Skip to main content
Frontiers in Genetics logoLink to Frontiers in Genetics
. 2021 Oct 11;12:754416. doi: 10.3389/fgene.2021.754416

Corrigendum: Optimization of Genomic Selection to Improve Disease Resistance in Two Marine Fishes, The European Sea Bass (Dicentrarchus labrax) and the Gilthead Sea Bream (Sparus aurata)

Ronan Griot 1,2,3, François Allal 3, Florence Phocas 2, Sophie Brard-Fudulea 1, Romain Morvezen 1, Pierrick Haffray 1, Yoannah François 1, Thierry Morin 4, Anastasia Bestin 1, Jean-Sébastien Bruant 5, Sophie Cariou 5, Bruno Peyrou 6, Joseph Brunier 6, Marc Vandeputte 2,3,*
PMCID: PMC8543739  PMID: 34707643

In the original article, there was a mistake in Table 3 as published. Values in column “PBLUP” and “GBLUP_full” are inverted. The corrected Table 3 appears below. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

TABLE 3.

Prediction accuracy for VNN resistance in two European sea bass commercial cohorts (VNN_A and VNN_B), vibriosis resistance in one European sea bass commercial cohort (VIB) and pasteurellosis resistance in one gilthead sea bream commercial cohort (PAS) using different training population sizes and marker densities.

Data set Training population size PBLUP GBLUP_1K GBLUP_3K GBLUP_6K GBLUP_10K GBLUP_full
VNN_A 50 0.18 0.31 0.33 0.34 0.33 0.34
100 0.26 0.39 0.41 0.42 0.41 0.42
150 0.32 0.45 0.47 0.49 0.47 0.49
200 0.35 0.47 0.49 0.51 0.49 0.51
300 0.40 0.51 0.53 0.55 0.53 0.55
400 0.44 0.54 0.56 0.58 0.56 0.58
500 0.47 0.55 0.58 0.61 0.59 0.61
600 0.49 0.56 0.59 0.62 0.59 0.61
700 0.50 0.57 0.60 0.63 0.61 0.63
800 0.52 0.59 0.62 0.65 0.62 0.64
VNN_B 50 0.18 0.17 0.18 0.19 0.19 0.19
100 0.25 0.23 0.26 0.26 0.26 0.26
150 0.32 0.30 0.32 0.34 0.33 0.33
200 0.34 0.32 0.34 0.36 0.35 0.35
300 0.39 0.36 0.39 0.41 0.39 0.40
400 0.42 0.39 0.42 0.45 0.43 0.43
500 0.46 0.42 0.45 0.49 0.46 0.46
600 0.47 0.44 0.47 0.51 0.48 0.49
700 0.49 0.46 0.48 0.53 0.49 0.50
800 0.52 0.48 0.51 0.56 0.51 0.52
VIB 50 0.15 0.18 0.17 0.16 0.17 0.17
100 0.21 0.26 0.25 0.23 0.25 0.24
150 0.23 0.30 0.28 0.27 0.28 0.28
200 0.26 0.33 0.31 0.30 0.32 0.31
300 0.32 0.40 0.39 0.36 0.39 0.37
400 0.38 0.44 0.44 0.42 0.44 0.43
500 0.40 0.46 0.46 0.44 0.46 0.45
600 0.42 0.48 0.49 0.47 0.49 0.48
700 0.45 0.50 0.51 0.49 0.51 0.50
800 0.46 0.51 0.53 0.51 0.53 0.52
PAS 50 0.25 0.26 0.27 0.28 0.27 0.28
100 0.37 0.35 0.38 0.39 0.38 0.38
150 0.41 0.39 0.42 0.44 0.42 0.42
200 0.44 0.43 0.45 0.47 0.45 0.46
300 0.51 0.51 0.53 0.55 0.52 0.52
400 0.53 0.54 0.56 0.58 0.55 0.55
500 0.56 0.58 0.59 0.61 0.58 0.58
600 0.56 0.59 0.61 0.63 0.59 0.59
700 0.57 0.61 0.63 0.64 0.61 0.61

Prediction accuracy values are averaged over 100 replicates.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.


Articles from Frontiers in Genetics are provided here courtesy of Frontiers Media SA

RESOURCES