Abstract
With the advancement in green nanotechnology, considerable attention is being given to the synthesis of different kinds of nanomaterials for biological applications. In this study, zinc oxide nanocomposites (ZnO NPs) were synthesized using Punica granatum L. (Pomegranate) pericarp ethanolic extract (PE) by the chemical precipitation method. The prepared ZnO NPs showed a characteristic peak at 270 nm in the UV-Vis spectrophotometer and chemical bond stretching in the Fourier transforms infrared spectroscopy (FT-IR) spectra, indicated the formation of PE-functionalized zinc oxide nanocomposite (PE-ZnO NPs). The SEM results showed agglomerated PE-ZnO NPs of a spherical shape with an average size of 80–100 nm. Moreover, biological assessment of the PE-ZnO NPs revealed significant scavenging activity in DPPH (116.5%) and ABTS+ (95.2%) radical assay methods, and substantial antibacterial activity against Bacillus cereus, Bacillus licheniformis, and Escherichia coli. Furthermore, PE-ZnO NPs showed about 96.3% of cell viability for human HaCaT cells at the maximum concentration (100 µg/mL), marked as a reliable bioactive agent. Therefore, the developed PE-ZnO NPs were elucidated with substantial ROS scavenger and non-antibiotic antibacterial agent and hence, can be applied in respective biological applications.
Keywords: Pomegranate, antioxidant, antibacterial activities, zinc oxide nanocomposite, cytotoxicity
Acknowledgments
The authors thank the Core Research Support Center for Natural Products and Medical Materials (CRCNM) at Yeungnam University, Gyeongsan, the Republic of Korea for technical support regarding physiochemical analysis using the Zetasizer Nano ZS (Malvern Panalytical Ltd. Malvern, UK), the FTIR (Fourier Transform Infrared Spectrometer) (PerkinElmer, Inc., Waltham, USA) and SEM (Scanning Electron Microscope) (SEM S4800, Hitachi, Ltd.).
Funding
This research was supported by the “LINC+ (Leaders in INdustry-University Co-operation +)” project of the Ministry of Education, Republic of Korea (2021-D-G043-010115).
Footnotes
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Disclosure
The authors declare no conflicts of interest.
No ethical approval or informed consent was required for this study.
Contributor Information
Ramachandran Vinayagam, Email: rambio85@gmail.com.
Sang Gu Kang, Email: kangsg@ynu.ac.kr.
References
- 1.Sirelkhatim A, Mahmud S, Seeni A, Kaus N H M, Ann L C, Bakhori S K M, Hasan H, Mohamad D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett. 2015;7:219–242. doi: 10.1007/s40820-015-0040-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Ali A, Phull A R, Zia M. Elemental zinc to zinc nanoparticles: Is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns. Nanotechnol. Rev. 2018;7:413–441. doi: 10.1515/ntrev-2018-0067. [DOI] [Google Scholar]
- 3.Długosz O, Szostak K, Staroń A, Pulit-Prociak J, Banach M. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials. 2020;13:279. doi: 10.3390/ma13020279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018;2018:1062562. doi: 10.1155/2018/1062562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Patra J K, Das G, Fraceto L F, Campos E V R, del Pilar Rodriguez-Torres M, Acosta-Torres L S, Diaz-Torres L A, Grillo R, Swamy M K, Sharma S, Habtemariam S, Shin H S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 2018;16:71. doi: 10.1186/s12951-018-0392-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Gao Y, Anand M A V, Ramachandran V, Karthikkumar V, Shalini V, Vijayalakshmi S, Ernest D. Biofabrication of zinc oxide nanoparticles from Aspergillus niger, their antioxidant, antimicrobial and anticancer activity. J. Clust. Sci. 2019;30:937–946. doi: 10.1007/s10876-019-01551-6. [DOI] [Google Scholar]
- 7.Román L E, Huachani J, Uribe C, Solís J L, Gómez M M, Costa S, Costa S. Blocking erythemally weighted UV radiation using cotton fabrics functionalized with ZnO nanoparticles in situ. Appl. Surf. Sci. 2019;469:204–212. doi: 10.1016/j.apsusc.2018.11.047. [DOI] [Google Scholar]
- 8.Srinivasan S, Srinivasan S, Ramachandran V, Murali R, Vinothkumar V, Raajasubramanian D, Kanagalakshimi A. Biogenic metal nanoparticles and their antimicrobial properties. In: Dhull S B, Chawla P, Kaushik R, editors. Nanotechnological Approaches in Food Microbiology. Boca Raton, FL, USA: CRC Press; 2020. [Google Scholar]
- 9.Siddiqi K S, Ur Rahman A, Tajuddin, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 2018;13:141. doi: 10.1186/s11671-018-2532-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Włodarczyk R, Kwarciak-Kozłowska A. Nanoparticles from the cosmetics and medical industries in legal and environmental aspects. Sustainability. 2021;13:5805. doi: 10.3390/su13115805. [DOI] [Google Scholar]
- 11.Jeevanandam J, Barhoum A, Chan Y S, Dufresne A, Danquah M K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 2018;9:1050–1074. doi: 10.3762/bjnano.9.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Katz L M, Dewan K, Bronaugh R L. Nanotechnology in cosmetics. Food Chem. Toxicol. 2015;85:127–137. doi: 10.1016/j.fct.2015.06.020. [DOI] [PubMed] [Google Scholar]
- 13.Smijs T G, Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011;4:95–112. doi: 10.2147/NSA.S19419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Twilley D, Moodley D, Rolfes H, Moodley I, McGaw L J, Madikizela B, Summers B, Raaff L, Lategan M, Kgatuke L, Mabena E C, Lall N. Ethanolic extracts of South African plants, Buddleja saligna Willd. and Helichrysum odoratissimum (L.) Sweet, as multifunctional ingredients in sunscreen formulations. S. Afr. J. Bot. 2021;137:171–182. doi: 10.1016/j.sajb.2020.10.010. [DOI] [Google Scholar]
- 15.Thi T U D, Nguyen T T, Thi Y D, Thi K H T, Phan B T, Pham K N. Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv. 2020;10:23899–23907. doi: 10.1039/D0RA04926C. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Luque P A, Soto-Robles C A, Nava O, Gomez-Gutierrez C M, Castro-Beltran A, Garrafa-Galvez H E, Vilchis-Nestor A R, Olivas A. Green synthesis of zinc oxide nanoparticles using Citrus sinensis extract. J. Mater. Sci. Mater. Electron. 2018;29:9764–9770. doi: 10.1007/s10854-018-9015-2. [DOI] [Google Scholar]
- 17.Nava O J, Soto-Robles C A, Gómez-Gutiérrez C M, Vilchis-Nestor A R, Castro-Beltrán A, Olivas A, Luque P A. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J. Mol. Struct. 2017;1147:1–6. doi: 10.1016/j.molstruc.2017.06.078. [DOI] [Google Scholar]
- 18.Rajendran N K, George B P, Houreld N N, Abrahamse H. Synthesis of zinc oxide nanoparticles using Rubus fairholmianus root extract and their activity against pathogenic bacteria. Molecules. 2021;26:3029. doi: 10.3390/molecules26103029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Qin G, Xu C, Ming R, Tang H, Guyot R, Kramer E M, Hu Y, Yi X, Qi Y, Xu X, Gao Z, Pan H, Jian J, Tian Y, Yue Z, Xu Y. The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis. Plant J. 2017;91:1108–1128. doi: 10.1111/tpj.13625. [DOI] [PubMed] [Google Scholar]
- 20.Fahmy H, Hegazi N, El-Shamy S, Farag M A. Pomegranate juice as a functional food: a comprehensive review of its polyphenols, therapeutic merits, and recent patents. Food Funct. 2020;11:5768–5781. doi: 10.1039/D0FO01251C. [DOI] [PubMed] [Google Scholar]
- 21.Viuda-Martos M, Fernández-López J, Pérez-Álvarez J A. Pomegranate and its many functional components as related to human health: a review. Compr. Rev. Food Sci. Food Saf. 2010;9:635–654. doi: 10.1111/j.1541-4337.2010.00131.x. [DOI] [PubMed] [Google Scholar]
- 22.Fischer U A, Carle R, Kammerer D R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MSn. Food Chem. 2011;127:807–821. doi: 10.1016/j.foodchem.2010.12.156. [DOI] [PubMed] [Google Scholar]
- 23.Caruso A, Barbarossa A, Tassone A, Ceramella J, Carocci A, Catalano A, Basile G, Fazio A, Iacopetta D, Franchini C, Sinicropi M S. Pomegranate: nutraceutical with promising benefits on human health. Appl. Sci. 2020;10:6915. doi: 10.3390/app10196915. [DOI] [Google Scholar]
- 24.Khajebishak Y, Payahoo L, Alivand M, Alipour B. Punicic acid: A potential compound of pomegranate seed oil in Type 2 diabetes mellitus management. J. Cell. Physiol. 2019;234:2112–2120. doi: 10.1002/jcp.27556. [DOI] [PubMed] [Google Scholar]
- 25.Xu K Z Y, Zhu C, Kim M S, Yamahara J, Li Y. Pomegranate flower ameliorates fatty liver in an animal model of type 2 diabetes and obesity. J. Ethnopharmacol. 2009;123:280–287. doi: 10.1016/j.jep.2009.03.035. [DOI] [PubMed] [Google Scholar]
- 26.Stowe C B. The effects of pomegranate juice consumption on blood pressure and cardiovascular health. Complement. Ther. Clin. Pract. 2011;17:113–115. doi: 10.1016/j.ctcp.2010.09.004. [DOI] [PubMed] [Google Scholar]
- 27.Aviram M, Dornfeld L, Kaplan M, Coleman R, Gaitini D, Nitecki S, Hofman A, Rosenblat M, Volkova N, Presser D, Attias J, Hayek T, Fuhrman B. Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: studies in atherosclerotic mice and in humans. Drugs Exp. Clin. Res. 2002;28:49–62. [PubMed] [Google Scholar]
- 28.Lansky E P, Newman R A. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol. 2007;109:177–206. doi: 10.1016/j.jep.2006.09.006. [DOI] [PubMed] [Google Scholar]
- 29.Larrosa M, González-Sarrias A, Yáñez-Gascón M J, Selma M V, Azorin-Ortuño M, Toti S, Tomás-Barberán F, Dolara P, Espín J C. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J. Nutr. Biochem. 2010;21:717–725. doi: 10.1016/j.jnutbio.2009.04.012. [DOI] [PubMed] [Google Scholar]
- 30.Wang L, Martins-Green M. Pomegranate and its components as alternative treatment for prostate cancer. Int. J. Mol. Sci. 2014;15:14949–14966. doi: 10.3390/ijms150914949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Hajleh M A, Al-Dujaili E A S. Anti-cancer activity of pomegranate and its biophenols; general review. EC Nutr. 2016;6:28–52. [Google Scholar]
- 32.Howell A B, D’Souza D H. The pomegranate: effects on bacteria and viruses that influence human health. Evid. Based Complement. Alternat. Med. 2013;2013:606212. doi: 10.1155/2013/606212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Khaleghnezhad V, Yousefi A R, Tavakoli A, Farajman B. Interactive effects of abscisic acid and temperature on rosmarinic acid, total phenolic compounds, anthocyanin, carotenoid and flavonoid content of dragonhead (Dracocephalum moldavica L.) Sci. Hortic. 2019;250:302–309. doi: 10.1016/j.scienta.2019.02.057. [DOI] [Google Scholar]
- 34.Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. [DOI] [PubMed] [Google Scholar]
- 35.Blois M S. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199–1200. doi: 10.1038/1811199a0. [DOI] [Google Scholar]
- 36.Kandylis P, Kokkinomagoulos E. Food applications and potential health benefits of pomegranate and its derivatives. Foods. 2020;9:122. doi: 10.3390/foods9020122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Akhtar S, Ismail T, Fraternale D, Sestili P. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 2015;174:417–425. doi: 10.1016/j.foodchem.2014.11.035. [DOI] [PubMed] [Google Scholar]
- 38.Derakhshan Z, Ferrante M, Tadi M, Ansari F, Heydari A, Hosseini M S, Conti G O, Sadrabad E K. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food Chem.Ttoxicol. 2018;114:108–111. doi: 10.1016/j.fct.2018.02.023. [DOI] [PubMed] [Google Scholar]
- 39.Ardekani M R S, Hajimahmoodi M, Oveisi M R, Sadeghi N, Jannat B, Ranjbar A M, Gholam N, Moridi T. Comparative antioxidant activity and total flavonoid content of Persian pomegranate (Punica granatum L.) cultivars. Iran. J. Pharm. Res. 2011;10:519–524. [PMC free article] [PubMed] [Google Scholar]
- 40.Del Buono D, Di Michele A, Costantino F, Trevisan M, Lucini L. Biogenic ZnO nanoparticles synthesized using a novel plant extract: Application to enhance physiological and biochemical traits in maize. Nanomaterials. 2021;11:1270. doi: 10.3390/nano11051270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Senthilkumar N, Nandhakumar E, Priya P, Soni D, Vimalane M, Potheher I V. Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New J. Chem. 2017;41:10347–10356. doi: 10.1039/C7NJ02664A. [DOI] [Google Scholar]
- 42.Sundrarajan M, Ambika S, Bharathi K. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv. Powder Technol. 2015;26:1294–1299. doi: 10.1016/j.apt.2015.07.001. [DOI] [Google Scholar]
- 43.Fu L, Fu Z. Plectranthus amboinicus leaf extract-assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram. Int. 2015;41:2492–2496. doi: 10.1016/j.ceramint.2014.10.069. [DOI] [Google Scholar]
- 44.Ambika S, Sundrarajan M. Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: spectroscopic investigation of interaction between ZnO nanoparticles and human serum albumin. J. Photochem. Photobiol. B. 2015;149:143–148. doi: 10.1016/j.jphotobiol.2015.05.004. [DOI] [PubMed] [Google Scholar]
- 45.Sowndhararajan K, Kang S C. Free radical scavenging activity from different extracts of leaves of Bauhinia vahlii Wight & Arn. Saudi J. Biol. Sci. 2013;20:319–325. doi: 10.1016/j.sjbs.2012.12.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Liao C, Jin Y, Li Y, Tjong S C. Interactions of zinc oxide nanostructures with mammalian cells: Cytotoxicity and photocatalytic toxicity. Int. J. Mol. Sci. 2020;21:6305. doi: 10.3390/ijms21176305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Chmielewska A, Szajewska H. Systematic review of randomised controlled trials: probiotics for functional constipation. World J. Gastroenterol. 2010;16:69–75. doi: 10.3748/wjg.v16.i1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Song, D., S. Ibrahim, and S. Hayek (2012) Recent application of probiotics in food and agricultural science. In: E. Rigobelo (ed.). Probiotics. IntechOpen.
- 49.Stenfors Arnesen L P, Fagerlund A, Granum P E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 2008;32:579–606. doi: 10.1111/j.1574-6976.2008.00112.x. [DOI] [PubMed] [Google Scholar]
- 50.Haydushka I A, Markova N, Kirina V, Atanassova M. Recurrent sepsis due to Bacillus licheniformis. J. Glob. Infect. Dis. 2012;4:82–83. doi: 10.4103/0974-777X.93768. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Croxen M A, Law R J, Scholz R, Keeney K M, Wlodarska M, Finlay B B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013;26:822–880. doi: 10.1128/CMR.00022-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Pelfrene E, Botgros R, Cavaleri M. Antimicrobial multidrug resistance in the era of COVID-19: a forgotten plight? Antimicrob. Resist. Infect. Control. 2021;10:21. doi: 10.1186/s13756-021-00893-z. [DOI] [PMC free article] [PubMed] [Google Scholar]