Carrabba68, Giorgio CASARI6, Carlos Casasnovas69, Marion Caseris70, Irene Cassaniti34, Martin Castelle71, Francesco Castelli72, Martín Castillo de Vera73, Mateus V Castro63, Emilie Catherinot74, Jale Bengi Celik75, Alessandro Ceschi76, Martin Chalumeau77, Bruno Charbit78, Matthew P. Cheng79, Père Clavé50, Bonaventura Clotet80, Anna Codina81, Yves Cohen82, Roger Colobran83, Cloé Comarmond84, Alain Combes85, Patrizia Comoli39, Angelo G Corsico2, Taner Coşkuner86, Aleksandar Cvetkovski87, Cyril Cyrus88, David Dalmau89, François Danion90, David Ross Darley91, Vincent Das92, Nicolas Dauby93, Stéphane Dauger94, Paul De Munter95, Loic de Pontual96, Amin Dehban97, Geoffroy Delplancq98, Alexandre Demoule99, Isabelle Desguerre100, Antonio Di Sabatino101, Jean-Luc Diehl102, Stephanie Dobbelaere103, Elena Domínguez-Garrido104, Clément Dubost105, Olov EKWALL106, Şefika Elmas Bozdemir107, Marwa H Elnagdy108, Melike Emiroglu15, Akifumi Endo109, Emine Hafize Erdeniz110, Selma Erol Aytekin111, Maria Pilar ETXART LASA112, Romain Euvrard113, Giovanna Fabio68, Laurence Faivre114, Antonin Falck115, Muriel Fartoukh116, Morgane Faure117, Miguel Fernandez Arquero118, Ricard Ferrer119, Jose Ferreres120, Carlos Flores121, Bruno Francois122, Victoria Fumadó123, Kitty S C Fung124, Francesca Fusco125, Alenka Gagro126, Blanca Garcia Solis127, Pascale Gaussem128, Zeynep GAYRETLI129, Juana Gil-Herrera130, Laurent Gilardin131, Audrey Giraud Gatineau132, Mònica Girona-Alarcón133, Karen Alejandra Cifuentes Godínez134, Jean-Christophe Goffard135, Nacho GONZALES136, Luis I Gonzalez-Granado137, Rafaela González-Montelongo138, Antoine Guerder139, Belgin Gülhan140, Victor Daniel Gumucio141, Leif Gunnar Hanitsch142, Jan Gunst143, Marta Gut144, Jérôme Hadjadj145, Filomeen Haerynck146, Rabih Halwani147, Lennart Hammarström148, Selda HANCERLI149, Tetyana Hariyan150, Nevin Hatipoglu151, Deniz Heppekcan152, Elisa Hernandez-Brito153, Po-ki Ho154, María Soledad Holanda-Peña155, Juan P Horcajada156, Sami Hraiech157, Linda Humbert158, Ivan F N Hung159, Alejandro D. Iglesias160, Antonio Íñigo-Campos138, Matthieu Jamme161, María Jesús Arranz89, Marie-Thérèse Jimeno162, Iolanda Jordan133, Saliha Kanık Yüksek163, Yalcin Burak Kara164, Aydın Karahan165, Adem KARBUZ166, Kadriye Kart Yasar167, Ozgur Kasapcopur168, Kenichi Kashimada169, Sevgi Keles111, Yasemin Kendir Demirkol170, Yasutoshi Kido171, Can KIZIL172, Ahmet Osman Kılıç173, Adam Klocperk174, Antonia Koutsoukou175, Zbigniew J. Król176, Hatem Ksouri177, Paul Kuentz178, Arthur M C Kwan179, Yat Wah M Kwan180, Janette S Y Kwok181, Jean-Christophe Lagier182, David S Y Lam183, Vicky Lampropoulou184, Fanny Lanternier185, Yu-Lung LAU186, Fleur Le Bourgeois94, Yee-Sin Leo187, Rafael Leon Lopez188, Daniel Leung186, Michael Levin189, Michael Levy94, Romain Lévy33, Zhi Li78, Daniele Lilleri34, Edson Jose Adrian Bolanos Lima190, Agnes Linglart191, Eduardo López-Collazo192, José M. Lorenzo-Salazar138, Céline Louapre193, Catherine Lubetzki193, Kwok-Cheung Lung194, Charles-Edouard Luyt195, David C Lye196, Cinthia MAGNONE197, Davood Mansouri198, Enrico Marchioni199, Carola Marioli2, Majid Marjani200, Laura MARQUES201, Jesus Marquez Pereira202, Andrea Martín-Nalda203, David Martínez Pueyo204, Javier Martinez-Picado205, Iciar Marzana206, Carmen Mata-Martínez207, Alexis Mathian24, Larissa RB Matos63, Gail V Matthews208, Julien Mayaux209, Raquel McLaughlin-Garcia210, Philippe Meersseman211, Jean-Louis Mège212, Armand Mekontso-Dessap213, Isabelle Melki115, Federica Meloni2, Jean-François Meritet214, Paolo Merlani215, Özge METIN AKCAN216, Isabelle Meyts217, Mehdi Mezidi218, Isabelle Migeotte219, Maude Millereux220, Matthieu Million221, Tristan Mirault222, Clotilde Mircher223, Mehdi Mirsaeidi224, Yoko Mizoguchi225, Bhavi P Modi226, Francesco Mojoli13, Elsa MONCOMBLE227, Abián Montesdeoca Melián228, Antonio Morales Martinez229, Francisco Morandeira230, Pierre-Emmanuel Morange231, Cléemence Mordacq158, Guillaume Morelle232, Stéphane J Mouly233, Adrián Muñoz-Barrera138, Cyril Nafati234, Shintaro Nagashima235, Yu Nakagama171, Bénédicte Neven236, João Farela Neves237, Lisa FP Ng238, Yuk-Yung Ng239, hubert Nielly105, Yeray Novoa Medina210, Esmeralda Nuñez Cuadros240, J. Gonzalo Ocejo-Vinyals241, Keisuke Okamoto109, Mehdi Oualha33, Amani Ouedrani22, Tayfun Özçelik242, Aslinur Ozkaya-Parlakay140, Michele Pagani13, Qiang Pan-Hammarström148, Maria Papadaki243, Christophe Parizot209, Philippe Parola244, Tiffany Pascreau245, Stéphane Paul246, Estela Paz-Artal247, Sigifredo Pedraza248, Nancy Carolina González Pellecer134, Silvia Pellegrini249, Rebeca Pérez de Diego127, Xosé Luis Pérez-Fernández141, Aurélien Philippe250, Quentin Philippot116, Adrien Picod251, Marc Pineton de Chambrun85, Antonio Piralla34, Laura Planas-Serra252, Dominique Ploin253, Julien Poissy254, Géraldine Poncelet70, Garyphallia Poulakou175, Marie S Pouletty255, Persia Pourshahnazari256, Jia Li Qiu-Chen257, Paul Quentric209, Thomas Rambaud258, Didier Raoult212, Violette RAOULT259, Anne-Sophie Rebillat223, Claire Redin260, Léa Resmini261, Pilar Ricart262, Jean-Christophe Richard263, Raúl Rigo-Bonnin264, Nadia rivet46, Jacques G Rivière265, Gemma Rocamora-Blanch25, Mathieu P RODERO266, Carlos Rodrigo267, Luis Antonio Rodriguez190, Carlos Rodriguez-Gallego268, Agustí Rodriguez-Palmero269, Carolina Soledad Romero270, Anya Rothenbuhler271, Damien Roux272, Nikoletta Rovina175, Flore Rozenberg273, Yvon Ruch90, Montse Ruiz274, Maria Yolanda Ruiz del Prado275, Juan Carlos Ruiz-Rodriguez119, Joan Sabater-Riera141, Kai Saks276, Maria Salagianni184, Oliver Sanchez277, Adrián Sánchez-Montalvá278, Silvia Sánchez-Ramón279, Laire Schidlowski280, Agatha Schluter252, Julien Schmidt281, Matthieu Schmidt282, Catharina Schuetz283, Cyril E Schweitzer284, Francesco Scolari285, Anna Sediva286, Luis Seijo287, Analia Gisela Seminario42, Damien Sene23, Piseth Seng221, Sevtap Senoglu167, Mikko Seppänen288, Alex Serra Llovich289, Mohammad Shahrooei97, Anna Shcherbina290, Virginie Siguret291, Eleni Siouti292, David M Smadja293, Nikaia Smith78, Ali Sobh294, Xavier Solanich25, Jordi Solé-Violán295, Catherine Soler296, Pere Soler-Palacín297, Betül Sözeri86, Giulia Maria Stella2, Yuriy Stepanovskiy298, Annabelle Stoclin299, Fabio Taccone219, Yacine Tandjaoui-Lambiotte300, Jean-Luc Taupin301, Simon J Tavernier302, Loreto Vidaur Tello112, Benjamin Terrier303, Guillaume Thiery304, Christian Thorball260, Karolina THORN305, Caroline Thumerelle158, Imran Tipu306, Martin Tolstrup307, Gabriele Tomasoni308, Julie Toubiana77, Josep Trenado Alvarez309, Vasiliki TRIANTAFYLLIA310, Sophie TROUILLET-ASSANT311, Jesús Troya312, Owen T Y Tsang313, Liina Tserel314, Eugene Y K Tso315, Alessandra Tucci316, Şadiye Kübra Tüter Öz15, Matilde Valeria Ursini125, Takanori Utsumi225, Yurdagul Uzunhan317, Pierre Vabres318, Juan Valencia-Ramos319, Ana Maria Van Den Rym127, Isabelle Vandernoot320, Valentina Velez-Santamaria321, Silvia Patricia Zuniga Veliz134, Mateus C Vidigal322, Sébastien Viel253, Cédric Vilain323, Marie E Vilaire-Meunier223, Judit Villar-García324, Audrey Vincent57, Guillaume Vogt325, Guillaume Voiriot326, Alla Volokha327, Fanny Vuotto158, Els Wauters328, Joost Wauters329, Alan K L Wu330, Tak-Chiu Wu331, Aysun Yahşi332, Osman YESILBAS333, Mehmet Yildiz168, Barnaby E Young187, Ufuk Yükselmiş334, Mayana Zatz63, Marco Zecca39, Valentina Zuccaro62, Van Praet Jens335, Lambrecht Bart N.336, Van Braeckel Eva336, Bosteels Cédric336, Hoste Levi337, Hoste Eric338, Fré Bauters336, Jozefien De Clercq336, Heijmans Cathérine339, Slabbynck Hans340, Naesens Leslie341, Benoit Florkin342, Cécile Boulanger343, Dimitri Vanderlinden344

1Germans Trias i Pujol University Hospital and Research Institute, Badalona, Barcelona, Spain. 2Respiratory Diseases Division, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy. 3Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. 4Navarra Health Service Hospital, Pamplona, Spain. 5Jeffrey Model Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain, Immunology Division, Genetics Department, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain. Catalonia, Barcelona, Spain. 6Immunohematology Unit, San Raffaele Hospital, Milan, Italy. 7Ondokuz Mayıs University Medical Faculty Pediatrics, Samsun, Turkey. 8Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 9Hospital Regional de Huehuetenango, “Dr. Jorge Vides de Molina”, Guatemala. 10Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru. 11Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat Spain. 12Khyber Medical University, Khyber Pakhtunkhwa, Pakistan. 13Anesthesia and Intensive Care, Rianimazione I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. 14Virology Research Center, National institutes of Tuberculosis and Lung diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 15Department of Pediatrics, Division of Pediatric Infectious Diseases, Selcuk University Faculty of Medicine, Konya, Turkey. 16College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; Department of Pediatrics, King Fahad Hospital of the University, Al-Khobar, Saudi Arabia. 17Intensive care unit, Hôpital Européen, Marseille, France. 18Immunology Department, Hospital 12 de Octubre, Research Institute imas12, Complutense University, Madrid, Spain. 19Immunology Department, Asturias Central University Hospital, Biosanitary Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain. 20Emergency and Critical Care Medicine Departments, College of Medicine, Imam AbdulRahman Ben Faisal University, Dammam, Saudi Arabia. 21Clinical Immunology and Primary Immunodeficiencias Unit, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona; Universitat de Barcelona, Barcelona, Spain. 22Department of Biological Immunology, Necker Hospital for Sick Children, APHP and INEM, Paris, France. 23Internal medicine department, Hôpital Lariboisière, APHP; Université de Paris, Paris, France. 24Internal medicine department, Pitié-Salpétrière Hospital, Paris, France. 25Department of Internal Medicine, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain. 26Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, AP-HP; Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, Créteil, France. 27INSERM U1163, University of Paris, Imagine Institute, Paris, France & Pediatric Neurology Department, Necker-Enfants malades Hospital, APHP, Paris, France. 28Hospital U. de Tarragona Joan XXIII. Universitat Rovira i Virgili (URV). IISPV, Tarragona, Spain. 29Department of Propedeutics of Pediatrics and Medical Genetics, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine. 30Department of Immunology and Allergy, Konya City Hospital, Konya, Turkey. 31Private practice, Paris, France. 32INSERM U1109, University of Strasbourg, Strasbourg, France. 33Necker Hospital for Sick Children, AP-HP, Paris, France. 34Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. 35Department of Infectious Diseases, CHU de Caen, Caen, France. 36Consorcio Hospital General Universitario, Valencia, Spain. 37The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. 38Dept Urology, Nephrology, Transplantation, APHP-SU, Sorbonne Université, INSERM U 1082, Paris, France. 39Cell Factory and Pediatric Hematology-Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. 40Yildirim Beyazit University, Faculty of Medicine, Ankara City Hospital, Children's Hospital, Ankara, Turkey. 41University of Lyon, CIRI, INSERM U1111, National referee center RAISE, Pediatric Rheumatology, HFME, Hospices Civils de Lyon, Lyon, France. 42Center for Clinical Immunology, CABA, Buenos Aires, Argentina. 43Cruces University Hospital, Bizkaia, Spain. 44Pediatric Immunology and Vaccinology Unit, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland. 45University Hospital and Research Institute “Germans Trias i Pujol”, Badalona, Spain. 46Hematology, Georges Pompidou Hospital, APHP, Paris, France. 47Pediatric Infectious Diseases Unit, Instituto de Investigación Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Universidad Complutense, Madrid, Spain. 48Infectious disease Unit, Pitié-Salpêtrière Hospital, AP-AP, Paris, France. 49Department of Pediatrics, Thomayer’s Hospital, 1st Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Immunology, Motol University Hospital, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic. 50Centro de Investigación Biomédica en Red de Enfermedades Hepàticas y Digestivas (Ciberehd). Hospital de Mataró, Consorci Sanitari del Maresme, Mataró, Spain. 51Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine. 52Service de Pneumologie, Hopital Bichat, APHP, Paris, France. 53Department of infectious diseases, CIC1408, GIMAP CIRI INSERM U1111, University Hospital of Saint-Etienne, Saint-Etienne, France. 54Clinical immunology unit, pediatric infectious disease departement, Faculty of Medicine and Pharmacy, Averroes University Hospital. LICIA Laboratoire d'immunologie clinique, d'inflammation et d'allergie, Hassann Ii University., Casablanca, Morocco. 55Bégin Military Hospital, St Mandé, France. 56Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié Salpêtrière, Service de Virologie, Paris, France. 57Endocrinology unit, APHP Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France. 58Department of Children's Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine. 59Pneumology Unit, Tenon Hospital, AP-HP, Paris, France. 60Department of Respiratory Diseases, Hospital Clínico y Universitario de Valencia, Valencia, Spain. 61Intensive care unit, Réseau Hospitalier Neuchâtelois, Neuchâtel, Switzerland. 62Infectious Diseases Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. 63Human Genome and stem-cell research center- University of São Paulo, São Paulo, Brazil. 64Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. 65Hospital Insular, Las Palmas de Gran Canaria, Spain. 66MS Center, Spedali Civili, Brescia, Italy. 67Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, ITI TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France. 68Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. 69Neuromuscular Unit. Neurology Department. Hospital Universitari de Bellvitge - IDIBELL and CIBERER, Barcelona, Spain. 70Hopital Robert Debré, Paris, France. 71Pediatric Immuno-hematology Unit, Necker Enfants Malades Hospital, AP-HP, Paris, France. 72Department of Infectious and Tropical Diseases, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy. 73Doctoral Health Care Center, Canarian Health System, Las Palmas de Gran Canaria, Spain. 74Hôpital Foch, Suresnes, France. 75Selcuk University Faculty of Medicine, Department of Anesthesiology and Reanimation, Intensive Care Medicine Unit, Konya, Turkey. 76Division of Clinical Pharmacology and Toxicology, Institute of Pharmacological Sciences of Southern Switzerland, Ente Ospedaliero Cantonale & Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland. 77Necker Hospital for Sick Children, Paris University, AP-HP, Paris, France. 78Pasteur Institute, Paris, France. 79McGill University Health Centre, Montreal, Canada. 80University Hospital and Research Institute “Germans Trias i Pujol”, IrsiCaixa AIDS Research Institute, UVic-UCC, Badalona, Spain. 81Clinical Biochemistry, Pathology, Pediatric Neurology and Molecular Medicine Departments and Biobank, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Esplugues, Spain. 82AP-HP, Avicenne Hospital, Intensive Care Unit, Bobigny, France; University Sorbonne Paris Nord, Bobigny, France; INSERM, U942, F-75010, Paris, France. 83Hospital Universitari Vall d’Hebron, Barcelona, Spain. 84Pitié-Salpêtrière Hospital, Paris, France. 85Service de médecine Intensive Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, France. 86Umraniye Training and Research Hospital, Istanbul, Turkey. 87Faculty of Medical Sciences at University “Goce Delcev”, Shtip, North Macedonia. 88Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. 89Fundació Docencia i Recerca Mutua Terrassa, Barcelona, Spain. 90Maladies Infectieuses et Tropicales, Nouvel Hôpital Civil, CHU Strasbourg, Strasbourg, France. 91UNSW Medicine, St Vincent's Clinical School; Department of Thoracic Medicine, St Vincent's Hospital Darlinghurst, Sidney, Australia. 92Intensive Care unit, Montreuil hospital, Montreuil, France. 93CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Brussels, Belgium. 94Pediatric Intensive Care Unit, Robert-Debré University Hospital, APHP, Paris, France. 95General Internal Medicine, University Hospitals Leuven, Leuven, Belgium. 96Hôpital Jean Verdier, APHP, Bondy, France. 97Specialized Immunology Laboratory of Dr. Shahrooei, Sina Medical Complex, Ahvaz, Iran. 98Centre de génétique humaine, CHU Besançon, Besançon, France. 99Sorbonne Université médecine and APHP Sorbonne université site Pitié-Salpêtrière, Paris, France. 100Pediatric Neurology Department, Necker-Enfants malades hospital, APHP, Paris, France. 101Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy. 102Intensive Care unit, Georges Pompidou Hospital, APHP, Paris, France. 103Department of Pneumology, AZ Delta, Roeselare, Belgium. 104Molecular Diagnostic Unit, Fundación Rioja Salud, Logroño, La Rioja, Spain. 105Bégin military Hospital, Saint Mandé, France. 106Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 107Bursa City Hospital, Bursa, Turkey. 108Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt. 109Tokyo Medical and Dental University, Tokyo, Japan. 110Ondokuz Mayıs University Faculty of Medicine, Samsun, Turkey. 111Necmettin Erbakan University, Meram Medical Faculty, Division of Pediatric Allergy and Immunology, Konya, Turkey. 112University Donostia Hospital, Gipuzkoa, Spain. 113Internal Medicine, University Hospital Edouard Herriot, Hospices Civils de Lyon, Lyon, France. 114Centre de Génétique, CHU Dijon, Dijon, France. 115Robert Debré Hospital, Paris, France. 116APHP Tenon Hospital, Paris, France. 117Sorbonne Universités, UPMC University of Paris, Paris, France. 118Department of Clinical Immunology, Hospital Clínico San Carlos, Madrid, Spain. 119Intensive Care Department, Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain, Shock, Organ Dysfunction and Resuscitation Research Group. Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain. 120Intensive Care Unit, Hospital Clínico y Universitario de Valencia, Valencia, Spain. 121Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Research Unit, Hospital Universitario N.S. de Candelaria, Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Spain, Santa Cruz de Tenerife, Spain. 122CHU Limoges and INSERM CIC 1435 & UMR 1092, Limoges, France. 123Infectious Diseases Unit, Department of Pediatrics, Hospital Sant Joan de Déu, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Spain; Universitat de Barcelona (UB), Barcelona, Spain. 124Department of Pathology, United Christian Hospital, Hong Kong. 125Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’, IGB-CNR, Naples, Italy. 126Department of Pediatrics, Children's Hospital Zagreb, University of Zagreb School of Medicine, Zagreb, Josip Juraj Strossmayer University of Osijek, Medical Faculty Osijek, Osijek, Croatia. 127Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain. 128Hematology, APHP, Hopital Européen Georges Pompidou and INSERM UMR-S1140, Paris, France. 129Faculty of Medicine, Department of Pediatrics, Division of Pediatric Infectious Diseases, Karadeniz Technical University, Trabzon, Turkey. 130Division of Immunology, Hospital General Universitario and Instituto de Investigación Sanitaria “Gregorio Marañón”, Madrid, Spain. 131Bégin military Hospital, Bégin, France. 132Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France, French Armed Forces Center for Epidemiology and Public Health (CESPA), Marseille, France. 133Pediatric Intensive Care Unit, Hospital Sant Joan de Déu, Barcelona, Spain. 134Guatemala. 135Department of Internal Medicine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium. 136Immunodeficiencies Unit, Research Institute Hospital, madrid, Spain. 137Primary Immunodeficiencies Unit, Pediatrics, University Hospital 12 octubre, Madrid, Spain; School of Medicine Complutense University of Madrid, Madrid, Spain. 138Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain. 139Assistance Publique Hôpitaux de Paris, Paris, France. 140Ankara City Hospital, Ankara, Turkey. 141Department of Intensive Care, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain. 142Immunodeficiency Outpatient Clinic, Institute for Medical Immunology, FOCIS Center of Excellence, Charité Universitätsmedizin Berlin, Germany. 143Surgical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium. 144CNAG-CRG, Barcelona Institute of Science and Technology, Barcelona, Spain. 145Department of Internal Medicine, National Reference Center for Rare Systemic Autoimmune Diseases, AP-HP, APHP-CUP, Hôpital Cochin, Paris, France. 146Department of Pediatric Immunology and Pulmonology, Center for Primary Immunodeficiency Ghent, Jeffrey Model Diagnosis and Research Center, PID research lab, Ghent University Hospital, Ghent, Belgium. 147Sharjah Institute of Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE, Sharjah, UAE. 148Department of Biosciences and Nutrition, SE14183, Huddinge, Karolinska Institutet, Stockholm, Sweden. 149Department of Pediatrics (Infectious Diseases), Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey. 150I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine. 151Pediatric Infectious Diseases Unit, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey. 152Health Sciences University, Darıca Farabi Education and Research Hospital, Kocaeli, Turkey. 153Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain. 154Department of Pediatrics, Queen Elizabeth Hospital, Hong Kong. 155IntensivenCare Unit. Marqués de Valdecilla Hospital, Santander, Spain. 156Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), UAB, UPF, Barcelona. 157Intensive care unit, APHM, Marseille, France. 158CHU Lille, Lille, France. 159Department of Medicine, The University of Hong Kong, Hong Kong. 160Department of Pediatrics, Columbia University, New York, NY, USA. 161Centre hospitalier intercommunal Poissy Saint Germain en Laye, Poissy, France. 162IHU Méditerranée Infection, Service de l'Information Médicale, Hôpital de la Timone, Marseille, France. 163Health Science University Ankara City Hospital, Ankara, Turkey. 164School of Medicine, General Surgery Department Fevzi Çakmak Mah, Marmara University, Istanbul, Turkey. 165Mersin City Education and Research Hospital, Mersin, Turkey. 166Division of Pediatric Infectious Diseases, Prof. Dr. Cemil Tascıoglu City Hospital, Istanbul, Turkey. 167Departments of Infectious Diseases and Clinical Microbiology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey. 168Department of Pediatric Rheumatology, Istanbul University-Cerrahpasa, Istanbul, Turkey. 169Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan. 170Health Sciences University, Umraniye Education and Research Hospital, Istanbul, Turkey. 171Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan. 172Pediatric Infectious Diseases Unit of Osman Gazi University Medical School in Eskişehir, Turkey. 173Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey. 174Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czech Republic. 175ICU, 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens, Medical School, 'Sotiria' General Hospital of Chest Diseases, Athens, Greece. 176Central Clinical Hospital of the Ministry of Interior and Administration, Warsaw, Poland. 177Clinique des soins intensifs, HFR Fribourg, Fribourg, Switzerland. 178Oncobiologie Génétique Bioinformatique, PC Bio, CHU Besançon, Besançon, France. 179Department of Intensive Care, Tuen Mun Hospital, Hong Kong. 180Pediatric Infectious Disease Unit, Hospital Authority Infectious Disease Center, Princess Margaret Hospital, Hong Kong (Special Administrative Region), China. 181Department of Pathology, Queen Mary Hospital, Hong Kong. 182Aix Marseille Univ, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France. 183Department of Pediatrics, Tuen Mun Hospital, Hong Kong. 184Biomedical Research Foundation of the Academy of Athens, Athens, Greece. 185Necker hospital, Paris, France. 186Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China. 187National Centre for Infectious Diseases, Singapore. 188Hospital Universitario Reina Sofía, Cordoba, Spain. 189Imperial College, London, England. 190Hospital General San Juan de Dios, Ciudad de Guatemala, Guatemala. 191Endocrinology and diabetes for children, AP-HP, Bicêtre Paris-saclay hospital, Le Kremlin-Bicêtre, France. 192Innate Immunity group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain. 193Neurology unit, APHP Pitié-Salpêtrière Hospital, Paris University, Paris, France. 194Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong. 195Intensive care unit, APHP Pitié-Salpêtrière Hospital, Paris University, Paris, France. 196National Centre for Infectious Diseases; Tan Tock Seng Hospital; Yong Loo Lin School of Medicine; Lee Kong Chian School of Medicine, Singapore. 197Hospital de Niños Dr Ricardo Gutierrez, Buenos Aires, Argentina. 198Department of Clinical Immunology and Infectious Diseases, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences,, Tehran, Iran. 199Neurooncology and Neuroinflammation Unit, IRCCS Mondino Foundation, Pavia, Italy. 200Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran. 201Coordenadora da Unidade de Infeciologia e Imunodeficiências do Serviço de Pediatria, Centro Materno-Infantil do Norte, Porto, Portugal. 202Hospital Sant Joan de Déu and University of Barcelona,, Barcelona, Spain. 203Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain. 204Hospital Universitari Mutua de Terrassa, Universitat de Barcelona, Barcelona, Spain. 205IrsiCaixa AIDS Research Institute, ICREA, UVic-UCC, Research Institute “Germans Trias i Pujol”, Badalona, Spain. 206Department of Laboratory, Cruces University Hospital, Barakaldo, Bizkaia, Spain, Bizkaia, Spain. 207Intensive Care Unit, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain. 208University of New South Wales, Australia. 209APHP Pitié-Salpêtrière Hospital, Paris, France. 210Department of Pediatrics, Complejo Hospitalario Universitario Insular-Materno Infantil, Canarian Health System, Las Palmas de Gran Canaria, Spain. 211Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium. 212Aix-Marseille University, APHM, Marseille, France. 213Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique - Hôpitaux de Paris (AP-HP). Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil, France. 214APHP Cohin Hospital, Paris, France. 215Department of Critical Care Medicine, Ente Ospedaliero Cantonale, Bellinzona, Switzerland. 216Necmettin Erbakan University, Meram Medical Faculty, Division of Pediatric Infectious Diseases, Konya, Turkey. 217Department of Pediatrics, University Hospitals Leuven; KU Leuven, Department of Microbiology, Immunology and Transplantation; Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium. 218Hospices Civils de Lyon, Hôpital de la Croix-Rousse, Lyon, France. 219Hôpital Erasme, Brussels, Belgium. 220Centre hospitalier de gonesse, Gonesse, France. 221Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France. 222Vascular Medicine, Georges Pompidou Hospital, APHP, Paris, France. 223Institut Jérôme Lejeune, Paris, France. 224Division of Pulmonary and Critical Care, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL, USA. 225Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan. 226BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada. 227Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique – Hôpitaux de Paris (AP-HP), Créteil, France. 228Guanarteme Health Care Center, Canarian Health System, Las Palmas de Gran Canaria, Spain. 229Regional University Hospital of Malaga, Malaga, Spain. 230Department of Immunology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain. 231Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France. 232Department of General Pediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, Le Kremlin-Bicêtre, France. 233INSERM U1144, Université de Paris, DMU INVICTUS, APHP.Nord, Département de Médecine Interne, Lariboisière Hospital, Paris, France. 234CHU de La Timone, Marseille, France. 235Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan. 236Pediatric Immunology and rhumatology Department,Necker Hospital, AP-HP, Paris, France. 237Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal. 238Infectious Diseases Horizontal Technlogy Centre, A*STAR; Singapore Immunology Network, A*STAR, Singapore. 239Department of Medicine and Geriatrics, Tuen Mun Hospital, Hong Kong. 240Regional Universitary Hospital of Malaga, Málaga, Spain. 241Department of Immunology, Hospital Universitario Marqués de Valdecilla, Santander, Spain. 242Bilkent University, Department of Molecular Biology and Genetics, Ankara, Turkey. 243BRFAA, Athens, Greece. 244IHU Méditerranée Infection, Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, Marseille, France. 245L'Hôpital Foch, Suresnes, France. 246Department of Immunology, CIC1408, GIMAP CIRI INSERM U1111, University Hospital of Saint-Etienne, St Etienne, France. 247Department of Immunology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain. 248Mexico. 249Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy. 250APHP Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France. 251AP-HP, Avicenne Hospital, Intensive Care Unit, Bobigny, France; INSERM UMR-S 942, Cardiovascular Markers in Stress Conditions (MASCOT), University of Paris, Paris, France. 252Neurometabolic Diseases Laboratory, IDIBELL-Hospital Duran i Reynals, Barcelona; CIBERER U759, ISCiii Madrid, Spain. 253Hospices Civils de Lyon, Lyon, France. 254Univ. Lille, INSERM U1285, CHU Lille, Pôle de médecine intensive-réanimation, CNRS, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France. 255Department of General pediatrics, Robert Debre Hospital, Paris, France. 256University of British Columbia, Vancouver, Canada. 257Jeffrey Model Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain, Diagnostic Immunology Research Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain. 258AP-HP, Avicenne Hospital, Intensive Care Unit, Bobigny, France; University Sorbonne Paris Nord, Bobigny, France. 259Centre Hospitalier de Saint-Denis, St Denis, France. 260Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland. 261Paris Cardiovascular Center, PARCC, INSERM, Université de Paris, Paris, France. 262Germans Trias i Pujol Hospital, Badalona, Spain. 263Medical intensive care unit. Hopital de la Croix-Rousse. Hospices Civils de Lyon, Lyon, France. 264Department of Clinical Laboratory, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain. 265Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d'Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus., Barcelona, Spain. 266Université de Paris, CNRS UMR-8601; Team Chemistry & Biology, Modeling & Immunology for Therapy, CBMIT, Paris, France. 267Germans Trias i Pujol University Hospital and Research Institute. Badalona, Badalona, Spain. 268Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain; Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain. 269Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat; University Hospital Germans Trias i Pujol, Badalona, Barcelona, Catalonia, Spain. 270Consorcio Hospital General Universitario, Valencia, Spain. 271APHP Hôpitaux Universitaires Paris-Sud, Paris, France. 272Intensive Care Unit, Louis-Mourier Hospital, Colombes, France. 273Virology unit, Université de Paris, Cohin Hospital, APHP, Paris, France. 274Neurometabolic Diseases Laboratory and CIBERER U759, Barcelona, Spain. 275Hospital San Pedro, Logroño, Spain. 276University of Tartu, Institute of Biomedicine and Translational Medicine, Tartu, Estonia. 277Respiratory medicine, Georges Pompidou Hospital, APHP, Paris, France. 278Infectious Diseases Department, International Health Program of the Catalan Insitute of Health (PROSICS), Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital Campus, Universitat Autónoma de Barcelona, Barcelona, Spain. 279Hospital Clínico San Carlos and IdSSC, Madrid, Spain. 280Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil. 281AP-HP, Avicenne Hospital, Intensive Care Unit, Bobigny, France. 282Service de Médecine Intensive Réanimation, Institut de Cardiologie, Hopital Pitié-Salpêtrière, Paris, France. 283Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. 284CHRU de Nancy, Hôpital d'Enfants, Vandoeuvre, France. 285Chair of Nephrology, University of Brescia, Brescia, Italy. 286Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic. 287Clínica Universidad de Navarra and Ciberes, Madrid, Spain. 288HUS Helsinki University Hospital, Children and Adolescents, Rare Disease Center, and Inflammation Center, Adult Immunodeficiency Unit, Majakka, Helsinki, Finland. 289Fundació Docencia i Recerca Mutua Terrassa, Terrassa, Spain. 290D.Rogachev National Medical and Research Center of Pediatric Hematology, Oncology, Immunoogy, Moscow, Russia. 291Haematology Laboratory, Lariboisière Hospital, University of Paris, Paris, France. 292Biomedical Research Foundation of the Academy of Athens. 293INSERM U1140, University of Paris, European Georges Pompidou Hospital, Paris, France. 294Department of Pediatrics, Faculty of Medicine, Mansoura University, Mansoura, Egypt. 295Critical Care Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain. 296CHU de Saint Etienne, Saint-Priest-en-Jarez, France. 297Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall d'Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus. Universitat Autònoma de Barcelona (UAB). Barcelona, Catalonia, Spain, EU., Barcelona, Spain. 298Department of pediatric infectious diseases and pediatric immunology, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine. 299Gustave Roussy Cancer Campus, Villejuif, France. 300Intensive Care Unit, Avicenne Hospital, APHP, Bobigny, France. 301Laboratory of Immunology and Histocompatibility, Saint-Louis Hospital, Paris University, Paris, France. 302Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium. 303Department of Internal Medicine, Université de Paris, INSERM, U970, PARCC, F-75015, Paris, France. 304Service de médecine intensive réanimation, CHU de Saint-Etienne, France. 305Dept of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. 306University of Management and Technology, Lahore, Pakistan. 307Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark. 308First Division of Anesthesiology and Critical Care Medicine, University of Brescia, ASST Spedali Civili di Brescia, Brescia, Italy. 309Intensive Care Department, Hospital Universitari MutuaTerrassa, Universitat Barcelona, Terrassa, Spain. 310Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece. 311International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL, Lyon, France; Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France. 312Infanta Leonor University Hospital, Madrid, Spain. 313Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong. 314University of Tartu, Institute of Clinical Medicine, Tartu, Estonia. 315Department of Medicine, United Christian Hospital, Hong Kong. 316Hematology Department, ASST Spedali Civili di Brescia, Brescia, Italy. 317Pneumologie, Hôpital Avicenne, APHP, INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France. 318Dermatology unit, Laboratoire GAD, INSERM UMR1231 LNC, université de Bourgogne, Dijon, France. 319University Hospital of Burgos, Burgos, Spain. 320Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium. 321Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain. 322University of São Paulo, São Paulo, Brazil. 323CHU de Caen, Caen, France. 324Hospital del Mar - IMIM Biomedical Research Institute, Barcelona, Catalonia, Spain. 325Neglected Human Genetics Laboratory, INSERM, University of Paris, Paris, France. 326Sorbonne Université, Service de Médecine Intensive Réanimation, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France. 327Pediatric Infectious Disease and Pediatric Immunology Department, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine. 328Department of Pneumology, University Hospitals Leuven, Leuven, Belgium. 329Laboratory for Clinical Infectious and Inflammatory Disorders, Departement of Microbiology, Immunology and Transplantation, Leuven, Belgium. 330Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong. 331Department of Medicine, Queen Elizabeth Hospital, Hong Kong. 332Ankara City Hospital, Children's Hospital, Ankara, Turkey. 333Division of Pediatric Infectious Disease, Department of Pediatrics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey. 334Health Sciences University, Lütfi Kırdar Kartal Education and Research Hospital, İstanbul, Turkey. 335Department of Nephrology and Infectiology, AZ Sint-Jan, Bruges, Belgium. 336Department of Pulmonology, Ghent University Hospital, Belgium. 337Department of Pediatric pulmonology and immunology, Ghent University Hospital, Belgium. 338Department of Intensive Care Unit, Ghent University Hospital, Belgium. 339Department of Pediatric hemato-oncology, Jolimont Hospital; Department of Pediatric hemato-oncology, HUDERF, Brussels, Belgium. 340Department of Pulmonology, ZNA Middelheim, Antwerp, Belgium. 341Department of Internal Medicine, Ghent University Hospital, Belgium. 342Department of Pediatric immuno-hémato-rhumatology, CHR Citadelle, Liége, Belgium. 343Department of Pediatric hemato-oncology, UCL Louvain, Belgium. 344Department of Pediatrics, Saint Luc, UCL Louvain, Belgium.

Imagine COVID Group

Jean-Philippe Annereau1, Luis Briseño-Roa1, Olivier Gribouval2, Anna Pelet2

1Medetia Pharmaceuticals, Paris, France. 2Imagine Institute, Université de Paris, INSERM UMR 1163, Paris, France.

French COVID Cohort Study Group

Laurent ABEL1, Claire ANDREJAK2, François ANGOULVANT3, Delphine BACHELET4, Marie BARTOLI5, Romain BASMACI6, Sylvie BEHILILL7, Marine BELUZE8, Dehbia BENKERROU9, Krishna BHAVSAR4, Lila BOUADMA4, Sabelline BOUCHEZ10, Maude BOUSCAMBERT11, Minerva CERVANTES-GONZALEZ4, Anissa CHAIR4, Catherine CHIROUZE12, Alexandra COELHO13, Camille COUFFIGNAL4, Sandrine COUFFIN-CADIERGUES14, Eric d’ORTENZIO5, Marie-Pierre DEBRAY4, Lauren DECONINCK4, Dominique DEPLANQUE15, Diane DESCAMPS4, Mathilde DESVALLÉE16, Alpha DIALLO5, Alphonsine DIOUF13, Céline DORIVAL9, François DUBOS17, Xavier DUVAL4, Brigitte ELHARRAR18, Philippine ELOY4, Vincent ENOUF7, Hélène ESPEROU14, Marina ESPOSITO-FARESE4, Manuel ETIENNE19, Eglantine FERRAND DEVOUGE19, Nathalie GAULT4, Alexandre GAYMARD11, Jade GHOSN4, Tristan GIGANTE20, Morgane GILG20, Jérémie GUEDJ21, Alexandre HOCTIN13, Isabelle HOFFMANN4, Ikram HOUAS14, Jean-Sébastien HULOT22, Salma JAAFOURA14, Ouifiya KAFIF4, Florentia KAGUELIDOU23, Sabrina KALI4, Antoine KHALIL4, Coralie KHAN16, Cédric LAOUÉNAN4, Samira LARIBI4, Minh LE4, Quentin LE HINGRAT4, Soizic LE MESTRE5, Hervé LE NAGARD24, François-Xavier LESCURE4, Sophie LETROU4, Yves LEVY25, Bruno LINA11, Guillaume LINGAS24, Jean Christophe LUCET4, Denis MALVY26, Marina MAMBERT13, France MENTRÉ4, Amina MEZIANE9, Hugo MOUQUET7, Jimmy Mullaert4, Nadège NEANT24, Duc NGUYEN26, Marion NORET27, Saad NSEIR17, Aurélie PAPADOPOULOS14, Christelle PAUL5, Nathan PEIFFER-SMADJA4, Thomas PERPOINT28, Ventzislava PETROV-SANCHEZ5, Gilles PEYTAVIN4, Huong PHAM4, Olivier PICONE6, Valentine PIQUARD4, Oriane PUÉCHAL29, Christian RABAUD30, Manuel ROSA-CALATRAVA11, Bénédicte ROSSIGNOL20, Patrick ROSSIGNOL30, Carine ROY4, Marion SCHNEIDER4, Richa SU4, Coralie TARDIVON4, Marie-Capucine TELLIER4, François TÉOULÉ9, Olivier TERRIER11, Jean-François TIMSIT4, Christelle TUAL31, Sarah TUBIANA4, Sylvie VAN DER WERF7, Noémie VANEL32, Aurélie VEISLINGER31, Benoit VISSEAUX4, Aurélie WIEDEMANN25, Yazdan YAZDANPANAH4

1INSERM UMR 1163, Paris, France. 2CHU Amiens, France. 3Hôpital Necker, Paris, France. 4Hôpital Bichat, Paris, France. 5ANRS, Paris, France. 6Hôpital Louis Mourier, Colombes, France. 7Pasteur Institute, Paris, France. 8F-CRIN Partners Platform, Paris, France. 9INSERM UMR 1136, Paris, France. 10CHU Nantes, France. 11INSERM UMR 1111, Lyon, France. 12CHRU Jean Minjoz, Besançon, France. 13INSERM UMR 1018, Paris, France. 14INSERM sponsor, Paris, France. 15Centre d'Investigation Clinique, INSERM CIC 1403, Centre Hospitalo universitaire de Lille, Lille, France. 16INSERM UMR 1219, Bordeaux, France. 17CHU Lille, France. 18CHI de Créteil, France. 19CHU Rouen, France. 20F-CRIN INI-CRCT, Nancy, France. 21Université de Paris, INSERM, IAME, F-75018 Paris, France. 22Hôpital Européen Georges Pompidou, Paris, France. 23Hôpital Robert Debré, Paris, France. 24INSERM UMR 1137, Paris, France. 25Vaccine Research Insitute (VRI), INSERM UMR 955, Créteil, France. 26CHU Bordeaux, France. 27RENARCI, Annecy, France. 28CHU Lyon, France. 29REACTing, Paris, France. 30CHU Nancy, France. 31INSERM CIC-1414, Rennes, France. 32Hôpital la Timone, Marseille, France.

CoV-Contact Cohort

Loubna Alavoine1, Sylvie Behillil2, Charles Burdet3, Charlotte Charpentier4, Aline Dechanet5, Diane Descamps6, Xavier Duval7, Jean-Luc Ecobichon1, Vincent Enouf8, Wahiba Frezouls1, Nadhira Houhou5, Ouifiya Kafif5, Jonathan Lehacaut1, Sophie Letrou1, Bruno Lina9, Jean-Christophe Lucet10, Pauline Manchon5, Mariama Nouroudine1, Valentine Piquard5, Caroline Quintin1, Michael Thy11, Sarah Tubiana1, Sylvie van der Werf8, Valérie Vignali1, Benoit Visseaux10, Yazdan Yazdanpanah10, Abir CHAHINE12, Nawal WAUCQUIER12, Maria-Claire MIGAUD12, Dominique DEPLANQUE12, Félix DJOSSOU13, Mayka Mergeay-Fabre14, Aude LUCARELLI15, Magalie DEMAR13, Léa Bruneau16, Patrick Gérardin17, Adrien Maillot16, Christine Payet18, Bruno Laviolle19, Fabrice Laine19, Christophe Paris19, Mireille Desille-Dugast19, Julie Fouchard19, Denis MALVY20, Duc NGUYEN20, Thierry PISTONE20, Pauline PERREAU20, Valérie GISSOT21, Carole LE GOAS21, Samatha Montagne22, Lucie Richard23, Catherine Chirouze24, Kévin Bouiller24, Maxime Desmarets25, Alexandre Meunier26, Benjamin Lefévre27, Hélène Jeulin28, Karine Legrand29, Sandra Lomazzi30, Bernard Tardy31, Amandine Gagneux-Brunon32, Frédérique Bertholon33, Elisabeth Botelho-Nevers32, KOUAKAM Christelle KOUAKAM Christelle34, LETURQUE Nicolas LETURQUE Nicolas34, Layidé Roufai34, Karine Amat35, Sandrine Couffin-Cadiergues34, Hélène Espérou36, Samia Hendou34

1Centre d'Investigation Clinique, INSERM CIC 1425, Hôpital Bichat Claude Bernard, APHP, Paris, France. 2Institut Pasteur, Paris, France. 3Université de Paris, IAME, INSERM U1137, Paris, France, Hôpital Bichat Claude Bernard, APHP, Paris, France. 4Service de Virologie, Université de Paris, INSERM, IAME, UMR 1137, Hôpital Bichat Claude Bernard, APHP, Paris, France. 5Hôpital Bichat Claude Bernard, APHP, Paris, France. 6IAME INSERM U1140, Hôpital Bichat Claude Bernard, APHP, Paris, France. 7Centre d'Investigation Clinique, INSERM CIC 1425, APHP, IAME, Paris University, Paris, France. 8Institut Pasteur, U3569 CNRS, Université de Paris, Paris, France. 9Virpath Laboratory, International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS U5308, ENS, UCBL, Lyon, France. 10IAME INSERM U1138, Hôpital Bichat Claude Bernard, APHP, Paris, France. 11Center for Clinical Investigation, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France. 12Centre d'Investigation Clinique, INSERM CIC 1403, Centre Hospitalo universitaire de Lille, Lille, France. 13Service des maladies infectieuses, Centre Hospitalo universitaire de Cayenne, Guyane, France. 14Centre d'Investigation Clinique, INSERM CIC 1424, Centre Hospitalier de Cayenne, Cayenne, Guyane Française. 15Service Hôpital de jour Adulte, Centre Hospitalier de Cayenne, Guyane, France. 16Centre d'Investigation Clinique, INSERM CIC 1410, Centre Hospitalo universitaire de la Réunion, La Réunion, France. 17Centre d'Investigation Clinique, INSERM CIC 1410, CHU Reunion, Saint-Pierre, Reunion island. 18Centre d'Investigation Clinique, INSERM CIC 1410, Centre de Ressources Biologiques, Centre Hospitalo universitaire de la Réunion, La Réunion, France. 19Centre d'Investigation Clinique, INSERM CIC 1414, Centre Hospitalo universitaire de Rennes, Rennes, France. 20Service des maladies infectieuses, Centre Hospitalo universitaire de Bordeaux, Bordeaux, France. 21Centre d'Investigation Clinique, INSERM CIC 1415, CHRU Tours, Tours, France. 22CRBT, Centre Hospitalo universitaire de Tours, Tours, France. 23Pole de Biologie Médicale, Centre Hospitalo universitaire de Tours, Tours, France. 24Service des maladies infectieuses, Centre Hospitalo universitaire de Besançon, Besançon, France. 25Service des maladies infectieuses, Centre d'investigation clinique, INSERM CIC1431, Centre Hospitalier Universitaire de Besançon, Besançon, France. 26Centre de Ressources Biologiques - Filière Microbiologique de Besançon, Centre Hospitalier Universitaire, Besançon, France. 27Université de Lorraine, CHRU-Nancy and APEMAC, Infectious and tropical diseases, Nancy, France. 28Laboratoire de Virologie, CHRU de Nancy Brabois, Vandoeuvre-lès-Nancy, France. 29INSERM CIC-EC 1433, Centre Hospitalo universitaire de Nancy, Nancy, France. 30Centre de ressources Biologiques, Centre Hospitalo universitaire de Nancy, Nancy, France. 31Centre d'Investigation Clinique, INSERM CIC 1408, Centre Hospitalo universitaire de Saint Etienne, Saint Etienne, France. 32Service des maladies infectieuses, Centre Hospitalo universitaire de Saint Etienne, Saint Etienne, France. 33Service des maladies infectieuses, CRB42-BTK, Centre Hospitalo Universitaire de Saint Etienne, Saint Etienne, France. 34Pole Recherche Clinique, INSERM, Paris France. 35IMEA Fondation Léon M'Ba, Paris, France. 36INSERM Clinical research Department, Paris, France.

Amsterdam UMC Covid-19 Biobank

Michiel van Agtmael2, Anne Geke Algera1, Brent Appelman2, Frank van Baarle1, Diane Bax3, Martijn Beudel4, Harm Jan Bogaard5, Marije Bomers2, Peter Bonta5, Lieuwe Bos1, Michela Botta1, Justin de Brabander2, Godelieve de Bree2, Sanne de Bruin1, David T.P. Buis1, Marianna Bugiani5, Esther Bulle1, Osoul Chouchane2 Alex Cloherty3, Mirjam Dijkstra12, Dave A. Dongelmans1, Romein W.G. Dujardin1, Paul Elbers1, Lucas Fleuren1, Suzanne Geerlings2 Theo Geijtenbeek3, Armand Girbes1, Bram Goorhuis2, Martin P. Grobusch2, Florianne Hafkamp3, Laura Hagens1, Jorg Hamann7, Vanessa Harris2, Robert Hemke8, Sabine M. Hermans2 Leo Heunks1, Markus Hollmann6, Janneke Horn1, Joppe W. Hovius2, Menno D. de Jong9, Rutger Koning4, Endry H.T. Lim1, Niels van Mourik1, Jeaninne Nellen2, Esther J. Nossent5, Frederique Paulus1, Edgar Peters2, Dan A.I. Pina-Fuentes4, Tom van der Poll2, Bennedikt Preckel6, Jan M. Prins2, Jorinde Raasveld1, Tom Reijnders2, Maurits C.F.J. de Rotte12, Michiel Schinkel2, Marcus J. Schultz1, Femke A.P. Schrauwen12, Alex Schuurmans10, Jaap Schuurmans1, Kim Sigaloff1, Marleen A. Slim1,2, Patrick Smeele5, Marry Smit1, Cornelis S. Stijnis2, Willemke Stilma1, Charlotte Teunissen11, Patrick Thoral1, Anissa M Tsonas1, Pieter R. Tuinman2, Marc van der Valk2, Denise Veelo6, Carolien Volleman1, Heder de Vries1, Lonneke A. Vught1,2, Michèle van Vugt2, Dorien Wouters12, A. H (Koos) Zwinderman13, Matthijs C. Brouwer4, W. Joost Wiersinga2, Alexander P.J. Vlaar1, Diederik van de Beek (d.vandebeek@amsterdamumc.nl)4.

1Department of Intensive Care, Amsterdam UMC, Amsterdam, The Netherlands; 2Department of Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands; 3Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands; 4Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands; 5Department of Pulmonology, Amsterdam UMC, Amsterdam, The Netherlands; 6Department of Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands; 7Amsterdam UMC Biobank Core Facility, Amsterdam UMC, Amsterdam, The Netherlands; 8Department of Radiology, Amsterdam UMC, Amsterdam, The Netherlands; 9Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands; 10Department of Internal Medicine, Amsterdam UMC, Amsterdam, The Netherlands; 11Neurochemical Laboratory, Amsterdam UMC, Amsterdam, The Netherlands; 12Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands; 13Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands.

NIAID-USUHS COVID Study Group

Miranda F. Tompkins1, Camille Alba1, Andrew L. Snow2, Daniel N. Hupalo1, John Rosenberger1, Gauthaman Sukumar1, Matthew D. Wilkerson1, Xijun Zhang1, Justin Lack3, Andrew J. Oler4, Kerry Dobbs5, Ottavia M. Delmonte5, Jeffrey J. Danielson5, Andrea Biondi6, Laura Rachele Bettini6, Mariella D’Angio’6, Ilaria Beretta7, Luisa Imberti8, Alessandra Sottini8, Virginia Quaresima8, Eugenia Quiros-Roldan9, Camillo Rossi10

1The American Genome Center, Uniformed Services University of the Health Sciences; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, USA. 2Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, USA. 3NIAID Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc. Frederick, USA. 4Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, Bethesda, USA. 5Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, USA. 6Pediatric Departement and Centro Tettamanti-European Reference Network PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM-Ospedale, San Gerardo, Monza, Italy. 7Department of Infectious Diseases, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy. 8CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy. 9Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy. 10Chief Medical Officer, ASST Spedali Civili di Brescia, Brescia, Italy.

Contributor Information

Collaborators: Laurent Abel, Alessandro Aiuti, Saleh Al-Muhsen, Fahd Al-Mulla, Mark S. Anderson, Evangelos Andreakos, Andrés A. Arias, Hagit Baris Feldman, Alexandre Belot, Catherine M. Biggs, Dusan Bogunovic, Alexandre Bolze, Anastasiia Bondarenko, Ahmed A. Bousfiha, Petter Brodin, Yenan Bryceson, Carlos D. Bustamante, Manish J. Butte, Giorgio Casari, Samya Chakravorty, John Christodoulou, Antonio Condino-Neto, Stefan N. Constantinescu, Megan A. Cooper, Clifton L. Dalgard, Murkesh Desai, Beth A. Drolet, Jamila El Baghdadi, Sara Espinosa-Padilla, Jacques Fellay, Carlos Flores, José Luis Franco, Antoine Froidure, Peter K. Gregersen, Filomeen Haerynck, David Hagin, Rabih Halwani, Lennart Hammarström, James R. Heath, Sarah E. Henrickson, Elena W.Y. Hsieh, Eystein Husebye, Kohsuke Imai, Yuval Itan, Erich D. Jarvis, Timokratis Karamitros, Kai Kisand, Cheng-Lung Ku, Yu-Lung Lau, Yun Ling, Carrie L. Lucas, Tom Maniatis, Davood Mansouri, László Maródi, Isabelle Meyts, Joshua D. Milner, Kristina Mironska, Trine H. Mogensen, Tomohiro Morio, Lisa F.P. Ng, Luigi D. Notarangelo, Antonio Novelli, Giuseppe Novelli, Cliona O'Farrelly, Satoshi Okada, Tayfun Ozcelik, Qiang Pan-Hammarström, Rebeca Perez de Diego, Anna M. Planas, Carolina Prando, Aurora Pujol, Lluis Quintana-Murci, Laurent Renia, Igor Resnick, Carlos Rodríguez-Gallego, Vanessa Sancho-Shimizu, Anna Sediva, Mikko R.J. Seppänen, Mohammed Shahrooei, Anna Shcherbina, Ondrej Slaby, Andrew L. Snow, Pere Soler-Palacín, András N. Spaan, Ivan Tancevski, Stuart G. Tangye, Ahmad Abou Tayoun, Sathishkumar Ramaswamy, Stuart E Turvey, K M Furkan Uddin, Mohammed J. Uddin, Diederik van de Beek, Donald C. Vinh, Horst von Bernuth, Mayana Zatz, Pawel Zawadzki, Helen C. Su, Jean-Laurent Casanova, Giuseppe Foti, Giacomo Bellani, Giuseppe Citerio, Ernesto Contro, Alberto Pesci, Maria Grazia Valsecchi, Marina Cazzaniga, Jorge Abad, Giulia Accordino, Cristian Achille, Sergio Aguilera-Albesa, Aina Aguiló-Cucurull, Alessandro Aiuti, Esra Akyüz Özkan, Ilad Alavi Darazam, Jonathan Antonio Roblero Albisures, Juan C Aldave, Miquel Alfonso Ramos, Taj Ali Khan, Anna Aliberti, Seyed Alireza Nadji, Gulsum Alkan, Suzan A. AlKhater, Jerome Allardet-Servent, Luis M Allende, Rebeca Alonso-Arias, Mohammed S Alshahrani, Laia Alsina, Marie-Alexandra Alyanakian, Blanca Amador Borrero, Zahir Amoura, Arnau Antolí, Romain Arrestier, Mélodie Aubart, Teresa Auguet, Iryna Avramenko, Gökhan Aytekin, Axelle Azot, Seiamak Bahram, Fanny Bajolle, Fausto Baldanti, Aurélie Baldolli, Maite Ballester, Hagit Baris Feldman, Benoit Barrou, Federica Barzagh, Sabrina Basso, Gulsum Iclal Bayhan, Alexandre Belot, Liliana Bezrodnik, Agurtzane Bilbao, Geraldine Blanchard-Rohner, Ignacio Blanco, Adeline Blandinières, Daniel Blázquez-Gamero, Alexandre Bleibtreu, Marketa Bloomfield, Mireia Bolivar-Prados, Anastasiia Bondarenko, Alessandro Borghesi, Raphael Borie, Elisabeth Botdhlo-Nevers, Ahmed A Bousfiha, Aurore Bousquet, David Boutolleau, Claire Bouvattier, Oksana Boyarchuk, Juliette Bravais, M. Luisa Briones, Marie-Eve Brunner, Raffaele Bruno, Maria Rita P Bueno, Huda Bukhari, Jacinta Bustamante, Juan José Cáceres Agra, Ruggero Capra, Raphael Carapito, Maria Carrabba, Giorgio Casari, Carlos Casasnovas, Marion Caseris, Irene Cassaniti, Martin Castelle, Francesco Castelli, Martín Castillo de Vera, Mateus V Castro, Emilie Catherinot, Jale Bengi Celik, Alessandro Ceschi, Martin Chalumeau, Bruno Charbit, Matthew P. Cheng, Père Clavé, Bonaventura Clotet, Anna Codina, Yves Cohen, Roger Colobran, Cloé Comarmond, Alain Combes, Patrizia Comoli, Angelo G Corsico, Taner Coşkuner, Aleksandar Cvetkovski, Cyril Cyrus, David Dalmau, François Danion, David Ross Darley, Vincent Das, Nicolas Dauby, Stéphane Dauger, Paul De Munter, Loic de Pontual, Amin Dehban, Geoffroy Delplancq, Alexandre Demoule, Isabelle Desguerre, Antonio Di Sabatino, Jean-Luc Diehl, Stephanie Dobbelaere, Elena Domínguez-Garrido, Clément Dubost, Olov Ekwall, Şefika Elmas Bozdemir, Marwa H Elnagdy, Melike Emiroglu, Akifumi Endo, Emine Hafize Erdeniz, Selma Erol Aytekin, Maria Pilar Etxart Lasa, Romain Euvrard, Giovanna Fabio, Laurence Faivre, Antonin Falck, Muriel Fartoukh, Morgane Faure, Miguel Fernandez Arquero, Ricard Ferrer, Jose Ferreres, Carlos Flores, Bruno Francois, Victoria Fumadó, Kitty S C Fung, Francesca Fusco, Alenka Gagro, Blanca Garcia Solis, Pascale Gaussem, Zeynep Gayretli, Juana Gil-Herrera, Laurent Gilardin, Audrey Giraud Gatineau, Mònica Girona-Alarcón, Karen Alejandra Cifuentes Godínez, Jean-Christophe Goffard, Nacho Gonzales, Luis I Gonzalez-Granado, Rafaela González-Montelongo, Antoine Guerder, Belgin Gülhan, Victor Daniel Gumucio, Leif Gunnar Hanitsch, Jan Gunst, Marta Gut, Jérôme Hadjadj, Filomeen Haerynck, Rabih Halwani, Lennart Hammarström, Selda Hancerli, Tetyana Hariyan, Nevin Hatipoglu, Deniz Heppekcan, Elisa Hernandez-Brito, Po-ki Ho, María Soledad Holanda-Peña, Juan P Horcajada, Sami Hraiech, Linda Humbert, Ivan F N Hung, Alejandro D. Iglesias, Antonio Íñigo-Campos, Matthieu Jamme, María Jesús Arranz, Marie-Thérèse Jimeno, Iolanda Jordan, Saliha Kanık Yüksek, Yalcin Burak Kara, Aydın Karahan, Adem Karbuz, Kadriye Kart Yasar, Ozgur Kasapcopur, Kenichi Kashimada, Sevgi Keles, Yasemin Kendir Demirkol, Yasutoshi Kido, Can Kizil, Ahmet Osman Kılıç, Adam Klocperk, Antonia Koutsoukou, Zbigniew J. Król, Hatem Ksouri, Paul Kuentz, Arthur M C Kwan, Yat Wah M Kwan, Janette S Y Kwok, Jean-Christophe Lagier, David S Y Lam, Vicky Lampropoulou, Fanny Lanternier, Yu-Lung LAU, Fleur Le Bourgeois, Yee-Sin Leo, Rafael Leon Lopez, Daniel Leung, Michael Levin, Michael Levy, Romain Lévy, Zhi Li, Daniele Lilleri, Edson Jose Adrian Bolanos Lima, Agnes Linglart, Eduardo López-Collazo, José M. Lorenzo-Salazar, Céline Louapre, Catherine Lubetzki, Kwok-Cheung Lung, Charles-Edouard Luyt, David C Lye, Cinthia Magnone, Davood Mansouri, Enrico Marchioni, Carola Marioli, Majid Marjani, Laura Marques, Jesus Marquez Pereira, Andrea Martín-Nalda, David Martínez Pueyo, Javier Martinez-Picado, Iciar Marzana, Carmen Mata-Martínez, Alexis Mathian, Larissa RB Matos, Gail V Matthews, Julien Mayaux, Raquel McLaughlin-Garcia, Philippe Meersseman, Jean-Louis Mège, Armand Mekontso-Dessap, Isabelle Melki, Federica Meloni, Jean-François Meritet, Paolo Merlani, Özge Metin Akcan, Isabelle Meyts, Mehdi Mezidi, Isabelle Migeotte, Maude Millereux, Matthieu Million, Tristan Mirault, Clotilde Mircher, Mehdi Mirsaeidi, Yoko Mizoguchi, Bhavi P Modi, Francesco Mojoli, Elsa Moncomble, Abián Montesdeoca Melián, Antonio Morales Martinez, Francisco Morandeira, Pierre-Emmanuel Morange, Cléemence Mordacq, Guillaume Morelle, Stéphane J Mouly, Adrián Muñoz-Barrera, Cyril Nafati, Shintaro Nagashima, Yu Nakagama, Bénédicte Neven, João Farela Neves, Lisa FP Ng, Yuk-Yung Ng, Hubert Nielly, Yeray Novoa Medina, Esmeralda Nuñez Cuadros, J. Gonzalo Ocejo-Vinyals, Keisuke Okamoto, Mehdi Oualha, Amani Ouedrani, Tayfun Özçelik, Aslinur Ozkaya-Parlakay, Michele Pagani, Qiang Pan-Hammarström, Maria Papadaki, Christophe Parizot, Philippe Parola, Tiffany Pascreau, Stéphane Paul, Estela Paz-Artal, Sigifredo Pedraza, Nancy Carolina González Pellecer, Silvia Pellegrini, Rebeca Pérez de Diego, Xosé Luis Pérez-Fernández, Aurélien Philippe, Quentin Philippot, Adrien Picod, Marc Pineton de Chambrun, Antonio Piralla, Laura Planas-Serra, Dominique Ploin, Julien Poissy, Géraldine Poncelet, Garyphallia Poulakou, Marie S Pouletty, Persia Pourshahnazari, Jia Li Qiu-Chen, Paul Quentric, Thomas Rambaud, Didier Raoult, Violette Raoult, Anne-Sophie Rebillat, Claire Redin, Léa Resmini, Pilar Ricart, Jean-Christophe Richard, Raúl Rigo-Bonnin, Nadia Rivet, Jacques G Rivière, Gemma Rocamora-Blanch, Mathieu P Rodero, Carlos Rodrigo, Luis Antonio Rodriguez, Carlos Rodriguez-Gallego, Agustí Rodriguez-Palmero, Carolina Soledad Romero, Anya Rothenbuhler, Damien Roux, Nikoletta Rovina, Flore Rozenberg, Yvon Ruch, Montse Ruiz, Maria Yolanda Ruiz del Prado, Juan Carlos Ruiz-Rodriguez, Joan Sabater-Riera, Kai Saks, Maria Salagianni, Oliver Sanchez, Adrián Sánchez-Montalvá, Silvia Sánchez-Ramón, Laire Schidlowski, Agatha Schluter, Julien Schmidt, Matthieu Schmidt, Catharina Schuetz, Cyril E Schweitzer, Francesco Scolari, Anna Sediva, Luis Seijo, Analia Gisela Seminario, Damien Sene, Piseth Seng, Sevtap Senoglu, Mikko Seppänen, Alex Serra Llovich, Mohammad Shahrooei, Anna Shcherbina, Virginie Siguret, Eleni Siouti, David M Smadja, Nikaia Smith, Ali Sobh, Xavier Solanich, Jordi Solé-Violán, Catherine Soler, Pere Soler-Palacín, Betül Sözeri, Giulia Maria Stella, Yuriy Stepanovskiy, Annabelle Stoclin, Fabio Taccone, Yacine Tandjaoui-Lambiotte, Jean-Luc Taupin, Simon J Tavernier, Loreto Vidaur Tello, Benjamin Terrier, Guillaume Thiery, Christian Thorball, Karolina Thorn, Caroline Thumerelle, Imran Tipu, Martin Tolstrup, Gabriele Tomasoni, Julie Toubiana, Josep Trenado Alvarez, Vasiliki Triantafyllia, Sophie Trouillet-Assant, Jesús Troya, Owen T Y Tsang, Liina Tserel, Eugene Y K Tso, Alessandra Tucci, Şadiye Kübra Tüter Öz, Matilde Valeria Ursini, Takanori Utsumi, Yurdagul Uzunhan, Pierre Vabres, Juan Valencia-Ramos, Ana Maria Van Den Rym, Isabelle Vandernoot, Valentina Velez-Santamaria, Silvia Patricia Zuniga Veliz, Mateus C Vidigal, Sébastien Viel, Cédric Vilain, Marie E Vilaire-Meunier, Judit Villar-García, Audrey Vincent, Guillaume Vogt, Guillaume Voiriot, Alla Volokha, Fanny Vuotto, Els Wauters, Joost Wauters, Alan K L Wu, Tak-Chiu Wu, Aysun Yahşi, Osman Yesilbas, Mehmet Yildiz, Barnaby E Young, Ufuk Yükselmiş, Mayana Zatz, Marco Zecca, Valentina Zuccaro, Van Praet Jens, Bart N. Lambrecht, Van Braeckel Eva, Bosteels Cédric, Hoste Levi, Hoste Eric, Fré Bauters, Jozefien De Clercq, Heijmans Cathérine, Slabbynck Hans, Naesens Leslie, Benoit Florkin, Cécile Boulanger, Dimitri Vanderlinden, Jean-Philippe Annereau, Luis Briseño-Roa, Olivier Gribouval, Anna Pelet, Laurent Abel, Claire Andrejak, François Angoulvant, Delphine Bachelet, Marie Bartoli, Romain Basmaci, Sylvie Behilill, Marine Beluze, Dehbia Benkerrou, Krishna Bhavsar, Lila Bouadma, Sabelline Bouchez, Maude Bouscambert, Minerva Cervantes-Gonzalez, Anissa Chair, Catherine Chirouze, Alexandra Coelho, Camille Couffignal, Sandrine Couffin-Cadiergues, Eric d’Ortenzio, Marie-Pierre Debray, Lauren Deconinck, Dominique Deplanque, Diane Descamps, Mathilde Desvallée, Alpha Diallo, Alphonsine Diouf, Céline Dorival, François Dubos, Xavier Duval, Brigitte Elharrar, Philippine Eloy, Vincent Enouf, Hélène Esperou, Marina Esposito-Farese, Manuel Etienne, Eglantine Ferrand Devouge, Nathalie Gault, Alexandre Gaymard, Jade Ghosn, Tristan Gigante, Morgane Gilg, Jérémie Guedj, Alexandre Hoctin, Isabelle Hoffmann, Ikram Houas, Jean-Sébastien Hulot, Salma Jaafoura, Ouifiya Kafif, Florentia Kaguelidou, Sabrina Kali, Antoine Khalil, Coralie Khan, Cédric Laouénan, Samira Laribi, Minh Le, Quentin Le Hingrat, Soizic Le Mestre, Hervé Le Nagard, François-Xavier Lescure, Sophie Letrou, Yves Levy, Bruno Lina, Guillaume Lingas, Jean Christophe Lucet, Denis Malvy, Marina Mambert, France Mentré, Amina Meziane, Hugo Mouquet, Jimmy Mullaert, Nadège Neant, Duc Nguyen, Marion Noret, Saad Nseir, Aurélie Papadopoulos, Christelle Paul, Nathan Peiffer-Smadja, Thomas Perpoint, Ventzislava Petrov-Sanchez, Gilles Peytavin, Huong Pham, Olivier Picone, Valentine Piquard, Oriane Puéchal, Christian Rabaud, Manuel Rosa-Calatrava, Bénédicte Rossignol, Patrick Rossignol, Carine Roy, Marion Schneider, Richa Su, Coralie Tardivon, Marie-Capucine Tellier, François Téoulé, Olivier Terrier, Jean-François Timsit, Christelle Tual, Sarah Tubiana, Sylvie Van Der Werf, Noémie Vanel, Aurélie Veislinger, Benoit Visseaux, Aurélie Wiedemann, Yazdan Yazdanpanah, Loubna Alavoine, Sylvie Behillil, Charles Burdet, Charlotte Charpentier, Aline Dechanet, Diane Descamps, Xavier Duval, Jean-Luc Ecobichon, Vincent Enouf, Wahiba Frezouls, Nadhira Houhou, Ouifiya Kafif, Jonathan Lehacaut, Sophie Letrou, Bruno Lina, Jean-Christophe Lucet, Pauline Manchon, Mariama Nouroudine, Valentine Piquard, Caroline Quintin, Michael Thy, Sarah Tubiana, Sylvie van der Werf, Valérie Vignali, Benoit Visseaux, Yazdan Yazdanpanah, Abir Chahine, Nawal Waucquier, Maria-Claire Migaud, Dominique Deplanque, Félix Djossou, Mayka Mergeay-Fabre, Aude Lucarelli, Magalie Demar, Léa Bruneau, Patrick Gérardin, Adrien Maillot, Christine Payet, Bruno Laviolle, Fabrice Laine, Christophe Paris, Mireille Desille-Dugast, Julie Fouchard, Denis Malvy, Duc Nguyen, Thierry Pistone, Pauline Perreau, Valérie Gissot, Carole Le Goas, Samatha Montagne, Lucie Richard, Catherine Chirouze, Kévin Bouiller, Maxime Desmarets, Alexandre Meunier, Benjamin Lefévre, Hélène Jeulin, Karine Legrand, Sandra Lomazzi, Bernard Tardy, Amandine Gagneux-Brunon, Frédérique Bertholon, Elisabeth Botelho-Nevers, Christelle Kouakam, Nicolas Leturque, Layidé Roufai, Karine Amat, Sandrine Couffin-Cadiergues, Hélène Espérou, Samia Hendou, Michiel van Agtmael, Anne Geke Algera, Brent Appelman, Frank van Baarle, Diane Bax, Martijn Beudel, Harm Jan Bogaard, Marije Bomers, Peter Bonta, Lieuwe Bos, Michela Botta, Justin de Brabander, Godelieve de Bree, Sanne de Bruin, David T.P. Buis, Marianna Bugiani, Esther Bulle, Osoul Chouchane, Alex Cloherty, Mirjam Dijkstra, Dave A. Dongelmans, Romein W.G. Dujardin, Paul Elbers, Lucas Fleuren, Suzanne Geerlings, Theo Geijtenbeek, Armand Girbes, Bram Goorhuis, Martin P. Grobusch, Florianne Hafkamp, Laura Hagens, Jorg Hamann, Vanessa Harris, Robert Hemke, Sabine M. Hermans, Leo Heunks, Markus Hollmann, Janneke Horn, Joppe W. Hovius, Menno D. de Jong, Rutger Koning, Endry H.T. Lim, Niels van Mourik, Jeaninne Nellen, Esther J. Nossent, Frederique Paulus, Edgar Peters, Dan A.I. Pina-Fuentes, Tom van der Poll, Bennedikt Preckel, Jan M. Prins, Jorinde Raasveld, Tom Reijnders, Maurits C.F.J. de Rotte, Michiel Schinkel, Marcus J. Schultz, Femke A.P. Schrauwen, Alex Schuurmans, Jaap Schuurmans, Kim Sigaloff, Marleen A. Slim, Patrick Smeele, Marry Smit, Cornelis S. Stijnis, Willemke Stilma, Charlotte Teunissen, Patrick Thoral, Anissa M Tsonas, Pieter R. Tuinman, Marc van der Valk, Denise Veelo, Carolien Volleman, Heder de Vries, Lonneke A. Vught, Michèle van Vugt, Dorien Wouters, A. H (Koos) Zwinderman, Matthijs C. Brouwer, W. Joost Wiersinga, Alexander P.J. Vlaar, Diederik van de Beek, Miranda F. Tompkins, Camille Alba, Andrew L. Snow, Daniel N. Hupalo, John Rosenberger, Gauthaman Sukumar, Matthew D. Wilkerson, Xijun Zhang, Justin Lack, Andrew J. Oler, Kerry Dobbs, Ottavia M. Delmonte, Jeffrey J. Danielson, Andrea Biondi, Laura Rachele Bettini, Mariella D’Angio, Ilaria Beretta, Luisa Imberti, Alessandra Sottini, Virginia Quaresima, Eugenia Quiros-Roldan, and Camillo Rossi

References and Notes

  • 1.Casanova J. L., Su H. C.; COVID Human Genetic Effort , A Global Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell 181, 1194–1199 (2020). 10.1016/j.cell.2020.05.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Zhang Q., Bastard P., Bolze A., Jouanguy E., Zhang S. Y., Cobat A., Notarangelo L. D., Su H. C., Abel L., Casanova J. L.; COVID Human Genetic Effort , Life-Threatening COVID-19: Defective Interferons Unleash Excessive Inflammation. Med (N Y) 1, 14–20 (2020). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.O’Driscoll M., Ribeiro Dos Santos G., Wang L., Cummings D. A. T., Azman A. S., Paireau J., Fontanet A., Cauchemez S., Salje H., Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 590, 140–145 (2021). 10.1038/s41586-020-2918-0 [DOI] [PubMed] [Google Scholar]
  • 4.Scully E. P., Haverfield J., Ursin R. L., Tannenbaum C., Klein S. L., Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 20, 442–447 (2020). 10.1038/s41577-020-0348-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Ciancanelli M. J., Huang S. X., Luthra P., Garner H., Itan Y., Volpi S., Lafaille F. G., Trouillet C., Schmolke M., Albrecht R. A., Israelsson E., Lim H. K., Casadio M., Hermesh T., Lorenzo L., Leung L. W., Pedergnana V., Boisson B., Okada S., Picard C., Ringuier B., Troussier F., Chaussabel D., Abel L., Pellier I., Notarangelo L. D., García-Sastre A., Basler C. F., Geissmann F., Zhang S. Y., Snoeck H. W., Casanova J. L., Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348, 448–453 (2015). 10.1126/science.aaa1578 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Hernandez N., Melki I., Jing H., Habib T., Huang S. S. Y., Danielson J., Kula T., Drutman S., Belkaya S., Rattina V., Lorenzo-Diaz L., Boulai A., Rose Y., Kitabayashi N., Rodero M. P., Dumaine C., Blanche S., Lebras M. N., Leung M. C., Mathew L. S., Boisson B., Zhang S. Y., Boisson-Dupuis S., Giliani S., Chaussabel D., Notarangelo L. D., Elledge S. J., Ciancanelli M. J., Abel L., Zhang Q., Marr N., Crow Y. J., Su H. C., Casanova J. L., Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J. Exp. Med. 215, 2567–2585 (2018). 10.1084/jem.20180628 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Lim H. K., Huang S. X. L., Chen J., Kerner G., Gilliaux O., Bastard P., Dobbs K., Hernandez N., Goudin N., Hasek M. L., García Reino E. J., Lafaille F. G., Lorenzo L., Luthra P., Kochetkov T., Bigio B., Boucherit S., Rozenberg F., Vedrinne C., Keller M. D., Itan Y., García-Sastre A., Celard M., Orange J. S., Ciancanelli M. J., Meyts I., Zhang Q., Abel L., Notarangelo L. D., Snoeck H. W., Casanova J. L., Zhang S. Y., Severe influenza pneumonitis in children with inherited TLR3 deficiency. J. Exp. Med. 216, 2038–2056 (2019). 10.1084/jem.20181621 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Zhang Q., Bastard P., Liu Z., Le Pen J., Moncada-Velez M., Chen J., Ogishi M., Sabli I. K. D., Hodeib S., Korol C., Rosain J., Bilguvar K., Ye J., Bolze A., Bigio B., Yang R., Arias A. A., Zhou Q., Zhang Y., Onodi F., Korniotis S., Karpf L., Philippot Q., Chbihi M., Bonnet-Madin L., Dorgham K., Smith N., Schneider W. M., Razooky B. S., Hoffmann H. H., Michailidis E., Moens L., Han J. E., Lorenzo L., Bizien L., Meade P., Neehus A. L., Ugurbil A. C., Corneau A., Kerner G., Zhang P., Rapaport F., Seeleuthner Y., Manry J., Masson C., Schmitt Y., Schlüter A., Le Voyer T., Khan T., Li J., Fellay J., Roussel L., Shahrooei M., Alosaimi M. F., Mansouri D., Al-Saud H., Al-Mulla F., Almourfi F., Al-Muhsen S. Z., Alsohime F., Al Turki S., Hasanato R., van de Beek D., Biondi A., Bettini L. R., D’Angio’ M., Bonfanti P., Imberti L., Sottini A., Paghera S., Quiros-Roldan E., Rossi C., Oler A. J., Tompkins M. F., Alba C., Vandernoot I., Goffard J. C., Smits G., Migeotte I., Haerynck F., Soler-Palacin P., Martin-Nalda A., Colobran R., Morange P. E., Keles S., Çölkesen F., Ozcelik T., Yasar K. K., Senoglu S., Karabela S. N., Rodríguez-Gallego C., Novelli G., Hraiech S., Tandjaoui-Lambiotte Y., Duval X., Laouénan C., Snow A. L., Dalgard C. L., Milner J. D., Vinh D. C., Mogensen T. H., Marr N., Spaan A. N., Boisson B., Boisson-Dupuis S., Bustamante J., Puel A., Ciancanelli M. J., Meyts I., Maniatis T., Soumelis V., Amara A., Nussenzweig M., García-Sastre A., Krammer F., Pujol A., Duffy D., Lifton R. P., Zhang S. Y., Gorochov G., Béziat V., Jouanguy E., Sancho-Shimizu V., Rice C. M., Abel L., Notarangelo L. D., Cobat A., Su H. C., Casanova J. L.; COVID-STORM Clinicians; COVID Clinicians; Imagine COVID Group; French COVID Cohort Study Group; CoV-Contact Cohort; Amsterdam UMC Covid-19 Biobank; COVID Human Genetic Effort; NIAID-USUHS/TAGC COVID Immunity Group , Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020). 10.1126/science.abd4570 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Bastard P., Rosen L. B., Zhang Q., Michailidis E., Hoffmann H. H., Zhang Y., Dorgham K., Philippot Q., Rosain J., Béziat V., Manry J., Shaw E., Haljasmägi L., Peterson P., Lorenzo L., Bizien L., Trouillet-Assant S., Dobbs K., de Jesus A. A., Belot A., Kallaste A., Catherinot E., Tandjaoui-Lambiotte Y., Le Pen J., Kerner G., Bigio B., Seeleuthner Y., Yang R., Bolze A., Spaan A. N., Delmonte O. M., Abers M. S., Aiuti A., Casari G., Lampasona V., Piemonti L., Ciceri F., Bilguvar K., Lifton R. P., Vasse M., Smadja D. M., Migaud M., Hadjadj J., Terrier B., Duffy D., Quintana-Murci L., van de Beek D., Roussel L., Vinh D. C., Tangye S. G., Haerynck F., Dalmau D., Martinez-Picado J., Brodin P., Nussenzweig M. C., Boisson-Dupuis S., Rodríguez-Gallego C., Vogt G., Mogensen T. H., Oler A. J., Gu J., Burbelo P. D., Cohen J. I., Biondi A., Bettini L. R., D’Angio M., Bonfanti P., Rossignol P., Mayaux J., Rieux-Laucat F., Husebye E. S., Fusco F., Ursini M. V., Imberti L., Sottini A., Paghera S., Quiros-Roldan E., Rossi C., Castagnoli R., Montagna D., Licari A., Marseglia G. L., Duval X., Ghosn J., Tsang J. S., Goldbach-Mansky R., Kisand K., Lionakis M. S., Puel A., Zhang S. Y., Holland S. M., Gorochov G., Jouanguy E., Rice C. M., Cobat A., Notarangelo L. D., Abel L., Su H. C., Casanova J. L.; HGID Lab; NIAID-USUHS Immune Response to COVID Group; COVID Clinicians; COVID-STORM Clinicians; Imagine COVID Group; French COVID Cohort Study Group; Milieu Intérieur Consortium; CoV-Contact Cohort; Amsterdam UMC Covid-19 Biobank; COVID Human Genetic Effort , Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020). 10.1126/science.abd4585 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Wang E. Y., Mao T., Klein J., Dai Y., Huck J. D., Jaycox J. R., Liu F., Zhou T., Israelow B., Wong P., Coppi A., Lucas C., Silva J., Oh J. E., Song E., Perotti E. S., Zheng N. S., Fischer S., Campbell M., Fournier J. B., Wyllie A. L., Vogels C. B. F., Ott I. M., Kalinich C. C., Petrone M. E., Watkins A. E., Dela Cruz C., Farhadian S. F., Schulz W. L., Ma S., Grubaugh N. D., Ko A. I., Iwasaki A., Ring A. M.; Yale IMPACT Team , Diverse functional autoantibodies in patients with COVID-19. Nature 595, 283–288 (2021). 10.1038/s41586-021-03631-y [DOI] [PubMed] [Google Scholar]
  • 11.Koning R., Bastard P., Casanova J. L., Brouwer M. C., van de Beek D.; with the Amsterdam U.M.C. COVID-19 Biobank Investigators , Autoantibodies against type I interferons are associated with multi-organ failure in COVID-19 patients. Intensive Care Med. 47, 704–706 (2021). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Troya J., Bastard P., Planas-Serra L., Ryan P., Ruiz M., de Carranza M., Torres J., Martínez A., Abel L., Casanova J. L., Pujol A., Neutralizing Autoantibodies to Type I IFNs in >10% of Patients with Severe COVID-19 Pneumonia Hospitalized in Madrid, Spain. J. Clin. Immunol. 41, 914–922 (2021). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.David G., Mehdi M., Paul B., Magali P., Kahina S., Nicole F., Rémi P., Christine L., Thierry W., Jean-Laurent C., Alexandre B., Jean-Christophe R., Sophie T.-A., Antibodies against type-I Interferon: detection and association with severe clinical outcome in COVID-19 patients. medRxiv, 2021.2004.2002.21253262 (2021).
  • 14.M. G. P. van der Wijst, S. E. Vazquez, G. C. Hartoularos, P. Bastard, T. Grant, R. Bueno, D. S. Lee, J. R. Greenland, Y. Sun, R. Perez, A. Ogorodnikov, A. Ward, S. A. Mann, K. L. Lynch, C. Yun, D. V. Havlir, G. Chamie, C. Marquez, B. Greenhouse, M. S. Lionakis, P. J. Norris, L. J. Dumont, K. Kelly, P. Zhang, Q. Zhang, A. Gervais, T. L. Voyer, A. Whatley, Y. Si, A. Byrne, A. J. Combes, A. A. Rao, Y. S. Song, Longitudinal single-cell epitope and RNA-sequencing reveals the immunological impact of type 1 interferon autoantibodies in critical COVID-19. bioRxiv: the preprint server for biology, (2021).
  • 15.Vazquez S. E., Bastard P., Kelly K., Gervais A., Norris P. J., Dumont L. J., Casanova J. L., Anderson M. S., DeRisi J. L., Neutralizing Autoantibodies to Type I Interferons in COVID-19 Convalescent Donor Plasma. J. Clin. Immunol. 41, 1169–1171 (2021). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Bastard P., Orlova E., Sozaeva L., Lévy R., James A., Schmitt M. M., Ochoa S., Kareva M., Rodina Y., Gervais A., Le Voyer T., Rosain J., Philippot Q., Neehus A. L., Shaw E., Migaud M., Bizien L., Ekwall O., Berg S., Beccuti G., Ghizzoni L., Thiriez G., Pavot A., Goujard C., Frémond M. L., Carter E., Rothenbuhler A., Linglart A., Mignot B., Comte A., Cheikh N., Hermine O., Breivik L., Husebye E. S., Humbert S., Rohrlich P., Coaquette A., Vuoto F., Faure K., Mahlaoui N., Kotnik P., Battelino T., Trebušak Podkrajšek K., Kisand K., Ferré E. M. N., DiMaggio T., Rosen L. B., Burbelo P. D., McIntyre M., Kann N. Y., Shcherbina A., Pavlova M., Kolodkina A., Holland S. M., Zhang S. Y., Crow Y. J., Notarangelo L. D., Su H. C., Abel L., Anderson M. S., Jouanguy E., Neven B., Puel A., Casanova J. L., Lionakis M. S., Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J. Exp. Med. 218, e20210554 (2021). 10.1084/jem.20210554 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Bastard P., Michailidis E., Hoffmann H. H., Chbihi M., Le Voyer T., Rosain J., Philippot Q., Seeleuthner Y., Gervais A., Materna M., de Oliveira P. M. N., Maia M. L. S., Dinis Ano Bom A. P., Azamor T., Araújo da Conceição D., Goudouris E., Homma A., Slesak G., Schäfer J., Pulendran B., Miller J. D., Huits R., Yang R., Rosen L. B., Bizien L., Lorenzo L., Chrabieh M., Erazo L. V., Rozenberg F., Jeljeli M. M., Béziat V., Holland S. M., Cobat A., Notarangelo L. D., Su H. C., Ahmed R., Puel A., Zhang S. Y., Abel L., Seligman S. J., Zhang Q., MacDonald M. R., Jouanguy E., Rice C. M., Casanova J. L., Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J. Exp. Med. 218, e20202486 (2021). 10.1084/jem.20202486 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Firth D., Bias reduction of maximum likelihood estimates. Biometrika 80, 27–38 (1993). 10.1093/biomet/80.1.27 [DOI] [Google Scholar]
  • 19.Hemmi H., Kaisho T., Takeuchi O., Sato S., Sanjo H., Hoshino K., Horiuchi T., Tomizawa H., Takeda K., Akira S., Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002). 10.1038/ni758 [DOI] [PubMed] [Google Scholar]
  • 20.Diebold S. S., Kaisho T., Hemmi H., Akira S., Reis e Sousa C., Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004). 10.1126/science.1093616 [DOI] [PubMed] [Google Scholar]
  • 21.Heil F., Hemmi H., Hochrein H., Ampenberger F., Kirschning C., Akira S., Lipford G., Wagner H., Bauer S., Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004). 10.1126/science.1093620 [DOI] [PubMed] [Google Scholar]
  • 22.Lund J. M., Alexopoulou L., Sato A., Karow M., Adams N. C., Gale N. W., Iwasaki A., Flavell R. A., Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. U.S.A. 101, 5598–5603 (2004). 10.1073/pnas.0400937101 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Beutler B., Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004). 10.1038/nature02761 [DOI] [PubMed] [Google Scholar]
  • 24.Colonna M., Trinchieri G., Liu Y. J., Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5, 1219–1226 (2004). 10.1038/ni1141 [DOI] [PubMed] [Google Scholar]
  • 25.Gilliet M., Cao W., Liu Y. J., Plasmacytoid dendritic cells: Sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 8, 594–606 (2008). 10.1038/nri2358 [DOI] [PubMed] [Google Scholar]
  • 26.Reizis B., Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity 50, 37–50 (2019). 10.1016/j.immuni.2018.12.027 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Bender A. T., Tzvetkov E., Pereira A., Wu Y., Kasar S., Przetak M. M., Vlach J., Niewold T. B., Jensen M. A., Okitsu S. L., TLR7 and TLR8 Differentially Activate the IRF and NF-κB Pathways in Specific Cell Types to Promote Inflammation. Immunohorizons 4, 93–107 (2020). 10.4049/immunohorizons.2000002 [DOI] [PubMed] [Google Scholar]
  • 28.Maeda K., Akira S., TLR7 Structure: Cut in Z-Loop. Immunity 45, 705–707 (2016). 10.1016/j.immuni.2016.10.003 [DOI] [PubMed] [Google Scholar]
  • 29.Aluri J., Bach A., Kaviany S., Chiquetto Paracatu L., Kitcharoensakkul M., Walkiewicz M. A., Putnam C. D., Shinawi M., Saucier N., Rizzi E. M., Harmon M. T., Keppel M. P., Ritter M., Similuk M., Kulm E., Joyce M., de Jesus A. A., Goldbach-Mansky R., Lee Y. S., Cella M., Kendall P. L., Dinauer M. C., Bednarski J. J., Bemrich-Stolz C., Canna S. W., Abraham S. M., Demczko M. M., Powell J., Jones S. M., Scurlock A. M., De Ravin S. S., Bleesing J. J., Connelly J. A., Rao V. K., Schuettpelz L. G., Cooper M. A., Immunodeficiency and bone marrow failure with mosaic and germline TLR8 gain of function. Blood 137, 2450–2462 (2021). 10.1182/blood.2020009620 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Uggenti C., Lepelley A., Crow Y. J., Self-Awareness: Nucleic Acid-Driven Inflammation and the Type I Interferonopathies. Annu. Rev. Immunol. 37, 247–267 (2019). 10.1146/annurev-immunol-042718-041257 [DOI] [PubMed] [Google Scholar]
  • 31.Boisson B., Casanova J. L., TLR8 gain of function: A tall surprise. Blood 137, 2420–2422 (2021). 10.1182/blood.2020010463 [DOI] [PubMed] [Google Scholar]
  • 32.Uhlen M., Karlsson M. J., Zhong W., Tebani A., Pou C., Mikes J., Lakshmikanth T., Forsström B., Edfors F., Odeberg J., Mardinoglu A., Zhang C., von Feilitzen K., Mulder J., Sjöstedt E., Hober A., Oksvold P., Zwahlen M., Ponten F., Lindskog C., Sivertsson Å., Fagerberg L., Brodin P., A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science 366, eaax9198 (2019). 10.1126/science.aax9198 [DOI] [PubMed] [Google Scholar]
  • 33.Fallerini C., Daga S., Mantovani S., Benetti E., Picchiotti N., Francisci D., Paciosi F., Schiaroli E., Baldassarri M., Fava F., Palmieri M., Ludovisi S., Castelli F., Quiros-Roldan E., Vaghi M., Rusconi S., Siano M., Bandini M., Spiga O., Capitani K., Furini S., Mari F., Renieri A., Mondelli M. U., Frullanti E.; GEN-COVID Multicenter Study , Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: Findings from a nested case-control study. eLife 10, e67569 (2021). 10.7554/eLife.67569 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.van der Made C. I., Simons A., Schuurs-Hoeijmakers J., van den Heuvel G., Mantere T., Kersten S., van Deuren R. C., Steehouwer M., van Reijmersdal S. V., Jaeger M., Hofste T., Astuti G., Corominas Galbany J., van der Schoot V., van der Hoeven H., Hagmolen Of Ten Have W., Klijn E., van den Meer C., Fiddelaers J., de Mast Q., Bleeker-Rovers C. P., Joosten L. A. B., Yntema H. G., Gilissen C., Nelen M., van der Meer J. W. M., Brunner H. G., Netea M. G., van de Veerdonk F. L., Hoischen A., Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA 324, 663–673 (2020). 10.1001/jama.2020.13719 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Belkadi A., Pedergnana V., Cobat A., Itan Y., Vincent Q. B., Abhyankar A., Shang L., El Baghdadi J., Bousfiha A., Alcais A., Boisson B., Casanova J. L., Abel L.; Exome/Array Consortium , Whole-exome sequencing to analyze population structure, parental inbreeding, and familial linkage. Proc. Natl. Acad. Sci. U.S.A. 113, 6713–6718 (2016). 10.1073/pnas.1606460113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Shodell M., Siegal F. P., Circulating, interferon-producing plasmacytoid dendritic cells decline during human ageing. Scand. J. Immunol. 56, 518–521 (2002). 10.1046/j.1365-3083.2002.01148.x [DOI] [PubMed] [Google Scholar]
  • 37.Jing Y., Shaheen E., Drake R. R., Chen N., Gravenstein S., Deng Y., Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum. Immunol. 70, 777–784 (2009). 10.1016/j.humimm.2009.07.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Splunter M. V., Perdijk O., Fick-Brinkhof H., Floris-Vollenbroek E. G., Meijer B., Brugman S., Savelkoul H. F. J., van Hoffen E., Joost van Neerven R. J., Plasmacytoid dendritic cell and myeloid dendritic cell function in ageing: A comparison between elderly and young adult women. PLOS ONE 14, e0225825 (2019). 10.1371/journal.pone.0225825 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Giltiay N. V., Chappell C. P., Sun X., Kolhatkar N., Teal T. H., Wiedeman A. E., Kim J., Tanaka L., Buechler M. B., Hamerman J. A., Imanishi-Kari T., Clark E. A., Elkon K. B., Overexpression of TLR7 promotes cell-intrinsic expansion and autoantibody production by transitional T1 B cells. J. Exp. Med. 210, 2773–2789 (2013). 10.1084/jem.20122798 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.J. Lonsdale, J. Thomas, M. Salvatore, R. Phillips, E. Lo, S. Shad, R. Hasz, G. Walters, F. Garcia, N. Young, B. Foster, M. Moser, E. Karasik, B. Gillard, K. Ramsey, S. Sullivan, J. Bridge, H. Magazine, J. Syron, J. Fleming, L. Siminoff, H. Traino, M. Mosavel, L. Barker, S. Jewell, D. Rohrer, D. Maxim, D. Filkins, P. Harbach, E. Cortadillo, B. Berghuis, L. Turner, E. Hudson, K. Feenstra, L. Sobin, J. Robb, P. Branton, G. Korzeniewski, C. Shive, D. Tabor, L. Qi, K. Groch, S. Nampally, S. Buia, A. Zimmerman, A. Smith, R. Burges, K. Robinson, K. Valentino, D. Bradbury, M. Cosentino, N. Diaz-Mayoral, M. Kennedy, T. Engel, P. Williams, K. Erickson, K. Ardlie, W. Winckler, G. Getz, D. DeLuca, D. MacArthur, M. Kellis, A. Thomson, T. Young, E. Gelfand, M. Donovan, Y. Meng, G. Grant, D. Mash, Y. Marcus, M. Basile, J. Liu, J. Zhu, Z. Tu, N. J. Cox, D. L. Nicolae, E. R. Gamazon, H. K. Im, A. Konkashbaev, J. Pritchard, M. Stevens, T. Flutre, X. Wen, E. T. Dermitzakis, T. Lappalainen, R. Guigo, J. Monlong, M. Sammeth, D. Koller, A. Battle, S. Mostafavi, M. McCarthy, M. Rivas, J. Maller, I. Rusyn, A. Nobel, F. Wright, A. Shabalin, M. Feolo, N. Sharopova, A. Sturcke, J. Paschal, J. M. Anderson, E. L. Wilder, L. K. Derr, E. D. Green, J. P. Struewing, G. Temple, S. Volpi, J. T. Boyer, E. J. Thomson, M. S. Guyer, C. Ng, A. Abdallah, D. Colantuoni, T. R. Insel, S. E. Koester, A. R. Little, P. K. Bender, T. Lehner, Y. Yao, C. C. Compton, J. B. Vaught, S. Sawyer, N. C. Lockhart, J. Demchok, H. F. Moore; GTEx Consortium , The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013). 10.1038/ng.2653 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Travaglini K. J., Nabhan A. N., Penland L., Sinha R., Gillich A., Sit R. V., Chang S., Conley S. D., Mori Y., Seita J., Berry G. J., Shrager J. B., Metzger R. J., Kuo C. S., Neff N., Weissman I. L., Quake S. R., Krasnow M. A., A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020). 10.1038/s41586-020-2922-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Cella M., Jarrossay D., Facchetti F., Alebardi O., Nakajima H., Lanzavecchia A., Colonna M., Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5, 919–923 (1999). 10.1038/11360 [DOI] [PubMed] [Google Scholar]
  • 43.Siegal F. P., Kadowaki N., Shodell M., Fitzgerald-Bocarsly P. A., Shah K., Ho S., Antonenko S., Liu Y. J., The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999). 10.1126/science.284.5421.1835 [DOI] [PubMed] [Google Scholar]
  • 44.Honda K., Taniguchi T., IRFs: Master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol. 6, 644–658 (2006). 10.1038/nri1900 [DOI] [PubMed] [Google Scholar]
  • 45.Onodi F., Bonnet-Madin L., Meertens L., Karpf L., Poirot J., Zhang S. Y., Picard C., Puel A., Jouanguy E., Zhang Q., Le Goff J., Molina J. M., Delaugerre C., Casanova J. L., Amara A., Soumelis V., SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4. J. Exp. Med. 218, e20201387 (2021). 10.1084/jem.20201387 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.L. Cervantes-Barragan, A. Vanderheiden, C. J. Royer, M. E. Davis-Gardner, P. Ralfs, T. Chirkova, L. J. Anderson, A. Grakoui, M. S. Suthar, Plasmacytoid dendritic cells produce type I interferon and reduce viral replication in airway epithelial cells after SARS-CoV-2 infection. bioRxiv: the preprint server for biology, 2021.2005.2012.443948 (2021).
  • 47.Alculumbre S. G., Saint-André V., Di Domizio J., Vargas P., Sirven P., Bost P., Maurin M., Maiuri P., Wery M., Roman M. S., Savey L., Touzot M., Terrier B., Saadoun D., Conrad C., Gilliet M., Morillon A., Soumelis V., Diversification of human plasmacytoid predendritic cells in response to a single stimulus. Nat. Immunol. 19, 63–75 (2018). 10.1038/s41590-017-0012-z [DOI] [PubMed] [Google Scholar]
  • 48.Kosmicki J. A., Horowitz J. E., Banerjee N., Lanche R., Marcketta A., Maxwell E., Bai X., Sun D., Backman J. D., Sharma D., Kury F. S. P., Kang H. M., O’Dushlaine C., Yadav A., Mansfield A. J., Li A. H., Watanabe K., Gurski L., McCarthy S. E., Locke A. E., Khalid S., O’Keeffe S., Mbatchou J., Chazara O., Huang Y., Kvikstad E., O’Neill A., Nioi P., Parker M. M., Petrovski S., Runz H., Szustakowski J. D., Wang Q., Wong E., Cordova-Palomera A., Smith E. N., Szalma S., Zheng X., Esmaeeli S., Davis J. W., Lai Y.-P., Chen X., Justice A. E., Leader J. B., Mirshahi T., Carey D. J., Verma A., Sirugo G., Ritchie M. D., Rader D. J., Povysil G., Goldstein D. B., Kiryluk K., Pairo-Castineira E., Rawlik K., Pasko D., Walker S., Meynert A., Kousathanas A., Moutsianas L., Tenesa A., Caulfield M., Scott R., Wilson J. F., Baillie J. K., Butler-Laporte G., Nakanishi T., Lathrop M., Richards J. B., Jones M., Balasubramanian S., Salerno W., Shuldiner A. R., Marchini J., Overton J. D., Habegger L., Cantor M. N., Reid J. G., Baras A., Abecasis G. R., Ferreira M. A. R.; Regeneron Genetics Center; UKB Exome Sequencing Consortium , Pan-ancestry exome-wide association analyses of COVID-19 outcomes in 586,157 individuals. Am. J. Hum. Genet. 108, 1350–1355 (2021). 10.1016/j.ajhg.2021.05.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Yang K., Puel A., Zhang S., Eidenschenk C., Ku C. L., Casrouge A., Picard C., von Bernuth H., Senechal B., Plancoulaine S., Al-Hajjar S., Al-Ghonaium A., Maródi L., Davidson D., Speert D., Roifman C., Garty B. Z., Ozinsky A., Barrat F. J., Coffman R. L., Miller R. L., Li X., Lebon P., Rodriguez-Gallego C., Chapel H., Geissmann F., Jouanguy E., Casanova J. L., Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity 23, 465–478 (2005). 10.1016/j.immuni.2005.09.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Ku C. L., von Bernuth H., Picard C., Zhang S. Y., Chang H. H., Yang K., Chrabieh M., Issekutz A. C., Cunningham C. K., Gallin J., Holland S. M., Roifman C., Ehl S., Smart J., Tang M., Barrat F. J., Levy O., McDonald D., Day-Good N. K., Miller R., Takada H., Hara T., Al-Hajjar S., Al-Ghonaium A., Speert D., Sanlaville D., Li X., Geissmann F., Vivier E., Maródi L., Garty B. Z., Chapel H., Rodriguez-Gallego C., Bossuyt X., Abel L., Puel A., Casanova J. L., Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J. Exp. Med. 204, 2407–2422 (2007). 10.1084/jem.20070628 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Casanova J. L., Abel L., Quintana-Murci L., Human TLRs and IL-1Rs in host defense: Natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 29, 447–491 (2011). 10.1146/annurev-immunol-030409-101335 [DOI] [PubMed] [Google Scholar]
  • 52.Boisson B., The genetic basis of pneumococcal and staphylococcal infections: Inborn errors of human TLR and IL-1R immunity. Hum. Genet. 139, 981–991 (2020). 10.1007/s00439-020-02111-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Barreiro L. B., Ben-Ali M., Quach H., Laval G., Patin E., Pickrell J. K., Bouchier C., Tichit M., Neyrolles O., Gicquel B., Kidd J. R., Kidd K. K., Alcaïs A., Ragimbeau J., Pellegrini S., Abel L., Casanova J. L., Quintana-Murci L., Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLOS Genet. 5, e1000562 (2009). 10.1371/journal.pgen.1000562 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.von Bernuth H., Picard C., Jin Z., Pankla R., Xiao H., Ku C. L., Chrabieh M., Mustapha I. B., Ghandil P., Camcioglu Y., Vasconcelos J., Sirvent N., Guedes M., Vitor A. B., Herrero-Mata M. J., Aróstegui J. I., Rodrigo C., Alsina L., Ruiz-Ortiz E., Juan M., Fortuny C., Yagüe J., Antón J., Pascal M., Chang H. H., Janniere L., Rose Y., Garty B. Z., Chapel H., Issekutz A., Maródi L., Rodriguez-Gallego C., Banchereau J., Abel L., Li X., Chaussabel D., Puel A., Casanova J. L., Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008). 10.1126/science.1158298 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Picard C., Puel A., Bonnet M., Ku C. L., Bustamante J., Yang K., Soudais C., Dupuis S., Feinberg J., Fieschi C., Elbim C., Hitchcock R., Lammas D., Davies G., Al-Ghonaium A., Al-Rayes H., Al-Jumaah S., Al-Hajjar S., Al-Mohsen I. Z., Frayha H. H., Rucker R., Hawn T. R., Aderem A., Tufenkeji H., Haraguchi S., Day N. K., Good R. A., Gougerot-Pocidalo M. A., Ozinsky A., Casanova J. L., Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003). 10.1126/science.1081902 [DOI] [PubMed] [Google Scholar]
  • 56.Casrouge A., Zhang S. Y., Eidenschenk C., Jouanguy E., Puel A., Yang K., Alcais A., Picard C., Mahfoufi N., Nicolas N., Lorenzo L., Plancoulaine S., Sénéchal B., Geissmann F., Tabeta K., Hoebe K., Du X., Miller R. L., Héron B., Mignot C., de Villemeur T. B., Lebon P., Dulac O., Rozenberg F., Beutler B., Tardieu M., Abel L., Casanova J. L., Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308–312 (2006). 10.1126/science.1128346 [DOI] [PubMed] [Google Scholar]
  • 57.Liu Y. J., Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106, 259–262 (2001). 10.1016/S0092-8674(01)00456-1 [DOI] [PubMed] [Google Scholar]
  • 58.Swiecki M., Colonna M., Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol. Rev. 234, 142–162 (2010). 10.1111/j.0105-2896.2009.00881.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Barrat F. J., Su L., A pathogenic role of plasmacytoid dendritic cells in autoimmunity and chronic viral infection. J. Exp. Med. 216, 1974–1985 (2019). 10.1084/jem.20181359 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Sologuren I., Martínez-Saavedra M. T., Solé-Violán J., de Borges de Oliveira E. Jr., Betancor E., Casas I., Oleaga-Quintas C., Martínez-Gallo M., Zhang S. Y., Pestano J., Colobran R., Herrera-Ramos E., Pérez C., López-Rodríguez M., Ruiz-Hernández J. J., Franco N., Ferrer J. M., Bilbao C., Andújar-Sánchez M., Álvarez Fernández M., Ciancanelli M. J., Rodríguez de Castro F., Casanova J. L., Bustamante J., Rodríguez-Gallego C., Lethal Influenza in Two Related Adults with Inherited GATA2 Deficiency. J. Clin. Immunol. 38, 513–526 (2018). 10.1007/s10875-018-0512-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Vinh D. C., Patel S. Y., Uzel G., Anderson V. L., Freeman A. F., Olivier K. N., Spalding C., Hughes S., Pittaluga S., Raffeld M., Sorbara L. R., Elloumi H. Z., Kuhns D. B., Turner M. L., Cowen E. W., Fink D., Long-Priel D., Hsu A. P., Ding L., Paulson M. L., Whitney A. R., Sampaio E. P., Frucht D. M., DeLeo F. R., Holland S. M., Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood 115, 1519–1529 (2010). 10.1182/blood-2009-03-208629 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Dickinson R. E., Griffin H., Bigley V., Reynard L. N., Hussain R., Haniffa M., Lakey J. H., Rahman T., Wang X. N., McGovern N., Pagan S., Cookson S., McDonald D., Chua I., Wallis J., Cant A., Wright M., Keavney B., Chinnery P. F., Loughlin J., Hambleton S., Santibanez-Koref M., Collin M., Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 118, 2656–2658 (2011). 10.1182/blood-2011-06-360313 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Pasquet M., Bellanné-Chantelot C., Tavitian S., Prade N., Beaupain B., Larochelle O., Petit A., Rohrlich P., Ferrand C., Van Den Neste E., Poirel H. A., Lamy T., Ouachée-Chardin M., Mansat-De Mas V., Corre J., Récher C., Plat G., Bachelerie F., Donadieu J., Delabesse E., High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia. Blood 121, 822–829 (2013). 10.1182/blood-2012-08-447367 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Bigley V., Cytlak U., Collin M., Human dendritic cell immunodeficiencies. Semin. Cell Dev. Biol. 86, 50–61 (2019). 10.1016/j.semcdb.2018.02.020 [DOI] [PubMed] [Google Scholar]
  • 65.Gao D., Ciancanelli M. J., Zhang P., Harschnitz O., Bondet V., Hasek M., Chen J., Mu X., Itan Y., Cobat A., Sancho-Shimizu V., Bigio B., Lorenzo L., Ciceri G., McAlpine J., Anguiano E., Jouanguy E., Chaussabel D., Meyts I., Diamond M. S., Abel L., Hur S., Smith G. A., Notarangelo L., Duffy D., Studer L., Casanova J. L., Zhang S. Y., TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons. J. Clin. Invest. 131, e134529 (2021). 10.1172/JCI134529 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Kadowaki N., Ho S., Antonenko S., Malefyt R. W., Kastelein R. A., Bazan F., Liu Y. J., Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001). 10.1084/jem.194.6.863 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Honda K., Ohba Y., Yanai H., Negishi H., Mizutani T., Takaoka A., Taya C., Taniguchi T., Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035–1040 (2005). 10.1038/nature03547 [DOI] [PubMed] [Google Scholar]
  • 68.Wang Y., Swiecki M., McCartney S. A., Colonna M., dsRNA sensors and plasmacytoid dendritic cells in host defense and autoimmunity. Immunol. Rev. 243, 74–90 (2011). 10.1111/j.1600-065X.2011.01049.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.DePristo M. A., Banks E., Poplin R., Garimella K. V., Maguire J. R., Hartl C., Philippakis A. A., del Angel G., Rivas M. A., Hanna M., McKenna A., Fennell T. J., Kernytsky A. M., Sivachenko A. Y., Cibulskis K., Gabriel S. B., Altshuler D., Daly M. J., A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011). 10.1038/ng.806 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Li H., Durbin R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). 10.1093/bioinformatics/btp324 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.McLaren W., Gil L., Hunt S. E., Riat H. S., Ritchie G. R., Thormann A., Flicek P., Cunningham F., The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016). 10.1186/s13059-016-0974-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Ewels P., Magnusson M., Lundin S., Käller M., MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016). 10.1093/bioinformatics/btw354 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T. R., STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). 10.1093/bioinformatics/bts635 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Liao Y., Smyth G. K., Shi W., featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). 10.1093/bioinformatics/btt656 [DOI] [PubMed] [Google Scholar]
  • 75.Harrow J., Frankish A., Gonzalez J. M., Tapanari E., Diekhans M., Kokocinski F., Aken B. L., Barrell D., Zadissa A., Searle S., Barnes I., Bignell A., Boychenko V., Hunt T., Kay M., Mukherjee G., Rajan J., Despacio-Reyes G., Saunders G., Steward C., Harte R., Lin M., Howald C., Tanzer A., Derrien T., Chrast J., Walters N., Balasubramanian S., Pei B., Tress M., Rodriguez J. M., Ezkurdia I., van Baren J., Brent M., Haussler D., Kellis M., Valencia A., Reymond A., Gerstein M., Guigó R., Hubbard T. J., GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012). 10.1101/gr.135350.111 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Love M. I., Huber W., Anders S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). 10.1186/s13059-014-0550-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Robinson M. D., McCarthy D. J., Smyth G. K., edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). 10.1093/bioinformatics/btp616 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Xu G. J., Kula T., Xu Q., Li M. Z., Vernon S. D., Ndung’u T., Ruxrungtham K., Sanchez J., Brander C., Chung R. T., O’Connor K. C., Walker B., Larman H. B., Elledge S. J., Comprehensive serological profiling of human populations using a synthetic human virome. Science 348, aaa0698 (2015). 10.1126/science.aaa0698 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Bastard P., et al., Autoantibodies neutralizing type I IFNs are present in ~ 4% of uninfected individuals over 70 years old and account for ~ 20% of COVID-19 deaths. Sci. Immunol. 6, abl4340 (2021). [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

immunology.sciencemag.org/cgi/content/full/6/62/eabl4348/DC1

- Figure S1; Ethnicity information and TLR7 allele activity

- Figure S2; Allele activity for the TLR8 variants found in our cohort

- Figure S3; VirScan analysis of specific anti-viral antibodies detected in patient sera

- Figure S4; Levels of TNF induction in EBV-B cells derived from two patients with XR TLR7 deficiency

- Figure S5; Analysis of peripheral blood mononuclear cells from TLR7-deficient men

- Figure S6; Functional analysis in pDCs infected with SARS-CoV-2

- Table S1; Characteristics of the cohort of patients with life-threatening COVID-19 pneumonia and the control cohort of asymptomatic or paucisymptomatic individuals

- Table S2; Statistical analysis of non-synonymous rare variants of TLR7 and TLR8 in our cohorts

- Table S3; Summary of TLR7 variants

- Data file S1; Selection of genes on chromosome X with 5 or more hemizygous carriers (Excel file).

- Data file S2; TLR7 variant activity reported in this study, in previous studies and in gnomAD (Excel file).

- Data file S3; TLR7-deficient patients with severe/critical COVID-19 in our cohort (clinical information, laboratory findings, and immunological findings) (Excel file).

- Data file S4; Primer sequences for mutagenesis (Excel file).

- Data file S5; Antibody information for CyTOF (Excel file).

- Data file S6; Gating strategy and antibody clone information for 40 color immunophenotyping (Excel file).

- Data file S7; Raw data files (Excel file).


Articles from Science Immunology are provided here courtesy of American Association for the Advancement of Science

RESOURCES