Skip to main content
Molecules logoLink to Molecules
. 2021 Oct 10;26(20):6101. doi: 10.3390/molecules26206101

Revision and Extension of a Generally Applicable Group-Additivity Method for the Calculation of the Standard Heat of Combustion and Formation of Organic Molecules

Rudolf Naef 1,*, William E Acree Jr 2
Editor: Stefano Falcinelli
PMCID: PMC8539152  PMID: 34684682

Abstract

The calculation of the heats of combustion ΔH°c and formation ΔH°f of organic molecules at standard conditions is presented using a commonly applicable computer algorithm based on the group-additivity method. This work is a continuation and extension of an earlier publication. The method rests on the complete breakdown of the molecules into their constituting atoms, these being further characterized by their immediate neighbor atoms. The group contributions are calculated by means of a fast Gauss–Seidel fitting calculus using the experimental data of 5030 molecules from literature. The applicability of this method has been tested by a subsequent ten-fold cross-validation procedure, which confirmed the extraordinary accuracy of the prediction of ΔH°c with a correlation coefficient R2 and a cross-validated correlation coefficient Q2 of 1, a standard deviation σ of 18.12 kJ/mol, a cross-validated standard deviation S of 19.16 kJ/mol, and a mean absolute deviation of 0.4%. The heat of formation ΔH°f has been calculated from ΔH°c using the standard enthalpies of combustion for the elements, yielding a correlation coefficient R2 for ΔH°f of 0.9979 and a corresponding standard deviation σ of 18.14 kJ/mol.

Keywords: group-additivity method, Gauss–Seidel diagonalization, heat of combustion, heat of formation

1. Introduction

The present compilation of data on the heat of combustion and formation of more than 5000 organic molecules and their comparison with theoretical calculations based on a generally applicable atom-groups additivity method is a continuation of theoretical studies on the prediction of various molecular descriptors published in an earlier paper [1]. While this publication primarily focused on the extraordinary versatility of the applied version of the atom-group additivity method for a large number of descriptor predictions, which has been proven by its extension to several further molecular descriptors in subsequent papers [2,3,4,5,6], the present interest rests on the further increase in the trustworthiness of their calculated heats of combustion and formation and their extension to compound classes not yet covered by the earlier paper, particularly the ionic liquids. Previous versions of heat-of-combustion calculations have been based on the additivity of bond energies [7,8,9], on empirical relations within a series of molecules and their heat of combustion [10,11], on the “heat of atomization” [12], on the combustion value of the electrons in a molecule, corrected for its structural and functional features [13,14], or on the “molecular oxygen balance” [15], all of them outlined in more detail in [1]. An indirect approach to the prediction of the heat of combustion—due to their direct interdependence—is via the calculation of the heat of formation of a molecule, which is either accessible through elaborate quantum-theoretical methods (e.g., [16]) or through a group-additivity method [17,18] similar to the present one. Most of these various approaches have been optimized for a certain class of compounds and are therefore not generally applicable. In contrast, the present calculation method is easily extendable and in principle enables the calculation of the heat of combustion and formation of literally any organic molecule under the sun.

2. Method

The calculations rest upon a database of at present 34,380 molecules, recorded in their geometry-optimized 3D conformation, encompassing pharmaceuticals, plant protectors, dyes, ionic liquids, liquid crystals, metal-organics, intermediates, and many more, wherein—among many further experimentally determined and calculated molecular descriptors—for 5560 of them, the published experimental combustion and/or formation enthalpies have been stored. In order to avoid structural ambiguity, all six-membered aromatic rings have been defined by six aromatic bonds, in contrast to the more commonly used single-double-bond alternating style. Furthermore, for the same reason, the positive charge in amidinium, pyrazolium, and guanidinium fragments is positioned on the carbon atom between the nitrogen atoms, incidentally in better conformance with the true situation, as shown in, e.g., Figure 1 in [3]. (For the carboxylate or the nitro group, the analogous consideration of charge equilibration is not required within the present atom-group concept, as they are unambiguously defined.) Finally, compounds containing both acidic and basic groups, in particular primary alkylamines (e.g., amino acids) or guanidines (e.g., in creatine or arginine), are treated as zwitter-ionic molecules.

2.1. Definition of the Atom Groups

The principle of the breakdown of a molecule into its atom groups in a computer-readable form has been outlined in detail in [1]. Consequently, their naming and meaning are retained in the present work as explained in Table 1 of [1]. However, since then, a number of further atom groups had to be added to the group-contribution parameters set in order to cover the considerable amount of additional, structurally variable molecules. In particular, the inclusion of ordinary salts and ionic liquids required the charged atom groups listed and explained in Table 1, which are interpreted analogously by the computer algorithm as the remaining ones. (Some of these atom groups have already been introduced for the calculation of the liquid viscosity of molecules in [3].)

Table 1.

Charged Atom Groups and their Meaning.

No Atom Type Neighbors Meaning Example
1 B(-) F4 BF4- tetrafluoroborate
2 C(-) sp3 C3 C-C-(C)-C tricyanomethanide
3 C sp2 NS=S(-) N-C(=S)-S- dithiocarbamate
4 C aromatic H:C:N(+) C:CH:N+ C2 in pyridinium
5 C(+) aromatic H:N2 N:C+(H):N C2 in imidazolium
6 C sp C#N(-) N#C-C- tricyanomethanide
7 C sp N#N(-) N#C-N- dicyanoamide
8 C sp =N=S(-) N=C=S- Thiocyanate
9 N(+) sp3 C4 NC4+ tetraalkylammonium
10 N(+) sp2 O2=O(-) NO3- nitrate
11 N aromatic C2:C(+) (C)(C):C+ N1 in 1-alkylimidazolium
12 N(+) aromatic C:C(C):N+(C):C N in 1-alkylpyridinium
13 N(-) C2 C-N--C dicyanoamide
14 S4 O2=O2(-) SO4- hydrosulfate
15 S4 CO=O2(-) C-SO3- methylsulfonate

The atom groups do not take into account the characteristics of the molecules’ three-dimensional structures, such as intramolecular hydrogen-bridge bonds, intramolecular H-H interactions, or ring-strain forces. These effects have summarily been considered by means of the special groups listed and explained in Table 2, wherein the column titles are not to be interpreted literally. With regard to the ring-strain contributions (Angle60, Angle90, and Angle102), caused by forced angle constriction at each ring atom in small rings, it should be stressed that the calculated values inherently also encompass the effect of the compensatory angle widening between the ring atoms and any further atoms attached to them (e.g., the H-C-H and H-C-C angles on cyclopropane). These special groups are treated just like the ordinary atom groups in the calculation of their contribution as well as the subsequent molecular descriptor value.

Table 2.

Special Groups and their Meaning.

Atom Type Neighbors Meaning
H H Acceptor Intramolecular H bridge between acidic H (on O, N or S) and basic acceptor (O, N or F) at distance <1.75 Angstroms
H .H Intramolecular H–H distance <2 Angstroms
H ..H Intramolecular H–H distance 2–2.3 Angstroms
Angle60 Bond angle <74 deg
Angle90 Bond angle 74–98 deg
Angle102 Bond angle 98–106 deg

2.2. Calculation of the Group Contributions

The parameter values of the atom and special groups are calculated in four steps, outlined in detail in [1]: the first step creates a temporary compounds list and adds those compounds from the database into it for which the experimental heat of combustion is known. Secondly, for each of the “backbone” atoms (i.e., atoms bound to at least two other direct neighbor atoms) in the molecules, its atom group is defined according to the rules defined in [1], corresponding to the atom type and neighbors’ terms listed in Table 4, and then its occurrence in the molecule is counted. Next, an M × (N + 1) matrix is generated, where M is the number of molecules, where N + 1 is the number of atoms and special groups of Table 4 plus the molecules’ experimental heats of combustion, and where each matrix element (i,j) receives the number of occurrences of the jth atomic or special group in the ith molecule. Finally, normalization of this matrix into an Ax = B matrix and its subsequent balancing using a fast Gauss–Seidel calculus [19] yields the group contributions x, which are shown in Table 4.

2.3. Calculation of the Standard Heats of Combustion and Formation

The subsequent calculation of the heat of combustion ΔH°(c) is a simple summing up of the contributions of the atom groups in a molecule using the values shown in Table 4, applying Equation (1), wherein ai and bj are the contribution values, Ai is the number of occurrences of the ith atom group and Bj is the number of occurrences of the special groups.

∆H°c = Σi ai*Ai + Σj bj*Bj (1)

It is immediately evident that these calculations are limited to compounds for which each atom group contained in it (excluding the special groups) has its corresponding one shown in Table 4. Beyond this, in order to receive reliable results, only “valid” group contributions are to be used, i.e., contributions that have been supported in the group-parameters calculation by at least three independent molecules, i.e., by the number in the rightmost column of Table 4 exceeding 2. As a consequence, the statistics data at the bottom of Table 4 show that the number of compounds for which finally the heat of combustion is calculated (lines B, C, and D) is smaller than that on which the computation of the complete set of group contributions is based (line A).

The heat of formation of the molecules is immediately calculated from their heat of combustion by the subtraction of the standard enthalpies of combustion of the elements as given in [20,21].

In Table 3, a simple example may explain the use of Table 4: the experimental heat of combustion of 4-methylene-2-oxetanone (diketene) is −1913.4 kJ/mol [21]. The atom groups and the special group defining this compound are collected in Table 3 and yield a calculated value of −1903.2 kJ/mol.

Table 3.

Example Calculation of the Standard Heat of Combustion (in kJ/mol) of 4-Methylene-2-oxetanone.

Atom Type
Neighbors
C sp3 H2C2 C sp2 H2=C C sp2 C=CO C sp2 CO=O O C2(2pi) Angle90 Sum
Contribution −653.47 −703.3 −470.12 −256.51 278.25 −24.51
n Groups 1 1 1 1 1 4
N × Contrib. −653.47 −703.3 −470.12 −256.51 278.25 −98.04 −1903.19

Table 4.

Atom Groups and their Contributions to ΔH°(c) Calculations (in kJ/mol).

Entry Atom Type Neighbors Contribution Occurrences Molecules
1 B C3 −5771.41 10 10
2 B C2O −5234.3 2 2
3 B(-) F4 −128.41 1 1
4 C sp3 H3B 927.34 3 1
5 C sp3 H3C −774.53 5659 2598
6 C sp3 H3N −1273.86 288 183
7 C sp3 H3N(+) −1258.26 22 10
8 C sp3 H3O −1273.9 493 333
9 C sp3 H3S −1435.83 36 30
10 C sp3 H3P −1106.35 3 1
11 C sp3 H3Si −1323.2 116 49
12 C sp3 H2BC 1052.3 22 8
13 C sp3 H2C2 −653.47 9139 2066
14 C sp3 H2CN −1150.33 632 346
15 C sp3 H2CN(+) −1136.52 76 51
16 C sp3 H2CO −1140.92 1209 753
17 C sp3 H2CS −1313.58 180 118
18 C sp3 H2CP −825.63 6 3
19 C sp3 H2CF −626.92 15 14
20 C sp3 H2CCl −616.8 81 70
21 C sp3 H2CBr −620.8 23 20
22 C sp3 H2CJ −685.85 12 9
23 C sp3 H2CSi −1211.79 130 51
24 C sp3 H2N2 −1644.62 33 12
25 C sp3 H2N2(+) −1666.85 6 6
26 C sp3 H2NO −1630.65 8 6
27 C sp3 H2NS −1776.97 2 1
28 C sp3 H2NS(+) −1817.73 1 1
29 C sp3 H2NP(+) −565.68 1 1
30 C sp3 H2O2 −1605.49 31 26
31 C sp3 H2OSi −1715.41 1 1
32 C sp3 H2OCl −1115.09 4 3
33 C sp3 H2S2 −1997.67 9 7
34 C sp3 HBC2 1197 6 2
35 C sp3 HC3 −529.09 1386 765
36 C sp3 HC2N −1026.35 106 84
37 C sp3 HC2N(+) −1004.99 43 40
38 C sp3 HC2O −1010.37 545 330
39 C sp3 HC2S −1179.91 34 25
40 C sp3 HC2Si −1076.92 4 2
41 C sp3 HC2F −486.29 5 5
42 C sp3 HC2Cl −491.9 48 32
43 C sp3 HC2Br −499.17 9 7
44 C sp3 HC2J −574.72 4 3
45 C sp3 HCN2 −1514.29 5 4
46 C sp3 HCN2(+) −1537.23 5 5
47 C sp3 HCNO −1525.32 5 5
48 C sp3 HCNO(+) −1522.69 4 2
49 C sp3 HCNS −1683.66 4 2
50 C sp3 HCO2 −1473.47 63 54
51 C sp3 HCS2 −1791.66 1 1
52 C sp3 HCF2 −447.7 14 13
53 C sp3 HCFCl −470.21 4 4
54 C sp3 HCCl2 −494.97 18 17
55 C sp3 HCClBr −510.39 1 1
56 C sp3 HCBr2 −475.67 1 1
57 C sp3 HN3(+) −2166.08 1 1
58 C sp3 HNO2 −1989.17 1 1
59 C sp3 HO3 −1920.79 6 6
60 C sp3 HOF2 −891.81 2 2
61 C sp3 BC3 1320.43 3 1
62 C sp3 C4 −403.7 392 287
63 C sp3 C3N −886.44 46 34
64 C sp3 C3N(+) −875.68 28 26
65 C sp3 C3O −876.38 181 135
66 C sp3 C3S −1050.27 23 19
67 C sp3 C3F −451.56 11 6
68 C sp3 C3Cl −355.26 9 9
69 C sp3 C3Br −362.07 2 2
70 C sp3 C3J −430.2 1 1
71 C sp3 C2N2(+) −1417.05 9 9
72 C sp3 C2O2 −1331.4 42 38
73 C sp3 C2S2 −1708.54 4 1
74 C sp3 C2F2 −318.74 104 28
75 C sp3 C2FCl −331.09 3 2
76 C sp3 C2Cl2 −357.37 7 7
77 C sp3 CN3(+) −2020.09 19 11
78 C sp3 CN2F(+) −1420.86 24 16
79 C sp3 CN2Cl(+) −1451.19 2 2
80 C sp3 CNF2 −848.67 6 2
81 C sp3 CNF2(+) −853.81 3 2
82 C sp3 CO3 −1771.57 8 7
83 C sp3 COF2 −802.95 3 3
84 C sp3 COCl2 −893.67 1 1
85 C sp3 CF3 −251.65 83 64
86 C sp3 CF2Cl −306.09 10 8
87 C sp3 CF2Br −319.62 5 4
88 C sp3 CFCl2 −317.2 7 7
89 C sp3 CFClBr −276.51 1 1
90 C sp3 CCl3 −371.89 25 24
91 C sp3 CBr3 −345.19 1 1
92 C sp3 N2OF(+) −1875.95 1 1
93 C sp3 N4(+) −2635.7 3 3
94 C sp3 N3F(+) −4981.42 2 2
95 C sp3 O4 −2239.99 3 3
96 C sp3 O2F2 −1255.75 1 1
97 C sp3 OF3 −692.57 2 2
98 C sp3 OF2Cl −768.91 1 1
99 C(-) sp3 C3 −3078.32 2 2
100 C sp2 H2=C −703.3 255 227
101 C sp2 H2=N −1694.79 2 2
102 C sp2 HC=C −563.48 1268 695
103 C sp2 HC=N −1522.25 64 58
104 C sp2 HC=O −390.29 115 111
105 C sp2 H=CN −1024.99 141 103
106 C sp2 HC=N(+) −5278.26 7 7
107 C sp2 H=CN(+) −1032.17 4 4
108 C sp2 H=CO −619.08 54 48
109 C sp2 H=CS −1228.75 80 61
110 C sp2 H=CF −547.73 2 2
111 C sp2 H=CCl −550.31 8 6
112 C sp2 H=CBr −574.22 2 2
113 C sp2 H=CSi −1051.13 16 9
114 C sp2 HN=N −1998.61 45 42
115 C sp2 HN=O −830.28 12 11
116 C sp2 H=NO −1583.32 2 2
117 C sp2 HO=O −410.95 19 19
118 C sp2 H=NS −2218.79 3 3
119 C sp2 C2=C −430.98 318 255
120 C sp2 C2=N −1378.53 82 67
121 C sp2 C2=N(+) 326.77 6 6
122 C sp2 C=CN −893.41 86 66
123 C sp2 C=CN(+) −928.07 10 10
124 C sp2 C2=O −241.97 400 337
125 C sp2 C=CO −470.12 86 69
126 C sp2 C=CS −1085.43 56 45
127 C sp2 C=CF −452.88 7 6
128 C sp2 C=CCl −418.16 22 13
129 C sp2 C=CBr −412.66 1 1
130 C sp2 =CN2 −1367.07 11 11
131 C sp2 =CN2(+) −1387.08 10 10
132 C sp2 CN=N −1858.11 48 40
133 C sp2 CN=N(+) −1939.3 6 6
134 C sp2 CN=O −687.04 310 243
135 C sp2 C=NO −1412.25 18 16
136 C sp2 =CNO −980.26 1 1
137 C sp2 =CNO(+) −1004.7 6 6
138 C sp2 CN=S −1516.78 7 6
139 C sp2 C=NS −2037.97 6 6
140 C sp2 =CNS(+) −1601.01 2 2
141 C sp2 =CNCl −854.46 1 1
142 C sp2 CO=O −256.51 1142 872
143 C sp2 CO=O(-) 98.04 51 50
144 C sp2 C=OS −913.81 7 7
145 C sp2 C=OF −193.64 3 3
146 C sp2 C=OCl −202.04 14 11
147 C sp2 C=OBr −203.56 2 2
148 C sp2 C=OJ −281.05 2 2
149 C sp2 =COF −297.83 2 2
150 C sp2 CS=S −1716.14 3 3
151 C sp2 =CS2 −1853.93 2 1
152 C sp2 =CF2 −413.7 9 8
153 C sp2 =CFCl −362.02 1 1
154 C sp2 =CCl2 −420.11 7 5
155 C sp2 =CJ2 −544.25 2 1
156 C sp2 N2=N −2333.01 67 55
157 C sp2 N2=N(+) 583.11 2 2
158 C sp2 N2=O −1148.85 124 107
159 C sp2 N=NO −1909.16 3 3
160 C sp2 N2=S −1999.02 27 25
161 C sp2 N=NS −2485.54 10 9
162 C sp2 NO=O −712.7 22 21
163 C sp2 N=OS −1624.45 1 1
164 C sp2 NO=S −1586.99 5 5
165 C sp2 =NOS −2019.32 1 1
166 C sp2 =NOCl −1416.86 1 1
167 C sp2 NS=S −2180.9 6 6
168 C sp2 NS=S(-) −2015.49 4 4
169 C sp2 =NSCl −2036.68 1 1
170 C sp2 O2=O −288.27 14 14
171 C sp2 O=OCl −207.85 4 4
172 C sp2 =OS2 −1589.52 2 2
173 C sp2 S2=S −2384.68 3 3
174 C aromatic H:C2 −544 10,741 1946
175 C aromatic H:C:N −677.57 176 121
176 C aromatic H:C:N(+) −664.15 46 25
177 C aromatic H:N2 −805.13 12 10
178 C aromatic :C3 −404.91 496 193
179 C aromatic C:C2 −412.39 2572 1349
180 C aromatic C:C:N −537.55 106 62
181 C aromatic C:C:N(+) −537.4 37 21
182 C aromatic :C2N −904.12 521 380
183 C aromatic :C2N(+) −924.19 323 214
184 C aromatic :C2:N −541.18 73 54
185 C aromatic :C2:N(+) −537.03 33 18
186 C aromatic :C2O −485.35 724 496
187 C aromatic :C2P −739.79 9 3
188 C aromatic :C2S −1093.91 94 75
189 C aromatic :C2Si −977.52 30 11
190 C aromatic :C2F −400.21 136 67
191 C aromatic :C2Cl −391.36 235 137
192 C aromatic :C2Br −393.11 72 50
193 C aromatic :C2J −466.27 39 34
194 C aromatic C:N2 −653.04 5 3
195 C aromatic :CN:N −1014.82 17 13
196 C aromatic :CN:N(+) −1105.83 3 2
197 C aromatic :C:NO −567.84 11 11
198 C aromatic :C:NCl −521.23 30 21
199 C aromatic :C:NBr −517.98 4 3
200 C aromatic N:N2 −1126.33 22 14
201 C aromatic :N2O −708.43 17 6
202 C aromatic :N2S −1372.64 1 1
203 C aromatic :N2Cl −639.79 11 10
204 C(+) aromatic H:N2 915.78 17 17
205 C(+) aromatic :N3 1847.84 3 3
206 C sp H#C −654.9 50 42
207 C sp C#C −502.89 198 108
208 C sp =C2 −532.17 12 11
209 C sp C#N −495.27 165 139
210 C sp C#N(+) −521.62 4 3
211 C sp C#N(-) 378.06 6 2
212 C sp #CN −1069.64 2 2
213 C sp =C=N −1519.98 2 2
214 C sp =C=O −281.24 4 3
215 C sp #CS −1214.94 2 2
216 C sp #CCl −514.93 3 2
217 C sp #CSi −1091.51 3 3
218 C sp N#N −982.36 4 4
219 C sp N#N(-) −144.09 10 5
220 C sp =N2 −2404.6 2 2
221 C sp #NO −648.9 2 2
222 C sp =N=O −1216.26 22 16
223 C sp #NS −1277.41 1 1
224 C sp =N=S −2056.03 2 2
225 C sp =N=S(-) −1076.3 2 2
226 N sp3 H2C 218.81 64 56
227 N sp3 H2C(pi) 253.54 334 285
228 N sp3 H2N −304.07 29 23
229 N sp3 H2N(pi) −266.71 1 1
230 N sp3 H2S 215.36 9 9
231 N sp3 HC2 814.55 69 63
232 N sp3 HC2(pi) 846.53 138 105
233 N sp3 HC2(2pi) 845.11 253 200
234 N sp3 HCN 288.21 5 3
235 N sp3 HCN(pi) 315.32 41 28
236 N sp3 HCN(+)(pi) 734.53 5 4
237 N sp3 HCN(2pi) 359.34 69 64
238 N sp3 HCN(+)(2pi) 717.66 6 6
239 N sp3 HCO(pi) 520.5 2 2
240 N sp3 HCS(pi) 1015.17 3 3
241 N sp3 HCSi 829.19 5 5
242 N sp3 HN2(2pi) −176.66 1 1
243 N sp3 HNS 552.34 1 1
244 N sp3 HSi2 850.75 1 1
245 N sp3 C3 1409.08 84 73
246 N sp3 C3(pi) 1429.38 98 84
247 N sp3 C3(2pi) 1430.98 69 52
248 N sp3 C3(3pi) 1421.7 31 23
249 N sp3 C2N 871.27 1 1
250 N sp3 C2N(pi) 896.78 13 11
251 N sp3 C2N(+)(pi) 1320.4 40 25
252 N sp3 C2N(2pi) 954 23 22
253 N sp3 C2N(+)(2pi) 1269.38 12 7
254 N sp3 C2N(3pi) 948.11 9 9
255 N sp3 C2N(+)(3pi) 1230.43 3 3
256 N sp3 C2O 1037.7 3 3
257 N sp3 C2S 584.44 6 3
258 N sp3 C2Si 1437.12 8 6
259 N sp3 C2F(2pi) −2337.09 1 1
260 N sp3 C2Cl(2pi) 878.7 1 1
261 N sp3 C2Br(2pi) 900.67 1 1
262 N sp3 CN2(2pi) 491.47 9 7
263 N sp3 CN2(+)(2pi) 1183.51 1 1
264 N sp3 CN2(3pi) 550.35 3 3
265 N sp3 CN2(+)(3pi) 774.31 3 3
266 N sp3 CF2 197.51 12 7
267 N sp3 CF2(pi) 997.31 1 1
268 N sp3 Si3 1479.07 1 1
269 N sp2 H=C 760 10 10
270 N sp2 C=C 1411.35 154 133
271 N sp2 C=N 375.86 70 38
272 N sp2 C=N(+) 714.59 35 31
273 N sp2 =CN 866.59 141 117
274 N sp2 =CN(+) 1299.9 5 5
275 N sp2 C=O 421.69 13 12
276 N sp2 =CO 935.48 78 55
277 N sp2 =CS 705.75 2 1
278 N sp2 =CF 0 1 1
279 N sp2 N=N −82.18 80 41
280 N sp2 N=O 1.35 8 6
281 N sp2 =NO 762.47 2 1
282 N sp2 =NO(+) 1041.44 11 6
283 N sp2 O=O 831.52 9 9
284 N sp2 P=P −482.14 7 2
285 N aromatic H2:C(+) −1025.73 5 3
286 N aromatic HC:C(+) −363.24 2 2
287 N aromatic C2:C(+) 216.63 36 19
288 N aromatic :C2 214.34 273 189
289 N aromatic :C:N 41.42 6 3
290 N aromatic :C:N(+) 2190.8 1 1
291 N(+) sp3 H3C 57.66 47 46
292 N(+) sp3 H2C2 607.96 9 9
293 N(+) sp3 HC3 1364.55 6 4
294 N(+) sp3 C4 1885.72 8 8
295 N(+) sp2 C=CO(-) 5214.75 7 7
296 N(+) sp2 C=NO 442.92 16 8
297 N(+) sp2 C=NO(-) 155.64 16 11
298 N(+) sp2 CO=O(-) 548.28 550 310
299 N(+) sp2 =CO2(-) −568.22 6 6
300 N(+) sp2 NO=O(-) −366.72 76 54
301 N(+) sp2 O2=O(-) 188.79 73 37
302 N(+) aromatic C:C2 698.75 1 1
303 N(+) aromatic :C2O(-) 234.67 58 40
304 N(+) aromatic :C:NO(-) −2193.1 1 1
305 N(+) sp C#C(-) −94.07 6 6
306 N(+) sp #CO(-) 0 4 3
307 N(+) sp =N2(-) −542.94 30 26
308 N(-) C2 −776.85 5 5
309 O HC 550.37 663 373
310 O HC(pi) 149.9 795 622
311 O HN −183.46 3 3
312 O HN(pi) −66.29 29 23
313 O HO −35.98 29 26
314 O HP −107.27 3 2
315 O HS 346.8 8 8
316 O HSi 241.58 1 1
317 O BC 1904.24 2 2
318 O C2 1101.66 471 283
319 O C2(pi) 701.99 896 686
320 O C2(2pi) 278.25 167 156
321 O CN(pi) −291.5 24 18
322 O CN(+)(pi) 401.59 63 29
323 O CN(2pi) 131.93 14 14
324 O CN(+)(2pi) 398.5 1 1
325 O CO 523.43 120 65
326 O CO(pi) 113.28 65 29
327 O CS 457.66 18 9
328 O CP 542.76 10 4
329 O CP(pi) 91.26 3 1
330 O CSi 708.96 54 21
331 O CSi(pi) 318.69 38 15
332 O N2(2pi) −65.35 15 14
333 O N2(+)(2pi) −220.1 5 5
334 O OSi 106.92 8 4
335 O Si2 400.13 11 3
336 P3 C3 124.54 3 3
337 P4 C3=O −243.18 1 1
338 P4 C3=S −373.61 1 1
339 P4 C2O=O −169.24 1 1
340 P4 CO2=O 197.04 1 1
341 P4 CO2=O(-) −394.07 1 1
342 P4 N=NCl2 0 7 2
343 P4 O3=O 14.1 4 4
344 S2 HC −88.46 47 42
345 S2 HC(pi) −58.54 10 10
346 S2 C2 690.55 78 66
347 S2 C2(pi) 714.51 26 21
348 S2 C2(2pi) 750.83 88 82
349 S2 CN(pi) −618.03 1 1
350 S2 CS 42.29 18 9
351 S2 CS(pi) 53.77 16 8
352 S2 N2 25.26 1 1
353 S2 N2(2pi) 0 1 1
354 S2 NS −291.87 2 1
355 S4 C2=O 849.53 8 8
356 S4 C2=O2 1073.53 43 43
357 S4 CN=O2 −41.35 11 11
358 S4 CO=O2 216.14 3 3
359 S4 CO=O2(-) 777.27 2 2
360 S4 C=O2S 394.52 2 1
361 S4 N2=O2 558.49 1 1
362 S4 NO=O2 −918.69 1 1
363 S4 O2=O −92.99 5 5
364 S4 O2=O2 116.23 4 4
365 S4 O2=O2(-) −556.38 4 4
366 S4 O=O2F −470.05 1 1
367 S4 O=O2Cl −463.63 1 1
368 Si H3C −740.19 4 4
369 Si H2C2 12.42 2 2
370 Si HC3 602.13 29 29
371 Si HC2Cl 67.18 1 1
372 Si HCCl2 −100.05 1 1
373 Si HN3 −2430.7 1 1
374 Si HO3 −931.42 1 1
375 Si C4 1327.16 15 15
376 Si C3N 317.05 15 12
377 Si C3O 813.97 12 12
378 Si C3Cl 1013.39 1 1
379 Si C3Br 1000.85 1 1
380 Si C2O2 285.19 16 8
381 Si C2Cl2 592.69 3 3
382 Si CO3 −235.18 16 16
383 Si CCl3 145.43 1 1
384 Si O4 −763.98 7 7
385 H H Acceptor 0.27 241 188
386 H .H −5.79 381 142
387 H ..H −1.31 4908 1297
388 Angle60 −35.25 405 118
389 Angle90 −24.51 321 66
390 Angle102 −4.65 1663 451
A Based on Valid groups 267 5030
B Goodness of fit R2 1 4886
C Deviation Average 13.66 4886
D Deviation Standard 18.12 4886
E K-fold cv K 10 4790
F Goodness of fit Q2 1 4790
G Deviation Average (cv) 14.44 4790
H Deviation Standard (cv) 19.16 4790

2.4. Cross-Validation Calculations

The results of the heat-of-combustion data are immediately tested for plausibility using a 10-fold cross-validation algorithm, requiring 10 recalculations that guarantee that each of the complete set of compounds has been used once as a test sample. The corresponding training and test data are added to each of the molecule files, and the respective statistics data are collected at the bottom of Table 4. Again, due to the 10% smaller number of training molecules used in the 10 cross-validation calculations, the number of compounds for which the heat of combustion is evaluated as the test value is even smaller (lines E, F, G, and H) than that of the training set (lines B, C, and D). The statistics data of Table 4 also show a significantly lower number of “valid” groups in line A than the total number of atoms and special groups. The residual “invalid” groups, although at present not applicable for heat-of-combustion calculations, have been left in Table 4 for future use in this continuing project. Interested scientists may want to help to increase the number of “valid” groups in this database by molecules carrying the under-represented atom groups. At present, the list of elements for heat-of-combustion calculations is limited to H, B, C, N, O, P, S, Si, and/or halogen.

3. Sources of Heat-of-Combustion and Formation Data

The present list of references encompasses the sources for the experimental standard heats of combustion as well as those of formation, because the input of the heat of combustion into a molecule’s database immediately also triggers the calculation and addition of its heat of formation and vice versa. Experimental data given in kcal/mol are translated into kJ/mol by multiplication with 4.1858.

A large number of experimental data have been provided by several comprehensive papers; in particular, Domalski’s collection [21] published an extended variation of compounds containing the elements C, H, N, O, P, and S. The CRC Handbook of Chemistry and Physics [22] included a chapter containing the heats of formation of another large list of compounds. In the last 6 years since the publication of the predecessor version [1] of this paper, a large number of publications have been found, which produced further experimental combustion and formation data. In the following, they have been sorted by their dominant contributory structural features to the present subject. An especially extended amount of research has been done with hydrocarbons including alkanes, alkenes, alkynes, and aromatics [23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60], forming the core of the various carbon groups. In addition, many data have dealt specifically with alcohols and phenol derivatives [61,62,63,64,65,66,67,68,69,70,71,72,73,74], ethers [75,76,77,78,79,80,81,82,83,84], carbaldehydes [85,86,87,88,89,90,91,92,93,94], ketones [95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112], carboxylic acids [113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135], carboxylic esters, carbonates and lactones [136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154], sugars [155], peroxides [156,157,158,159,160,161], amines and imines [162,163,164,165,166,167,168,169], amides, imides, amidines and hydrazides [170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186], guanidines [187,188], ureas [189,190,191,192,193,194,195,196], urethanes [197], carbamates [198], azides [199,200], nitriles and nitriloxides [201,202,203,204,205,206,207,208], isocyanates [209], oximes [210], nitramines [211], azo- and azoxy compounds [212,213,214], N-oxides [215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230], nitroso [231] and nitro compounds [232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263], nitrates [264], amino acids [265,266,267,268,269,270,271,272,273,274,275,276,277], sulfur-containing [278,279,280,281,282,283,284,285,286,287,288,289], phosphorus-containing [290], silicon-containing [291,292,293,294], and boron-containing compounds [295]. Beyond these, a large number of halogen-substituted compounds, many of them carrying any of the further functional groups just mentioned, have been found [296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357]. A considerable number of experimental combustion and formation data have been published for heterocyclic compounds, including hetarenes, unsubstituted and substituted by functional groups just mentioned. According to the hetero elements in the ring system, they have been subdivided into Nx-heterocycles (where x is 1 to 4) [358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423], N,O-heterocycles [424,425,426,427,428,429,430,431,432,433], N,S-heterocycles [434,435,436,437,438], Ox-heterocycles [439,440,441,442,443,444,445,446,447,448,449,450,451,452], and Sx-heterocycles [280,282,283,284,453,454,455,456,457,458,459,460,461]. A small number of papers contributed data for hetarenes with several element combinations [462,463,464,465,466,467,468,469,470,471]. In addition, and as an important extension to the earlier paper [1], a great variety of ionic liquids has been added [472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498]. Finally, a number of publications contributed combustion and/or formation data that could not be assigned to any of the aforementioned classes [499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526].

4. Results

4.1. Heat of Combustion

The first preliminary calculations of the group contributions were based on the complete set of 5560 compounds for which experimental heats of combustion and/or formation were available. However, contrary to the approach in the earlier paper [1], a further restriction was introduced in that only those compounds were allowed to remain in the consecutive calculations, the experimental values of which did not deviate by more than three times the cross-validated standard error from the cross-validated calculated value. Accordingly, the final group contributions rested on 5030 compounds, as shown on row A in Table 4. The discarded molecules have been collected in an outliers list, available with Supplementary Materials. As a consequence, the correlation coefficient Q2 is even better than the previously published value of 0.9999 and is now indistinguishable from 1 (row F in Table 4). Analogously, the new cross-validated standard error of 19.16 kJ/mol (row H in Table 4) is considerably better than the earlier one of 25.2 kJ/mol. Not surprisingly, the mean absolute deviation over 4886 compounds is just 0.4% over a calculated heat-of-combustion range of from −72 kJ/mol (hydrogen peroxide) to −35,112.2 kJ/mol (glycerol trioleate). These excellent statistical data are well reflected in the straight line of the data points in the correlation diagram of Figure 1 and the perfectly symmmetrically balanced Gaussian bell curve of the histogram in Figure 2. The only downside, however, is the much longer list of 390 atoms and special groups required (compared to the 273 of the earlier paper [1]), of which only 267 are “valid” for predictions. However, the latter still enable the calculation of the heats of combustion and formation of presently 29,067 molecules, i.e., ca. 84.5% of the complete dataset. The complete set of molecules used for the group-parameters calculations is available in the Supplementary Material.

Figure 1.

Figure 1

Correlation diagram of the heat-of-combustion data in kJ/mol. Cross-validation data are added as red circles. (10-fold cross-validated: N = 4886, Q2 = 1, regression line: intercept = −1.0111; slope = 0.9998).

Figure 2.

Figure 2

Histogram of the heat-of-combustion data in kJ/mol. Cross-validation data are superpositioned as red bars. (σ = 18.12; S = 19.16; experimental values range from −35,100 to −98.2).

The extraordinary accuracy of the predictions allows a deeper analysis of the actual structural state of certain classes of molecules for which alternative structures are possible at standard conditions, in particular as to which prototropic forms are prevailing in amino acids and which tautomeric form is prevalent in compounds that may exist in both hydroxyazo and hydrazone or keto and enol forms. Beyond this, an educated estimate as to what the enthalpy difference is between the alternative forms might be possible.

4.1.1. Amino Acids

It is common knowledge that amino acids exist in zwitterionic form both in the crystalline as well as the liquid state [527], whereas in the gas phase they exist in their non-ionic form. To our knowledge, the difference in the enthalpies of combustion between these two forms has not yet been systematically analyzed. In Table 5, the calculated values for the non-ionic and zwitter-ionic forms of a series of amino acids are compared with their experimental data.

Table 5.

Calculated ΔH°(c) (in kJ/mol) of Non-ionic and Zwitter-ionic Forms of Amino Acids.

Molecule name ΔH°c calc
Non-Ionic Form
Diff. ΔH°c calc
Zwitter Form
ΔH°c exp References
(l)-Alanine −1688.7 −64.9 −1623.8 −1621.0 [267,268]
(l)-Cy(l)-Cysteine −2316.2 −64.9 −2251.3 −2263.0 [21]
(l)-Cystine −4373.5 −132.3 −4241.2 −4248.0 [21]
(l)-Histidine −3230.8 −64.9 −3165.9 −3180.6 [275]
(l)-Hydroxyproline −2605.5 −37.9 −2567.6 −2594.1 [21]
(l)-Methionine −3626.5 −62.3 −3564.2 −3564.1 [266]
2-Aminobutyric acid −2342.1 −62.2 −2279.9 −2254.0 [21]
2-Methylalanine −2323.3 −54.3 −2269.0 −2265.9 [21]
2-Phenylglycine −4046.5 −62.2 −3984.3 −4005.1 [21]
4-Aminobutyric acid −2345.1 −57.3 −2287.8 −2283.9 [21]
5-Aminovaleric acid −2998.5 −57.3 −2941.2 −2937.0 [21]
8-Aminocaprylic acid −4958.9 −57.3 −4901.6 −4884.0 [21]
Asparagine −2000.8 −64.8 −1936.0 −1928.5 [265,266,269]
Aspartic acid −1674.0 −64.9 −1609.1 −1602.9 [21]
beta-Alanine −1691.6 −57.3 −1634.3 −1622.9 [21]
Dopa −4285.5 −67.5 −4218.0 −4177.8 [21]
epsilon-Aminocaproic acid −3652.0 −57.3 −3594.7 −3582.2 [21]
Glutamic acid −2327.7 −62.2 −2265.5 −2277.0 [21]
Glutamine −2654.6 −62.3 −2592.3 −2572.8 [265,269]
Glycine −1038.1 −57.3 −980.8 −978.6 [268,269]
Isoleucine −3651.0 −62.2 −3588.8 −3583.7 [269]
Isoserine −1497.9 −57.4 −1440.5 −1438.2 [21]
Leucine −3648.4 −64.9 −3583.5 −3581.2 [269]
Norleucine −3649.1 −62.3 −3586.8 −3582.2 [21]
N-Phenylglycine −4074.7 −40.2 −4034.5 −4037.6 [21]
Phenylalanine −4702.6 −67.5 −4635.1 −4646.3 [269]
Proline −2798.9 −56.5 −2742.4 −2746.2 [269]
Sarcosine −1716.2 −27.4 −1688.8 −1675.1 [270]
Serine −1504.4 −64.8 −1439.6 −1438.9 [269]
Threonine −2151.3 −62.2 −2089.1 −2087.1 [269,275,277]
Tryptophane −5671.0 −64.9 −5606.1 −5629.4 [269,274]
Tyrosine −4494.1 −64.9 −4429.2 −4428.1 [269]
Valine −2994.9 −62.2 −2932.7 −2933.9 [269]

The average ΔH°(c) difference was calculated as ca. 61.5 kJ/mol, with the non-ionic form exhibiting the more negative value. Cystine is an outlier in that it contains two amino-acid functions. Interestingly, sarcosine (N-methylglycine) shows the lowest difference between the two forms, which is due to the fact that it carries a less basic dialkylamino group. Similarly, N-phenylglycine differs from the remaining amino acids by an amino group that is conjugated to the phenyl ring, again lowering its basicity. Except for these special cases, the experimental values are in better compliance with the calculated values of the zwitter forms.

4.1.2. Azo-Hydrazone Tautomerism

The observation of the hydroxyazo-hydrazone tautomerism is well known among dye chemists dealing with azo dyes, as it has a drastic effect on the electronic absorption spectra. In an earlier paper [1], it was demonstrated that the direction of the tautomeric equilibrium is fairly predictable on the basis of the calculated heats of formation of the hydroxyazo and the hydrazone form. Analogously, the heats of combustion, now founded on a much larger structural basis, should confirm these observations, with the less negative enthalpy indicating the dominating form. Indeed, in conformance with experimental observation, the calculated values listed in Table 6 confirm that arylazo-naphthols primarily exist in their hydrazone form, whereas the opposite is true for the arylazo-naphthylamines. On the other hand, the small enthalpy difference found between the two forms of the phenylazophenols confirms their weak tendency to tautomerize. In addition, the available experimental heats of combustion for 4-phenylazophenol and 4-aminoazobenzene are in fairly good agreement with their prevailing forms.

Table 6.

Calculated ΔH°(c) (in kJ/mol) of Azo and Hydrazone Forms of some Azo Dyes.

Compound Hydrazone Form
∆Hc calc
Azo Form
∆Hc calc
∆Hc exp a Ref.
4-Phenylazophenol −6275.2 −6288.0 −6314.1 + − [528]
2-Phenylazophenol −6272.3 −6287.2 - + − [528]
4-Aminoazobenzene −6651.1 −6603.1 −6617.4 + [529]
2-Aminoazobenzene −6648.4 −6602.4 +
1-Phenylazo-2-naphthol −8145.8 −8185.1 + [530,531]
4-Phenylazo-1-naphthol −8148.5 −8185.4 + [532]
1-Phenylazo-2-naphthylamine −8533.8 −8500.3 + [530,531]
4-Phenylazo-1-naphthylamine −8524.6 −8503.0 + [533]

a Conformance with experimental data.

4.1.3. Keto-Enol Tautomerism

Prediction of the dominant forms in keto-enol tautomers under standard conditions has been shown to be at best coincidental in [1], which is not surprising in view of the mostly small enthalpy differences between the two forms. Recalculated values of the heat of combustion of the example molecules in [1], based on the updated group-parameters set, are compared with their experimental values, where available, in Table 7. As is evident, except for acetone, the enol form is supposed to be the dominant tautomer throughout, which clearly contradicts the experience, most prominently with cyclohexanone and cyclopentanone. Beyond this, the experimental values are of no help despite the small standard error Q2 of 19.16 kJ/mol (see Table 4) because the deviations between the enthalpies of both forms with the experiment are well within the tolerated boundaries.

Table 7.

Calculated and experimental ΔH°(c) (in kJ/mol) of Tautomeric Ketones and β-Diketones.

Compound Keto Form
∆Hc ealc
Enol Form
∆Hc ealc
∆Hc exp a Ref.
1-(N-Phenylformimidoyl)-2-naphthol −8608.3 −8560.3 + [534]
Acetone −1791.0 −1798.0 −1816.5 + [535]
Cyclohexanone −3509.3 −3497.6 −3517.6 [535]
Cyclopentanone −2865.1 −2858.1 −2873.5 [536]
Phenol −3149.4 −3055.4 −3055.5 + [537]
2-Pyridone −2557.4 −2513.2 −2517.62 [538,539,540]
4-Pyridone −2573.8 −2564.2 −2537.5 + [538,539,540]
Carbostyril −4461.4 −4413.7 −4397.1 [541,542,543]
Acetylacetone −2686.5 −2674.5 −2687.0 + [544]
Bis(trifluoroacetyl)methane −1640.7 −1628.7 −1673.7 + [544]
Dibenzoylmethane −7404.8 −7394.1 −7398.5 + [544]
1,1-Bis(benzoyl)ethane −8057.6 −8036.1 [544]

a Conformance with experimental data.

4.1.4. Ionic Liquids

The main extension of the present atom-groups additivity method enabled the inclusion of the heats of combustion of the ionic liquids. Unfortunately, of the 679 ionic liquids presently stored in the database, only for 28 of them was the experimental heat of combustion comparable with calculated values to this date due to the restrictions mentioned earlier. They essentially cover nitrates, dicyanamides, sulfates, dialkyldithiocarbamates, and halogenides of various imidazolium, ammonium, and glycinium cations. In Table 8, these compounds are listed, and their experimental values are compared with the calculated ones. Their conformance is exceptionally good, resulting in a mean absolute deviation of only 0.23%.

Table 8.

Calculated and experimental ΔH°(c) (in kJ/mol) of some Ionic Liquids.

Molecule Name ΔH°c exp ΔH°c calc Deviation Dev. in %
1,1,3,3-Tetramethylguanidinium nitrate −3656.5 −3656.5 0.0 0.00
1-Butyl-1-methylpyrrolidinium dicyanamide −7244.8 −7250.1 5.3 −0.07
1-Butyl-3-methylimidazolium chloride −5232.3 −5206.6 −25.7 0.49
1-Butyl-3-methylimidazolium dicyanoamide −6273.9 −6271.6 −2.3 0.04
1-Butyl-3-methylimidazolium nitrate −5013.2 −5017.8 4.6 −0.09
1-Decyl-3-methylimidazolium bromide −9105.2 −9127.4 22.2 −0.24
1-Dodecyl-3-methylimidazolium bromide −10,406.0 −10,434.4 28.4 −0.27
1-Ethanol-3-methyl-imidazolium dicyanoamide −4793.0 −4780.7 −12.3 0.26
1-Ethyl-3-methylimidazolium chloride −3886.2 −3899.7 13.5 −0.35
1-Ethyl-3-methylimidazolium dicyanamide −4955.4 −4964.7 9.3 −0.19
1-Ethyl-3-methylimidazolium nitrate −3697.5 −3710.9 13.4 −0.36
1-Methyl-3-pentylimidazolium chloride −5904.3 −5860.1 −44.2 0.75
1-Octyl-3-methylimidazolium bromide −7837.8 −7820.5 −17.3 0.22
1-Tetradecyl-3-methylimidazolium bromide −11,718.0 −11,741.3 23.3 −0.20
6,6-(Tetramethylene-3′-oxa)-7a-(nitroxymethyl)-3-oxoperhydroimidazo [1,5-c]oxazol-6-ium nitrate −5384.8 −5376.5 −8.3 0.15
6,6-(Tetramethylene-3′-oxa)-7a-methyl-3-oxoperhydroimidazo [1,5-c]oxazol-6-ium nitrate −5587.5 −5604.8 17.3 −0.31
6,6-Pentamethylene-7a-(nitroxymethyl)-3-oxoperhydroimidazo[1,5-c]oxazol-6-ium nitrate −6166.4 −6159.0 −7.4 0.12
Diethylammonium diethyldithiocarbamate −7639.6 −7650.0 10.4 −0.14
Diisobutylammonium diisobutyldithiocarbamate −12,891.0 −12,868.4 −22.6 0.18
Diisopropylammonium diisopropyldithiocarbamate −10,260.0 −10,252.6 −7.4 0.07
Dipropylammonium dipropyldithiocarbamate −10,252.0 −10,271.7 19.7 −0.19
N,N-Dimethylglycine bisulfate −2610.6 −2604.7 −5.9 0.23
N,N-Dimethylglycine methyl ester bisulfate −3323.2 −3329.1 5.9 −0.18
N,N-Dimethylglycine methyl ester sulfate −6765.2 −6790.2 25.0 −0.37
N,N-Dimethylglycine sulfate −5371.6 −5346.6 −25.0 0.47
Tetraethylammonium nitrate −5573.4 −5590.6 17.2 −0.31
Tetramethylammonium nitrate −2960.5 −2958.5 −2.0 0.07
Tetra-n-butylammonium nitrate −10,841.0 −10,818.4 −22.6 0.21

4.2. Heat of Formation

The heat of formation has been calculated indirectly from the calculated heat of combustion for each compound for which experimental data were available using the heats of combustion for the elements given in [20,21]. Accordingly, the same restrictions concerning “te” valid “ty” of the atom groups as well as the elements themselves apply. Therefore, the number of compounds in the correlation diagram of Figure 3 is identical with that of Figure 1. However, due to the distinctly smaller range of heat-of-formation values from −7238.2 (perfluorohexadecane) to +1039.7 kJ/mol (2,4,6-triazido-s-triazine) and the error-propagation effect, the correlation coefficient R2 is “only” 0.9979, and since the standard error σ is still 18.14 kJ/mol, their mean absolute deviation is 27.23%. The histogram of Figure 4 again confirms the symmetrical Gaussian error distribution of the experimental heats of formation about the calculated ones.

Figure 3.

Figure 3

Correlation diagram of the heat of formation (in kJ/mol), (N = 4886, R2 = 0.9979, regression line: intercept = −0.5539; slope = 0.9979).

Figure 4.

Figure 4

Histogram of the heat of formation (in kJ/mol) (σ = 18.14; experimental values range from −7238.2 to +1039.7 kJ/mol).

5. Conclusions

The present paper is proof of the easy expandability of the group-additivity method outlined in [1] for the calculation of the heats of combustion and formation of in principle any organic molecule to consider. A large amount of more than 5000 molecules upon which the atom-group parameters are based allowed strict filtering out of the worst outliers without undue sacrifice of “invalidated” atom groups, resulting in an as-yet unsurpassed accuracy of the predicted heat of combustion with a mean absolute deviation of only 0.4% for up to 84.5% of nearly any kind of organic compound. Beyond this, the present method basically allows the accurate calculation of a molecule’s heat of combustion simply by means of paper and pencil, using the presented group parameters in Table 4. As this work is ongoing, the number of compounds for which—based on the same algorithm—up to 17 physical, thermodynamic, solubility-, optics-, charge-, and environment-related descriptors [1,2,3,4,5,6] can be reliably predicted, will steadily increase.

The mentioned software project is called ChemBrain IXL, available from Neuronix Software (www.neuronix.ch, Rudolf Naef, Lupsingen, Switzerland).

Acknowledgments

R. Naef is indebted to the library of the University of Basel for allowing him full and free access to the electronic literature database.

Supplementary Materials

The following are available online. The list of compounds used in the present work, their experimental data and 3D structures are available online as standard SDF files, accessible for external chemistry software, under the name of “S01_Compounds List for deltaH°(c) Calculations.sdf”. The list of the compounds used in the correlation diagrams and histograms containing their names and their experimental and calculated values are available under the names of “S02. Experimental vs. calculated deltaH°(c) Data Table.doc” and “S03. Experimental vs. calculated deltaH°(f) Data Table.doc”. In addition, the list of outliers is available under the name “S04. Outliers of deltaH°(c) calculations.xls”. Finally, the figures are available as tif files and the tables as doc files under the names given in the text.

Author Contributions

R.N. developed project ChemBrain and its software upon which this paper is based and also fed the database, calculated and analyzed the results, and wrote the paper. W.E.A.J. suggested the extension of ChemBrain’s tool and contributed experimental data and the majority of the literature references. Beyond this, R.N. is indebted to W.E.A.J. for the many valuable discussions. Both authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available in Supplementary Material.

Conflicts of Interest

The authors declare no conflict of interest.

Sample Availability

Samples of the compounds are not available from the authors.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Naef R. A Generally Applicable Computer Algorithm Based on the Group Additivity Method for the Calculation of Seven Molecular Descriptors: Heat of Combustion, LogPO/W, LogS, Refractivity, Polarizability, Toxicity and LogBB of Organic Compounds; Scope and Limits of Applicability. Molecules. 2015;20:18279–18351. doi: 10.3390/molecules201018279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Naef R., Acree W.E. Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals. Molecules. 2017;22:1059. doi: 10.3390/molecules22071059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Naef R., Acree W.E. Application of a General Computer Algorithm Based on the Group-Additivity Method for the Calculation of Two Molecular Descriptors at Both Ends of Dilution: Liquid Viscosity and Activity Coefficient in Water at Infinite Dilution. Molecules. 2018;23:5. doi: 10.3390/molecules23010005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Naef R., Acree W.E., Jr. Calculation of the Surface Tension of Ordinary Organic and Ionic Liquids by Means of a Generally Applicable Computer Algorithm Based on the Group-Additivity Method. Molecules. 2018;23:1224. doi: 10.3390/molecules23051224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Naef R. Calculation of the Isobaric Heat Capacities of the Liquid and Solid Phase Of Organic Compounds at 298.15k by Means of the Group-Additivity Method. Molecules. 2020;25:1147. doi: 10.3390/molecules25051147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Naef R., Acree W.E., Jr. Calculation of the Vapour Pressure of Organic Molecules by Means of a Group-Additivity Method and their Resultant Gibbs Free Energy and Entropy of Vaporization at 298.15K. Molecules. 2021;26:1045. doi: 10.3390/molecules26041045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Pauling L. Nature of the Chemical Bond. Cornell University Press; Ithaca, NY, USA: 1940. pp. 47–58. [Google Scholar]
  • 8.Klages F. Über eine Verbesserung der additiven Berechnung von Verbrennungswärmen und der Berechnung der Mesomerie-Energie aus Verbrennungswärmen. Chem. Ber. 1949;82:358–375. doi: 10.1002/cber.19490820411. [DOI] [Google Scholar]
  • 9.Wheland G.W. Theory of Resonance. Wiley; New York, NY, USA: 1944. pp. 52–87. [Google Scholar]
  • 10.Janecke E. Die Verbrennungs-und Bildungswärmen Organischer Verbindungen in Beziehung zu Ihrer Zusammensetzung. Z. Elektrochem. 1934;40:462–469. [Google Scholar]
  • 11.Jones W.H., Starr C.E. Determination of Heat of Combustion of Gasolines. Ind. Eng. Chem. Anal. Ed. 1941;13:287–290. doi: 10.1021/i560093a001. [DOI] [Google Scholar]
  • 12.Hougen O.A., Watson K.M. Chemical Process Principles Part II. Wiley; New York, NY, USA: 1947. pp. 758–765. [Google Scholar]
  • 13.Kharash M.S. Heats of Combustion of Organic Compounds. J. Res. Bur. Stand. 1929;2:359–430. doi: 10.6028/jres.002.007. [DOI] [Google Scholar]
  • 14.Kharash M.S., Sher B. The Electronic Conception of Valence and Heats of Combustion of Organic Compounds. J. Phys. Chem. 1925;29:625–658. doi: 10.1021/j150252a001. [DOI] [Google Scholar]
  • 15.Handrick G.R. Heats of Combustion of Organic Compounds. Ind. Eng. Chem. 1956;48:1366–1374. doi: 10.1021/ie50560a039. [DOI] [Google Scholar]
  • 16.Ohlinger W.S., Klunzinger P.E., Deppmeier B.J., Hehre W.J. Efficient Calculation of Heats of Formation. J. Phys. Chem. A. 2009;113:2165–2175. doi: 10.1021/jp810144q. [DOI] [PubMed] [Google Scholar]
  • 17.Cohen N., Benson S.W. Estimation of Heats of Formation of Organic Compounds by Additivity Methods. Chem. Rev. 1993;93:2419–2438. doi: 10.1021/cr00023a005. [DOI] [Google Scholar]
  • 18.Cohen N. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds. J. Phys. Chem. Ref. Data. 1996;25:1411–1481. doi: 10.1063/1.555988. [DOI] [Google Scholar]
  • 19.Hardtwig E. Fehler-Und Ausgleichsrechnung. Bibliographisches Institut AG; Mannheim, Germany: 1968. [Google Scholar]
  • 20.Skinner H.A. Key Heat of Formation Data. Pure Appl. Chem. 1964;8:113–130. doi: 10.1351/pac196408020113. [DOI] [Google Scholar]
  • 21.Domalski E.S. Selected Values of Heats of Combustion and Heats of Formation of Organic Compounds Containing the Elements C, H, N, O, P, and S. J. Phys. Chem. Ref. Data. 1972;1:221–277. doi: 10.1063/1.3253099. [DOI] [Google Scholar]
  • 22.Lide D.R. CRC Handbook of Chemistry and Physics. 84th ed. CRC Press LLC; Boca Raton, FL, USA: 2004. [Google Scholar]
  • 23.Perrottet E., Taub W., Briner E. Sur les États Énergétique Comparatifs des Noyaux Azulénique et Naphthalénique. Helv. Chim. Acta. 1940;23:1260–1268. doi: 10.1002/hlca.194002301150. [DOI] [Google Scholar]
  • 24.Prosen E.J., Johnson W.H., Rossini F.D. Heats of Formation and Combustion of Normal Alkylcyclpentanes and Cyclohexanes and the Increment per CH2 Group for Several Homologous Series of Hydrocarbons. J. Res. Nat. Bur. Stand. 1946;37:51–56. doi: 10.6028/jres.037.031. [DOI] [Google Scholar]
  • 25.Dekker H., Mosselman C. Enthalpies of Combustion of 1,1,4,4-Tetramethylcyclodecane and of 1,1,5,5-Tetramethylcyclodecane in the Liquid State. J. Chem. Eng. Data. 1978;23:111–113. doi: 10.1021/je60077a019. [DOI] [Google Scholar]
  • 26.Clark T., Knox T., Mc O., McKervey M.A., Mackle H., Rooney J.J. Thermochemistry of Bridged-Ring Substances. Enthalpies of Formation of Some Diamondoid Hydrocarbons and of Perhydroquinacene. Comparisons with Data from Empirical Force Field Calculations. J. Am. Chem. Soc. 1979;101:2404–2410. doi: 10.1021/ja00503a028. [DOI] [Google Scholar]
  • 27.Jochems R., Dekker H., Mosselman C., Somsen G. Enthalpies of Formation of Bicyclo[3.3.1]Non-2-Ene, Bicyclo[3.2.2]Non-6-Ene, and Bicyclo[4.2.1]Non-3-Ene. J. Chem. Thermodyn. 1983;15:95–99. doi: 10.1016/0021-9614(83)90108-8. [DOI] [Google Scholar]
  • 28.Domalski E.S., Hearing E.D. Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15K. J. Phys. Chem. Ref. Data. 1988;17:1637–1678. doi: 10.1063/1.555814. [DOI] [Google Scholar]
  • 29.Chirico R.D., Knipmeyer S.E., Nguyen A., Steele W.V. The Thermodynamic Properties of Biphenyl. J. Chem. Thermodyn. 1989;21:1307–1331. doi: 10.1016/0021-9614(89)90119-5. [DOI] [Google Scholar]
  • 30.Steele W.V., Chirico R.D., Smith N.K. The Standard Enthalpies of Formation of 2-Methylbiphenyl and Diphenylmethane. J. Chem. Thermodyn. 1995;27:671–678. doi: 10.1006/jcht.1995.0068. [DOI] [Google Scholar]
  • 31.Ribeiro da Silva M.A.V., Matos M.A.R., do Rio C.M.A., Morais V.M.F. Thermochemical and Theoretical Studies of 4-Methylbiphenyl, 4,4′-Dimethylbiphenyl, 4,4′-Dimethyl-2,2′-Bipyridine. J. Chem. Soc. Faraday Trans. 1997;93:3061–3065. doi: 10.1039/a701769c. [DOI] [Google Scholar]
  • 32.Melkhanova S.V., Pimenova S.M., Kolesov V.P., Pimerzin A.A., Sarkisova V.S. The Standard Molar Enthalpies of Formation of Some Alkyladamantanes. J. Chem. Thermodyn. 2000;32:1311–1317. doi: 10.1006/jcht.2000.0691. [DOI] [Google Scholar]
  • 33.Pimenova S.M., Melkhanova S.V., Kolesov V.P., Lobach A.S. The Enthalpy of Formation and C-H Bond Enthalpy of Hydrofullerene C60H36. J. Phys. Chem. B. 2002;106:2127–2130. doi: 10.1021/jp012258x. [DOI] [Google Scholar]
  • 34.Rojas-Aguilar A. Enthalpies of Combustion and Formation of Fullerene C70 by Isoperibolic Combustion Calorimetry. J. Chem. Thermodyn. 2004;36:519–523. doi: 10.1016/j.jct.2004.03.008. [DOI] [Google Scholar]
  • 35.Rojas-Aguilar A., Martinez-Herrera M. Enthalpies of Combustion and Formation of Fullerenes by Micro-Combustion Calorimetry in a Calvet Calorimeter. Thermochim. Acta. 2005;437:126–133. doi: 10.1016/j.tca.2005.06.029. [DOI] [Google Scholar]
  • 36.Ribeiro da Silva M.A.V., Amaral L.M.P.F., Santos A.F.L.O.M., Gomes J.R. Thermochemistry of Some Alkylsubstituted Anthracenes. J. Chem. Thermodyn. 2006;38:367–375. doi: 10.1016/j.jct.2005.06.001. [DOI] [Google Scholar]
  • 37.Santos R.C., Bernardes C.E.S., Diogo H.P., Piedade M.F.M., Canongia Lopes J.N., Minas de Piedade M.E. Energetics of the Thermal Dimerization of Acenaphthylene to Heptacyclene. J. Phys. Chem. A. 2006;110:2299–2307. doi: 10.1021/jp056275o. [DOI] [PubMed] [Google Scholar]
  • 38.Rojas A., Martinez M., Amador P., Torres L.A. Increasing Stability of the Fullerenes with the Number of Carbon Atoms: The Experimental Evidence. J. Phys. Chem. B. 2007;111:9031–9035. doi: 10.1021/jp0727906. [DOI] [PubMed] [Google Scholar]
  • 39.Roux M.V., Temprado M., Chickos J.S., Nagano Y. Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. Ref. Data. 2008;37:1855–1996. doi: 10.1063/1.2955570. [DOI] [Google Scholar]
  • 40.Santos R.C., Leal J.P., Simoes J.A.M. Additivity Methods for Prediction of Thermochemical Properties. The Laidler Method Revisited. 2. Hydrocarbons Including Substituted Cyclic Compounds. J. Chem. Thermodyn. 2009;41:1356–1373. doi: 10.1016/j.jct.2009.06.013. [DOI] [Google Scholar]
  • 41.Martinez M., Torres L.A., Campos M., Rojas A. Heat of Functionalization of a Methanofullerene Derivative from Microcalorimetric Combustion Measurements. J. Phys. Chem. C. 2009;113:13527–13531. doi: 10.1021/jp9011679. [DOI] [Google Scholar]
  • 42.Alberty R.A. Standard Chemical Thermodynamic Properties of Alkylbenzene Isomer Groups. J. Phys. Chem. Ref. Data. 1985;14:177–192. doi: 10.1063/1.555745. [DOI] [Google Scholar]
  • 43.Melkhanova S.V., Pimenova S.M., Chelovskaya N.V., Miroshnichenko E.A., Pashchenko L.L., Nesterov I.A., Naumkin P.V. Thermochemical Studies of 4-Tert-Butylbiphenyl and 4,40-Di-Tert-Butylbiphenyl. J. Chem. Thermodyn. 2009;41:651–653. doi: 10.1016/j.jct.2008.12.015. [DOI] [Google Scholar]
  • 44.Verevkin S.P., Emel′yanenko V.N., Toktonov A.V. Thermochemistry of Ionic Liquid Catalyzed Reactions. Experimental and Theoretical Study of Chemical Equilibria of Izomerization and Transalkylation of Tert-Amylbenzenes. J. Phys. Chem. B. 2009;113:12704–12710. doi: 10.1021/jp904838u. [DOI] [PubMed] [Google Scholar]
  • 45.Ribeiro da Silva M.A.V., Santos L.M.N.B.F., Lima L.M.S.S. Thermodynamic Study of 1,2,3-Triphenylbenzene and 1,3,5-Triphenylbenzene. J. Chem. Thermodyn. 2010;42:134–139. doi: 10.1016/j.jct.2009.07.022. [DOI] [Google Scholar]
  • 46.Lima C.F.R.A.C., Rocha M.A.A., Melo A., Gomes L.R., Low J.N., Santos L.M.N.B.F. Structural and Thermodynamic Characterization of Polyphenylbenzenes. J. Phys. Chem. A. 2011;115:11876–11888. doi: 10.1021/jp207593s. [DOI] [PubMed] [Google Scholar]
  • 47.Lima C.F.R.A.C., Rocha M.A.A., Schröder B., Gomes L.R., Low J.N., Santos L.M.N.B.F. Phenylnaphthalenes: Sublimation Equilibrium, Conjugation, and Aromatic Interactions. J. Phys. Chem. B. 2012;116:3557–3570. doi: 10.1021/jp2111378. [DOI] [PubMed] [Google Scholar]
  • 48.Monte M.J.S., Notario R., Pinto S.P., Lobo Ferreira A.I.M.C., Ribeiro da Silva M.D.M.C. Thermodynamic Properties of Fluoranthene: An Experimental and Computational Study. J. Chem. Thermodyn. 2012;49:159–164. doi: 10.1016/j.jct.2012.01.025. [DOI] [Google Scholar]
  • 49.Sousa C.C.S., Matos M.A.R., Morais V.M.F. Energetics and Stability of Azulene: From Experimental Thermochemistry to High-Level Quantum Chemical Calculations. J. Chem. Thermodyn. 2014;73:101–109. doi: 10.1016/j.jct.2013.11.008. [DOI] [Google Scholar]
  • 50.Chirico R.D., Steele W.V., Kazakov A.F. Thermodynamic Properties of 1-Phenylnaphthalene and 2-Phenylnaphthalene. J. Chem. Thermodyn. 2014;73:241–254. doi: 10.1016/j.jct.2014.01.006. [DOI] [Google Scholar]
  • 51.Abhoud J.-M.M., Alkorta I., Davalos J.Z., Koppel I.A., Koppel I., Lenoir D., Martinez S., Mishima M. The Thermodynamic Stability of Adamantylideneadamantane and Its Proton- and Electron-Exchanges. Comparison with Simple Alkenes. Bull. Chem. Soc. Jpn. 2016;89:762–769. doi: 10.1246/bcsj.20160026. [DOI] [Google Scholar]
  • 52.Oliveira J.A.S.A., Freitas V.L.S., Motario R., Ribeiro da Silva M.D.M.C., Monte M.J.S. Thermodynamic Properties of 2,7-Di-Tert-Butylfluorene-An Experimental and Computational Study. J. Chem. Thermodyn. 2016;101:115–122. doi: 10.1016/j.jct.2016.05.007. [DOI] [Google Scholar]
  • 53.Santos A.F.L.O.M., Oliveira J.A.S.A., Ribeiro da Silva M.D.M.C., Monte M.J.S. Vapor Pressures, Thermodynamic Stability, and Fluorescence Properties of Three 2,6-Alkyl Naphthalenes. Chemosphere. 2016;146:173–181. doi: 10.1016/j.chemosphere.2015.11.114. [DOI] [PubMed] [Google Scholar]
  • 54.Lima C.F.R.A.C., Rodrigues A.S.M.C., Santos L.M.N.B.F. Effect of Confined Hindrance in Polyphenylbenzenes. J. Phys. Chem. A. 2017;121:2475–2481. doi: 10.1021/acs.jpca.7b00579. [DOI] [PubMed] [Google Scholar]
  • 55.Lima C.F.R.A.C., Costa J.C.S., Lima L.M.S.S., Melo A., Silva A.M.S., Santos L.M.N.B.F. Energetic and Structural Insights into the Molecular and Supramolecular Properties of Rubrene. ChemistrySelect. 2017;2:1759–1769. doi: 10.1002/slct.201601636. [DOI] [Google Scholar]
  • 56.Gheorghe D., Neacsu A., Perisanu S. Thermochemistry of Eight Membered Ring Hydrocarbons. The Enthalpy of Formation of Cyclooctane. Rev. Chim. 2020;71:507–515. doi: 10.37358/RC.20.3.8025. [DOI] [Google Scholar]
  • 57.Pimenova S.M., Lukyanova V.A., Druzhinina A.I., Dorofeeva O.V. Thermodynamic Properties of 1,3,3-Trimethylcyclopropene. J. Chem. Thermodyn. 2020;151:106240. doi: 10.1016/j.jct.2020.106240. [DOI] [Google Scholar]
  • 58.Costa J.C.S., Campos R.M., Lima L.M.S.S., Ribeiro da Silva M.A.V., Santos L.M.N.B.F. On the Aromatic Stabilization of Fused Polycyclic Aromatic Hydrocarbons. J. Phys. Chem. A. 2021;125:3696–3709. doi: 10.1021/acs.jpca.1c01978. [DOI] [PubMed] [Google Scholar]
  • 59.Pimenova S.M., Lukyanova V.A., Druzhinina A.I., Miroshnichenko E.A. Standard Enthalpies of Formation of Some Phenyl Derivatives of Cyclopropene. J. Chem. Thermodyn. 2021;161:106538. doi: 10.1016/j.jct.2021.106538. [DOI] [Google Scholar]
  • 60.Konnova M.E., Vostrikov S.V., Pimerzin A.A., Verevkin S.P. Thermodynamic Analysis of Hydrogen Storage: Biphenyl as Affordable Liquid Organic Hydrogen Carrier (LOHC) J. Chem. Thermodyn. 2021;159:106455. doi: 10.1016/j.jct.2021.106455. [DOI] [Google Scholar]
  • 61.Mosselman C., Dekker H. Enthalpies of Formation of n-alkan-1-ols. J. Chem. Soc. Faraday Trans. I. 1975;71:417–424. doi: 10.1039/f19757100417. [DOI] [Google Scholar]
  • 62.Ribeiro da Silva M.A.V., Cabral J.I.T.A. Standard Molar Enthalpies of Formation of 1-Methyl-2-Piperidinemethanol, 1-Piperidineethanol, and 2-Piperidineethanol. J. Chem. Thermodyn. 2006;38:1461–1466. doi: 10.1016/j.jct.2006.01.005. [DOI] [Google Scholar]
  • 63.Pinto S.S., Bernardes C.E.S., Diogo H.P., Minas da Piedade M.E. Thermochemistry of 2- and 4-biphenylmethanol. J. Chem. Thermodyn. 2007;39:1384–1391. doi: 10.1016/j.jct.2007.03.002. [DOI] [Google Scholar]
  • 64.Ribeiro da Silva M.A.V., Lobo Ferreira A.I.M.C. Experimental Standard Molar Enthalpies of Formation of Some Methylbenzenediol Isomers. J. Chem. Thermodyn. 2009;41:1096–1103. doi: 10.1016/j.jct.2009.04.015. [DOI] [Google Scholar]
  • 65.Davalos J.Z., Herrero R., Costa J.C.S., Santos L.M.N.B.F., Liebman J.F. Energetic and Structural Study of Bisphenols. J. Phys. Chem. A. 2014;118:3705–3709. doi: 10.1021/jp503567c. [DOI] [PubMed] [Google Scholar]
  • 66.Zaitsau D., Paulechka E., Firaha D.S., Blokhin A.V., Kabo G.J., Bazyleva A., Kabo A.G., Varfolomeev M.A., Sevruk V.M. Comprehensive Study of the Thermodynamic Properties for 2-Methyl-3-Buten-2-Ol. J. Chem. Thermodyn. 2015;91:459–473. doi: 10.1016/j.jct.2015.07.028. [DOI] [Google Scholar]
  • 67.Freitas V.L.S., Lima A.C.M.O., Sapei E., Ribeiro da Silva M.D.M.C. Comprehensive Thermophysical and Thermochemical Studies of Vanillyl Alcohol. J. Chem. Thermodyn. 2016;102:287–292. doi: 10.1016/j.jct.2016.07.015. [DOI] [Google Scholar]
  • 68.Dávalos J.Z., Guerrero A., Valderrama-Negrón A.C., Romero V., Lago A.F. Energetics and Structural Properties of Neutral and Deprotonated Phenyl Carbinols. J. Chem. Thermodyn. 2016;97:315–321. doi: 10.1016/j.jct.2016.02.010. [DOI] [Google Scholar]
  • 69.Lopes C.S.D., Agapito F., Bernardes C.E.S., Minas da Piedade M.E. Thermochemistry of 4-HOC6H4COR (R = H, CH3, C2H5, n-C3H7, n-C4H9, n-C5H11, and n-C6H13) Compounds. J. Chem. Thermodyn. 2017;104:281–287. doi: 10.1016/j.jct.2016.09.026. [DOI] [Google Scholar]
  • 70.Knyazev A.V., Emel’yanenko V.N., Shipilova A.S., Zaitsau D.H., Lelet M.I., Knyazeva S.S., Gusarova E.V., Varfolomeev M.A. Thermodynamic Properties of Myo-Inositol. J. Chem. Thermodyn. 2018;116:76–84. doi: 10.1016/j.jct.2017.08.028. [DOI] [Google Scholar]
  • 71.Davalos J.Z., Valderrama-Negron A.C., Barrios J., Freitas V.L.S., Ribeiro da Silva M.D.M.C. Energetic and Structural Properties of Two Phenolic Antioxidants: Tyrosol and Hydroxytyrosol. Phys. Chem. A. 2018;122:4130–4137. doi: 10.1021/acs.jpca.8b00457. [DOI] [PubMed] [Google Scholar]
  • 72.Feng J., Shang Y., Zhang Y. Research on Synthesis and Thermodynamic Properties of 2-Methoxycyclohexanol. J. Therm. Anal. Calorim. 2018;131:2197–2203. doi: 10.1007/s10973-017-6784-4. [DOI] [Google Scholar]
  • 73.Carvalho T.M.T., Amaral L.M.P.F., Morais V.M.F., Ribeiro da Silva M.D.M.C. Calorimetric and Computational Study of (1H-Indol-n-yl)Methanol and 2-(1H-Indol-n-yl)Ethanol (n = 2, 3) Thermochim. Acta. 2019;673:169–176. doi: 10.1016/j.tca.2019.01.021. [DOI] [Google Scholar]
  • 74.Freitas V.L.S., Ribeiro da Silva M.D.M.C. Structural and Energetic Insights on Two Dye Compounds: 1-Acetyl-2-Naphthol and 2-Acetyl-1-Naphthol. Molecules. 2020;25:3827. doi: 10.3390/molecules25173827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Pilcher G., Skinner H.A., Pell A.S., Pope A.E. Measurements of Heats of Combustion by Flame Calorimetry. Part 1—Diethyl Ether, Ethyl Vinyl Ether and Divinyl Ether. Trans. Faraday Soc. 1963;59:316–330. doi: 10.1039/TF9635900316. [DOI] [Google Scholar]
  • 76.Pilcher G., Pell A.S., Coleman D.J. Measurements of Heats of Combustion by Flame Calorimetry. Part 2—Dimethyl Ether, Methyl Ethyl Ether, Methyl n-Propyl Ether, Methyl isoPropy1 Ether. Trans. Faraday Soc. 1964;60:499–505. doi: 10.1039/TF9646000499. [DOI] [Google Scholar]
  • 77.Ribeiro da Silva M.A.V., Lobo Ferreira A.I.M.C., Cimas A. Experimental and Computational Study on the Molecular Energetics of Benzyloxyphenol Isomers. J. Chem. Thermodyn. 2011;43:1857–1864. doi: 10.1016/j.jct.2011.06.014. [DOI] [Google Scholar]
  • 78.Druzhinina A.I., Pimenova S.M., Tarazanov S.V., Nesterova T.N., Varushchenko R.M. Thermodynamic Properties of 4-Tert-Butyl-Diphenyl Oxide. J. Chem. Thermodyn. 2015;87:69–77. doi: 10.1016/j.jct.2015.03.019. [DOI] [Google Scholar]
  • 79.Sinditski V.P., Burzhava A.V., Chernyi A.N., Shmelev D.S., Apalkova V.N., Palysaeva N.V., Sheremetev A.B. A Comparative Study of Two Difurazanyl Ethers. J. Therm. Anal. Calorim. 2016;123:1431–1438. doi: 10.1007/s10973-015-5048-4. [DOI] [Google Scholar]
  • 80.Freitas V.L.S., Gomes J.R.B., Ribeiro da Silva M.D.M.C. Thermochemical Studies on Two Alkyl-Bulky Substituted Xanthene Derivatives: 9,9-Dimethylxanthene and 2,7-Di-Tert-Butyl-9,9-Dimethylxanthene. J. Chem. Thermodyn. 2017;106:168–177. doi: 10.1016/j.jct.2016.11.020. [DOI] [Google Scholar]
  • 81.Verevkin S.P., Siewert R., Emel’yanenko V.N., Bara J.E., Cao H., Pimerzin A.A. Diphenyl Ether Derivatives as Potential Liquid Organic Hydrogen Carriers: Thermochemical and Computational Study. J. Chem. Eng. Data. 2020;65:1108–1116. doi: 10.1021/acs.jced.9b00502. [DOI] [Google Scholar]
  • 82.Verevkin S.P., Pimerzin A.A., Sun L.-X. Liquid Organic Hydrogen Carriers: Hydrogen Storage by Di-Phenyl Ether Derivatives: An Experimental and Theoretical Study. J. Chem. Thermodyn. 2020;144:106057. doi: 10.1016/j.jct.2020.106057. [DOI] [Google Scholar]
  • 83.Verevkin S.P., Pimerzin A.A., Sun L.-X. Structure-Property Relationships in Substituted Diphenyl Ethers: Non-Nearest Interactions of Methyl-, Methoxy-, Hydroxyl-, Amino-, and Nitro-Substituents. Fluid Phase Equil. 2020;512:112534. doi: 10.1016/j.fluid.2020.112534. [DOI] [Google Scholar]
  • 84.Verevkin S.P., Turovtsev V.V., Andreeva I.V., Orlov Y.D., Pimerzin A.A. Webbing a Network of Reliable Thermochemistry Around Lignin Building Blocks: Tri-Methoxybenzenes. R. Soc. Chem. Adv. 2021;11:10727. doi: 10.1039/d1ra00690h. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Flores H., Lopez Y.I., Amador P. Enthalpies of Combustion and Formation of 3-Formylchromones. Thermochim. Acta. 2006;450:35–37. doi: 10.1016/j.tca.2006.07.010. [DOI] [Google Scholar]
  • 86.Daniela A.A., Mariela P.I., Jorge R.M., Nelly J.L., Vara G., Manuel E., Eduardo C.A., Alicia J.H. Experimental and Theoretical Standard Enthalpies of Formation of 3,6-Dibutanal-1,2,4,5-Tetroxane. Glob. J. Mol. Sci. 2007;2:8–11. [Google Scholar]
  • 87.Ribeiro da Silva M.A.V., Santos A.F.L.O.M. Energetics of Thiophenecarboxaldehydes and Some of its Alkyl Derivatives. J. Chem. Thermodyn. 2008;40:917–923. doi: 10.1016/j.jct.2008.02.004. [DOI] [Google Scholar]
  • 88.Ribeiro da Silva M.D.M.C., Gonçalves M.V., Monte M.J.S. Thermodynamic Study on Hydroxybenzaldehyde Derivatives: 3- and 4-Hydroxybenzaldehyde Isomers and 3,5-Di-Tert-Butyl-2-Hydroxybenzaldehyde. J. Chem. Thermodyn. 2010;42:472–477. doi: 10.1016/j.jct.2009.10.009. [DOI] [Google Scholar]
  • 89.Santos A.F.L.O.M., Oliveira J.A.S.A., Monte M.J.S. Experimental and Computational Thermodynamics of Pyrene and 1-Pyrenecarboxaldehyde and Their Photophysical Properties. J. Chem. Thermodyn. 2015;90:282–293. doi: 10.1016/j.jct.2015.07.008. [DOI] [Google Scholar]
  • 90.Amaral L.M.P.F., Freitas V.L.S., Goncalves J.F.R., Barbosa M., Chickos J.S., Ribeiro da Silva M.D.M.C. The Influence of the Hydroxy and Methoxy Functional Groups on the Energetic and Structural Properties of Naphthaldehyde as Evaluated by Both Experimental and Computational Methods. Struct. Chem. 2015;26:137–149. doi: 10.1007/s11224-014-0475-6. [DOI] [Google Scholar]
  • 91.Dibrivnyi V., Sobechko I., Puniak M., Horak Y., Obushak M., Van-Chin-Syan Y., Andriy M., Velychkivska N. Thermodynamic Properties of 5(Nitrophenyl) Furan-2-Carbaldehyde Isomers. Chem. Cent. J. 2015;9:67. doi: 10.1186/s13065-015-0144-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Oliveira J.A.S.A., Notario R., Ribeiro da Silva M.D.M.C., Monte M.J.S. Vapour Pressures, Enthalpies and Gibbs Energies of Formation and Sublimation of Fluorene-2-Carboxaldehyde. J. Chem. Thermodyn. 2017;111:65–71. doi: 10.1016/j.jct.2017.03.021. [DOI] [Google Scholar]
  • 93.Ximello A., Ramos F., Rojas A., Hernandez-Perez J.M., Camarillo E.A., Solano-Altamirano J.M., Sandoval-Lira J., Flores H. Experimental and Theoretical Thermochemical Study of Nitrobenzaldehyde Isomers. J. Chem. Eng. Data. 2020;65:4935–4945. doi: 10.1021/acs.jced.0c00562. [DOI] [Google Scholar]
  • 94.Siewert R., Samatov A.A., Nagrimanov R.N., Verevkin S.P. Thermochemistry of Di-Substituted Benzenes: Nitro- and Dimethylamino Benzaldehydes. J. Chem. Thermodyn. 2020;143:106060. doi: 10.1016/j.jct.2020.106060. [DOI] [Google Scholar]
  • 95.Ribeiro da Silva M.A.V., Ribeiro da Silva M.D.M.C., Teixeira J.A.S., Bruce J.M., Guyan P.M., Pilcher G. Enthalpies of Combustion of 1,4-Naphthoquinone, 9,10-Anthraquinone, 9,10-Phenanthraquinone, 1,4,9,10-Anthradiquinone, 5,8-Dihydroxy-1,4-Naphthoquinone, and 1,4-Dihydroxy-9,10-Nthraquinone. J. Chem. Thermodyn. 1989;21:265–274. doi: 10.1016/0021-9614(89)90016-5. [DOI] [Google Scholar]
  • 96.Verevkin S.P. Thermochemistry of Aromatic Ketones. Experimental Enthalpies of Formation and Structural Effects. Thermochim. Acta. 1998;310:229–235. doi: 10.1016/S0040-6031(97)00231-1. [DOI] [Google Scholar]
  • 97.Ribeiro da Silva M.A.V., Ferrao M.L.C.C.H., Monte M.J.S., Goncalves J.M., Jiye F. Standard Molar Enthalpy of Formation, Vapour Pressures, and Standard Molar Enthalpy of Sublimation of Benzanthrone. J. Chem. Thermodyn. 1999;31:1067–1075. doi: 10.1006/jcht.1999.0516. [DOI] [Google Scholar]
  • 98.Jimenez P., Roux M.V., Davalos J.Z., Molina M.T. Thermochemistry of 9-Hydroxy-1,4-Anthraquinone and 9-Methoxy-1,4-Anthraquinone. J. Chem. Thermodyn. 2002;34:1117–1126. doi: 10.1006/jcht.2002.0986. [DOI] [Google Scholar]
  • 99.Perisanu S., Contineanu I., Banciu M.D., Liebman J.F., Farivar B.S., Mullan M.A., Chickos J.S., Rath N., Hillesheim D.M. The Enthalpies of Formation of Two Dibenzocyclooctadienones. Thermochim. Acta. 2003;400:109–120. doi: 10.1016/S0040-6031(02)00485-9. [DOI] [Google Scholar]
  • 100.Ribeiro da Silva M.A.V., Santos L.M.N.B.F. Standard Molar Enthalpy of Formation of Monothiodibenzoylmethane by Rotating-Bomb Calorimetry. J. Chem. Thermodyn. 2004;36:447–451. doi: 10.1016/j.jct.2004.02.007. [DOI] [Google Scholar]
  • 101.Perisanu S., Contineanu I., Banciu M.D., Zhao H., Rath N., Chickos J.S. The Structure and Thermochemistry of 3:4,5:6-Dibenzo-2-Hydroxymethylene-Cyclohepta-3,5-Dienenone (1) and Some Related Compounds. Struct. Chem. 2006;17:639–648. doi: 10.1007/s11224-006-9111-4. [DOI] [Google Scholar]
  • 102.Matos M.A.R., Sousa C.C.S., Morais V.M.F. Experimental and Theoretical Thermochemistry of β-Tetralone. J. Chem. Thermodyn. 2008;40:1552–1557. doi: 10.1016/j.jct.2008.06.019. [DOI] [Google Scholar]
  • 103.Matos M.A.R., Sousa C.C.S., Morais V.M.F. Thermochemical Study of Some Methoxytetralones. J. Chem. Thermodyn. 2009;41:69–73. doi: 10.1016/j.jct.2008.07.021. [DOI] [Google Scholar]
  • 104.Miranda M.S., Morais V.M.F., Matos M.A.R., Liebman J.F. Standard Molar Enthalpy of Formation of 1-Benzosuberone: An Experimental and Computational Study. J. Chem. Thermodyn. 2010;42:1094–1100. doi: 10.1016/j.jct.2010.04.007. [DOI] [Google Scholar]
  • 105.Amaral L.M.P.F., Ribeiro da Silva M.A.V. Calorimetric Study of 2′-Methylacetophenone and 4′-Methylacetophenone. J. Chem. Thermodyn. 2013;57:301–305. doi: 10.1016/j.jct.2012.08.034. [DOI] [Google Scholar]
  • 106.Amaral L.M.P.F., Morais V.M.F., Ribeiro da Silva M.A.V. Standard Molar Enthalpy of Formation of Methoxyacetophenone Isomers. J. Chem. Thermodyn. 2014;74:22–31. doi: 10.1016/j.jct.2014.03.027. [DOI] [Google Scholar]
  • 107.Freitas V.L.S., Ferreira P.J.O., Ribeiro da Silva M.D.M.C. Experimental and Computational Thermochemical Studies of Acridone and N-Methylacridone. J. Chem. Thermodyn. 2018;118:115–126. doi: 10.1016/j.jct.2017.11.002. [DOI] [Google Scholar]
  • 108.Emel’yanenko V.N., Varfolomeev M.A., Novikov V.B., Turovtsev V.V., Orlov Y.D. Thermodynamic Properties of 1,4-Benzoquinones in Gaseous and Condensed Phases: Experimental and Theoretical Studies. J. Chem. Eng. Data. 2017;62:2413–2422. doi: 10.1021/acs.jced.7b00354. [DOI] [Google Scholar]
  • 109.Silva A.L.R., Lima A.C.M.O., Ribeiro da Silva M.D.M.C. Energetic Characterization of Indanone Derivatives Involved in Biomass Degradation. J. Therm. Anal. Calorim. 2018;134:1267–1276. doi: 10.1007/s10973-018-7533-z. [DOI] [Google Scholar]
  • 110.Silva A.L.R., Moura C., Ribeiro da Silva M.D.M.C. Energetic vs Structural Study of Two Biomass Degradation Derivatives: 2-Cyclopentenone and 3-Methyl-2-Cyclopentenone. J. Chem. Thermodyn. 2019;132:390–396. doi: 10.1016/j.jct.2019.01.012. [DOI] [Google Scholar]
  • 111.Amaral L.M.P.F., Ribeiro da Silva M.A.V. Experimental and Computational Thermochemical Study of Dimethoxyacetophenones. J. Chem. Thermodyn. 2021;152:106257. doi: 10.1016/j.jct.2020.106257. [DOI] [Google Scholar]
  • 112.Pashanova K.I., Poryunova P.E., Sologubov S.S., Markin A.V., Smirnova N.N., Piskuno A.V. Standard Thermochemical Characteristics of Combustion and Formation of Bulky Benzoquinone-Type Derivatives at T = 298.15 K. J. Chem. Eng. Data. 2021;66:1970–1976. doi: 10.1021/acs.jced.0c01042. [DOI] [Google Scholar]
  • 113.Ribeiro da Silva M.A.V., Ferrao M.L.C.C.H., Alves da Silva A.M.R.O. Standard Molar Enthalpies of Formation of Three Branched Alkyl Carboxylic Acids. J. Chem. Thermodyn. 1999;31:1129–1134. doi: 10.1006/jcht.1999.0524. [DOI] [Google Scholar]
  • 114.Kirklin D.R. Enthalpy of Combustion of Acetylsalicylic Acid. J. Chem. Thermodyn. 2000;32:701–709. doi: 10.1006/jcht.1999.0650. [DOI] [Google Scholar]
  • 115.Matos M.A.R., Monte M.J.S., Hillesheim D.M. Standard Molar Enthalpies of Combustion of Five Trans-Dimethoxycinnamic Acids. J. Chem. Thermodyn. 2001;33:899–903. doi: 10.1006/jcht.2000.0814. [DOI] [Google Scholar]
  • 116.Temprado M., Roux M.V., Jimenez P., Davalos J.Z., Notario R. Experimental and Computational Thermochemistry of 2- and 3-Thiophenecarboxylic Acids. J. Phys. Chem. A. 2002;106:11173–11180. doi: 10.1021/jp020896p. [DOI] [Google Scholar]
  • 117.Matos M.A.R., Morais V.M.F., Ribeiro da Silva M.D.M.C., Marques M.C.F., Sousa E.A., Castineiras J.P., Santos C.P., Acree W.E., Jr. Thermochemical and Theoretical Studies of Dimethylpyridine-2,6-Dicarboxylate and PYRIDINE-2,3-, Pyridine-2,5-, and Pyridine-2,6-Dicarboxylic Acids. J. Chem. Eng. Data. 2005;50:1184–1191. doi: 10.1021/je049586l. [DOI] [Google Scholar]
  • 118.Roux M.V., Temprado M., Jimenez P., Foces-Foces C., Notario R., Verevkin S.P., Liebman J.F. Thermochemistry of 2,5-Thiophenedicarboxylic Acid. J. Phys. Chem. A. 2006;110:12477–12483. doi: 10.1021/jp0636524. [DOI] [PubMed] [Google Scholar]
  • 119.Ribeiro da Silva M.A.V., Amaral L.M.P.F., Boaventura C.R.P., Gomes J.R.B. Standard Molar Enthalpies of Formation of 2-, 3- and 4-Cyanobenzoic Acids. J. Chem. Thermodyn. 2008;40:1226–1231. doi: 10.1016/j.jct.2008.04.004. [DOI] [Google Scholar]
  • 120.Ribeiro da Silva M.A.V., Santos A.F.L.O.M. Thermochemical Properties of Three 2-Thiophenecarboxylic Acid Derivatives. J. Chem. Thermodyn. 2008;40:1451–1457. doi: 10.1016/j.jct.2008.04.013. [DOI] [Google Scholar]
  • 121.Temprado M., Roux M.V., Jimenez P., Foces-Foces C., Notario R. Thermochemistry of 2- and 3-Thiopheneacetic Acids: Calorimetric and Computational Study. J. Phys. Chem. A. 2008;112:10378–10385. doi: 10.1021/jp804672d. [DOI] [PubMed] [Google Scholar]
  • 122.Ribeiro da Silva M.A.V., Lobo Ferreira A.I.M.C., Lima L.M.S.S., Sousa S.M.M. Thermochemistry of Phenylacetic and Monochlorophenylacetic acids. J. Chem. Thermodyn. 2008;40:137–145. doi: 10.1016/j.jct.2007.07.010. [DOI] [Google Scholar]
  • 123.Santos R.C., Figueira R.M.B.B.M., Piedade M.F.M., Diogo H.M., Minas da Piedade M.E. Energetics and Structure of Hydroxynicotinic Acids. Crystal Structures of 2-, 4-, 6-Hydroxynicotinic and 5-Chloro-6-hydroxynicotinic Acids. J. Phys. Chem. B. 2009;113:14291–14309. doi: 10.1021/jp906908n. [DOI] [PubMed] [Google Scholar]
  • 124.Ribeiro da Silva M.A.V., Lobo Ferreira A.I.M.C., Maciel F.M. Experimental Standard Molar Enthalpies of Formation of Some 4-Alkoxybenzoic Acids. J. Chem. Thermodyn. 2010;42:220–224. doi: 10.1016/j.jct.2009.08.007. [DOI] [Google Scholar]
  • 125.Monte M.J.S., Goncalves M.V., Ribeiro da Silva M.D.M.C. Vapor Pressures and Enthalpies of Combustion of the Dihydroxybenzoic Acid Isomers. J. Chem. Eng. Data. 2010;55:2246–2251. doi: 10.1021/je900777q. [DOI] [Google Scholar]
  • 126.Ribeiro da Silva M.A.V., Santos A.F.L.O.M., Carneiro L.P.T., Mendes R.F., Rodrigues A.S.M.C., Ferreira P.J.O., Ramos R.M.C. Thermodynamic Study of 9-Anthracenecarboxylic Acid. J. Chem. Thermodyn. 2011;43:172–176. doi: 10.1016/j.jct.2010.08.018. [DOI] [Google Scholar]
  • 127.Amador P., Martínez E., Sánchez-Daza O., Flores H. Energies of Combustion and Standard Molar Enthalpies of Formation of Ricinoleic Acid and Methyl Ricinoleate. J. Chem. Thermodyn. 2012;50:15–18. doi: 10.1016/j.jct.2012.02.006. [DOI] [Google Scholar]
  • 128.Levine F., Kayea R.V., III, Wexler R., Sadvary D.J., Melick C., La Scala J. Heats of Combustion of Fatty Acids and Fatty Acid Esters. J. Am. Oil Chem. Soc. 2014;91:235–249. doi: 10.1007/s11746-013-2367-0. [DOI] [Google Scholar]
  • 129.Sobechko I.B., Van-Chin-Syan Y.Y., Kochubei V.V., Prokop R.T., Velychkivska N.I., Gorak Y.I., Dibrivnyi V.N., Obushak M.D. Thermodynamic Properties of Furan-2-Carboxylic and 3-(2-Furyl)-2-Propenoic Acids. Russ. J. Phys. Chem. A. 2014;88:2046–2053. doi: 10.1134/S0036024414120322. [DOI] [Google Scholar]
  • 130.Miranda M.S., Duarte D.J.R., Liebman D.J.F. What is the Enthalpy of Formation of Pyrazine-2-Carboxylic Acid? J. Chem. Thermodyn. 2016;97:261–263. doi: 10.1016/j.jct.2016.02.004. [DOI] [Google Scholar]
  • 131.Carvalho T.M.T., Amaral L.M.P.F., Morais V.M.F., Ribeiro da Silva M.D.M.C. Energetic Effect of the Carboxylic Acid Functional Group in Indole Derivatives. J. Phys. Chem. A. 2017;121:2980–2989. doi: 10.1021/acs.jpca.7b00275. [DOI] [PubMed] [Google Scholar]
  • 132.Emel′yanenko V.N., Turovtsev V.V., Fedina Y.A., Sikorski P. Thermodynamic Properties of 2-Methyl Lactic Acid. J. Chem. Thermodyn. 2018;127:126–133. doi: 10.1016/j.jct.2018.07.017. [DOI] [Google Scholar]
  • 133.Emel′yanenko V.N., Turovtsev V.V., Fedina Y.A. Thermodynamic Properties of Pyruvic Acid and its Methyl Ester. Thermochim. Acta. 2018;665:70–75. doi: 10.1016/j.tca.2018.05.009. [DOI] [Google Scholar]
  • 134.Dávalos J.Z., Lima C.F.R.A.C., Santos L.M.N.B.F., Romero V.L., Liebman J.F. Thermochemical and Structural Studies of Gallic and Ellagic Acids. J. Chem. Thermodyn. 2019;129:108–113. doi: 10.1016/j.jct.2018.09.027. [DOI] [Google Scholar]
  • 135.Siewert R., Emel´yanenko V.N., Verevkin S.P. Thermochemistry of Phthalic Acids: Evaluation of Thermochemical Data with Complementary Experimental and Computational Methods. Fluid Phase Equil. 2020;517:112582. doi: 10.1016/j.fluid.2020.112582. [DOI] [Google Scholar]
  • 136.Mannson M. Enthalpies of Combustion and Formation of Ethyl Propionate and Diethyl Carbonate. J. Chem. Thermodyn. 1972;4:865–871. doi: 10.1016/0021-9614(72)90008-0. [DOI] [Google Scholar]
  • 137.Ribeiro da Silva M.A.V., Santos L.M.N.B.F., Schröder B., Dietze F., Beyer L. Standard Molar Enthalpies of Formation of Three N-Benzoylthiocarbamic-O-Alkylesters. J. Chem. Thermodyn. 2004;36:491–495. doi: 10.1016/j.jct.2004.03.004. [DOI] [Google Scholar]
  • 138.Roux M.V., Temprado M., Notario R., Chickos J.S., Santos A.F.L.O.M., Ribeiro da Silva M.A.V. Experimental and Computational Thermochemical Study of 2- and 3-Thiopheneacetic Acid Methyl Esters. J. Phys. Chem. A. 2007;111:5280–5286. doi: 10.1021/jp0720901. [DOI] [PubMed] [Google Scholar]
  • 139.Verevkin S.P., Emelyanenko V.N., Toktonov A.V., Chernyak Y., Schäffner B., Börner A. Cyclic Alkylene Carbonates. Experiment and First Principle Calculations for Prediction of Thermochemical Properties. J. Chem. Thermodyn. 2008;40:1428–1432. doi: 10.1016/j.jct.2008.05.001. [DOI] [Google Scholar]
  • 140.Amador P., Mata M.Y., Flores H. Enthalpies of Combustion and Formation of α-d-Glucoheptono-1,4-Lactone and α,β-Glucooctanoic-1,4-Lactone. J. Chem. Thermodyn. 2008;40:901–905. doi: 10.1016/j.jct.2007.12.007. [DOI] [Google Scholar]
  • 141.Verevkin S.P., Emel’yanenko V.N., Kozlova S.A. Organic Carbonates: Experiment and Ab Initio Calculations for Prediction of Thermochemical Properties. J. Phys. Chem. A. 2008;112:10667–10673. doi: 10.1021/jp8024705. [DOI] [PubMed] [Google Scholar]
  • 142.Ribeiro da Silva M.A.V., Santos A.F.L.O.M. Calorimetric Study of Methyl and Ethyl 2-Thiophenecarboxylates and Ethyl 2- and 3-Thiopheneacetates. J. Chem. Thermodyn. 2009;41:926–931. doi: 10.1016/j.jct.2009.03.007. [DOI] [Google Scholar]
  • 143.Santos A.F.L.O.M., Ribeiro da Silva M.A.V. Energetics and Molecular Structure of Alkyl 1-Methylpyrrolecarboxylates (alkyl = Methyl or Ethyl) J. Chem. Thermodyn. 2013;67:190–196. doi: 10.1016/j.jct.2013.08.004. [DOI] [Google Scholar]
  • 144.Santos A.F.L.O.M., Ribeiro da Silva M.A.V. Experimental Redetermination of the Gas-Phase Enthalpy of Formation of Ethyl 2-Thiophenecarboxylate. J. Chem. Thermodyn. 2013;58:476–478. doi: 10.1016/j.jct.2012.09.007. [DOI] [Google Scholar]
  • 145.Carvalho T.M.T., Amaral L.M.P.F., Morais V.M.F., Ribeiro da Silva M.D.M.C. Thermodynamic Properties of Alkyl 1H-Indole Carboxylate Derivatives: A Combined Experimental and Computational Study. J. Chem. Thermodyn. 2016;97:70–82. doi: 10.1016/j.jct.2016.01.006. [DOI] [Google Scholar]
  • 146.Xiao G., Xue H., Cheng G., Bao X. Determination of Thermodynamic Parameters of Isopropyl Palmitate Synthesis. J. Chem. Eng. Chin. Univ. 2017;31:733–737. doi: 10.3969/j.issn.1003-9015.2017.00.032. [DOI] [Google Scholar]
  • 147.Sousa C., Matos M.A.R., Morais V.M.F. Experimental and Computational Thermochemical Study of Maleic Anhydride and Vinylene Carbonate. J. Phys. Chem. A. 2017;121:9474–9484. doi: 10.1021/acs.jpca.7b07175. [DOI] [PubMed] [Google Scholar]
  • 148.Ledo J.M., Flores H., Hernández-Pérez J.M., Ramos F., Camarillo E.A., Solano-Altamirano J.M. Gas-Phase Enthalpies of Formation of Ethyl Hydroxybenzoates: An Experimental and Theoretical Approach. J. Chem. Thermodyn. 2018;116:176–184. doi: 10.1016/j.jct.2017.09.007. [DOI] [Google Scholar]
  • 149.Ledo J.M., Flores H., Solano-Altamirano J.M., Ramos F., Hernández-Pérez J.M., Camarillo E.A., Rabell B., Amador M.P. Experimental and Theoretical Study of Methyl n-Hydroxybenzoates. J. Chem. Thermodyn. 2018;124:1–9. doi: 10.1016/j.jct.2018.04.011. [DOI] [Google Scholar]
  • 150.Verevkin S.P., Emel‘yanenko V.N., Pimerzin A.A., Yermalayeu A.V. How Much Different are Thermochemical Properties of Enantiomers and Their Racemates? Thermochemical Properties of Enantiopure and Racemate of Methyl- and Butyl Lactates. J. Chem. Phys. 2018;149:054506. doi: 10.1063/1.5029433. [DOI] [PubMed] [Google Scholar]
  • 151.Ledo J.M., Flores H., Freitas V.L.S., Solano-Altamirano J.M., Hernández-Pérez J.M., Ribeiro da Silva M.D.M.C., Camarillo E.A. Thermal and Structural Properties of Ethyl 2- and 3-Aminobenzoates: Experimental and Computational Approaches. J. Chem. Thermodyn. 2019;133:93–99. doi: 10.1016/j.jct.2019.02.001. [DOI] [Google Scholar]
  • 152.Flores H., Ledo J.M., Camarillo E.A., Solano-Altamirano J.M., Hernández-Pérez J.M., Ramos F., Rabell B. Thermochemical Study of Methyl N-Methoxybenzoates: An Experimental and Computational Approach. J. Chem. Eng. Data. 2019;64:1898–1908. doi: 10.1021/acs.jced.8b00978. [DOI] [Google Scholar]
  • 153.Ximello-Hernandez A., Freitas V.L.S., Ribeiro da Silva M.D.M.C. Assessment of Thermochemical Data of γ-Butyrolactone from Experimental and Computational Studies. J. Chem. Eng. Data. 2020;65:1968–1975. doi: 10.1021/acs.jced.9b01135. [DOI] [Google Scholar]
  • 154.Freitas V.L.S., Silva C.A.O., Ribeiro da Silva M.D.M.C. Thermochemical Study of Anthranilate Derivatives: Effect of the Size of the Alkyl Substituent. J. Chem. Thermodyn. 2021;158:106441. doi: 10.1016/j.jct.2021.106441. [DOI] [Google Scholar]
  • 155.Pinto S.S., Diogo H.P., Moura-Ramos J.J. Crystalline Anhydrous α,α-Trehalose (Polymorph β) and Crystalline Dihydrate α,α-Trehalose: A Calorimetric Study. J. Chem. Thermodyn. 2006;38:1130–1138. doi: 10.1016/j.jct.2005.11.005. [DOI] [Google Scholar]
  • 156.Swain H.A., Jr., Silbert L.S., Miller J.G. The Heats of Combustion of Aliphatic Long Chain Peroxyacids, & Butyl Peroxyesters, and Related Acids and Esters. J. Am. Chem. Soc. 1964;86:2562–2566. doi: 10.1021/ja01067a007. [DOI] [Google Scholar]
  • 157.Romero J.M., Bustillo S., Maisuls H.E.R., Jorge N.L., Vara M.E.G., Castro E.A., Jubert A.H. Calorimetric and Computational Study of Enthalpy of Formation of Diperoxide of Cyclohexanone. Int. J. Mol. Sci. 2007;8:688–694. doi: 10.3390/i8070688. [DOI] [Google Scholar]
  • 158.Contini A.E., Bellamy A.J., Ahad L.A. Taming the Beast: Measurement of the Enthalpies of Combustion and Formation of Triacetone Triperoxide (TATP) and Diacetone Diperoxide (DADP) by Oxygen Bomb Calorimetry. Propellants Explos. Pyrotech. 2012;37:320–328. doi: 10.1002/prep.201100100. [DOI] [Google Scholar]
  • 159.Van Chin Syan Y.Y., Pavlovskii Y.P., Gerasimchuk S.I., Dutka V.S. The Standard Enthalpies of Formation and Thermal Stability of Diacyldiperoxides. Russ. J. Phys. Chem. A. 2012;86:527–532. doi: 10.1134/S0036024412040292. [DOI] [Google Scholar]
  • 160.Pavlovskii Y.P., Kachurina N.S., Gerasimchuk S.I., Van Chin Syan Y.Y. Thermochemical Properties of Tert Butyl and Cumyl Derivatives of Peroxide Compounds. Russ. J. Phys. Chem. A. 2013;87:1253–1258. doi: 10.1134/S003602441307025X. [DOI] [Google Scholar]
  • 161.Sinditskii V.P., Kolesov V.I., Egorshev V.Y., Patrikeev D.I., Dorofeeva O.V. Thermochemistry of Cyclic Acetone Peroxides. Thermochim. Acta. 2014;585:10–15. doi: 10.1016/j.tca.2014.03.046. [DOI] [Google Scholar]
  • 162.Ribeiro da Silva M.A.V., Ribeiro da Silva M.D.M.C., Monteiro M.F.B.M., Gomes M.L.A.C.N., Chickos J.S., Smith A.P., Liebman J.F. Thermochemical Studies for Determination of the Molar Enthalpy of Formation of Aniline Derivatives. Struct. Chem. 1996;7:367–373. doi: 10.1007/BF02275163. [DOI] [Google Scholar]
  • 163.Sabbah R., Perez L. Energétique des Liaisons Inter- et Intramoléculaires Dans les Trois Isomères du Benzènediamine. Can. J. Chem. 1997;75:357–364. doi: 10.1139/v97-041. [DOI] [Google Scholar]
  • 164.Verevkin S.P., Morgenthaler J., Rüchardt C. Thermochemistry of Imines: Experimental Standard Molar Enthalpies of Formation. J. Chem. Thermodyn. 1997;29:1175–1183. doi: 10.1006/jcht.1997.0242. [DOI] [Google Scholar]
  • 165.Bazyleva A.B., Blokhin A.V., Kabo A.G., Kabo G.J., Emel’yanenko V.N., Verevkin S.P. Thermodynamic Properties of 1-Aminoadamantane. J. Chem. Thermodyn. 2008;40:509–522. doi: 10.1016/j.jct.2007.08.002. [DOI] [Google Scholar]
  • 166.Ribeiro da Silva M.A.V., Lobo Ferreira A.I.M.C., Santos A.F.L.O.M., Ferreira C.M.A., Barros D.C.B., Reis J.A.C., Costa J.C.S., Calvinho M.M.G., Rocha S.I.A., Pinto S.P., et al. Enthalpies of Combustion, Vapour Pressures, and Enthalpies of Sublimation of the 1,5- and 1,8-Diaminonaphthalenes. J. Chem. Thermodyn. 2010;42:371–379. doi: 10.1016/j.jct.2009.09.009. [DOI] [Google Scholar]
  • 167.Ribeiro da Silva M.A.V., Santos A.F.L.O.M. Diaminobenzenes: An Experimental and Computational Study. J. Phys. Chem. B. 2011;115:4939–4948. doi: 10.1021/jp200670s. [DOI] [PubMed] [Google Scholar]
  • 168.Silva A.I.R., Gama P.M.V., Ribeiro da Silva M.D.M.C. Influence of the Functional Groups −NH2, −OCH3, and −OH on the Thermochemistry of Indanes. Can. J. Chem. 2019;97:788–794. doi: 10.1139/cjc-2019-0257. [DOI] [Google Scholar]
  • 169.Ledo J.M., Flores H., Freitas V.L.S., Solano-Altamirano J.M., Hernández-Pérez J.M., Camarillo A., Ramos F., Ribeiro da Silva M.D.M.C. Benzocaine: A Comprehensive Thermochemical Study. J. Chem. Thermodyn. 2020;147:106119. doi: 10.1016/j.jct.2020.106119. [DOI] [Google Scholar]
  • 170.Roux M.V., Jimenez P., Martin-Luengo M.A., Davalos J.Z., Sun Z., Hosmane R.S., Liebman J.F. The Elusive Antiaromaticity of Maleimides and Maleic Anhydride: Enthalpies of Formation of N-Methylmaleimide, N-Methylsuccinimide, N-Methylphthalimide, and N-Benzoyl-N-methylbenzamide. J. Org. Chem. 1997;62:2732–2737. doi: 10.1021/jo9621985. [DOI] [PubMed] [Google Scholar]
  • 171.Ribeiro da Silva M.D.M.C., Goncalves J.M., Ferreira S.C.C., da Silva L.C.M., Sottomayor M.J., Pilcher G., Acree Jr. W. E.; Roy, L.E. Experimental Thermochemical Study of the Enthalpies of Formation and Sublimation of Isonicotinamide, Picolinamide, Nicotinamide, Isonicotinamide N-Oxide, and Nicotinamide N-Oxide. The Dissociation Enthalpies of the N–O Bonds. J. Chem. Thermodyn. 2001;33:1263–1275. doi: 10.1006/jcht.2001.0839. [DOI] [Google Scholar]
  • 172.Ribeiro da Silva M.A.V., Santos L.M.N.B.F., Schröder B., Beyer L. Thermochemical Studies of Three N-Thiocarbamoylbenzamidines. J. Chem. Thermodyn. 2004;36:555–559. doi: 10.1016/j.jct.2004.03.015. [DOI] [Google Scholar]
  • 173.Ribeiro da Silva M.A.V., Cabral J.I.T.A. Thermochemical Study of 1-, 3- and 4-Piperidinecarboxamide Derivatives. Thermochim. Acta. 2007;453:147–151. doi: 10.1016/j.tca.2006.11.008. [DOI] [Google Scholar]
  • 174.Ribeiro da Silva M.A.V., Cabral J.I.T.A. Experimental Study on the Thermochemistry of 1-(2H)-Phthalazinone and Phthalhydrazide. J. Chem. Thermodyn. 2008;40:829–835. doi: 10.1016/j.jct.2008.01.010. [DOI] [Google Scholar]
  • 175.Ribeiro da Silva M.A.V., Santos A.F.L.O.M. Standard Molar Enthalpies of Formation and of Sublimation of 2-Thiophenecarboxamide and 2-Thiopheneacetamide. J. Chem. Thermodyn. 2008;40:166–173. doi: 10.1016/j.jct.2007.07.004. [DOI] [Google Scholar]
  • 176.Ribeiro da Silva M.A.V., Amaral L.M.P.F., Santos A.F.L.O.M. Thermochemical and Thermophysical Study of 2-Thiophenecarboxylic acid Hydrazide and 2-Furancarboxylic Acid Hydrazide. J. Chem. Thermodyn. 2008;40:1588–1593. doi: 10.1016/j.jct.2008.06.011. [DOI] [Google Scholar]
  • 177.Almeida A.R.R.P., Matos M.A.R., Monte M.J.S., Morais V.M.F. Experimental and Computational Thermodynamic Study of Ortho-, Meta-, and Para-Methylbenzamide. J. Chem. Thermodyn. 2012;47:81–89. doi: 10.1016/j.jct.2011.09.024. [DOI] [Google Scholar]
  • 178.Almeida A.R.R.P., Monte M.J.S., Matos M.A.R., Morais V.M.F. Experimental and Computational Thermodynamic Study of Ortho- Meta- and Para-Aminobenzamide. J. Chem. Thermodyn. 2013;59:222–232. doi: 10.1016/j.jct.2012.12.006. [DOI] [Google Scholar]
  • 179.Almeida A.R.R.P., Monte M.J.S., Matos M.A.R., Morais V.M.F. The Thermodynamic Stability of the Three Isomers of Methoxybenzamide: An Experimental and Computational Study. J. Chem. Thermodyn. 2014;73:12–22. doi: 10.1016/j.jct.2013.06.022. [DOI] [Google Scholar]
  • 180.Emel’yanenko V.N., Zaitseva K.V., Nagrimanov R.N., Solomonov B.N., Verevki S.P. Benchmark Thermodynamic Properties of Methyl- and Methoxy-Benzamides: Comprehensive Experimental and Theoretical Study. J. Phys. Chem. A. 2016;120:42–8419. doi: 10.1021/acs.jpca.6b08027. [DOI] [PubMed] [Google Scholar]
  • 181.Ryskaliyeva A.K., Baltabayev M.E., Abaeva K.T. Empirical Method for Predicting the Enthalpy Changes of Combustion of Amides. J. Serb. Chem. Soc. 2019;84:477–481. doi: 10.2298/JSC180809094R. [DOI] [Google Scholar]
  • 182.Ryskaliyeva A.K., Baltabayev M.E., Zhubatova A.M. Thermochemical Properties and Regularities of Amides, Anilides, and Amidic Acids. Acta Chim. Slov. 2018;65:127–130. doi: 10.17344/acsi.2017.3683. [DOI] [PubMed] [Google Scholar]
  • 183.Verevkin S.P., Emel’yanenko V.N., Zaitsau D.H. Thermochemistry of Substituted Benzamides and Substituted Benzoic Acids: Like Tree, Like Fruit? ChemPhysChem. 2018;19:1–13. doi: 10.1002/cphc.201701132. [DOI] [PubMed] [Google Scholar]
  • 184.Ryskaliyeva A.K., Baltabayev M.E., Abaeva K.T. Regularities of Enthalpies of Combustion of Nitrogen-Containing Organic Compounds. J. Chem. Soc. Pak. 2019;41:531–534. [Google Scholar]
  • 185.Freitas V.L.S., Ribeiro da Silva M.D.M.C. Thermodynamic Properties of ε-Caprolactam and ε-Caprothiolactam. J. Chem. Thermodyn. 2019;132:451–460. doi: 10.1016/j.jct.2019.01.014. [DOI] [Google Scholar]
  • 186.Salas-Lopez K., García-Castro M.A., Amador P., Herrera-Gonzalez A.M., Galicia-Aguilar A., Amador F.A., Hernandez-Pascasio F., Flores H. Standard Enthalpies of Formation of N,N′-(1,3-Phenylene)Bis(Phthalimide) and N,N′-(1,3-Phenylene)Bis(Phthalimide-5-Carboxilic Acid) Thermochim. Acta. 2021;697:178861. doi: 10.1016/j.tca.2021.178861. [DOI] [Google Scholar]
  • 187.Perisanu S., Contineanu I., Neacsu A., Tanasescu S. The Calorimetric Study of Some Guanidine Derivatives Involved in Living Bodies Nitrogen Metabolism. J. Therm. Anal. Calorim. 2010;101:1127–1133. doi: 10.1007/s10973-010-0682-3. [DOI] [Google Scholar]
  • 188.Vitorino J., Agapito F., Piedade M.F.M., Bernardes C.E.S., Diogo H.P., Leal J.P., Minas da Piedade M.E. Thermochemistry of 1,1,3,3-Tetramethylguanidine and 1,1,3,3-Tetramethylguanidinium Nitrate. J. Chem. Thermodyn. 2014;77:179–189. doi: 10.1016/j.jct.2014.01.007. [DOI] [Google Scholar]
  • 189.Huffman H.M. Thermal Data. XI. The Heats of Combustion of Urea and Guanidine Carbonate and their Standard Free Energies of Formation. J. Am. Chem. Soc. 1940;62:1009–1011. doi: 10.1021/ja01862a006. [DOI] [Google Scholar]
  • 190.Ribeiro da Silva M.A.V., Ribeiro da Silva M.D.M.C., Silva L.C.M., Dietze F., Hoyer E. Thermochemical Study of Two N-Benzoyl-N′,N′-Dialkylureas. J. Chem. Thermodyn. 2000;32:1113–1119. doi: 10.1006/jcht.1999.0527. [DOI] [Google Scholar]
  • 191.Ribeiro da Silva M.A.V., Ribeiro da Silva M.D.M.C., Silva L.C.M., Dietze F., Hoyer E., Beyer L., Schröder B., Damas A.M., Liebman J.F. Synthesis, Characterization and Thermochemical Properties of N-Acyl-N′,N′-Diethylthioureas. J. Chem. Soc. Perkin Trans. 2001;2:2174–2178. doi: 10.1039/b104709b. [DOI] [Google Scholar]
  • 192.Ribeiro da Silva M.A.V., Santos L.M.N.B.F., Schröder B., Beyer L., Dietze F. Enthalpies of Combustion of Two Bis(N,N-Diethylthioureas) J. Chem. Thermodyn. 2007;39:279–283. doi: 10.1016/j.jct.2006.07.007. [DOI] [Google Scholar]
  • 193.Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V., Freitas V.L.S., Roux M.V., Jimenez P., Temprado M., Davalos J.Z., Cabildo P., Claramunt R.M., Elguero J. Structural Studies of Cyclic Ureas: 1. Enthalpies of Formation of Imidazolidin-2-One and N,N′-Trimethyleneurea. J. Chem. Thermodyn. 2008;40:386–393. doi: 10.1016/j.jct.2007.08.004. [DOI] [Google Scholar]
  • 194.Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V., Freitas V.L.S., Roux M.V., Jimenez P., Temprado M., Davalos J.Z., Cabildo P., Claramunt R.M., Elguero J. Structural Studies of Cyclic Ureas: 3. Enthalpy of Formation of Barbital. J. Chem. Thermodyn. 2009;41:1400–1407. doi: 10.1016/j.jct.2009.06.018. [DOI] [Google Scholar]
  • 195.Silva A.L.R., Ribeiro da Silva M.D.M.C. Comprehensive Thermochemical Study of Cyclic Five- and Six-Membered N,N′-Thioureas. J. Chem. Eng. Data. 2017;62:2584–2591. doi: 10.1021/acs.jced.7b00083. [DOI] [Google Scholar]
  • 196.Verevkin S.P., Emelyanenko V.N., Zaitsau D.H., Surov A.O., Andrushko V., Pimerzin A.A. Phenyl Substituted Ureas: Evaluation of Thermochemical Data with Complementary Experimental and Computational Methods. J. Chem. Thermodyn. 2019;132:439–450. doi: 10.1016/j.jct.2019.01.022. [DOI] [Google Scholar]
  • 197.Gantman M.G., Emel′yanenko V.N., Turovtsev V.V., Fedina Y.A., Verevkin S.P. Thermodynamic Properties of Trimethylene Urethane (1,3-Oxazinan-2-One) J. Chem. Eng. Data. 2018;63:4573–4579. doi: 10.1021/acs.jced.8b00643. [DOI] [Google Scholar]
  • 198.Temprado M., Roux M.V., Parameswar A.R., Demchenko A.V., Chickos J.S., Liebman J.F. Thermophysical Properties in Medium Temperature Range of Several Thio and Dithiocarbamates. J. Therm. Anal. Calorim. 2008;91:471–475. doi: 10.1007/s10973-007-8345-8. [DOI] [Google Scholar]
  • 199.Dorofeeva O.V., Ryzhova O.N., Suntsova M.A. Accurate Prediction of Enthalpies of Formation of Organic Azides by Combining G4 Theory Calculations with an Isodesmic Reaction Scheme. J. Phys. Chem. A. 2013;117:6835–6845. doi: 10.1021/jp404484q. [DOI] [PubMed] [Google Scholar]
  • 200.Emelyanenko V.N., Algarra M., Esteves da Silva J.C.C., Hierrezuelo J., López-Romero J.M., Verevkin S.P. Thermochemistry of Organic Azides Revisited. Thermochim. Acta. 2014;597:78–84. doi: 10.1016/j.tca.2014.10.015. [DOI] [Google Scholar]
  • 201.Acree W.E., Jr., Tucker S.A., Zvaigzne A.I., Meng-Yan Y., Pilcher G., Ribeiro da Silva M.D.M.C. Enthalpies of Combustion of 2,4,6-Trimethylbenzonitrile, 2,4,6-Trimethylbenzonitrile N-Oxide, 2,6-Dimethylbenzonitrile, 2,4,6-Trimethoxybenzonitrile, and 2,4,6-Trimethoxybenzonitrile N-Oxide: The Dissociation Enthalpies of the (N–O) Bonds. J. Chem. Thermodyn. 1991;23:31–36. doi: 10.1016/S0021-9614(05)80055-2. [DOI] [Google Scholar]
  • 202.Acree W.E., Jr., Tucker S.A., Pilcher G. Enthalpies of Combustion of 1,4-Dicyanobenzene Di-N-Oxide and 1,4-Dicyanobenzene: The Mean Dissociation Enthalpy of the (N–O) Bonds. J. Chem. Thermodyn. 1992;24:213–216. doi: 10.1016/S0021-9614(05)80049-7. [DOI] [Google Scholar]
  • 203.Ribeiro da Silva M.A.V., Lobo Ferreira A.I.M.C., Barros A.L.M., Bessa A.R.C., Brito B.C.S.A., Vieira J.A.S., Martins S.A.P. Standard Molar Enthalpies of Formation of 1- and 2-Cyanonaphthalene. J. Chem. Thermodyn. 2011;43:1306–1314. doi: 10.1016/j.jct.2011.03.013. [DOI] [Google Scholar]
  • 204.Perisanu S., Contineanu I., Neacsu A., Notario R., Roux M.V., Liebman J.F., Dodson B.J. Thermochemistry and Quantum Chemical Calculationsof Two Dibenzocycloalkane Nitriles. Struct. Chem. 2011;22:89–94. doi: 10.1007/s11224-010-9691-x. [DOI] [Google Scholar]
  • 205.Ribeiro da Silva M.A.V., Monte M.J.S., Rocha I.M., Cimas A. Energetic Study Applied to the Knowledge of the Structural and Electronic Properties of Monofluorobenzonitriles. J. Org. Chem. 2012;77:4312–4322. doi: 10.1021/jo3002968. [DOI] [PubMed] [Google Scholar]
  • 206.Rocha I.M., Galvao T.L.P., Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V. Energetic Study of Bromobenzonitrile Isomers: Insights on the Intermolecular Interactions, Aromaticity and Electronegativity. Struct. Chem. 2013;24:1935–1944. doi: 10.1007/s11224-013-0278-1. [DOI] [Google Scholar]
  • 207.Rocha I.M., Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V. Thermodynamic and Aromaticity Studies for the Assessment of the Halogen Cyano Interactions on Iodobenzonitrile. J. Chem. Thermodyn. 2013;65:204–212. doi: 10.1016/j.jct.2013.06.003. [DOI] [Google Scholar]
  • 208.Rocha I.M., Galvao T.L.P., Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V. Thermodynamic Study of Chlorobenzonitrile Isomers: A Survey on the Polymorphism, Pseudosymmetry, and the Chloro Cyano Interaction. J. Phys. Chem. A. 2014;118:1502–1510. doi: 10.1021/jp410187q. [DOI] [PubMed] [Google Scholar]
  • 209.Smirnova N.N., Kandeev K.V., Bykova T.A., Kulagina T.G. Thermodynamics of 1,4-Diisocyanatobutane in the Range from T –> (0 to 360) K at Standard Pressure. J. Chem. Thermodyn. 2006;38:376–382. doi: 10.1016/j.jct.2005.06.002. [DOI] [Google Scholar]
  • 210.Li H.-Y., Yan B., Guan Y.-L., Ma H.-X., Song J.-R., Zhao F.-Q. Thermodynamic Properties of 4-Amino-3-Furazanecarboxamidoxime. J. Chem. Thermodyn. 2015;90:87–91. doi: 10.1016/j.jct.2015.06.020. [DOI] [Google Scholar]
  • 211.Miroshnichenko E.A., Kon′kova T.S., Matyushin Y.N., Inozemtsev Y.O. Bond Dissociation Energies in Nitramines. Russ. Chem. Bull. 2009;58:2015–2019. doi: 10.1007/s11172-009-0275-0. [DOI] [Google Scholar]
  • 212.Byström K. Enthalpies of Combustion, Vaporization, and Formation for Di-N-Propyldiazene N-Oxide and Di-T-Butyldiazene N-Oxide. J. Chem. Thermodyn. 1981;13:139–145. doi: 10.1016/S0021-9614(81)80018-3. [DOI] [Google Scholar]
  • 213.Dias A.R., Minas de Piedade M.E., Martinho Simoes J.A., Simoni J.A., Teixeira C., Diogo H.P., Meng-Yan Y., Pilcher G. Enthalpies of Formation of cis-Azobenzene and Trans-Azobenzene. J. Chem. Thermodyn. 1992;24:439–447. doi: 10.1016/S0021-9614(05)80161-2. [DOI] [Google Scholar]
  • 214.Kirpichev E.P., Zyuzin I.N., Avdonin V.V., Rubtsov Y.I., Lempert D.B. The Standard Enthalpies of Formation of Alkoxy-NNO-Azoxy Compounds. Russ. J. Phys. Chem. 2006;80:1359–1362. doi: 10.1134/S0036024406090019. [DOI] [Google Scholar]
  • 215.Kirchner J.J., Acree W.E., Jr., Pilcher G., Shaofeng L. Enthalpies of Combustion of Four N-Phenylmethylene Benzenamine N-Oxide Derivatives, of N-Phenylmethylene Benzenamine, and of Trans-Diphenyldiazene N-Oxide: The Dissociation Enthalpy of the (N–O) Bonds. J. Chem. Thermodyn. 1986;18:793–799. doi: 10.1016/0021-9614(86)90112-6. [DOI] [Google Scholar]
  • 216.Acree W.E., Jr., Kirchner J.J., Tucker S.A., Pilcher G., Ribeiro da Silva M.D.M.C. Enthalpies of Combustion of Three Benzylidene t-Butylamine N-Oxide Derivatives and of 4-Nitrobenzylidene t-Butylamine: The Dissociation Enthalpies of the (N–O) Bonds. J. Chem. Thermodyn. 1989;21:443–448. doi: 10.1016/0021-9614(89)90147-X. [DOI] [Google Scholar]
  • 217.Acree W.E., Jr., Tucker S.A., Ribeiro da Silva M.D.M.C., Matos M.A.R., Ribeiro da Silva M.A.V., Pilcher G. Enthalpies of Combustion of 3-Nitropyridine N-Oxide and Pyridine-3-Carboxylic Acid N-Oxide: The Dissociation Enthalpies of the N–O Bonds in Pyridine N-Oxide Derivatives. J. Chem. Thermodyn. 1995;27:391–398. doi: 10.1006/jcht.1995.0038. [DOI] [Google Scholar]
  • 218.Acree W.E., Jr., Powell J.R., Tucker S.A., Ribeiro da Silva M.D.M.C., Matos M.A.R., Goncalves J.M., Santos L.M.N.B.F., Morais V.M.F., Pilcher G. Thermochemical and Theoretical Study of Some Quinoxaline 1,4-Dioxides and of Pyrazine 1,4-Dioxide. J. Org. Chem. 1997;62:3722–3726. doi: 10.1021/jo962149s. [DOI] [Google Scholar]
  • 219.Ribeiro da Silva M.D.M.C., Matos M.A.R., Vaz M.C., Santos L.M.N.B.F., Pilcher G., Acree W.E., Jr., Powell J.R. Enthalpies of Combustion of the Pyridine N-Oxide Derivatives: 4-Methyl-, 3-Cyano-, 4-Cyano-, 3-Hydroxy-, 2-Carboxy-, 4-Carboxy-, and 3-Methyl-4-Nitro, and of the Pyridine Derivatives: 2-Carboxy-, and 4-Carboxy-. The Dissociation Enthalpies of the N–O Bonds. J. Chem. Thermodyn. 1998;30:869–878. doi: 10.1006/jcht.1998.0353. [DOI] [Google Scholar]
  • 220.Ribeiro da Silva M.D.M.C., Santos L.M.N.B.F., Silva A.L.R., Fernandes O., Acree W.E., Jr. Energetics of 6-Methoxyquinoline and 6-Methoxyquinoline N-Oxide: The Dissociation Enthalpy of the (N–O) Bond. J. Chem. Thermodyn. 2003;35:1093–1100. doi: 10.1016/S0021-9614(03)00052-1. [DOI] [Google Scholar]
  • 221.Ribeiro da Silva M.D.M.C., Gomes J.R.B., Goncalves J.M., Sousa E.A., Pandey S., Acree W.E., Jr. Thermodynamic Properties of Quinoxaline-1,4-Dioxide Derivatives: A Combined Experimental and Computational Study. J. Org. Chem. 2004;69:2785–2792. doi: 10.1021/jo035695b. [DOI] [PubMed] [Google Scholar]
  • 222.Ribeiro da Silva M.D.M.C., Gomes J.R.B., Goncalves J.M., Sousa E.A., Pandey S., Acree W.E., Jr. Thermochemistry of 2-Amino-3-Quinoxalinecarbonitrile-1,4-Dioxide. Evaluation of the Mean Dissociation Enthalpy of the (N–O) Bond. Org. Biomol. Chem. 2004;2:2507–2512. doi: 10.1039/B408250H. [DOI] [PubMed] [Google Scholar]
  • 223.Gomes J.R.B., Sousa E.A., Goncalves J.M., Monte M.J.S., Gomes P., Pandey S., Acree W.E., Jr., Ribeiro da Silva M.D.M.C. Energetics of the N–O Bonds in 2-Hydroxyphenazine-Di-N-Oxide. J. Phys. Chem. B. 2005;109:16188–16195. doi: 10.1021/jp051350g. [DOI] [PubMed] [Google Scholar]
  • 224.Acree W.E., Jr., Pilcher G., Ribeiro da Silva M.D.M.C. The Dissociation Enthalpies of Terminal (N–O) Bonds in Organic Compounds. J. Phys. Chem. Ref. Data. 2005;34:553–572. doi: 10.1063/1.1851531. [DOI] [Google Scholar]
  • 225.Ribeiro da Silva M.D.M.C., Vieira M.A.A., Givens C., Keown S., Acree W.E., Jr. Experimental Thermochemical Study of Two Polymethylpyrazine N,N′-Dioxide Derivatives. Thermochim. Acta. 2006;450:67–70. doi: 10.1016/j.tca.2006.07.021. [DOI] [Google Scholar]
  • 226.Gomes J.R.B., Sousa E.A., Gomes P., Vale N., Goncalves J.M., Pandey S., Acree W.E., Jr., Ribeiro da Silva M.D.M.C. Thermochemical Studies on 3-Methyl-Quinoxaline-2-Carboxamide-1,4-Dioxide Derivatives: Enthalpies of Formation and of N–O Bond Dissociation. J. Phys. Chem. B. 2007;111:2075–2080. doi: 10.1021/jp067818c. [DOI] [PubMed] [Google Scholar]
  • 227.Cabral J.I.T.A., Monteiro R.A.R., Rocha M.A.A., Santos L.M.N.B.F., Acree W.E., Jr., Ribeiro da Silva M.D.M.C. Molecular Energetics of Alkyl Substituted Pyridine N-Oxides. J. Therm. Anal. Calorim. 2010;100:431–439. doi: 10.1007/s10973-009-0646-7. [DOI] [Google Scholar]
  • 228.Gomes J.R.B., Monteiro A.R., Campos B.B., Gomes P., Ribeiro da Silva M.D.M.C. The Enthalpies of Dissociation of the N–O Bonds in Two Quinoxaline Derivatives. J. Phys. Org. Chem. 2009;22:17–23. doi: 10.1002/poc.1419. [DOI] [Google Scholar]
  • 229.Viveiros M.L.F., Freitas V.L.S., Vale N., Gomes J.R.B., Gomes P., Ribeiro da Silva M.D.M.C. Synthesis and Thermochemical Study of Quinoxaline-N-Oxides: Enthalpies of Dissociation of the N–O Bond. J. Phys. Org. Chem. 2012;25:420–426. doi: 10.1002/poc.1932. [DOI] [Google Scholar]
  • 230.Santos A.F.L.O.M., Monteiro A.R., Goncalves J.M., Acree W.E., Jr., Ribeiro da Silva M.D.M.C. Thermochemistry of 2,2′-Dipyridil N-Oxide and 2,2′-Dipyridil N,N′-Dioxide. The Dissociation Enthalpies of the N–O Bonds. J. Chem. Thermodyn. 2011;43:1044–1049. doi: 10.1016/j.jct.2011.02.011. [DOI] [Google Scholar]
  • 231.Ribeiro da Silva M.D.M.C., Ferreira S.C.C., Rodrigues I.A.P., da Silva L.C.M., Acree W.E., Jr., Pandey S., Roy L.E. Experimental Standard Molar Enthalpies of Formation of Crystalline 3,5-Dimethylpyrazole, 3,5-Dimethyl-4-Nitrosopyrazole, 1,3,5-Trimethyl-4-Nitrosopyrazole, and 3,5-Dimethyl-1-Phenyl-4-Nitrosopyrazole. J. Chem. Thermodyn. 2001;33:1227–1235. doi: 10.1006/jcht.2000.0768. [DOI] [Google Scholar]
  • 232.Young J.A., Keith J.E., Stehle P., Dzombak W.C., Hunt H. Heats of Combustion of Some Organic Nitrogen Compounds. Ind. Eng. Chem. 1956;48:1375–1378. doi: 10.1021/ie50560a040. [DOI] [Google Scholar]
  • 233.Verevkin S.P. Thermochemistry of Nitro Compounds. Experimental Standard Enthalpies of Formation and Improved Group-Additivity Values. Thermochim. Acta. 1997;307:17–25. doi: 10.1016/S0040-6031(97)00359-6. [DOI] [Google Scholar]
  • 234.Ribeiro da Silva M.A.V., Matos M.A.R., Monte M.J.S., Hillesheim D.M., Marques M.C.P.O., Vieira N.F.T.G. Enthalpies of Combustion, Vapour Pressures, and Enthalpies of Sublimation of Three Methoxy-Nitrobenzoic Acids. Vapour Pressures and Enthalpies of Sublimation of the Three Nitrobenzoic Acids. J. Chem. Thermodyn. 1999;31:1429–1441. doi: 10.1006/jcht.1999.0507. [DOI] [Google Scholar]
  • 235.Ribeiro da Silva M.A.V., Lima L.M.S.S., Amaral L.M.P.F., Ferreira A.I.M.C.L., Gomes J.R.B. Standard Molar Enthalpies of Formation, Vapour Pressures, and Enthalpies of Sublimation of 2-Chloro-4-Nitroaniline and 2-Chloro-5-Nitroaniline. J. Chem. Thermodyn. 2003;35:1343–1359. doi: 10.1016/S0021-9614(03)00109-5. [DOI] [Google Scholar]
  • 236.Miranda M.S., Morais V.M.F., Matos M.A.R. Standard Molar Enthalpies of Formation of the Methoxynitrophenol Isomers: A Combined Experimental and Theoretical Investigation. J. Chem. Thermodyn. 2004;36:431–436. doi: 10.1016/j.jct.2004.02.006. [DOI] [Google Scholar]
  • 237.Feng-Qi Z., Pei C., Rong-Zu H., Yang L., Zhi-Zhong Z., Yan-Shui Z., Xu-Wu Y., Yin G., Sheng-Li G., Qi-Zhen S. Thermochemical Properties and Non-Isothermal Decomposition Reaction Kinetics of 3,4-Dinitrofurazanfuroxan (DNTF) J. Hazard. Mat. A. 2004;113:67–71. doi: 10.1016/j.jhazmat.2004.07.009. [DOI] [PubMed] [Google Scholar]
  • 238.Ribeiro da Silva M.A.V., Amaral L.M.P.F., Santos A.F.L.O.M., Gomes J.R.B. Thermochemistry of Nitronaphthalenes and Nitroanthracenes. J. Chem. Thermodyn. 2006;38:748–755. doi: 10.1016/j.jct.2005.08.007. [DOI] [Google Scholar]
  • 239.Ribeiro da Silva M.A.V., Lima L.M.S.S., Moreno A.R.G., Ferreira A.I.M.C.L., Gomes J.R.B. Combined Experimental and Computational Thermochemistry of Isomers of Chloronitroanilines. J. Chem. Thermodyn. 2008;40:155–165. doi: 10.1016/j.jct.2007.07.007. [DOI] [Google Scholar]
  • 240.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L., Moreno A.R.G. Experimental and Computational Thermochemical Study of the Dichloronitrobenzene Isomers. J. Chem. Thermodyn. 2009;41:904–910. doi: 10.1016/j.jct.2009.03.001. [DOI] [Google Scholar]
  • 241.Ribeiro da Silva M.A.V., Cabral J.I.T.A. Experimental Study on the Thermochemistry of 5-Nitroindole and 5-Nitroindoline. J. Chem. Thermodyn. 2009;41:355–360. doi: 10.1016/j.jct.2008.09.014. [DOI] [Google Scholar]
  • 242.Mel’khanova S.V., Pimenova S.M., Yashin N.V. The Standard Enthalpies of Formation of 1-Nitrodispiro[2.0.2.1]Heptane and 1-Nitrodispiro[2.0.3.1]Octane. Russ. J. Phys. Chem. A. 2009;83:1241–1243. doi: 10.1134/S003602440907036X. [DOI] [Google Scholar]
  • 243.Ribeiro da Silva M.A.V., Santos A.F.L.O.M. Thermochemical Properties of two Nitrothiophene Derivatives. 2-Acetyl-5-Nitrothiophene and 5-Nitro-2-Thiophenecarboxaldehyde. J. Therm. Anal. Calorim. 2010;100:403–411. doi: 10.1007/s10973-009-0635-x. [DOI] [Google Scholar]
  • 244.Ribeiro da Silva M.A.V., Amaral L.M.P.F., Ortiz R.V. Experimental Study on the Thermochemistry of 3-Nitrobenzophenone, 4-Nitrobenzophenone and 3,30-Dinitrobenzophenone. J. Chem. Thermodyn. 2011;43:546–551. doi: 10.1016/j.jct.2010.11.005. [DOI] [Google Scholar]
  • 245.Ribeiro da Silva M.A.V., Amaral L.M.P.F. Standard Molar Enthalpies of Formation of 3′- and 4′-Nitroacetophenones. J. Chem. Thermodyn. 2011;43:876–881. doi: 10.1016/j.jct.2011.01.006. [DOI] [Google Scholar]
  • 246.Ferreira A.I.M.C.L., Ribeiro da Silva M.A.V. Experimental and Computational Study of the Thermochemistry of the Three Iodonitrobenzene Isomers. J. Chem. Thermodyn. 2013;59:94–106. doi: 10.1016/j.jct.2012.09.031. [DOI] [Google Scholar]
  • 247.Verevkin S.P., Emel’yanenko V.N., Diky V., Dorofeeva O.V. Enthalpies of Formation of Nitromethane and Nitrobenzene: New Experiments vs. Quantum Chemical Calculations. J. Chem. Thermodyn. 2014;73:163–170. doi: 10.1016/j.jct.2013.12.013. [DOI] [Google Scholar]
  • 248.Oliveira J.A.S.A., Monte M.J.S., Notario R., Ribeiro da Silva M.D.M.C. Experimental and Computational Study of the Thermodynamic Properties of 2-Nitrofluorene and 2-Aminofluorene. J. Chem. Thermodyn. 2014;76:56–63. doi: 10.1016/j.jct.2014.03.005. [DOI] [Google Scholar]
  • 249.García-Castro M.A., Amador P., Hernandez-Perez J.M., Medina-Favela A.E., Flores H. Experimental and Computational Thermochemistry of 3- and 4-Nitrophthalic Anhydride. J. Phys. Chem. A. 2014;118:3820–3826. doi: 10.1021/jp5003929. [DOI] [PubMed] [Google Scholar]
  • 250.Sun Q., Zhang Y., Xu K., Ren Z., Song J., Zhao F. Studies on Thermodynamic Properties of FOX-7 and Its Five Closed-Loop Derivatives. J. Chem. Eng. Data. 2015;60:2057–2061. doi: 10.1021/acs.jced.5b00021. [DOI] [Google Scholar]
  • 251.Klapötke T.M., Witkowski T.G. 5,5’-Bis(2,4,6-Trinitrophenyl)-2,2’-Bi(1,3,4-Oxadiazole) (TKX-55): Thermally Stable Explosive with Outstanding Properties. ChemPlusChem. 2016;81:357–360. doi: 10.1002/cplu.201600078. [DOI] [PubMed] [Google Scholar]
  • 252.Kazakov A.I., Dalinger I.L., Zyuzin I.N., Lempert D.B., Plishkin N.A., Sheremetev A.B. Enthalpies of Formation of 3,4- and 3,5-Dinitro-1-Trimethyl-1H-Pyrazoles. Russ. Chem. Bull. 2016;65:2783–2788. doi: 10.1007/s11172-016-1656-9. [DOI] [Google Scholar]
  • 253.Carvalho T.M.T., Amaral L.M.P.F., Morais V.M.F., Ribeiro da Silva M.D.M.C. Calorimetric and Computational Studies for Three Nitroimidazole Isomers. J. Chem. Thermodyn. 2017;105:267–275. doi: 10.1016/j.jct.2016.10.026. [DOI] [Google Scholar]
  • 254.Bikelyte G., Härtel M., Stierstorfer J., Klapötke T.M., Pimerzin A.A., Verevkin S.P. Benchmark Properties of 2-, 3- and 4-Nitrotoluene: Evaluation of Thermochemical Data with Complementary Experimental and Computational Methods. J. Chem. Thermodyn. 2017;111:271–278. doi: 10.1016/j.jct.2017.03.029. [DOI] [Google Scholar]
  • 255.Salas-Lopez K., Amador P., Rojas A., Melendez F.J., Flores H. Experimental and Theoretical Thermochemistry of the Isomers 3- and 4-Nitrophthalimide. J. Phys. Chem. A. 2017;121:5509–5519. doi: 10.1021/acs.jpca.7b02508. [DOI] [PubMed] [Google Scholar]
  • 256.Zhang J.-Q., Liu R., Ji T.-Z., Ren J.-C., Guo Q., Wang B.-Z., Hu R.-Z. Thermal Behavior and Thermal Safety of 6b-Nitrohexahydro-2H-1,3,5-Trioxacyclopenta[cd]-Pentalene-2,4,6-Triyltrinitrate. RSC Adv. 2017;7:30747–30754. doi: 10.1039/C7RA05295B. [DOI] [Google Scholar]
  • 257.Gutowski L., Trzcinski W., Szala M. 5,5’,6,6’-Tetranitro-2,2’-Bibenzimidazole: A Thermally Stable and Insensitive Energetic Compound. ChemPlusChem. 2018;83:87–91. doi: 10.1002/cplu.201700541. [DOI] [PubMed] [Google Scholar]
  • 258.García-Castro M.A., Amador P., Rojas A., Hernández-Pérez J.M., Solano-Altamirano J.M., Flores H., Salas-López K. Experimental and Computational Thermochemistry of 3- and 4-Nitrophthalic Acids. J. Chem. Thermodyn. 2018;127:117–125. doi: 10.1016/j.jct.2018.07.026. [DOI] [Google Scholar]
  • 259.Pimenova S.M., Lukyanova V.A., Ilin D.Y., Druzhinina A.I., Dorofeeva O.V. Standard Enthalpies of Formation of Dicyclopropyldinitromethane and Tricyclopropylmethane. J. Chem. Thermodyn. 2019;132:316–321. doi: 10.1016/j.jct.2018.12.040. [DOI] [Google Scholar]
  • 260.Sun Q., Li Y.-f., Xu K.-Z., Song J.-R., Zhao F.-Q. Crystal Structure and Enthalpy of Combustion of AEFOX-7. Chin. J. Energ. Mater. 2015;23:1235–1239. [Google Scholar]
  • 261.Gutowski L., Gołofit T., Trzciński W., Szala M. Synthesis and Energetic Properties of 1,3,7,9-Tetranitrobenzo[c]Cinnoline-5-Oxide (TNBCO) Propellants Explos. Pyrotech. 2019;44:1–7. doi: 10.1002/prep.201900183. [DOI] [Google Scholar]
  • 262.Lukyanov O.A., Parakhin V.V., Shlykova N.I., Dmitrienko A.O., Melnikova E.K., Konkova T.S., Monogarov K.A., Meerov D.B. Energetic N-Azidomethyl Derivatives of Polynitro Hexaazaisowurtzitanes Series: The Most Highly Enthalpy Analogues of CL-20. New J. Chem. 2020;44:8357–8365. doi: 10.1039/D0NJ01453B. [DOI] [Google Scholar]
  • 263.Jia Q., Zhang J., Zhang S., Shi Q., Lei D., Xu Y., Kou K. Low-Temperature Heat Capacities, Standard Molar Enthalpies of Formation and Detonation Performance of Two CL-20 Cocrystal Energetic Materials. Fluid Phase Equil. 2020;518:112638. doi: 10.1016/j.fluid.2020.112638. [DOI] [Google Scholar]
  • 264.Burcat A. Thermodynamic Properties of Ideal Gas Nitro and Nitrate Compounds. J. Phys. Chem. Ref. Data. 1999;28:63–130. doi: 10.1063/1.556033. [DOI] [Google Scholar]
  • 265.Contineanu I., Neacsu A., Perisanu S. The Standard Enthalpies of Formation of l-Asparagine and l-a-Glutamine. Thermochim. Acta. 2010;497:96–100. doi: 10.1016/j.tca.2009.08.017. [DOI] [Google Scholar]
  • 266.Gridchin S.N., Volkov A.V., Dmitrieva N.G., Romodanovskii P.A. Enthalpies of the Formation and Dissolution of D Asparagine Monohydrate in Water and Aqueous Solutions of Potassium Hydroxide. Russ. J. Phys. Chem. A. 2011;85:2038–2040. doi: 10.1134/S0036024411110094. [DOI] [Google Scholar]
  • 267.Roux M.V.R., Notario R., Segura M., Chickos J.S., Liebman J.F. The Enthalpy of Formation of Methionine Revisited. J. Phys. Org. Chem. 2012;25 doi: 10.1002/poc.2961. [DOI] [Google Scholar]
  • 268.Santos A.F.L.O.M., Amaral L.M.P.F., Ribeiro da Silva M.D.M.C., Roux M.V.R., Notario R. Experimental and Computational Study on the Energetics of the Cyclic Anhydrides of Glycine and Alanine. J. Chem. Thermodyn. 2013;58:29–35. doi: 10.1016/j.jct.2012.10.012. [DOI] [Google Scholar]
  • 269.Ovchinnikov V.V. Thermochemistry of Heteroatomic Compounds: Analysis and Calculation of Thermodynamic Functions of Amino Acids and Some Peptides of Different Space Structure. Am. J. Phys. Chem. 2013;2:8–15. doi: 10.11648/j.ajpc.20130201.12. [DOI] [Google Scholar]
  • 270.Amaral L.M.P.F., Santos A.F.L.O.M., Ribeiro da Silva M.D.M.C., Notario R. Thermochemistry of Sarcosine and Sarcosine Anhydride: Theoretical and Experimental Studies. J. Chem. Thermodyn. 2013;58:315–321. doi: 10.1016/j.jct.2012.11.019. [DOI] [Google Scholar]
  • 271.Notario R., Roux M.V.R., Santos A.F.L.O.M., Ribeiro da Silva M.D.M.C. Experimental and Computational Study on the Energetics of N-Acetyl-l-Cysteine. J. Chem. Thermodyn. 2014;73:57–61. doi: 10.1016/j.jct.2013.08.026. [DOI] [Google Scholar]
  • 272.Gheorghe D., Neacsu A., Contineanu I., Teodorescu F., Tanasescu S. Thermochemical Properties of l-Alanine Nitrate and l-Alanine Ethyl Ester Nitrate. J. Therm. Anal. Calorim. 2014;118:731–737. doi: 10.1007/s10973-014-3996-8. [DOI] [Google Scholar]
  • 273.Emel’yanenko V.N., Zaitsau D.H., Shoifet E., Meurer F., Verevkin S.P., Schick C., Held C. Benchmark Thermochemistry for Biologically Relevant Adenine and Cytosine. A Combined Experimental and Theoretical Study. J. Phys. Chem. A. 2015;119:9680–9691. doi: 10.1021/acs.jpca.5b04753. [DOI] [PubMed] [Google Scholar]
  • 274.Lukyanova V.A., Druzhinina A.I., Pimenova S.M., Ioutsi V.A., Buyanovskaya A.G., Takazova R.U., Sagadeyev E.V., Gimadeev A.A. Thermodynamic Properties of l-Tryptophan. J. Chem. Thermodyn. 2017;105:44–49. doi: 10.1016/j.jct.2016.09.041. [DOI] [Google Scholar]
  • 275.Lukyanova V.A., Druzhinina A.I., Pimenova S.M., Ioutsi V.A., Buyanovskaya A.G., Takazova R.U., Sagadeyev E.V., Gimadeev A.A. Thermodynamic Properties of l-Threonine. J. Chem. Thermodyn. 2018;116:248–252. doi: 10.1016/j.jct.2017.09.022. [DOI] [Google Scholar]
  • 276.Neacsu A., Gheorghe D., Contineanu I., Sofronia A.M., Teodorescu F., Perisanu S. Enthalpies of Combustion and Formation of Histidine Stereoisomers. J. Chem. 2018;2018:7801381. doi: 10.1155/2018/7801381. [DOI] [Google Scholar]
  • 277.Knyazev A.V., Emel′yanenko V.N., Shipilova A.S., Zaitsau D.H., Smirnova N.N., Knyazeva S.S., Gulenova M.V. Thermodynamic Investigation of l-Carnitine. J. Chem. Thermodyn. 2019;131:495–502. doi: 10.1016/j.jct.2018.12.006. [DOI] [Google Scholar]
  • 278.Mackle H., O’Hare P.A.G. The Thermochemistry of Sulfur-Containing Molecules and Radicals-I. Heats of Combustion and Formation. Tetrahedron. 1963;19:961–971. doi: 10.1016/S0040-4020(01)99351-2. [DOI] [Google Scholar]
  • 279.Mackle H., Steele W.V. Studies in the Thermochemistry of Organic Sulphites and Sulphates. Part 1. Heats of Combustion and Formation of Some Dialkyl Sulphites and Sulphates. Trans. Faraday Soc. 1969;65:2053–2059. doi: 10.1039/TF9696502053. [DOI] [Google Scholar]
  • 280.Good W.D. Enthalpies of Combustion of 18 Organic Sulfur Compounds Related to Petroleum. J. Chem. Eng. Data. 1972;17:158–162. doi: 10.1021/je60053a049. [DOI] [Google Scholar]
  • 281.Meng-Yan Y., Pilcher G., Macnab J.I. Standard Enthalpies of Formation in the Crystalline State of Aminomethanesulfonic Acid, 2-Aminoethanesulfonic Acid, and the Three Aminobenzenesulfonic Acids. J. Chem. Thermodyn. 1994;26:787–790. doi: 10.1006/jcht.1994.1093. [DOI] [Google Scholar]
  • 282.Davalos J.Z., Flores H., Jimenez P., Notario R., Roux M.V., Juaristi E., Hosmane R.S., Liebman J.F. Calorimetric, Computational (G2(MP2) and G3) and Conceptual Study of the Energetics of the Isomeric 1,3- and 1,4-Dithianes. J. Org. Chem. 1999;64:9328–9336. doi: 10.1021/jo990726h. [DOI] [Google Scholar]
  • 283.Roux M.V., Davalos J.Z., Jimenez P., Flores H., Saiz J.-L., Abboud J.-L.M., Juaristi E. Structural Effects on the Thermochemical Properties of Sulfur Compounds: I. Enthalpy of Combustion, Vapour Pressures, Enthalpy of Sublimation, and Standard Molar Enthalpy of Formation in the Gaseous Phase of 1,3-Dithiane. J. Chem. Thermodyn. 1999;31:635–646. doi: 10.1006/jcht.1998.0471. [DOI] [Google Scholar]
  • 284.Roux M.V., Temprado M., Jimenez P., Davalos J.Z., Notario R., Martin-Valcarcel G., Garrido L., Guzman-Mejia J.E. Thermochemistry of 1,3-Dithiacyclohexane 1-Oxide (1,3-Dithiane Sulfoxide): Calorimetric and Computational Study. J. Org. Chem. 2004;69:5454–5459. doi: 10.1021/jo049435l. [DOI] [PubMed] [Google Scholar]
  • 285.Masuda N., Nagano Y., Kimura T. Standard Molar Enthalpy of Formation of CH3(CH3SCH2)SO, Methyl Methylthiomethyl Sulfoxide. J. Therm. Anal. Calorim. 2005;81:533–535. doi: 10.1007/s10973-005-0817-0. [DOI] [Google Scholar]
  • 286.Camarillo E.A., Flores H. Determination of the Energies of Combustion and Enthalpies of Formation of Nitrobenzenesulfonamides by Rotating-Bomb Combustion Calorimetry. J. Chem. Thermodyn. 2010;42:425–428. doi: 10.1016/j.jct.2009.10.003. [DOI] [Google Scholar]
  • 287.Flores H., Camarillo E.A., Amador P. Enthalpies of Combustion and Formation of Benzenesulfonamide and Some of its Derivatives. J. Chem. Thermodyn. 2012;47:408–411. doi: 10.1016/j.jct.2011.11.026. [DOI] [Google Scholar]
  • 288.Ramos F., Flores H., Hernandez-Perez J.M., Sandoval-Lira J., Camarillo E.A. The Intramolecular Hydrogen Bond N-H S in 2,2′-Diaminodiphenyl Disulfide, Experimental and Computational Thermochemistry. J. Phys. Chem. A. 2018;122:239–248. doi: 10.1021/acs.jpca.7b08838. [DOI] [PubMed] [Google Scholar]
  • 289.Kirklin D.R., Chickos J.S., Liebman J.F. Enthalpy of Formation of Triphenylphosphine Sulfide. Struct. Chem. 1996;7:355–361. doi: 10.1007/BF02275161. [DOI] [Google Scholar]
  • 290.Lebedev B.V., Kulagina T.G. Thermodynamics of Hexachlorocyclotriphosphazene and Octachlorocyclotetraphosphazene from T –> 0 to T = 450 K. J. Chem. Thermodyn. 1999;31:697–710. doi: 10.1006/jcht.1998.0472. [DOI] [Google Scholar]
  • 291.Tannenbaum S., Kaye S., Lewenz G.F. Synthesis and Properties of Some Alkylsilanes. J. Am. Chem. Soc. 1953;75:3753–3757. doi: 10.1021/ja01111a043. [DOI] [Google Scholar]
  • 292.Good W.D., Lacina J.L., DePrater B.L., McCullough J.P. A New Approach to the Combustion Calorimetry of Silicon and Organosilicon Compounds. Heats of Formation of Quartz, Fluorosilicic Acid, and Hexamethyldisiloxane. J. Phys. Chem. 1964;68:579–586. doi: 10.1021/j100785a024. [DOI] [Google Scholar]
  • 293.Dibrivnyi V.N., Melnik G.V., Van-Chin-Syan Y.Y., Yuvchenko A.P. The Thermodynamic Properties of Four Triphenylsilane Acetylene Peroxides. Russ. J. Phys. Chem. 2006;80:330–334. doi: 10.1134/S0036024406030046. [DOI] [Google Scholar]
  • 294.Dibrivnyi V.N., Pavlovskii Y.P., Van-Chin-Syan Y.Y. Formation Enthalpies of Peroxy-Substituted Silanes. Russ. J. Phys. Chem. A. 2010;84:778–783. doi: 10.1134/S0036024410050122. [DOI] [Google Scholar]
  • 295.Johnson W.H., Kilday M.V., Prosen E.J. Heats of Combustion and Formation of Trimethylborane, Triethylborane, and Tri-n-butylborane. J. Res. Nat. Bur. Stand.-A Phys. Chem. 1961;65:215–219. doi: 10.6028/jres.065A.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 296.Smith L. Corrected Heats of Combustion of Organic Iodine Compounds. Acta Chem. Scand. 1956;10:884–886. doi: 10.3891/acta.chem.scand.10-0884. [DOI] [Google Scholar]
  • 297.Bjellerup L. On the Accuracy of Heat of Combustion Data Obtained with Precision Moving-Bomb Calorimetric Method for Organic Bromine Compounds. Acta Chem. Scand. 1961;15:121–140. doi: 10.3891/acta.chem.scand.15-0121. [DOI] [Google Scholar]
  • 298.Good W.D., Douslin D.R., McCullough J.P. 1,2-Difluoroamino-4-methylpentane: Heats of Combustion, Formation, and Vaporization; Vapor Pressure; and N-F Thermochemical Bond Energy. J. Phys. Chem. 1963;67:1312–1314. doi: 10.1021/j100800a037. [DOI] [Google Scholar]
  • 299.Cox J.D., Gundry H.A., Head A.J. Thermodynamic Properties of Fluorine Compounds. Part 1—Heats of Combustion of p-Fluorobenzoic acid, Pentafluorobenzoic Acid, Hexafluorobenzene and Decafluorocyclohexene. Trans. Faraday Soc. 1964;60:653–665. doi: 10.1039/TF9646000653. [DOI] [Google Scholar]
  • 300.Smith N.K., Gorin G., Good W.D., McCullough J.P. The Heats of Combustion, Sublimation, and Formation of Four Dihalobiphenyls. J. Phys. Chem. 1964;68:940–946. doi: 10.1021/j100786a043. [DOI] [Google Scholar]
  • 301.Good W.D., Smith N.K. Enthalpies of Combustion and Formation of 1,1-Bis(Difluoroamino)Heptane. N-F Thermochemical Bond Energy. J. Chem. Eng. Data. 1970;15:147–150. doi: 10.1021/je60044a037. [DOI] [Google Scholar]
  • 302.Price S.J.W., Sapiano H.J. Determination of ΔHf2980(C12F10,g) from Studies of the Combustion of Decafluorobiphenyl in Oxygen and Calculation of D(C6F5-C6F5) Can. J. Chem. 1979;57:1468–1470. doi: 10.1139/v79-240. [DOI] [Google Scholar]
  • 303.Shaub W.M. Procedure for Estimating the Heats of Formation of Aromatic Compounds: Chlorinated Benzenes, Phenols and Dioxins. Thermochim. Acta. 1982;55:59–73. doi: 10.1016/0040-6031(82)87008-1. [DOI] [Google Scholar]
  • 304.Zhogina E.V., Papina T.S., Kolesov V.P., Kosareva L.N., Ivanova T.Y. Enthalpy of Formation of Perfluoro-2,7-Dimethyloctane. Thermochim. Acta. 1989;139:43–47. doi: 10.1016/0040-6031(89)87008-X. [DOI] [Google Scholar]
  • 305.Ribeiro da Silva M.A.V., Ferrao M.L.C.C.H., Lopes A.J.M. Enthalpies of Combustion of Each of the Two Bromonaphthalenes. J. Chem. Thermodyn. 1993;25:229–235. doi: 10.1006/jcht.1993.1022. [DOI] [Google Scholar]
  • 306.Ribeiro da Silva M.A.V., Ferrao M.L.C.C.H., Jiye F. Standard Enthalpies of Combustion of the Six Dichlorophenols by Rotating-Bomb Calorimetry. J. Chem. Thermodyn. 1994;26:839–846. doi: 10.1006/jcht.1994.1100. [DOI] [Google Scholar]
  • 307.Carson A.S., Laye P.G., Pedley J.B., Welsby A.M., Chickos J.S., Hosseini S. The Enthalpy of Formation of Odoethane, 1,2-Diiodoethane, 1,3-Diiodopropane, and 1.4-Diiodobutane. J. Chem. Thermodyn. 1994;26:1103–1109. doi: 10.1006/jcht.1994.1128. [DOI] [Google Scholar]
  • 308.Sabbah R., Aguilar A.R. Etude Thermodynamique des Trois Isomeres de L′acide Chlorobenzoique. Partie II. Can. J. Chem. 1995;73:1538–1545. doi: 10.1139/v95-191. [DOI] [Google Scholar]
  • 309.Xu-Wu A., Da-Jun G. Formation Enthalpies and Non-Bonding Interactions of Hexachlorocyclohexanes. Thermochim. Acta. 1995;253:235–242. [Google Scholar]
  • 310.Ribeiro da Silva M.A.V., Matos M.A.R., Amaral L.M.P.F. Standard Molar Enthalpies of Formation of 2- and 3-Bromopyridine and of 2,5- and 2,6-Dibromopyridine. J. Chem. Thermodyn. 1997;29:1545–1551. doi: 10.1006/jcht.1997.0268. [DOI] [Google Scholar]
  • 311.Ribeiro da Silva M.A.V., Goncalves J.M., Pilcher G. Standard Molar Enthalpies of Formation of Nine Fluorinated β-Diketones by Rotating Bomb Calorimetry. J. Chem. Thermodyn. 1997;29:253–260. doi: 10.1006/jcht.1996.0143. [DOI] [Google Scholar]
  • 312.Ribeiro da Silva M.A.V., Matos M.A.R., Amaral L.M.P.F. Standard Molar Enthalpies of Formation of Some Chloropyridines. J. Chem. Thermodyn. 1997;29:1535–1543. doi: 10.1006/jcht.1997.0269. [DOI] [Google Scholar]
  • 313.Papina T.S., Kolesov V.P., Lukyanova V.A., Boltalina O.V., Galeva N.A., Sidorov L.N. The Standard Molar Enthalpy of Formation of Fluorofullerene C60F48. J. Chem. Thermodyn. 1999;31:1321–1328. doi: 10.1006/jcht.1999.0544. [DOI] [Google Scholar]
  • 314.Ribeiro da Silva M.A.V., Amaral L.M.P.F., Ferreira A.I.M.C.L. Standard Molar Enthalpies of Formation of Some Trichloroanilines by Rotating-Bomb Calorimetry. J. Chem. Thermodyn. 2002;34:119–127. doi: 10.1006/jcht.2001.0905. [DOI] [Google Scholar]
  • 315.Morais V.M.F., Miranda M.S., Matos M.A.R. Thermochemical Study of Chloropyrazines and Chloroquinoxalines. J. Chem. Thermodyn. 2004;36:377–383. doi: 10.1016/j.jct.2004.01.005. [DOI] [Google Scholar]
  • 316.Ribeiro da Silva M.A.V., Gomes J.R.B., Ferreira A.I.M.C.L. Experimental and Computational Investigation of the Energetics of the Three Isomers of Monochloroaniline. J. Phys. Chem. B. 2005;109:13356–13362. doi: 10.1021/jp0519565. [DOI] [PubMed] [Google Scholar]
  • 317.Gomes J.R.B., Amaral L.M.P.F., Ribeiro da Silva M.A.V. Gas-Phase Thermochemistry of Chloropyridines. Chem. Phys. Lett. 2005;406:154–160. doi: 10.1016/j.cplett.2005.02.098. [DOI] [Google Scholar]
  • 318.Ribeiro da Silva M.A.V., Amaral L.M.P.F., Gomes J.R.B. Experimental and Computational Investigation of the Thermochemistry of the Six Isomers of Dichloroaniline. J. Phys. Chem. A. 2006;110:9301–9306. doi: 10.1021/jp062438c. [DOI] [PubMed] [Google Scholar]
  • 319.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L., Gomes J.R.B. Experimental and Computational Study on the Thermochemistry of Bromoanilines. Bull. Chem. Soc. Jpn. 2006;79:1852–1859. doi: 10.1246/bcsj.79.1852. [DOI] [Google Scholar]
  • 320.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L., Gomes J.R.B. Experimental and Computational Study on the Thermochemistry of the Isomers of Iodoaniline and Diiodoaniline. Chem. Phys. Lett. 2006;422:565–570. doi: 10.1016/j.cplett.2006.03.004. [DOI] [Google Scholar]
  • 321.Ribeiro da Silva M.A.V., Matos M.A.R., Amaral L.M.P.F. Standard Molar Enthalpies of Formation of 2-Chloroquinoline, 4-Chloroquinoline, 6-Chloroquinoline and 4,7-Dichloroquinoline by Rotating-Bomb calorimetry. J. Chem. Thermodyn. 2006;38:49–55. doi: 10.1016/j.jct.2005.03.011. [DOI] [Google Scholar]
  • 322.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L., Gomes J.R.B. Combined Experimental and Computational Study of the Thermochemistry of the Fluoroaniline Isomers. J. Phys. Chem. B. 2007;111:2052–2061. doi: 10.1021/jp0672407. [DOI] [PubMed] [Google Scholar]
  • 323.Ribeiro da Silva M.A.V., Amaral L.M.P.F., Gomes J.R.B. Comparative Computational and Experimental Study on the Thermochemistry of the Chloropyrimidines. J. Phys. Chem. B. 2007;111:792–799. doi: 10.1021/jp0664723. [DOI] [PubMed] [Google Scholar]
  • 324.Ribeiro da Silva M.A.V., Amaral L.M.P.F. Gas Phase Enthalpy of Formation of 3-Bromoquinoline. J. Therm. Anal. Calorim. 2008;92:53–57. doi: 10.1007/s10973-007-8735-y. [DOI] [Google Scholar]
  • 325.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L. Standard Molar Enthalpies of Formation of the Three Isomers of Chloroanisole. J. Chem. Thermodyn. 2008;40:362–368. doi: 10.1016/j.jct.2007.10.001. [DOI] [Google Scholar]
  • 326.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L. Thermochemical Study of Four Isomers of Dichloroanisole. J. Chem. Thermodyn. 2008;40:924–930. doi: 10.1016/j.jct.2008.02.003. [DOI] [Google Scholar]
  • 327.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L. Experimental and Computational Thermochemical Study of the Three Monofluorophenol Isomers. J. Chem. Eng. Data. 2009;54:2517–2526. doi: 10.1021/je9000872. [DOI] [Google Scholar]
  • 328.Ribeiro da Silva M.A.V., Cabral J.I.T.A. Experimental Thermochemical Study of 5-Bromoindole and 5-Bromoindoline. J. Chem. Thermodyn. 2009;41:84–89. doi: 10.1016/j.jct.2008.07.016. [DOI] [Google Scholar]
  • 329.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L., Moreno A.R.G. Experimental Thermochemical Study of the Monochloronitrobenzene Isomers. J. Chem. Thermodyn. 2009;41:109–114. doi: 10.1016/j.jct.2008.07.012. [DOI] [Google Scholar]
  • 330.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L. Experimental and computational study on the molecular energetics of the three monofluoroanisole isomers. J. Chem. Thermodyn. 2009;41:361–366. doi: 10.1016/j.jct.2008.09.012. [DOI] [Google Scholar]
  • 331.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L. Experimental and Computational Study on the Molecular Energetics of Monobromoanisole Isomers. J. Chem. Thermodyn. 2009;41:499–505. doi: 10.1016/j.jct.2008.11.008. [DOI] [Google Scholar]
  • 332.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L., Cabral J.I.T.A., Santos A.F.L.O.M., Moreno A.R.G., Galvão T.L.P., Rocha I.M., Fernandes P.M.V., Salgueiro S.Q., de Moura V.A.F., et al. Experimental and Computational Thermochemical Study of the Tri-, Tetra-, and Pentachloronitrobenzene Isomers. J. Chem. Thermodyn. 2009;41:984–991. doi: 10.1016/j.jct.2009.03.014. [DOI] [Google Scholar]
  • 333.Ribeiro da Silva M.A.V., Ribeiro da Silva M.D.M.C., Ferreira A.I.M.C.L., Santos A.F.L.O.M., Galvão T.L.P. Experimental Thermochemical Study of 2,5- and 2,6-Dichloro-4-Nitroanilines. J. Chem. Thermodyn. 2009;41:1074–1080. doi: 10.1016/j.jct.2009.04.012. [DOI] [Google Scholar]
  • 334.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L. Gas Phase Enthalpies of Formation of Monobromophenols. J. Chem. Thermodyn. 2009;41:1104–1110. doi: 10.1016/j.jct.2009.04.017. [DOI] [Google Scholar]
  • 335.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L., Santos A.F.L.O.M., Rocha I.M. Thermochemical Study of the 2,5-Dibromonitrobenzene Isomer: An Approach of the Energetic Study for the Other Dibromonitrobenzene Isomers. J. Chem. Thermodyn. 2009;41:1239–1246. doi: 10.1016/j.jct.2009.05.010. [DOI] [Google Scholar]
  • 336.Ribeiro da Silva M.A.V., Ribeiro da Silva M.D.M.C., Ferreira A.I.M.C.L., Santos A.F.L.O.M., Galvão T.L.P. Experimental Thermochemical Study of 4,5-Dichloro-2-Nitroaniline. J. Chem. Thermodyn. 2009;41:1247–1253. doi: 10.1016/j.jct.2009.05.013. [DOI] [Google Scholar]
  • 337.Ribeiro da Silva M.A.V., Monte M.J.S., Ferreira A.I.M.C.L., Oliveira J.A.S.A., Cimas A. Experimental and Computational Thermodynamic Study of Three Monofluoronitrobenzene Isomers. J. Phys. Chem. B. 2010;114:7909–7919. doi: 10.1021/jp102024y. [DOI] [PubMed] [Google Scholar]
  • 338.Ribeiro da Silva M.A.V., Monte M.J.S., Ferreira A.I.M.C.L., Oliveira J.A.S.A., Cimas A. A Combined Experimental and Computational Thermodynamic Study of Difluoronitrobenzene Isomers. J. Phys. Chem. B. 2010;114:12914–12925. doi: 10.1021/jp1058885. [DOI] [PubMed] [Google Scholar]
  • 339.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L., Santos A.F.L.O.M., Rocha I.M. Thermochemical Study of the Monobromonitrobenzene Isomers. J. Chem. Thermodyn. 2010;42:169–176. doi: 10.1016/j.jct.2009.06.008. [DOI] [Google Scholar]
  • 340.Ribeiro da Silva M.A.V., Ferreira A.I.M.C.L. Calorimetric and computational thermochemical study of difluorophenol isomers. J. Chem. Thermodyn. 2010;42:182–188. doi: 10.1016/j.jct.2009.07.011. [DOI] [Google Scholar]
  • 341.Ribeiro da Silva M.A.V., Ribeiro da Silva M.D.M.C., Santos A.F.L.O.M., Ferreira A.I.M.C.L., Galvao T.L.P. Experimental Thermochemical Study of two Chlorodinitroaniline Isomers. J. Chem. Thermodyn. 2010;42:496–501. doi: 10.1016/j.jct.2009.11.003. [DOI] [Google Scholar]
  • 342.Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V., Freitas V.L.S., Roux M.V., Jimenez P., Davalos J.Z., Cabildo P., Claramunt R.M., Pinilla E., Torres M.R., et al. Energetic Studies of Urea Derivatives: Standard Molar Enthalpy of Formation of 3,4,40-Trichlorocarbanilide. J. Chem. Thermodyn. 2010;42:536–544. doi: 10.1016/j.jct.2009.11.012. [DOI] [Google Scholar]
  • 343.Santos A.F.L.O.M., Ribeiro da Silva M.A.V. Experimental and Computational Energetic Study of Two Halogenated 2-Acetylpyrrole Derivatives: 2-Trichloroacetylpyrrole and 2-Trifluoroacetylpyrrole. J. Chem. Thermodyn. 2010;42:1079–1086. doi: 10.1016/j.jct.2010.04.001. [DOI] [Google Scholar]
  • 344.Santos A.F.L.O.M., Ribeiro da Silva M.A.V. A Calorimetric and Computational Study of the Thermochemistry of Halogenated 1-Phenylpyrrole Derivatives. J. Chem. Thermodyn. 2010;42:1441–1450. doi: 10.1016/j.jct.2010.06.012. [DOI] [Google Scholar]
  • 345.Ribeiro da Silva M.A.V., Amaral L.M.P.F. Standard Molar Enthalpies of Formation of Monochloroacetophenone Isomers. J. Chem. Thermodyn. 2010;42:1473–1477. doi: 10.1016/j.jct.2010.07.004. [DOI] [Google Scholar]
  • 346.Ferreira A.I.M.C.L., Ribeiro da Silva M.A.V. Experimental and Computational Thermochemical Study of the Three Monoiodophenol Isomers. J. Chem. Eng. Data. 2011;56:4881–4890. doi: 10.1021/je200833s. [DOI] [Google Scholar]
  • 347.Ferreira A.I.M.C., Ribeiro da Silva M.A.V. Thermochemical Study of Three Dibromophenol Isomers. J. Chem. Thermodyn. 2011;43:227–234. doi: 10.1016/j.jct.2010.08.020. [DOI] [Google Scholar]
  • 348.Ribeiro da Silva M.A.V., Amaral L.M.P.F. Thermochemical Study of Some Dichloroacetophenone Isomers. J. Chem. Thermodyn. 2011;43:255–261. doi: 10.1016/j.jct.2010.09.005. [DOI] [Google Scholar]
  • 349.Ferreira A.I.M.C., Ribeiro da Silva M.A.V. Experimental and Computational Study of the Molecular Energetics of the Monoiodoanisole Isomers. J. Chem. Thermodyn. 2012;48:84–92. doi: 10.1016/j.jct.2011.12.001. [DOI] [Google Scholar]
  • 350.Ribeiro da Silva M.A.V., Amaral L.M.P.F., Szterner P. Experimental Thermochemical Study of Fluoro-, Chloro-, and Bromo-derivatives of Uracil. J. Chem. Thermodyn. 2012;52:30–35. doi: 10.1016/j.jct.2011.10.020. [DOI] [Google Scholar]
  • 351.Lukyanova V.A., Papina T.S. Standard Enthalpies of Formation of Perfluoro(2-Methyl-3-Oxa)Hexanoic and Perfluoro(2,5-Dimethyl-3,6-Dioxa)Nonanoic Acids. Russ. J. Phys. Chem. A. 2013;87:340–341. doi: 10.1134/S0036024413020192. [DOI] [Google Scholar]
  • 352.Miranda M.S., Matos M.A.R., Morais V.M.F. Structure and Energetics Correlations in Some Chlorohydroxypyridines. J. Chem. Thermodyn. 2013;62:170–177. doi: 10.1016/j.jct.2013.03.001. [DOI] [Google Scholar]
  • 353.Amaral L.M.P.F., Ribeiro da Silva M.A.V. Experimental Thermochemical Study of 2-Chloroacetophenone and 2,4′-Dichloroacetophenone. J. Chem. Thermodyn. 2014;73:44–50. doi: 10.1016/j.jct.2013.07.026. [DOI] [Google Scholar]
  • 354.Amaral L.M.P.F., Ribeiro da Silva M.A.V. Calorimetric Study of Bromoacetophenone Isomers. J. Chem. Thermodyn. 2014;78:254–259. doi: 10.1016/j.jct.2014.06.028. [DOI] [Google Scholar]
  • 355.Oliveira J.A.S.A., Santos A.F.L.O.M., Ribeiro da Silva M.D.M.C., Monte M.J.S. Thermodynamic Properties of Bromine Fluorene Derivatives: An Experimental and Computational Study. J. Chem. Thermodyn. 2015;89:134–141. doi: 10.1016/j.jct.2015.05.001. [DOI] [Google Scholar]
  • 356.Szterner P., Amaral L.M.P.F., Morais V.M.F., Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V. Thermochemical Study of Dichloromethylpyrimidine Isomers. J. Chem. Thermodyn. 2016;100:148–155. doi: 10.1016/j.jct.2016.04.011. [DOI] [Google Scholar]
  • 357.Purnell D.L., Jr., Bozzelli J.W. Thermochemical Properties: Enthalpy, Entropy, and Heat Capacity of C2−C3 Fluorinated Aldehydes. Radicals and Fluorocarbon Group Additivity. J. Phys. Chem. A. 2019;123:650–665. doi: 10.1021/acs.jpca.8b09065. [DOI] [PubMed] [Google Scholar]
  • 358.Beak P., White J.M. Relative Enthalpies of 1,3-Dimethy1-2,4-Pyrimidinedione, 2,4-Dimethoxypyrimidine, and 4-Methoxy-1-Methyl-2-Pyrimidinone: Estimation of the Relative Stabilities of Two Protomers of Uracil. J. Am. Chem. Soc. 1982;104:7073–7077. doi: 10.1021/ja00389a032. [DOI] [Google Scholar]
  • 359.Kirklin D.R., Domalski E.S. Enthalpy of Combustion of Purine. J. Chem. Thermodyn. 1984;16:633–641. doi: 10.1016/0021-9614(84)90043-0. [DOI] [Google Scholar]
  • 360.Johnson W.H., Prosen E.J. Determination of the Enthalpies of Combustion and Formation of Substituted Triazines in an Adiabatic Rotating Bomb Calorimeter. J. Res. Nat. Bur. Stand. 1985;90:295–303. doi: 10.6028/jres.090.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 361.Wu D., Xu G., Qu S., Xue R., Gu C., Zhang F. Standard Enthalpies of Combustion and Formation of Porphyrin Derivatives. Thermochim. Acta. 1989;154:233–245. doi: 10.1016/0040-6031(89)85460-7. [DOI] [Google Scholar]
  • 362.Ciocazanu I., Meltzer V., Nicolae A., Vilcu R. Etude Thermodynamique de Quelques Dérivés Sustitués de l′Acide 1-Phenazine-Carboxylique. Calorim. Anal. Therm. 1997;28:267–272. [Google Scholar]
  • 363.Verevkin S.P. Thermochemistry of Amines: Experimental Standard Molar Enthalpies of Formation of N-Alkylated Piperidines. Struct. Chem. 1998;9:113–119. doi: 10.1023/A:1022459803871. [DOI] [Google Scholar]
  • 364.Ribeiro da Silva M.A.V., Ribeiro da Silva M.D.M.C., Matos M.A.R., Jimenez P., Roux M.V., Elguero J., Claramunt R., Cabildo P., Sanchez-Migallon A. Enthalpies of Combustion, Heat Capacities, and Enthalpies of Vaporization of 1-Ethylimidazole and 1-Ethylpyrazole. J. Chem. Thermodyn. 1999;31:129–138. doi: 10.1006/jcht.1998.0436. [DOI] [Google Scholar]
  • 365.Chirico R.D., Knipmeyer S.E., Nguyen A., Steele W.V. Thermodynamic Properties of the Methylpyridines. Part 2. Vapor pressures, Heat Capacities, Critical Properties, Derived Thermodynamic Functions between the Temperatures 250 K and 560 K, and Equilibrium Isomer Distributions for All Temperatures ≥ 250 K. J. Chem. Thermodyn. 1999;31:339–378. doi: 10.1006/jcht.1998.0451. [DOI] [Google Scholar]
  • 366.Patino R., Torres L.A., Campos M. The Standard Molar Enthalpies of Formation of 5,10,15,20-Tetraphenylporphine and 5,10,15,20-Tetrakis(4-Methoxyphenyl)Porphine by Oxygen Bomb Combustion Calorimetry. J. Chem. Thermodyn. 1999;31:627–634. doi: 10.1006/jcht.1998.0469. [DOI] [Google Scholar]
  • 367.Mo O., Yanez M., Roux M.V., Jimenez P., Davalos J.Z., Ribeiro da Silva M.A.V., Ribeiro da Silva M.D.M.C., Matos M.A.R., Amaral L.M.P.F., Sanchez-Migallon A., et al. Enthalpies of Formation of N-Substituted Pyrazoles and Imidazoles. J. Phys. Chem. A. 1999;103:9336–9344. doi: 10.1021/jp992244f. [DOI] [Google Scholar]
  • 368.Ribeiro da Silva M.A.V., Ribeiro da Silva M.D.M.C., Matos M.A.R., Jimenez P., Roux M.V., Martin-Luengo M.A., Elguero J., Claramunt R., Cabildo P. Enthalpies of Combustion, Heat Capacities, and Enthalpies of Vaporisation of 1-Phenylimidazole and 1-Phenylpyrazole. J. Chem. Thermodyn. 2000;32:237–245. doi: 10.1006/jcht.1999.0605. [DOI] [Google Scholar]
  • 369.Verevkin S.P. Relationships among Strain Energies of Mono- and Poly-Cyclic Cyclohexanoid Molecules and Strain of Their Component Rings. J. Chem. Thermodyn. 2002;34:263–275. doi: 10.1006/jcht.2001.0896. [DOI] [Google Scholar]
  • 370.Qing W., Xuwu Y., Shengli G., Qizhen S. Preparation and the Standard Enthalpy of Formation of 2-Amino-4,6-Dimethoxypyrimidine and the Related Complexes of Copper. Chem. Pap. 2003;57:97–101. [Google Scholar]
  • 371.Chirico R.D., Knipmeyer S.E., Steele W.V. Heat Capacities, Enthalpy Increments, and Derived Thermodynamic Functions for Pyrazine between the Temperatures 5K and 380K. J. Chem. Thermodyn. 2003;35:1059–1072. doi: 10.1016/S0021-9614(03)00041-7. [DOI] [Google Scholar]
  • 372.Ribeiro da Silva M.A.V., Ribeiro da Silva M.D.M.C., Amaral L.M.P.F., Jimenez P., Roux M.V., Davalos J.Z., Temprado M., Cabildo P., Claramunt R., Elguero J., et al. Experimental Thermochemical Study of Two 2-Alkylbenzimidazole Isomers (Alkyl = Propyl and Isopropyl) J. Chem. Thermodyn. 2004;36:533–539. doi: 10.1016/j.jct.2004.03.005. [DOI] [Google Scholar]
  • 373.Ribeiro da Silva M.A.V., Cabral J.I.T.A., Gomes P., Gomes J.R.B. Combined Experimental and Computational Study of the Thermochemistry of Methylpiperidines. J. Org. Chem. 2006;71:3677–3685. doi: 10.1021/jo052468w. [DOI] [PubMed] [Google Scholar]
  • 374.Ribeiro da Silva M.D.M.C., Miranda M.S., Vaz C.M.V., Matos M.A.R., Acree W.E., Jr. Experimental Thermochemical Study of Three Monosubstituted Pyrazines. J. Chem. Thermodyn. 2005;37:49–53. doi: 10.1016/j.jct.2004.08.006. [DOI] [Google Scholar]
  • 375.Ribeiro da Silva M.A.V., Ribeiro da Silva M.D.M.C., Amaral L.M.P.F., Elguero J., Jimenez P., Roux M.V., Davalos J.Z., Temprado M., Cabildo P., Claramunt R., et al. Thermochemical Properties of Two Benzimidazole Derivatives: 2-Phenyl- and 2-Benzylbenzimidazole. J. Chem. Thermodyn. 2005;37:1168–1176. doi: 10.1016/j.jct.2005.02.008. [DOI] [Google Scholar]
  • 376.Ribeiro da Silva M.A.V., Matos M.A.R., Amaral L.M.P.F. Thermochemical Studies of 1-Hydroxyisoquinoline, 5-Hydroxyisoquinoline and 1,5-Dihydroxyisoquinoline. J. Chem. Thermodyn. 2005;37:1312–1317. doi: 10.1016/j.jct.2005.03.009. [DOI] [Google Scholar]
  • 377.Chirico R.D., Steele W.V. Thermodynamic Properties of 2-Methylquinoline and 8-Methylquinoline. J. Chem. Eng. Data. 2005;50:697–708. doi: 10.1021/je049595u. [DOI] [Google Scholar]
  • 378.Morais V.M.F., Miranda M.S., Matos M.A.R. Experimental and Computational Thermochemistry of the Dihydroxypyridine Isomers. J. Chem. Thermodyn. 2006;38:450–454. doi: 10.1016/j.jct.2005.06.013. [DOI] [Google Scholar]
  • 379.Miranda M.S., Morais V.M.F., Matos M.A.R. Thermochemical Study of Cyanopyrazines: Experimental and Theoretical Approaches. J. Chem. Thermodyn. 2006;38:559–564. doi: 10.1016/j.jct.2005.07.006. [DOI] [Google Scholar]
  • 380.Ribeiro da Silva M.A.V., Cabral J.I.T.A. Standard Molar Enthalpies of Formation of 2-, 3-, and 4-Piperidinomethanol Isomers. J. Chem. Thermodyn. 2006;38:1008–1012. doi: 10.1016/j.jct.2005.10.014. [DOI] [Google Scholar]
  • 381.Ribeiro da Silva M.A.V., Cabral J.I.T.A., Gomes J.R.B. Experimental and Computational Study on the Thermochemistry of Ethylpiperidines. J. Chem. Thermodyn. 2006;38:1072–1078. doi: 10.1016/j.jct.2005.11.004. [DOI] [Google Scholar]
  • 382.Ribeiro da Silva M.A.V., Cabral J.I.T.A. Thermochemistry of Some Derivatives of 2- and 4-Piperidone. J. Chem. Eng. Data. 2006;51:1556–1561. doi: 10.1021/je060046t. [DOI] [Google Scholar]
  • 383.Freitas V.L.S., Oliveira L.I.P., Ribeiro da Silva M.D.M.C. Standard Molar Enthalpies of Formation of the Acetylpyridine Isomers. J. Chem. Thermodyn. 2007;39:39–43. doi: 10.1016/j.jct.2006.06.004. [DOI] [Google Scholar]
  • 384.Ribeiro da Silva M.A.V., Cabral J.I.T.A. Thermochemical Proerties of Three Piperidine Derivatives. 1-Benzyl-4-Piperidinol, 4-Benzylpiperidine and 4-Piperidine-Piperidine. J. Therm. Anal. Calorim. 2007;90:865–871. doi: 10.1007/s10973-007-8316-0. [DOI] [Google Scholar]
  • 385.Ribeiro da Silva M.A.V., Cabral J.I.T.A. Standard Molar Enthalpy of Formation of 1-Cyano-acetylpyridine. J. Therm. Anal. Calorim. 2008;92:59–62. doi: 10.1007/s10973-007-8736-x. [DOI] [Google Scholar]
  • 386.Ribeiro da Silva M.D.M.C., Cabral J.I.T.A., Givens C., Keown S., Acree W.E., Jr. Thermochemical Study of Three Dimethylpyrazine Derivatives. J. Therm. Anal. Calorim. 2008;92:73–78. doi: 10.1007/s10973-007-8737-9. [DOI] [Google Scholar]
  • 387.Ribeiro da Silva M.A.V., Figueiredo D.F., Cabral J.I.T.A. Thermochemical Studies of 3-Methylpyrazole and 1,3,5-Trimethylpyrazole. J. Chem. Thermodyn. 2008;40:369–374. doi: 10.1016/j.jct.2007.09.001. [DOI] [Google Scholar]
  • 388.Rocha M.A.A., Gomes L.R., Low J.N., Santos L.M.N.B.F. Energetic and Structural Study of Diphenylpyridine Isomers. J. Phys. Chem. A. 2009;113:11015–11027. doi: 10.1021/jp903792d. [DOI] [PubMed] [Google Scholar]
  • 389.Santos A.F.L.O.M., Ribeiro da Silva M.A.V. Experimental and Computational Thermochemistry of 1-Phenylpyrrole and 1-(4-Methylphenyl)Pyrrole. J. Chem. Thermodyn. 2010;42:734–741. doi: 10.1016/j.jct.2010.01.009. [DOI] [Google Scholar]
  • 390.Miranda M.S., Matos M.A.R., Morais V.M.F., Liebman J.F. Experimental and Computational Thermochemical Study of Oxindole. J. Chem. Thermodyn. 2010;42:1101–1106. doi: 10.1016/j.jct.2010.04.006. [DOI] [Google Scholar]
  • 391.Ribeiro da Silva M.A.V., Cabral J.I.T.A., Cimas A. Experimental and Computational Study of the Energetics of 5- and 6-Aminoindazole. J. Chem. Thermodyn. 2010;42:1240–1247. doi: 10.1016/j.jct.2010.04.026. [DOI] [Google Scholar]
  • 392.Santos A.F.L.O.M., Ribeiro da Silva M.A.V. Energetics of 1-(Aminophenyl)Pyrroles: A Joint Calorimetric and Computational Study. J. Chem. Thermodyn. 2011;43:1480–1487. doi: 10.1016/j.jct.2011.04.022. [DOI] [Google Scholar]
  • 393.Ribeiro da Silva M.A.V., Amaral L.M.P.F., Szterner P. Experimental Study on the Thermochemistry of Some Amino Derivatives of Uracil. J. Chem. Thermodyn. 2011;43:1763–1767. doi: 10.1016/j.jct.2011.06.003. [DOI] [Google Scholar]
  • 394.Ribeiro da Silva M.A.V., Amaral L.M.P.F., Szterner P. Thermochemical Study of 5-Methyluracil, 6-Methyluracil, and 5-Nitrouracil. J. Chem. Thermodyn. 2011;43:1924–1927. doi: 10.1016/j.jct.2011.06.023. [DOI] [Google Scholar]
  • 395.Lima C.F.R.A.C., Costa J.C.S., Santos L.M.N.B.F. Thermodynamic Insights on the Structure and Energetics of s-Triphenyltriazine. J. Phys. Chem. A. 2011;115:9249–9258. doi: 10.1021/jp2027687. [DOI] [PubMed] [Google Scholar]
  • 396.Ribeiro da Silva M.A.V., Cabral J.I.T.A. Standard Molar Enthalpies of Formation of Three Methyl-Pyrazole Derivatives. J. Chem. Thermodyn. 2012;47:138–143. doi: 10.1016/j.jct.2011.10.007. [DOI] [Google Scholar]
  • 397.Amaral L.M.P.F., Ribeiro da Silva M.A.V. Thermochemistry of Some Methoxypyridines. J. Chem. Thermodyn. 2012;48:65–69. doi: 10.1016/j.jct.2011.11.032. [DOI] [Google Scholar]
  • 398.Ribeiro da Silva M.A.V., Galvão T.L.P., Rocha I.M., Santos A.F.L.O.M. Aromaticity and Stability Going in Opposite Directions: An Energetic, Structural, Magnetic and Electronic Study of Aminopyrimidines. J. Chem. Thermodyn. 2012;54:330–338. doi: 10.1016/j.jct.2012.05.015. [DOI] [Google Scholar]
  • 399.Roux M.V., Notario R., Zaitsau D.H., Emel’yanenko V.N., Verevkin S.P. Experimental and Computational Thermochemical Study of 2-Thiobarbituric Acid: Structure−Energy Relationship. J. Phys. Chem. A. 2012;116:4639–4645. doi: 10.1021/jp302143p. [DOI] [PubMed] [Google Scholar]
  • 400.Notario R., Emel’yanenko V.N., Roux M.V., Ros F., Verevkin S.P., Chickos J.S., Liebman J.F. Thermochemistry of Uracils. Experimental and Computational Enthalpies of Formation of 5,6-Dimethyl-, 1,3,5-Trimethyl-, and 1,3,5,6-Tetramethyluracils. J. Phys. Chem. A. 2013;117:244–251. doi: 10.1021/jp311057h. [DOI] [PubMed] [Google Scholar]
  • 401.Ribeiro da Silva M.A.V., Amaral L.M.P.F., Szterner P. Experimental Study on the Thermochemistry of 2-Thiouracil, 5-Methyl-2-Thiouracil and 6-Methyl-2-Thiouracil. J. Chem. Thermodyn. 2013;57:380–386. doi: 10.1016/j.jct.2012.08.004. [DOI] [Google Scholar]
  • 402.Silva A.L.R., Cimas A., Vale N., Gomes P., Monte M.J.S., Ribeiro da Silva M.D.M.C. Experimental and Computational Study of the Energetics of Hydantoin and 2-Thiohydantoin. J. Chem. Thermodyn. 2013;58:158–165. doi: 10.1016/j.jct.2012.10.010. [DOI] [Google Scholar]
  • 403.Galvão T.L.P., Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V. Energetics of Aminomethylpyrimidines: An Examination of the Aromaticity of Nitrogen Heteromonocyclic Derivatives. J. Chem. Thermodyn. 2013;62:186–195. doi: 10.1016/j.jct.2013.03.010. [DOI] [Google Scholar]
  • 404.Blokhin A.V., Kohut S.V., Kabo G.J., Stepurko E.N., Paulechka Y.U., Voitkevich O.V. Thermodynamic Properties of 1-Ethyl-4-Nitro-1,2,3-Triazole. Thermochim. Acta. 2013;565:221–226. doi: 10.1016/j.tca.2013.05.011. [DOI] [Google Scholar]
  • 405.Notario R., Roux M.V., Ros F., Emel’yanenko V.N., Verevkin S.P. Experimental and Computational Thermochemical Study of 1,3,5-Trimethyl-, 1,5,5-Trimethyl-, and 1,3,5,5-Tetramethyl-Barbituric Acids. J. Chem. Thermodyn. 2014;74:144–152. doi: 10.1016/j.jct.2014.01.023. [DOI] [Google Scholar]
  • 406.Amaral L.M.P.F., Szterner P., Miranda M.S., Ribeiro da Silva M.A.V. Enthalpy of Formation of 5-Fluoro-1,3-Dimethyluracil: 5-Fluorouracil Revisited. J. Chem. Thermodyn. 2014;75:106–115. doi: 10.1016/j.jct.2014.02.018. [DOI] [Google Scholar]
  • 407.Notario R., Roux M.V., Ros F., Emel’yanenko V.N., Zaitsau D.H., Verevkin S.P. Thermochemistry of 1,3-Diethylbarbituric and 1,3-Diethyl-2-Thiobarbituric Acids: Experimental and Computational Study. J. Chem. Thermodyn. 2014;77:151–158. doi: 10.1016/j.jct.2014.06.001. [DOI] [Google Scholar]
  • 408.Xiao S.-X., Li A.-T., Li X., Li C.-H., Xiao H.-Y., Huang S., Chen Q.-S., Ye L.-J., Li Q.-G. The Research on Formation Enthalpy of Phenanthroline Monohydrate and Its Influence on the Growth Metabolism of E. coli by Microcalorimetry. J. Therm. Anal. Calorim. 2014;115:2211–2217. doi: 10.1007/s10973-014-3642-5. [DOI] [Google Scholar]
  • 409.Szterner P., Galvão T.L.P., Amaral L.M.P.F., Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V. 5-Isopropylbarbituric and 2-Thiobarbituric Acids: An Experimental and Computational Study. Thermochim. Acta. 2016;625:36–46. doi: 10.1016/j.tca.2015.12.007. [DOI] [Google Scholar]
  • 410.Carvalho T.M.T., Amaral L.M.P.F., Morais V.M.F., Ribeiro da Silva M.D.M.C. Experimental and Computational Energetic Study of 1-R-2-Phenylindole (R = H, CH3, C2H5) J. Chem. Thermodyn. 2015;85:129–140. doi: 10.1016/j.jct.2015.01.012. [DOI] [Google Scholar]
  • 411.Amaral L.M.P.F., Szterner P., Morais V.M.F., Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V. Experimental and Computational Thermochemical Studies of 6-Azauracil Derivatives. J. Chem. Thermodyn. 2016;96:93–103. doi: 10.1016/j.jct.2015.12.020. [DOI] [Google Scholar]
  • 412.Ledo J.M., Camarillo E.A., Flores H., Ramos F., Rojas A. Energies of Combustion and Enthalpies of Formation of 5-Methyl-5- Phenylhydantoin and 5,5-Diphenylhydantoin. J. Anal. Calorim. 2016;123:2391–2396. doi: 10.1007/s10973-015-5036-8. [DOI] [Google Scholar]
  • 413.Silva A.L.R., Ribeiro da Silva M.A.V. Energetic, Structural and Tautomeric Analysis of 2-Mercaptobenzimidazole. An Experimental and Computational Approach. J. Therm. Anal. Calorim. 2017;129:1679–1688. doi: 10.1007/s10973-017-6353-x. [DOI] [Google Scholar]
  • 414.Kazakov A.I., Kurochkina L.S., Nabatova A.V., Lempert D.B., Dalinger I.L., Kormanov A.V., Serushkina O.V., Sheremetev A.B. Pyrazolyltetrazoles-A High-Enthalpy Backbone for Designing High-Energy Compounds: An Experimental Study of the Enthalpy of Formation. Dokl. Phys. Chem. 2018;478:15–18. doi: 10.1134/S0012501618010049. [DOI] [Google Scholar]
  • 415.Emel’yanenko V.N., Zaitsau D.H., Verevkin S.P. Thermochemical Properties of Xanthine and Hypoxanthine Revisited. J. Chem. Eng. Data. 2017;62:2606–2609. doi: 10.1021/acs.jced.7b00085. [DOI] [Google Scholar]
  • 416.Mendoza-Ruiz E.A., Mentado-Morales J., Flores-Segura H. Standard Molar Enthalpies of Formation and Phase Changes of Tetra-Nphenylbenzidine and 4,4′-Bis (N-Carbazolyl)-1,1′-Biphenyl. J. Therm. Anal. Calorim. 2018;135:2337–2345 . doi: 10.1007/s10973-018-7395-4. [DOI] [Google Scholar]
  • 417.Perdomo G., Flores H., Ramos F., Notario R., Freitas V.L.S., Ribeiro da Silva M.D.M.C., Camarillo E.A., Dávalos J.Z. Thermochemistry of R-SH Group in Gaseous Phase: Experimental and Theoretical Studies of Three Sulfur Imidazole Derivatives. J. Chem. Thermodyn. 2018;122:65–72. doi: 10.1016/j.jct.2018.03.002. [DOI] [Google Scholar]
  • 418.Emelyanenko V.N., Zaitsau D.H., Pimerzin A.A., Verevkin S.P. N-ph N-Phenyl-Carbazole as a Potential Liquid Organic Hydrogen Carrier: Thermochemical and Computational Studyenyl-Carbazole as a Potential Liquid Organic Hydrogen Carrier: Thermochemical and Computational Study. J. Chem. Thermodyn. 2019;132:122–128. doi: 10.1016/j.jct.2018.12.032. [DOI] [Google Scholar]
  • 419.Orozco-Guareno E., Campos J.B., Barcena-Soto M., Zuniga-Gutierrez B. Enthalpy of Formation for Indazoles (Indazole, 1H-Indazole-3-Carboxylic Acid, 1H-Indazole-5-Carboxylic Acid, 1H-Indazole-6-Carboxylic Acid and 1-Methyl-1H-Indazole-6-Carboxylic Methyl Ester): Experimental and Theoretical Studies. J. Therm. Anal. Calorim. 2019;141:819–828 . doi: 10.1007/s10973-019-09078-8. [DOI] [Google Scholar]
  • 420.Amaral L.M.P.F., Szterner P., Morais V.M.F., Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V. Energetic Characterization of Uracil Derivatives: Orotic and Isoorotic Acids. Thermochim. Acta. 2020;683:178474. doi: 10.1016/j.tca.2019.178474. [DOI] [Google Scholar]
  • 421.Salomon-Santiago C., Perdomo G., Flores-Segura H., Notario R., Orozco-Guareno E. Experimental and Theoretical Thermochemical Studies of Imidazole, Imidazole-2-Carboxaldehyde and 2-Aminobenzimidazole. Thermochim. Acta. 2020;693:178756. doi: 10.1016/j.tca.2020.178756. [DOI] [Google Scholar]
  • 422.Konnova M.E., Li S., Bösmann A., Müller K., Wasserscheid P., Andreeva I.V., Turovtzev V.V., Zaitsau D.H., Pimerzin A.A., Verevkin S.P. Thermochemical Properties and Dehydrogenation Thermodynamics of Indole Derivates. Ind. Eng. Chem. Res. 2020;59:20539–20550. doi: 10.1021/acs.iecr.0c04069. [DOI] [Google Scholar]
  • 423.Konkova T.S., Matyushin Y.N., Miroshnichenko E.A., Vorobev A.B., Palysaeva N.V., Sheremetev A.B. Thermochemical Properties of [1,2,4]Triazolo[4,3-b]-[1,2,4,5]Tetrazine Derivatives. Russ. J. Phys. Chem. B. 2020;14:69–72. doi: 10.1134/S1990793120010042. [DOI] [Google Scholar]
  • 424.Acree W.E., Jr., Bott S.G., Tucker S.A., Ribeiro da Silva M.A.V., Matos M.A.R., Pilcher G. Enthalpies of Combustion of 4-Methoxybenzofurazan, 4-Methoxybenzofurazan-1-Oxide, 4-Methylbenzofurazan-1-Oxide, 4-Chlorobenzofurazan-1-Oxid, and 3-Nitro-Benzofurazan-1-Oxide: The Dissociation Enthalpies of the N–O Bonds. J. Chem. Thermodyn. 1996;28:673–683. doi: 10.1006/jcht.1996.0063. [DOI] [Google Scholar]
  • 425.Verevkin S.P. Thermochemistry of Amines: Strain in Six-Membered Rings from Experimental Standard Molar Enthalpies of Formation of Morpholines and Piperazines. J. Chem. Thermodyn. 1998;30:1069–1079. doi: 10.1006/jcht.1998.0371. [DOI] [Google Scholar]
  • 426.Korepin A.G., Kazakov A.I., Plishkin N.A., Ivanova O.G., Kurochkina L.S., Garanin V.A., Kosilko V.P., Nesterenko D.A. Standard Enthalpies of Formation of Some N-Spiranes. Russ. Chem. Bull. 2011;60:1810–1813. doi: 10.1007/s11172-011-0273-x. [DOI] [Google Scholar]
  • 427.Silva A.L.R., Cimas A., Ribeiro da Silva M.D.M.C. Experimental and Computational Thermochemical Studies of Benzoxazole and Two Chlorobenzoxadole Derivatives. J. Chem. Thermodyn. 2013;57:212–219. doi: 10.1016/j.jct.2012.08.028. [DOI] [Google Scholar]
  • 428.Santos A.F.L.O.M., Silva A.L.R., Santiago O.D.F., Gonçalves J.M., Pandey S., Acree W.E., Jr., Ribeiro da Silva M.D.M.C. Thermochemical Properties of 4-N,N-Dialkylamino-7-Nitrobenzofurazan Derivatives (Alkyl = Methyl, Ethyl) J. Chem. Thermodyn. 2014;73:62–68. doi: 10.1016/j.jct.2013.09.004. [DOI] [Google Scholar]
  • 429.Li Y.-F., Zhai L., Xu K.-Z., Song J.-R., Zhao F.-Q. Energies of Combustion and Specific Heat Capacities of Diaminofurazan, Dinitrofurazan and Diaminoazofurazan. Chin. J. Energ. Mater. 2016;24:838–841. doi: 10.11943/j.issn.1006-9941.2016.09.003. [DOI] [Google Scholar]
  • 430.Flores H., Ledo J.M., Hernández-Pérez J.M., Camarillo E.A., Sandoval-Lira J., Amador M.P. Thermochemical and Theoretical Study of 2-Oxazolidinone and 3-Acetyl-2-Oxazolidinone. J. Chem. Thermodyn. 2016;102:386–391. doi: 10.1016/j.jct.2016.07.038. [DOI] [Google Scholar]
  • 431.Freitas V.L.S., Silva C.A.O., Paiva M.A.T., Ribeiro da Silva M.A.V. Energetic Effects of Alkyl Groups (Methyl and Ethyl) on the Nitrogen of the Morpholine Structure. J. Therm. Anal. Calorim. 2017;130:485–496. doi: 10.1007/s10973-017-6194-7. [DOI] [Google Scholar]
  • 432.Perdomo G., Flores H., Notario R., Camarillo E.A., Amador M.P. Enthalpies of Formation of Four Isoxazole Derivatives in the Solid and Gas Phases: Application to the Study of Chemical Equilibria. Struct. Chem. 2017;28:1111–1123. doi: 10.1007/s11224-017-0923-1. [DOI] [Google Scholar]
  • 433.Freitas V.L.S., Silva C.A.O., Ribeiro da Silva M.D.M.C. Energetic vs. Structural Effects of Aminoalkyl Substituents in the Morpholine. J. Chem. Thermodyn. 2018;122:95–101. doi: 10.1016/j.jct.2018.03.001. [DOI] [Google Scholar]
  • 434.Miranda M.S., Matos M.A.R., Morais V.M.F., Liebman J.F. Combined Experimental and Computational Study on the Energetics of 1,2-Benzisothiazol-3(2H)-One and 1,4-Benzothiazin-3(2H, 4H)-One. J. Chem. Thermodyn. 2011;43:635–644. doi: 10.1016/j.jct.2010.11.006. [DOI] [Google Scholar]
  • 435.Miranda M.S., Matos M.A.R., Morais V.M.F., Liebman J.F. 2,1,3-Benzothiadiazole: Study of its Structure, Energetics and Aromaticity. J. Chem. Thermodyn. 2012;50:30–36. doi: 10.1016/j.jct.2012.02.005. [DOI] [Google Scholar]
  • 436.Silva A.L.R., Cimas A., Ribeiro da Silva M.D.M.C. Energetic Study of Benzothiazole and Two Methylbenzothiazole Derivatives: Calorimetric and Computational Approaches. J. Chem. Thermodyn. 2014;73:3–11. doi: 10.1016/j.jct.2013.06.021. [DOI] [Google Scholar]
  • 437.Camarillo E.A., Mentado J., Flores H., Hernández-Pérez J.M. Standard Enthalpies of Formation of 2-Aminobenzothiazoles in the Crystalline Phase by Rotating-Bomb Combustion Calorimetry. J. Chem. Thermodyn. 2014;73:269–273. doi: 10.1016/j.jct.2014.01.018. [DOI] [Google Scholar]
  • 438.Silva A.L.R., Monte M.J.S., Morais V.M.F., Ribeiro da Silva M.D.M.C. Thermodynamic Study of 2-Aminothiazole and 2-Aminobenzothiazole: Experimental and Computational Approaches. J. Chem. Thermodyn. 2014;74:67–77. doi: 10.1016/j.jct.2014.04.001. [DOI] [Google Scholar]
  • 439.Jorge N.L., Leiva L.C.A., Castellanos M.G., Gómez Vara M.E., Cafferata L.F.R., Castro E.A. Experimental and Theoretical Study of the Enthalpy of Formation of 3,6-Diphenyl-1,2,4,5-Tetroxane Molecule. Sci. World J. 2002;2:455–460. doi: 10.1100/tsw.2002.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 440.Ribeiro da Silva M.A.V., Amaral L.M.P.F. Standard Molar Enthalpies of Formation of 2-Furancarbonitrile, 2-Acetylfuran, and 3-Furaldehyde. J. Chem. Thermodyn. 2009;41:26–29. doi: 10.1016/j.jct.2008.08.004. [DOI] [Google Scholar]
  • 441.Matos M.A.R., Sousa C.C.S., Morais V.M.F. Experimental and Computational Thermochemistry of the Isomers: CHROMANONE, 3-Isochromanone, and Dihydrocoumarin. J. Chem. Thermodyn. 2009;41:308–314. doi: 10.1016/j.jct.2008.08.012. [DOI] [Google Scholar]
  • 442.Ribeiro da Silva M.A.V., Amaral L.M.P.F. Standard Molar Enthalpies of Formation of Some Vinylfuran Derivatives. J. Chem. Thermodyn. 2009;41:349–354. doi: 10.1016/j.jct.2008.09.013. [DOI] [Google Scholar]
  • 443.Sousa C.C.S., Matos M.A.R., Morais V.M.F. Energetics of Flavone and Flavanone. J. Chem. Thermodyn. 2009;41:1408–1412. doi: 10.1016/j.jct.2009.06.022. [DOI] [Google Scholar]
  • 444.Ribeiro da Silva M.A.V., Santos A.F.L.O.M., Amaral L.M.P.F. A Calorimetric and Computational Study on the Thermochemistry of 2-(5H)-Furanone and 2-(5H)-Thiophenone. J. Chem. Thermodyn. 2010;42:564–570. doi: 10.1016/j.jct.2009.11.013. [DOI] [Google Scholar]
  • 445.Freitas V.L.S., Gomes J.R.B., Ribeiro da Silva M.D.M.C. Energetic Effects of Ether and Ketone Functional Groups in 9,10-Dihydroanthracene Compound. J. Chem. Thermodyn. 2010;42:1248–1254. doi: 10.1016/j.jct.2010.04.027. [DOI] [Google Scholar]
  • 446.Sousa C.C.S., Morais V.M.F., Matos M.A.R. Energetics of the Isomers: 3- and 4-Hydroxycoumarin. J. Chem. Thermodyn. 2010;42:1372–1378. doi: 10.1016/j.jct.2010.06.003. [DOI] [Google Scholar]
  • 447.Ribeiro da Silva M.A.V., Amaral L.M.P.F. Thermochemical Study of 2,5-Dimethyl-3-Furancarboxylic Acid, 4,5-Dimethyl-2-Furaldehyde, and 3-Acetyl-2,5-Dimethylfuran. J. Chem. Thermodyn. 2011;43:1–8. doi: 10.1016/j.jct.2010.07.006. [DOI] [Google Scholar]
  • 448.Sousa C.C.S., Matos M.A.R., Morais V.M.F. When Theory and Experiment Hold Hands: The Thermochemistry of γ-Pyrone Derivatives. J. Chem. Thermodyn. 2011;43:1159–1163. doi: 10.1016/j.jct.2011.02.021. [DOI] [Google Scholar]
  • 449.Amador P., Pineda B., López A., Flores H. Standard Molar Enthalpies of Formation in the Crystalline Phase of 7-Hydroxy-4-Methylcoumarin, 7-Ethoxy-4-Methylcoumarin, and 6-Methoxy-4-Methylcoumarin. J. Chem. Thermodyn. 2011;43:1414–1416. doi: 10.1016/j.jct.2011.04.013. [DOI] [Google Scholar]
  • 450.Sousa C.C.S., Morais V.M.F., Matos M.A.R. Experimental and Computational Thermochemistry of 6,7-Dihydro-4(5H)-Benzofuranone. J. Chem. Thermodyn. 2013;56:83–88. doi: 10.1016/j.jct.2012.07.008. [DOI] [Google Scholar]
  • 451.Dibrivnyi V., Marshalek A., Sobechko I., Horak Y., Obushak M., Velychkivska N., Goshko L. Thermodynamic Properties of Some Isomeric 5-(Nitrophenyl)-Furyl-2 Derivatives. BMC Chem. 2019;13:1–11. doi: 10.1186/s13065-019-0619-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 452.Pihlaja K., Kivelä H., Vainiotalo P., Steele W.V. Enthalpies of Combustion and Formation of Severely Crowded Methyl-Substituted 1,3-Dioxanes. The Magnitudes of 2,4- and 4,6-Diaxial Me, Me-Interactions and the Chair-2,5-Twist Energy Difference. Molecules. 2020;25:2762. doi: 10.3390/molecules25122762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 453.Ribeiro da Silva M.A.V., Santos A.F.L.O.M. Thermochemical Study of 2- and 3-Alkyl Substituted Thiophenes: Energetic-Structural Correlations. J. Therm. Anal. Calorim. 2007;88:7–17. doi: 10.1007/s10973-006-8326-3. [DOI] [Google Scholar]
  • 454.Roux M.V.R., Temprado M., Jimenez P., Notario R., Chickos J.S., Santos A.F.L.O.M., Ribeiro da Silva M.A.V. Thermochemistry of 2- and 3-Acetylthiophenes: Calorimetric and Computational Study. J. Phys. Chem. A. 2007;111:11084–11092. doi: 10.1021/jp0734169. [DOI] [PubMed] [Google Scholar]
  • 455.Ribeiro da Silva M.A.V., Santos A.F.L.O.M. Thermochemistry of Substituted Thiophenecarbonitrile Derivatives. J. Chem. Thermodyn. 2008;40:225–231. doi: 10.1016/j.jct.2007.06.020. [DOI] [Google Scholar]
  • 456.Ribeiro da Silva M.A.V., Santos A.F.L.O.M. Experimental Study on the Thermochemistry of 2,5-Dimethylthiophene and its Acetyl Derivative. J. Chem. Thermodyn. 2008;40:1217–1221. doi: 10.1016/j.jct.2008.04.005. [DOI] [Google Scholar]
  • 457.Ribeiro da Silva M.A.V., Santos A.F.L.O.M. Experimental Thermochemical Study of the Three Methyl Substituted 2-Acetylthiophene Isomers. J. Chem. Thermodyn. 2008;40:1309–1313. doi: 10.1016/j.jct.2008.03.008. [DOI] [Google Scholar]
  • 458.Freitas V.L.S., Monte M.J.S., Santos L.M.N.B.F., Gomes J.R.B., Ribeiro da Silva M.D.M.C. Energetic Studies and Phase Diagram of Thioxanthene. J. Phys. Chem. A. 2009;113:12988–12994. doi: 10.1021/jp906413y. [DOI] [PubMed] [Google Scholar]
  • 459.Freitas V.L.S., Gomes J.R.B., Ribeiro da Silva M.D.M.C. Revisiting Dibenzothiophene Thermochemical Data: Experimental and Computational Studies. J. Chem. Thermodyn. 2009;41:1199–1205. doi: 10.1016/j.jct.2009.05.019. [DOI] [Google Scholar]
  • 460.Ribeiro da Silva M.A.V., Santos A.F.L.O.M. Experimental Thermochemical Study of 3-Acetyl-2-Methyl-5-Phenylthiophene. J. Chem. Thermodyn. 2010;42:128–133. doi: 10.1016/j.jct.2009.07.021. [DOI] [Google Scholar]
  • 461.Freitas V.L.S., Gomes J.R.B., Ribeiro da Silva M.D.M.C. Molecular Energetics of 4-Methyldibenzothiophene: An Experimental study. J. Chem. Thermodyn. 2010;42:251–255. doi: 10.1016/j.jct.2009.08.010. [DOI] [Google Scholar]
  • 462.Gudino R., Torres L.A., Campos M., Santillan R.L., Farfan N. The Standard Molar Enthalpies of Combustion and Sublimation of Benzothiazino-Benzothiazine and Benzoxazino-Benzoxazine. J. Chem. Thermodyn. 1997;29:565–574. doi: 10.1006/jcht.1996.0176. [DOI] [Google Scholar]
  • 463.Macnab A.C.J.I. Measurement and Prediction of Enthalpies of Combustion and Formation of Oxygen and Nitrogen Heterocycles. Thermochim. Acta. 2000;344:15–21. [Google Scholar]
  • 464.Mentado J., Flores H., Amador P. Combustion Energies and Formation Enthalpies of 2-SH-Benzazoles. J. Chem. Thermodyn. 2008;40:1106–1109. doi: 10.1016/j.jct.2008.02.018. [DOI] [Google Scholar]
  • 465.Flores H., Camarillo E.A., Mentado J. Enthalpies of Combustion and Formation of 2-Acetylpyrrole, 2-Acetylfuran and 2-Acetylthiophene. Thermochim. Acta. 2009;493:76–79. doi: 10.1016/j.tca.2009.04.012. [DOI] [Google Scholar]
  • 466.Roux M.V., Temprado M., Jimenez P., Foces-Foces C., Parameswar A.R., Demchenko A.V., Chickos J.S., Deakyne C.A., Ludden A.K., Liebman J.F. Experimental and Theoretical Study of the Structures and Enthalpies of Formation of the Synthetic Reagents 1,3-Thiazolidine-2-Thione and 1,3-Oxazolidine-2-Thione. J. Phys. Chem. A. 2009;113:10772–10778. doi: 10.1021/jp9034216. [DOI] [PubMed] [Google Scholar]
  • 467.Roux M.V., Temprado M., Jimenez P., Foces-Foces C., Parameswar A.R., Demchenko A.V., Chickos J.S., Deakyne C.A., Ludden A.K., Liebman J.F. Experimental and Theoretical Study of the Structures and Enthalpies of Formation of 3H-1,3-Benzoxazole-2-Thione, 3H-1,3-Benzothiazole-2-Thione, and Their Tautomers. J. Phys. Chem. A. 2010;114:6336–6341. doi: 10.1021/jp102126j. [DOI] [PubMed] [Google Scholar]
  • 468.Ramos F., Flores H., Rojas A., Hernández–Pérez J.M., Camarillo E.A., Amador M.P. Experimental and Computational Thermochemical Study of Benzofuran, Benzothiophen and Indole Derivatives. J. Chem. Thermodyn. 2016;97:297–306. doi: 10.1016/j.jct.2016.02.008. [DOI] [Google Scholar]
  • 469.Silva A.L.R., Matos M.A.R., Morais V.M.F., Ribeiro da Silva M.D.M.C. Thermochemical and Conformational Study of Optical Active Phenylbenzazole Derivatives. J. Chem. Thermodyn. 2018;116:7–20. doi: 10.1016/j.jct.2017.08.017. [DOI] [Google Scholar]
  • 470.Silva A.L.R., Morais V.M.F., Ribeiro da Silva M.D.M.C. Thermodynamic Properties of Naphthoxazole and Naphthothiazole Derivatives: Experimental and Computational Studies. J. Chem. Thermodyn. 2018;127:45–55. doi: 10.1016/j.jct.2018.07.008. [DOI] [Google Scholar]
  • 471.Silva A.L.R., Ribeiro da Silva M.D.M.C. Effects of the Functional Groups Amino and Nitro on the Reactivity of Benzoxazoles and Comparison with Homologous Benzothiazoles. J. Phys. Org. Chem. 2020;34:e4118. doi: 10.1002/poc.4118. [DOI] [Google Scholar]
  • 472.Ribeiro da Silva M.A.V., Reis A.M.V., Pilcher G. Enthalpies of Formation of Crystalline Dialkylammoniumdialkyl-Dithiocarbamates: Alkyl = Ethyl, n-Propyl, i-Propyl, n-Butyl, and i-Butyl. J. Chem. Thermodyn. 1987;19:837–844. doi: 10.1016/0021-9614(87)90030-9. [DOI] [Google Scholar]
  • 473.Zhang Z.-H., Guan W., Yang J.-Z., Tan Z.-C., Sun L.-X. The Standard Molar Enthalpy of Formation of Room Temperature Ionic Liquid EMIES. Acta Phys.-Chim. Sin. 2004;20:1469–1471. doi: 10.3866/PKU.WHXB20041214. [DOI] [Google Scholar]
  • 474.Gao Y., Arritt S.W., Twamley B., Shreeve J.M. Guanidinium-Based Ionic Liquids. Inorg. Chem. 2005;44:1704–1712. doi: 10.1021/ic048513k. [DOI] [PubMed] [Google Scholar]
  • 475.Xue H., Gao Y., Twamley B., Shreeve J.M. Energetic Azolium Azolate Salts. Inorg. Chem. 2005;44:5068–5072. doi: 10.1021/ic050284u. [DOI] [PubMed] [Google Scholar]
  • 476.Zhang Z.-H., Tan Z.-C., Sun L.-X., Zhen Y.-J., Lv X.-C., Shi Q. Thermodynamic Investigation of Room Temperature Ionic Liquid: The Heat Capacity and Standard Enthalpy of Formation of EMIES. Thermochim. Acta. 2006;447:141–146. doi: 10.1016/j.tca.2006.04.022. [DOI] [Google Scholar]
  • 477.Zhang Z.H., Tan Z.C., Li Y.S., Sun L.X. Thermodynamic Investigation of Room Temperature Ionic Liquid: Heat Capacity and Thermodynamic Functions of BMIBF4. J. Therm. Anal. Calorim. 2006;85:551–557. doi: 10.1007/s10973-006-7640-0. [DOI] [Google Scholar]
  • 478.Emel’yanenko V.N., Verevkin S.P., Heintz A. The Gaseous Enthalpy of Formation of the Ionic Liquid 1-Butyl-3-Methylimidazolium Dicyanamide from Combustion Calorimetry, Vapor Pressure Measurements, and Ab Initio Calculations. J. Am. Chem. Soc. 2007;129:3930–3937. doi: 10.1021/ja0679174. [DOI] [PubMed] [Google Scholar]
  • 479.Emelyanenko V.N., Verevkin S.P., Heintz A., Schick C. Ionic Liquids. Combination of Combustion Calorimetry with High-Level Quantum Chemical Calculations for Deriving Vaporization Enthalpies. J. Phys. Chem. B. 2008;112:8095–8098. doi: 10.1021/jp802112m. [DOI] [PubMed] [Google Scholar]
  • 480.Emel’yanenko V.N., Verevkin S.P., Heintz A., Corfield J.-A., Deyko A., Lovelock K.R.J., Licence P., Jones R.G. Pyrrolidinium-Based Ionic Liquids. 1-Butyl-1-Methyl Pyrrolidinium Dicyanoamide: Thermochemical Measurement, Mass Spectrometry, and Ab Initio Calculations. J. Phys. Chem. B. 2008;112:11734–11742. doi: 10.1021/jp803238t. [DOI] [PubMed] [Google Scholar]
  • 481.Guan W., Fang D.-W., Sun Y.-C., Tong J., Yang J.-Z. Standard Molar Enthalpy of Combustion and Formation of Ionic Liquid Alkylimidazolium Chloride. Acta Chim. Sin. 2008;66:1833–1836. [Google Scholar]
  • 482.Strechan A.A., Kabo A.G., Paulechka Y.U., Blokhin G.J., Kabo G.J., Shaplov A.S., Lozinskaya E.I. Thermochemical Properties of 1-Butyl-3-Methylimidazolium Nitrate. Thermochim. Acta. 2008;474:25–31. doi: 10.1016/j.tca.2008.05.002. [DOI] [Google Scholar]
  • 483.Emel’yanenko V.N., Verevkin S.P., Heintz A., Voss K., Schulz A. Imidazolium-Based Ionic Liquids. 1-Methyl Imidazolium Nitrate: Thermochemical Measurements and Ab Initio Calculations. J. Phys. Chem. B. 2009;113:9871–9876. doi: 10.1021/jp901272k. [DOI] [PubMed] [Google Scholar]
  • 484.Liu Y.-P., Di Y.-Y., Dan W.-Y., He D.-H., Kong Y.-X., Yang W.-W. Lattice Potential Energy and Standard Molar Enthalpy in the Formation of 1-Dodecylamine Hydrobromide (1-C12H25NH3·Br)(s) Chin. Phys. B. 2011;20:028202. doi: 10.1088/1674-1056/20/2/028202. [DOI] [Google Scholar]
  • 485.Wei X.-l., Fu S.-Z., Wei Z.-B., Di Y.-Y., Liu J.-Q., Sun D.-Z., Yin B.-L., Zhang S.-H. Standard Molar Enthalpy of Combustion and Formation of Ionic Liquid 1-Alkylimidazolium Bromine. Glob. J. Phys. Chem. 2011;2:287–293. [Google Scholar]
  • 486.Zaitsau D.H., Emel’yanenko V.N., Verevkin S.P., Heintz A. Sulfur-Containing Ionic Liquids. Rotating-Bomb Combustion Calorimetry and First-Principles Calculations for 1-Ethyl-3-Methylimidazolium Thiocyanate. J. Chem. Eng. Data. 2010;55:5896–5899. doi: 10.1021/je1009366. [DOI] [Google Scholar]
  • 487.Verevkin S.P., Emelyanenko V.N., Zaitsau D.H., Heintz A., Muzny C.D., Frenkel M. Thermochemistry of Imidazolium-Based Ionic Liquids: Experiment and First-Principles Calculations. Phys. Chem. Chem. Phys. 2010;12:14994–15000. doi: 10.1039/c0cp00747a. [DOI] [PubMed] [Google Scholar]
  • 488.Gao H., Shreeve J.M. Azole-Based Energetic Salts. Chem. Rev. 2011;111:7377–7436. doi: 10.1021/cr200039c. [DOI] [PubMed] [Google Scholar]
  • 489.Zhu J.-F., He L., Zhang L., Huang M., Tao G.-H. Experimental and Theoretical Enthalpies of Formation of Glycine-Based Sulfate/Bisulfate Amino Acid Ionic Liquids. J. Phys. Chem. B. 2012;116:113–119. doi: 10.1021/jp209649h. [DOI] [PubMed] [Google Scholar]
  • 490.Emel’yanenko V.N., Verevkin S.P., Heintz A. Pyridinium Based Ionic Liquids. N-Butyl-3-Methyl-Pyridinium Dicyanoamide: Thermochemical Measurement and First-Principles Calculations. Thermochim. Acta. 2011;514:28–31. doi: 10.1016/j.tca.2010.11.028. [DOI] [Google Scholar]
  • 491.Emel’yanenko V.N., Zaitsau D.H., Verevkin S.P., Heintz A. Imidazolium Based Ionic Liquids. 1-Ethanol-3-Methyl-Imidazolium Dicyanoamide: Thermochemical Measurement and First-Principles Calculations. Thermochim. Acta. 2011;518:107–110. doi: 10.1016/j.tca.2011.02.016. [DOI] [Google Scholar]
  • 492.Guan W., Wang C., Wang Z., Chen S., Gao S. Thermochemistry on 1-Methyl-3-Ethylimidazolium Valine Ionic Liquid [C2mim][Val] Acta Chim. Sin. 2011;69:1280–1286. [Google Scholar]
  • 493.Verevkin S.P., Zaitsau D.H., Emel’yanenko V.N., Paulechka Y.U., Blokhin A.V., Bazyleva A.B., Kabo G.J. Thermodynamics of Ionic Liquids Precursors: 1-Methylimidazole. J. Phys. Chem. B. 2011;115:4404–4411. doi: 10.1021/jp201752j. [DOI] [PubMed] [Google Scholar]
  • 494.Emel’yanenko V.N., Zaitsau D.H., Verevkin S.P., Heintz A., Voss K., Schulz A. Vaporization and Formation Enthalpies of 1-Alkyl-3-Methylimidazolium Tricyanomethanides. J. Phys. Chem. B. 2011;115:11712–11717. doi: 10.1021/jp207335m. [DOI] [PubMed] [Google Scholar]
  • 495.Verevkin S.P., Emel’yanenko V.N., Krossing I., Kalb R. Thermochemistry of Ammonium Based Ionic Liquids: Tetra-Alkyl Ammonium Nitrates-Experiments and Computations. J. Chem. Thermodyn. 2012;51:107–113. doi: 10.1016/j.jct.2012.02.035. [DOI] [Google Scholar]
  • 496.Zaitsau D.H., Yermalayeu A.V., Emel’yanenko V.N., Heintz A., Verevkin S.P., Schick C., Berdzinski S., Strehmel V. Structure–Property Relationships in ILs: Vaporization Enthalpies of Pyrrolidinium Based Ionic Liquids. J. Mol. Liq. 2014;192:171–176. doi: 10.1016/j.molliq.2013.07.018. [DOI] [Google Scholar]
  • 497.Yermalayeu A.V., Zaitsau D.H., Emel’yanenko V.N., Verevkin S.P. Thermochemistry of Ammonium Based Ionic Liquids: Thiocyanates-Experiments and Computations. J. Solut. Chem. 2015;44:754–768. doi: 10.1007/s10953-015-0316-2. [DOI] [Google Scholar]
  • 498.Tian T., Hu X., Guan P., Wang S., Ding X. Density and Thermodynamic Performance of Energetic Ionic Liquids Based on 1-Alkyl/Esteryl-4-Amino-1,2,4-Triazolium. J. Mol. Liq. 2017;248:70–80. doi: 10.1016/j.molliq.2017.09.024. [DOI] [Google Scholar]
  • 499.Carpenter G.A., Zimmer M.F., Baroody E.E., Robb R.A. Enthalpy of Formation of N,N,N-Trifluorohexaneamidine, (2-Fluoro-2,2-dinitroethyl)acrylate, 2,4-Dinitrophenoxyethanol, and Diisobutylazelate. J. Chem. Eng. Data. 1971;16:46–49. [Google Scholar]
  • 500.Lebedev B.V. Thermodynamics of Diphenylcarbodiimide. Zhum. Obshch. Khim. 1984;54:417–424. [Google Scholar]
  • 501.Imamura A., Takahashi K., Murata S., Sakiyama M. Standard Enthalpies of Formation of Trimethyl Cyanurate, Malonamide, and 1,3-Dimethyluracil. J. Chem. Thermodyn. 1989;21:231–246. doi: 10.1016/0021-9614(89)90013-X. [DOI] [Google Scholar]
  • 502.Steele W.V., Chirico R.D., Knipmeyer S.E., Nguyen A., Smith N.K., Tasker I.R. Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Cyclohexene, Phthalan (2,5-Dihydrobenzo-3,4-Furan), Isoxazole, Octylamine, Dioctylamine, Trioctylamine, Phenyl Isocyanate, and 1,4,5,6-Tetrahydropyrimidine. J. Chem. Eng. Data. 1996;41:1269–1284. doi: 10.1021/je960093t. [DOI] [Google Scholar]
  • 503.Steele W.V., Chirico R.D., Knipmeyer S.E., Nguyen A., Smith N.K. Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Dicyclohexyl Sulfide, Diethylenetriamine, Di-N-Octyl Sulfide, Dimethyl Carbonate, Piperazine, Hexachloroprop-1-Ene, Tetrakis(Dimethylamino)Ethylene, N,N¢-Bis-(2-Hydroxyethyl)Ethylenediamine, and 1,2,4-Triazolo[1,5-a]Pyrimidine. J. Chem. Eng. Data. 1997;42:1037–1052. [Google Scholar]
  • 504.Boerio-Goates J., Francis M.R., Goldberg R.N., Ribeiro da Silva M.A.V., Ribeiro da Silva M.D.M.C., Tewari Y.B. Thermochemistry of Adenosine. J. Chem. Thermodyn. 2001;33:929–947. doi: 10.1006/jcht.2001.0820. [DOI] [Google Scholar]
  • 505.Monte M.J.S., Hillesheim D.M. Thermodynamic Study on the Sublimation of 1,2-Diphenylethane and of 3-Phenylpropiolic Acid. J. Chem. Thermodyn. 2001;33:849–857. doi: 10.1006/jcht.2000.0761. [DOI] [Google Scholar]
  • 506.Ribeiro da Silva M.D.M.C., Gonçalves J.M., Silva A.I.R., Silva A.M.R.O.A., Oliveira P.C.F.C., Ribeiro da Silva M.A.V. Experimental Study of the Energetics of Tetradentate N2O2 Schiff Bases Derived from Salicylaldehyde. Thermochim. Acta. 2004;420:67–71. doi: 10.1016/j.tca.2003.09.038. [DOI] [Google Scholar]
  • 507.Boerio-Goates J., Hopkins S.D., Monteiro R.A.R., Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V., Goldberg R.N. Thermochemistry of Inosine. J. Chem. Thermodyn. 2005;37:1239–1249. doi: 10.1016/j.jct.2005.03.001. [DOI] [Google Scholar]
  • 508.Ribeiro da Silva M.A.V., Santos L.M.N.B.F., Schröder B. Thermochemical Studies of Two N-(Diethylaminothiocarbonyl)Benzimido Derivatives. J. Chem. Thermodyn. 2006;38:1455–1460. doi: 10.1016/j.jct.2006.01.006. [DOI] [Google Scholar]
  • 509.Di Y.-Y., Ye C.-T., Tan Z.-C., Zhang G.-D. Low-Temperature Heat Capacity and Standard Molar Enthalpy of Formation of Crystalline (S)-(+)-Ibuprofen (C13H18O2)(s) Ind. J. Chem. 2007;46:947–951. [Google Scholar]
  • 510.Matos M.A.R., Miranda M.S., Morais V.M.F., Liebman J.F. Saccharin: A Combined Experimental and Computational Thermochemical Investigation of a Sweetener and Sulfonamide. Mol. Phys. 2005;103:221–228. doi: 10.1080/00268970512331316175. [DOI] [Google Scholar]
  • 511.Ribeiro da Silva M.D.M.C., Araújo N.R.M., Silva A.L.R., da Silva L.C.M., Barros N.P.S.M., Goncalves J.M., Ribeiro da Silva M.A.V. Three N2O2 Ligands Derived from the Condensation of 1,2-Cyclhexanediamine with Salicylaldehyde, Acetylacetone and Benzoylacetone: A New Contribution to the Energetical Characterization of Schiff Bases. J. Therm. Anal. Calorim. 2007;87:291–296. doi: 10.1007/s10973-006-7808-7. [DOI] [Google Scholar]
  • 512.Hou H., Dong J., Liu Y. Standard Molar Enthalpy of Formation of Morin Studied by Rotating-Bomb Combustion Calorimetry. J. Nat. Sci. 2008;13:103–106. doi: 10.1007/s11859-008-0120-6. [DOI] [Google Scholar]
  • 513.Surov A.O., Perlovich G.L., Emel’yanenko V.N., Verevkin S.P. Thermochemistry of Drugs. Experimental and First-Principles Study of Fenamates. J. Chem. Eng. Data. 2011;56:4325–4433. doi: 10.1021/je200128y. [DOI] [Google Scholar]
  • 514.Lima C.F.R.A.C., Rocha M.A.A., Gomes L.R., Low J.N., Silva A.M.S., Santos L.M.N.B.F. Experimental Support for the Role of Dispersion Forces in Aromatic Interactions. Chem. Eur. J. 2012;18:8934–8943. doi: 10.1002/chem.201201056. [DOI] [PubMed] [Google Scholar]
  • 515.Ovchinnikov V.V. Thermochemistry of Heteroatomic Compounds: Enthalpy of Combustion of Organic Compounds of Group I–VII Elements. Dokl. Phys. Chem. 2012;443:49–52. doi: 10.1134/S0012501612030013. [DOI] [Google Scholar]
  • 516.Oliveira J.A.S.A., Calvinho M.M., Notario R., Monte M.J.S., Ribeiro da Silva M.D.M.C. A Combined Experimental and Computational Thermodynamic Study of Fluorene-9-Methanol and Fluorene-9-Carboxylic Acid. J. Chem. Thermodyn. 2013;62:222–230. doi: 10.1016/j.jct.2013.03.005. [DOI] [Google Scholar]
  • 517.Yu X., Zhou C.-R., Han X.-W., Li G.-P. Study on Thermodynamic Properties of Glyphosate by Oxygen-Bomb Calorimeter and DSC. J. Therm. Anal. Calorim. 2013;111:943–949. doi: 10.1007/s10973-012-2384-5. [DOI] [Google Scholar]
  • 518.Li X., Jiang J.-H., Gu H.-W., Xiao S.-X., Li C.-H., Ye L.-J., Li X., Li Q.-G., Xu F., Sun L.-X. Calorimetric Determination of the Standard Molar Enthalpies of Formation of o-Vanillin and Trimethoprim. J. Therm. Anal. Calorim. 2015;119:721–726. doi: 10.1007/s10973-014-4184-6. [DOI] [Google Scholar]
  • 519.Shen C., Li W., Zhou C. Investigation on Molar Heat Capacity, Standard Molar Enthalpy of Combustion for Guaiacol and Acetyl Guaiacol Ester. Chin. J. Chem. Eng. 2016;24:1772–1778. doi: 10.1016/j.cjche.2016.05.004. [DOI] [Google Scholar]
  • 520.Emel’yanenko V.N., Yermalayeu A.V., Voges M., Held C., Sadowski G., Verevkin S.P. Thermodynamics of a Model Biological Reaction: A Comprehensive Combined Experimental and Theoretical Study. Fluid Phase Equil. 2016;422:99–110. doi: 10.1016/j.fluid.2016.01.035. [DOI] [Google Scholar]
  • 521.Knyazev A.V., Emel’yanenko V.N., Smirnova N.N., Zaitsau D.H., Stepanova O.V., Markin A.V., Gusarova E.V., Knyazeva S.S., Verevkin S.P. Comprehensive Thermodynamic Study of Methylprednisolone. J. Chem. Thermodyn. 2017;107:37–41. doi: 10.1016/j.jct.2016.12.015. [DOI] [Google Scholar]
  • 522.Maksimuk Y., Ponomarev D., Sushkova A., Krouk V., Vasarenko I., Antonava Z. Standard Molar Enthalpy of Formation of Vanillin. J. Therm. Anal. Calorim. 2018;131:1721–1733. doi: 10.1007/s10973-017-6651-3. [DOI] [Google Scholar]
  • 523.Szterner P., Amaral L.M.P.F., Morais V.M.F., Ribeiro da Silva M.D.M.C., Ribeiro da Silva M.A.V. Energetic Characterization of a Bioactive Compound: Uridine. J. Chem. Thermodyn. 2018;124:90–97. doi: 10.1016/j.jct.2018.04.013. [DOI] [Google Scholar]
  • 524.Siewert R., Zaitsau D.H., Emel’yanenko V.N., Verevkin S.P. Biomass Valorization: Thermodynamics of the Guerbet Condensation Reaction. J. Chem. Eng. Data. 2019;64:4904–4914. doi: 10.1021/acs.jced.9b00419. [DOI] [Google Scholar]
  • 525.Silva A.L.R., Goncalves J.M., Morais V.M.F., Ribeiro da Silva M.D.M.C. Energetics of Tetradentate N2O2 Schiff Bases Containing Different Alkyldiimine Brigdes. Thermochim. Acta. 2021;695:178817. doi: 10.1016/j.tca.2020.178817. [DOI] [Google Scholar]
  • 526.Verevkin S.P., Konnova M.E., Turovtsev V.V., Riabchunova A.V., Pimerzin A.A. Weaving a Network of Reliable Thermochemistry around Lignin Building Blocks: Methoxy-Phenols and Methoxy-Benzaldehydes. Ind. Eng. Chem. Res. 2020;59:22626–22639. doi: 10.1021/acs.iecr.0c04281. [DOI] [Google Scholar]
  • 527.Allen F.H. The Cambridge Structural Database: A Quarter of a Million Crystal Structures and Rising. Acta Crystallogr. Sect. B Struct. Sci. 2002;58:380–388. doi: 10.1107/S0108768102003890. [DOI] [PubMed] [Google Scholar]
  • 528.Rau H. Über die Fluoreszenz p-Substituierter Adsorbierter Azoverbindungen. Ber. Bunsenges. Phys. Chem. 1971;75:1343–1347. doi: 10.1002/bbpc.197100014. [DOI] [Google Scholar]
  • 529.Yoshihiro K., Hohi L., Akio K. Direct Evidence for the Site of Protonation of 4-Aminoazobenzene by Nitrogen-15 and Carbon-13 Nuclear Magnetic Resonance Spectroscopy. J. Phys. Chem. 1980;84:3417–3423. [Google Scholar]
  • 530.Kelemen J., Moss S., Sauter H., Winkler T. Azo-Hydrazone Tautomerism in Azo Dyes. II. Raman, NMR and Mass Spectrometric Investigations of 1-Phenylazo-2-Naphthylamine and 1-Phenylazo-2-Naphthol Derivatives. Dyes Pigment. 1982;3:27–47. doi: 10.1016/0143-7208(82)80011-9. [DOI] [Google Scholar]
  • 531.Kelemen J. Azo-Hydrazone Tautomerism in Azo Dyes. I. A Comparative Study of 1-Phenylazo-2-Naphthol and 1-Phenylazo-2-Naphthylamine Derivatives by Electronic Spectroscopy. Dyes Pigment. 1981;2:73–91. doi: 10.1016/0143-7208(81)80009-5. [DOI] [Google Scholar]
  • 532.Reeves R.L., Kaiser R.S. Selective Solvation of Hydrophobic Ions in Structured Solvents. Azo-Hydrazone Tautomerism of Azo dyes in Aqueous Organic Solvents. J. Org. Chem. 1970;35:3670–3675. doi: 10.1021/jo00836a017. [DOI] [Google Scholar]
  • 533.Yatsenko A.V. The Structures of Organic Molecules in Crystals: Simulations Using the Electro-Static Potential. Rus. Chem. Rev. 2005;74:521. doi: 10.1070/RC2005v074n06ABEH000818. [DOI] [Google Scholar]
  • 534.Dudek G.O., Dudek E.P. Spectroscopic Studies of Keto-Enol Equilibria. IX. N15-Substituted Anilides. J. Am. Chem. Soc. 1966;88:2407–2412. doi: 10.1021/ja00963a008. [DOI] [Google Scholar]
  • 535.Hine J., Arata K. Keto-Enol-Tautomerism. II. The Calorimetrical Determination of the Equilibrium Constants for Keto-Enol Tautomerism for Cyclohexanone and Acetone. Bull. Chem. Soc. Jpn. 1976;49:3089–3092. doi: 10.1246/bcsj.49.3089. [DOI] [Google Scholar]
  • 536.Hine J., Arata K. Keto-Enol-Tautomerism. I. The Calorimetrical Determination of the Equilibrium Constants for Keto-Enol Tautomerism for Cyclopentanone. Bull. Chem. Soc. Jpn. 1976;49:3085–3088. doi: 10.1246/bcsj.49.3085. [DOI] [Google Scholar]
  • 537.Zhu L., Bozzelli J.W. Kinetics and Thermochemistry for the Gas-Phase Keto-Enol Tauto-Merism of Phenol ↔ 2,4-Cyclohexadienone. J. Phys. Chem. 2003;107:3696–3703. doi: 10.1021/jp0212545. [DOI] [Google Scholar]
  • 538.Katritzky A.R., Szafran M. AM1 Study of the Tautomerism of 2- and 4-Pyridones and Their Thio-Analogs. J. Mol. Struct. THEOCHEM. 1989;184:179–192. doi: 10.1016/0166-1280(89)85143-7. [DOI] [Google Scholar]
  • 539.Schlegel H.B., Gund P., Fluder E.M. Tautomerization of Formamide, 2-Pyridone, and 4-Pyridone: An Ab Initio Study. J. Am. Chem. Soc. 1982;104:5347–5351. doi: 10.1021/ja00384a017. [DOI] [Google Scholar]
  • 540.Moreno M., Miller W.H. On the Tautomerization Reaction 2-Pyridone-2-Hydroxypyridine: An Ab Initio Study. Chem. Phys. Lett. 1990;171:475–479. doi: 10.1016/0009-2614(90)85249-C. [DOI] [Google Scholar]
  • 541.Claus A. CLXIII. Zur Kenntniss des Carbostyrils und Seiner Derivate, ein Beitrag zur Lösung der Tautomeriefrage. J. Prakt. Chem. 1896;53:325–334. doi: 10.1002/prac.18960530131. [DOI] [Google Scholar]
  • 542.Hartley W.N., Dobbie F.R.S., Dobbie J.J. LXII-A Study of the Absorption Spectra of Isatin, Carbostyril, and Their Alkyl Derivatives in Relation to Tautomerism. J. Chem. Soc. Trans. 1899;75:640–661. doi: 10.1039/CT8997500640. [DOI] [Google Scholar]
  • 543.Fabian W.M.F., Niederreiter K.S., Uray G., Stadlbauer W. Substituent Effects on Absorption and Fluorescence Spectra of Carbostyrils. J. Mol. Struct. 1999;477:209–220. doi: 10.1016/S0022-2860(98)00616-4. [DOI] [Google Scholar]
  • 544.Allen G., Dwek R.A. An nmr Study of Keto-Enol Tautomerism in β-Diketones. J. Chem. Soc. B. 1966:161–163. doi: 10.1039/J29660000161. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

The data presented in this study are available in Supplementary Material.


Articles from Molecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES