Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2021 Jan 4;267(20):14094–14101. doi: 10.1016/S0021-9258(19)49683-X

O-glycosylation of the coronavirus M protein. Differential localization of sialyltransferases in N- and O-linked glycosylation.

JK Locker 1, G Griffiths 1, MC Horzinek 1, PJ Rottier 1
PMCID: PMC8545364  PMID: 1629209

Abstract

It has previously been shown that the M (E1) glycoprotein of mouse hepatitis virus strain A59 (MHV-A59) contains only O-linked oligosaccharides and localizes to the Golgi region when expressed independently. A detailed pulse-chase analysis was made of the addition of O-linked sugars to the M protein; upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, three different electrophoretic forms could be distinguished that corresponded to the sequential acquisition of N-acetylgalactosamine (GalNAc), galactose (Gal), and sialic acid (SA). A fourth and fifth form could also be detected which we were unable to identify. Following Brefeldin A treatment, the M protein still acquired GalNAc, Gal, and SA, but the fourth and fifth forms were absent, suggesting that these modifications occur in the trans-Golgi network (TGN). In contrast, in the presence of BFA, the G protein of vesicular stomatitis virus (VSV), which contains N-linked oligosaccharides, acquired Gal and fucose but not SA. These results are consistent with earlier published data showing that Golgi compartments proximal to the TGN, but not the TGN itself, relocate to the endoplasmatic reticulum/intermediate compartment. More importantly, our data argue that, whereas addition of SA to N-linked sugars occurs in the TGN the acquisition of both SA on O-linked sugars and the addition of fucose to N-linked oligosaccharides must occur in Golgi compartments proximal to the TGN. The glycosylation of the M protein moreover indicates that it is transported to trans-Golgi and TGN. This was confirmed by electron microscopy immunocytochemistry, showing that the protein is targeted to cisternae on the trans side of the Golgi and co-localizes, at least in part, with TGN 38, a marker of the TGN, as well as with a lectin specific for sialic acid.

References

  1. Abeijon C., Hirschberg C.B. J. Biol. Chem. 1987;262:4153–4159. [PubMed] [Google Scholar]
  2. Chege N.W., Pfeffer S.R. J. Cell Biol. 1990;111:893–899. doi: 10.1083/jcb.111.3.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen S. S-L., Ariel N., Huang A.S. J. Virol. 1988;62:2552–2556. doi: 10.1128/jvi.62.8.2552-2556.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Corfield A.P., Sander-Wewer M., Weh R.W., Wember M., Schauer R. Biol. Chem. Hoppe-Seyler. 1986;367:433–439. doi: 10.1515/bchm3.1986.367.1.433. [DOI] [PubMed] [Google Scholar]
  5. Cummings R.D., Kornfeld S., Schneider W.J., Hobgood K.K., Tolleshaug H., Brown M.S., Goldstein J.L. J. Biol. Chem. 1983;258:15261–15273. [PubMed] [Google Scholar]
  6. den Boon J.A., Snijder E.J., Krijnse Locker J., Horzinek M.C., Rottier P.J.M. Virology. 1991;182:655–663. doi: 10.1016/0042-6822(91)90606-C. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doms R.W., Russ G., Yewdell J.W. J. Cell Biol. 1989;109:61–72. doi: 10.1083/jcb.109.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elhammer A., Kornfeld S. J. Cell Biol. 1984;98:327–331. doi: 10.1083/jcb.99.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elhammer A., Kornfeld S. J. Biol. Chem. 1986;261:5249–5255. [PubMed] [Google Scholar]
  10. Ellinger A., Pavelka M. Eur. J. Cell Biol. 1988;47:62–71. [PubMed] [Google Scholar]
  11. Fujiwara T., Oda K., Yokota S., Takatsuki A., Ikehara Y. J. Biol. Chem. 1988;263:18545–18552. [PubMed] [Google Scholar]
  12. Gabel C.A., Bergmann J.E. J. Cell Biol. 1985;101:460–469. doi: 10.1083/jcb.101.2.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Geuze H.J., Slot J.W., van der Ley P., Scheffer R.C.T. J. Cell Biol. 1981;89:653–659. doi: 10.1083/jcb.89.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldberg D.E., Kornfeld S. J. Biol. Chem. 1983;258:3159–3165. [PubMed] [Google Scholar]
  15. Griffiths G., McDowall A., Back R., Dubochet J. J. Ultrastruct. Res. 1984;89:65–78. doi: 10.1016/s0022-5320(84)80024-6. [DOI] [PubMed] [Google Scholar]
  16. Holmes K.V., Doller E.W., Sturman L.S. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kornfeld R., Kornfeld S. Annu. Rev. Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  18. Lippincott-Schwartz J., Yaun L.C., Bonifacino J.S., Klausner R.D. Cell. 1989;56:801–813. doi: 10.1016/0092-8674(89)90685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lippincott-Schwartz J., Donaldson J.G., Schweizer A., Berger E.G., Hauri H.-P., Yuan L.C., Klausner R.D. Cell. 1990;60:821–836. doi: 10.1016/0092-8674(90)90096-w. [DOI] [PubMed] [Google Scholar]
  20. Luzio J.P., Brake B., Bating G., Howell K.E., Braghetta P., Stanley K.K. Biochem. J. 1990;270:97–102. doi: 10.1042/bj2700097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Machamer C.E., Mentone S.A., Rose J.K., Farquhar M.G. Proc. Natl. Acad. Sci. U. S. A. 1990;87:6944–6948. doi: 10.1073/pnas.87.18.6944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Metsikkö K., Simons K. EMBO J. 1986;5:1913–1920. doi: 10.1002/j.1460-2075.1986.tb04444.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Misumi Y., Misumi Y., Miki K., Takatsuki A., Tamura G., Ikehara Y. J. Biol. Chem. 1986;261:11398–11403. [PubMed] [Google Scholar]
  24. Niemann H., Boschek B., Evans D., Rosing M., Tamura T., Klenk H.D. EMBO J. 1982;1:1499–1504. doi: 10.1002/j.1460-2075.1982.tb01346.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Niemann H., Klenk H.-D. J. Mol. Biol. 1981;153:993–1010. doi: 10.1016/0022-2836(81)90463-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Niemann H., Geyer R., Klenk H.-D., Linder D., Stirm S., Wirth M. EMBO J. 1984;3:665–670. doi: 10.1002/j.1460-2075.1984.tb01864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nuchtern J.G., Bonifacino J.S., Biddison W.E., Klausner R.D. Nature. 1989;339:223–226. doi: 10.1038/339223a0. [DOI] [PubMed] [Google Scholar]
  28. Pathak R.K., Merkle R.K., Cummings R.D., Goldstein J.L., Brown M.S., Anderson R.G.W. J. Cell Biol. 1988;106:1831–1841. doi: 10.1083/jcb.106.6.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ricard C.S., Sturman L.S. J. Chromatogr. 1985;326:191–197. doi: 10.1016/S0021-9673(01)87445-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roth J. J. Cell Biol. 1984;98:399–406. doi: 10.1083/jcb.98.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Roth J. Biochim. Biophys. Acta. 1987;906:405–436. doi: 10.1016/0304-4157(87)90018-9. [DOI] [PubMed] [Google Scholar]
  32. Roth J., Lucocq J.M., Charest P.M. J. Histochem. Cytochem. 1984;32:1167–1176. doi: 10.1177/32.11.6208237. [DOI] [PubMed] [Google Scholar]
  33. Roth J., Taatjes D.J., Lucocq J.M., Weinstein J., Paulson J.C. Cell. 1985;43:287–295. doi: 10.1016/0092-8674(85)90034-0. [DOI] [PubMed] [Google Scholar]
  34. Rottier P.J.M., Rose J.K. J. Virol. 1987;61:2042–2045. doi: 10.1128/jvi.61.6.2042-2045.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rottier P.J.M., Horzinek M.C., van der Zeist B.A.M. J. Virol. 1981;40:350–357. doi: 10.1128/jvi.40.2.350-357.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rottier P.J.M., Spaan W.J.M., Horzinek M.C., van der Zeist B.A.M. J. Virol. 1981;38:20–26. doi: 10.1128/jvi.38.1.20-26.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shite S., Seguchi T., Mizoguchi H., Ono M., Kuwano M. J. Biol. Chem. 1990;265:17385–17388. [PubMed] [Google Scholar]
  38. Simons K., Mellman I. Cell. 1992 doi: 10.1016/0092-8674(92)90027-A. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spaan W.J.M., Rottier P.J.M., Morzinek M.C., van der Zeyst B.A.M. Virology. 1981;108:424–434. doi: 10.1016/0042-6822(81)90449-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stern D.F., Sefton B.M. J. Virol. 1982;44:804–812. doi: 10.1128/jvi.44.3.804-812.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Strous G.J.A.M. Proc. Natl. Acad. Sci. U. S. A. 1979;76:2691–2698. doi: 10.1073/pnas.76.6.2694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sturman L.S., Ricard C.S., Holmes U.V. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tooze J., Tooze S., Warren G. Eur. J. Cell Biol. 1984;33:281–293. [PubMed] [Google Scholar]
  44. Tooze S.A., Tooze J., Warren G. J. Cell Biol. 1988;106:1475–1487. doi: 10.1083/jcb.106.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ulmer J.B., Palade G.E. Proc. Natl. Acad. Sci. U. S. A. 1989:6992–6996. doi: 10.1073/pnas.86.18.6992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. van Beurden-Lamers W.M.O., Spee-Brand R., Dekker J., Strous G.J. Biochim. Biophys. Acta. 1989;990:232–239. doi: 10.1016/s0304-4165(89)80039-x. [DOI] [PubMed] [Google Scholar]
  47. van Echten G., Iber H., Stotz H., Takatsuki A., Sandhoff K. Eur. J. Cell Biol. 1990;51:135–139. [PubMed] [Google Scholar]
  48. Varki A., Diaz S. Anal. Biochem. 1984;137:236–247. doi: 10.1016/0003-2697(84)90377-4. [DOI] [PubMed] [Google Scholar]
  49. Vennema H., Heijnen L., Zijderveld A., Horzinek M.C., Spaan W.J.M. J. Virol. 1990;64:339–346. doi: 10.1128/jvi.64.1.339-346.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Young W.W., Lutz M.S., Mills S.E., Lechler-Osborn S. Proc. Natl. Acad. Sci. U. S. A. 1990;87:6838–6842. doi: 10.1073/pnas.87.17.6838. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Biological Chemistry are provided here courtesy of Elsevier

RESOURCES