Abstract
As coronavirus disease 2019 (COVID-19) threatens human health globally, infectious disorders have become one of the most challenging problem for the medical community. Natural products (NP) have been a prolific source of antimicrobial agents with widely divergent structures and a range vast biological activities. A dataset comprising 618 articles, including 646 NP-based compounds from 672 species of natural sources with biological activities against 21 infectious pathogens from five categories, was assembled through manual selection of published articles. These data were used to identify 268 NP-based compounds classified into ten groups, which were used for network pharmacology analysis to capture the most promising lead-compounds such as agelasine D, dicumarol, dihydroartemisinin and pyridomycin. The distribution of maximum Tanimoto scores indicated that compounds which inhibited parasites exhibited low diversity, whereas the chemistries inhibiting bacteria, fungi, and viruses showed more structural diversity. A total of 331 species of medicinal plants with compounds exhibiting antimicrobial activities were selected to classify the family sources. The family Asteraceae possesses various compounds against C. neoformans, the family Anacardiaceae has compounds against Salmonella typhi, the family Cucurbitacea against the human immunodeficiency virus (HIV), and the family Ancistrocladaceae against Plasmodium. This review summarizes currently available data on NP-based antimicrobials against refractory infections to provide information for further discovery of drugs and synthetic strategies for anti-infectious agents.
Supporting Information
The supporting information is available online at 10.1007/s11427-020-1959-5. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
Keywords: natural product, infectious pathogen, drug discovery, drug development, in silico analysis
Electronic Supplementary Materials
Natural products for infectious microbes and diseases: an overview of sources, compounds, and chemical diversities
Acknowledgements
This work was supported by the Scientific and Technological Innovation Project of China Academy of Chinese Medical Sciences (CI2021A04013) and the Fundamental Research Funds for the Central Public Welfare Research Institutes (L2021029). The authors thank Jiqing Zhang, Qin Huang, Qianwen Liu, Dr.Naishi Li, Prof. Haoyu Hu, Dr. Jimeng Zhao, and Dr. Lei Fan for their contributions to this article.
Footnotes
Compliance and ethics
The author(s) declare that they have no conflict of interest.
References
- Agamah FE, Mazandu GK, Hassan R, Bope CD, Thomford NE, Ghansah A, Chimusa ER. Computational/in silico methods in drug target and lead prediction. Brief Bioinf. 2020;21:1663–1675. doi: 10.1093/bib/bbz103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Agarwal AK, Xu T, Jacob MR, Feng Q, Lorenz MC, Walker LA, Clark AM. Role of heme in the antifungal activity of the azaoxoaporphine alkaloid sampangine. Eukaryot Cell. 2008;7:387–400. doi: 10.1128/EC.00323-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aguzzi A, Liu Y. A role for astroglia in prion diseases. J Exp Med. 2017;214:3477–3479. doi: 10.1084/jem.20172045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akram M, Tahir IM, Shah SMA, Mahmood Z, Altaf A, Ahmad K, Munir N, Daniyal M, Nasir S, Mehboob H. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: A systematic review. Phytother Res. 2018;32:811–822. doi: 10.1002/ptr.6024. [DOI] [PubMed] [Google Scholar]
- Alam N, Hossain M, Mottalib MA, Sulaiman SA, Gan SH, Khalil MI. Methanolic extracts of Withania somnifera leaves, fruits and roots possess antioxidant properties and antibacterial activities. BMC Complement Altern Med. 2012;12:175. doi: 10.1186/1472-6882-12-175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Al-Mousawi AH, Al-kaabi SJ, Albaghdadi AJH, Almulla AF, Raheem A, Algon AAA. Effect of black grape seed extract (Vitis vinifera) on biofilm formation of methicillin-resistant Staphylococcus aureus and Staphylococcus haemolyticus. Curr Microbiol. 2020;77:238–245. doi: 10.1007/s00284-019-01827-0. [DOI] [PubMed] [Google Scholar]
- Alves-Silva, J.M., Piras, A., Porcedda, S., Falconieri, D., Maxia, A., Gonçalves, M.J., Cruz, M.T., and Salgueiro, L. (2020). Chemical characterization and bioactivity of the essential oil from Santolina insularis, a Sardinian endemism. Nat Prod Res doi: 10.1080/14786419.2020.1774764. [DOI] [PubMed]
- Ambé ASA, Ouattara D, Tiébré MS, Vroh BTA, Zirihi GN, N’Guessan KE. Diversity of medicinal plants used in the traditional treatment of the diarrhea on the markets of Abidjan (Côte d’Ivoire) J Anim Plant Sci. 2015;26:4081–4096. [Google Scholar]
- Analytics, C. (2017). Web of Science. Trust the Difference. Web of Science Fact Book. Available online: http://images.info.science.thomsonreuters.biz/Web/ThomsonReutersScience/%7Bd6b7faae-3cc2-4186-8985-a6ecc8cce1ee%7D_Crv_WoS_Upsell_Factbook_A4_FA_LR_edits.pdf.
- Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc. 2020;15:1954–1991. doi: 10.1038/s41596-020-0317-5. [DOI] [PubMed] [Google Scholar]
- Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss E H, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotech Adv. 2015;33:1582–1614. doi: 10.1016/j.biotechadv.2015.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bachmann BO, Van Lanen SG, Baltz RH. Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Indust Microbiol Biotech. 2014;41:175–184. doi: 10.1007/s10295-013-1389-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bahn YS, Kojima K, Cox GM, Heitman J. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Mol Biol Cell. 2005;16:2285–2300. doi: 10.1091/mbc.e04-11-0987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basso AMM, De Castro RJA, de Castro TB, Guimarães HI, Polez VLP, Carbonero ER, Pomin VH, Hoffmann C, Grossi-de-Sa M F, Tavares AH, et al. Immunomodulatory activity of β-glucan-containing exopolysaccharides from Auricularia auricular in phagocytes and mice infected with Cryptococcus neoformans. Med Mycol. 2020;58:227–239. doi: 10.1093/mmy/myz042. [DOI] [PubMed] [Google Scholar]
- Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, et al. The ChEMBL bioactivity database: an update. Nucl Acids Res. 2014;42:D1083–D1090. doi: 10.1093/nar/gkt1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pagès F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–1093. doi: 10.1093/bioinformatics/btp101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR. Marine natural products. Nat Prod Rep. 2012;29:144–222. doi: 10.1039/C2NP00090C. [DOI] [PubMed] [Google Scholar]
- Boyd MR, Hallock YF, Cardellina Ii JH, Manfredi KP, Blunt JW, McMahon JB, Buckheit RW, Jr., Bringmann G, Schäffer M, Cragg GM, et al. Anti-HIV michellamines from Ancistrocladus korupensis. J Med Chem. 1994;37:1740–1745. doi: 10.1021/jm00038a003. [DOI] [PubMed] [Google Scholar]
- Brown AS, Patel CJ. A standard database for drug repositioning. Sci Data. 2017;4:170029. doi: 10.1038/sdata.2017.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem. 2001;26:5–14. doi: 10.1016/S0097-8485(01)00094-8. [DOI] [PubMed] [Google Scholar]
- Butler MS. Natural products to drugs: natural product derived compounds in clinical trials. Nat Prod Rep. 2005;22:162–195. doi: 10.1039/b402985m. [DOI] [PubMed] [Google Scholar]
- Cameron RT, Coleman RG, Day JP, Yalla KC, Houslay MD, Adams DR, Shoichet BK, Baillie GS. Chemical informatics uncovers a new role for moexipril as a novel inhibitor of cAMP phosphodiesterase-4 (PDE4) Biochem Pharmacol. 2013;85:1297–1305. doi: 10.1016/j.bcp.2013.02.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canese K, Weis S. The NCBI Handbook. 2nd ed. Bethesda: National Center for Biotechnology Information (US); 2013. PubMed: the bibliographic database. [Google Scholar]
- Cary DC, Peterlin BM. Natural products and HIV/AIDS. AIDS Res Hum Retrov. 2018;34:31–38. doi: 10.1089/aid.2017.0232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang KW, Tsai TY, Chen KC, Yang SC, Huang HJ, Chang TT, Sun MF, Chen HY, Tsai FJ, Chen CYC. iSMART: an integrated cloud computing web server for traditional Chinese medicine for online virtual screening, de novo evolution and drug design. J Biomol Struct Dyn. 2011;29:243–250. doi: 10.1080/073911011010524988. [DOI] [PubMed] [Google Scholar]
- Chen CY. TCM Database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS ONE. 2011;6:e15939. doi: 10.1371/journal.pone.0015939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X, Ji ZL, Chen YZ. TTD: therapeutic target database. Nucleic Acids Res. 2002;30:412–415. doi: 10.1093/nar/30.1.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen SL, Sun Y, Wan HH, Zhang H, Zhao QH. Highlights on the progress of traditional Chinese medicine and natural drugs during 2015–2020 (in Chinese) Acta Pharm Sin. 2020;55:2751–2776. [Google Scholar]
- Chi YM, Zhao XY, Guo JX. Natural products in drug discovery and development. Nat Prod Res Dev. 2006;60:134–137. [Google Scholar]
- Chisembu KC, Hedimbi M. A survey of plants with anti-HIV active compounds and their modes of action. Med J Zambia. 2009;36:178–186. [Google Scholar]
- Choi J, Kim HJ, Jin X, Lim H, Kim S, Roh IS, Kang HE, No K T, Sohn HJ. Application of the fragment molecular orbital method to discover novel natural products for prion disease. Sci Rep. 2018;8:13063. doi: 10.1038/s41598-018-31080-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark RL, Johnston BF, Mackay SP, Breslin CJ, Robertson MN, Harvey AL. The Drug Discovery Portal: a resource to enhance drug discovery from academia. Drug Discov Today. 2010;15:679–683. doi: 10.1016/j.drudis.2010.06.003. [DOI] [PubMed] [Google Scholar]
- Consortium U. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–D212. doi: 10.1093/nar/gku989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corsello SM, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman J E, Johnston SE, Vrcic A, Wong B, Khan M, et al. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat Med. 2017;23:405–408. doi: 10.1038/nm.4306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corson TW, Crews CM. Molecular understanding and modern application of traditional medicines: triumphs and trials. Cell. 2007;130:769–774. doi: 10.1016/j.cell.2007.08.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020;57:279–283. doi: 10.1016/j.jcrc.2020.03.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830:3670–3695. doi: 10.1016/j.bbagen.2013.02.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, Wiegers J, Wiegers TC, Mattingly CJ. The Comparative Toxicogenomics Database: update 2017. Nucleic Acids Res. 2017;45:D972–D978. doi: 10.1093/nar/gkw838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deeks SG. HIV: shock and kill. Nature. 2012;487:439–440. doi: 10.1038/487439a. [DOI] [PubMed] [Google Scholar]
- Dvorkin-Camiel L, Whelan JS. Tropical American plants in the treatment of infectious diseases. J Diet Suppl. 2008;5:349–372. doi: 10.1080/19390210802519648. [DOI] [PubMed] [Google Scholar]
- Ehrt C, Brinkjost T, Koch O. Impact of binding site comparisons on medicinal chemistry and rational molecular design. J Med Chem. 2016;59:4121–4151. doi: 10.1021/acs.jmedchem.6b00078. [DOI] [PubMed] [Google Scholar]
- Fang J, Wu Z, Cai C, Wang Q, Tang Y, Cheng F. Quantitative and systems pharmacology. 1. In silico prediction of drug-target interactions of natural products enables new targeted cancer therapy. J Chem Inf Model. 2017;57:2657–2671. doi: 10.1021/acs.jcim.7b00216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fankem GO, Fokam Tagne MA, Noubissi PA, Foyet Fondjo A, Kamtchouing I, Ngwewondo A, Wambe H, Ngakou Mukam J, Kamgang R. Antioxidant activity of dichloromethane fraction of Dichrocephala integrifolia in Salmonella typhi-infected rats. J Integr Med. 2019;17:438–445. doi: 10.1016/j.joim.2019.09.005. [DOI] [PubMed] [Google Scholar]
- Ferreira NC, Marques IA, Conceição WA, Macedo B, Machado C S, Mascarello A, Chiaradia-Delatorre LD, Yunes RA, Nunes RJ, Hughson AG, et al. Anti-prion activity of a panel of aromatic chemical compounds: in vitro and in silico approaches. PLoS ONE. 2014;9:e84531. doi: 10.1371/journal.pone.0084531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flach PA, Lachiche N. Naive Bayesian classification of structured data. Mach Learn. 2004;57:233–269. doi: 10.1023/B:MACH.0000039778.69032.ab. [DOI] [Google Scholar]
- Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrián-Uhalte E, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2016;45:D945–D954. doi: 10.1093/nar/gkw1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gentile F, Agrawal V, Hsing M, Ton AT, Ban F, Norinder U, Gleave ME, Cherkasov A. Deep Docking: a deep learning platform for augmentation of structure based drug discovery. ACS Cent Sci. 2020;6:939–949. doi: 10.1021/acscentsci.0c00229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gu J, Gui Y, Chen L, Yuan G, Lu HZ, Xu X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS ONE. 2013;8:e62839. doi: 10.1371/journal.pone.0062839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gwynn MN, Portnoy A, Rittenhouse SF, Payne DJ. Challenges of antibacterial discovery revisited. Ann New York Acad Sci. 2010;1213:5–19. doi: 10.1111/j.1749-6632.2010.05828.x. [DOI] [PubMed] [Google Scholar]
- Häcker G. Apoptosis in infection. Microbes Infection. 2018;20:552–559. doi: 10.1016/j.micinf.2017.10.006. [DOI] [PubMed] [Google Scholar]
- Hamann MT, Scheuer PJ, Kelly-Borges M. Biogenetically diverse, bioactive constituents of a sponge, order Verongida: bromotyramines and sesquiterpene-shikimate derived metabolites. J Org Chem. 1993;58:6565–6569. doi: 10.1021/jo00076a012. [DOI] [Google Scholar]
- Han C, Guo J. Antibacterial and anti-inflammatory activity of traditional Chinese herb pairs, Angelica sinensis and Sophora flavescens. Inflammation. 2012;35:913–919. doi: 10.1007/s10753-011-9393-6. [DOI] [PubMed] [Google Scholar]
- Han X, Chen C, Yan Q, Jia L, Taj A, Ma Y. Action of dicumarol on glucosamine-1-phosphate acetyltransferase of GlmU and Mycobacterium tuberculosis. Front Microbiol. 2019;10:1799. doi: 10.3389/fmicb.2019.01799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartkoorn RC, Sala C, Neres J, Pojer F, Magnet S, Mukherjee R, Uplekar S, Boy-Röttger S, Altmann KH, Cole ST. Towards a new tuberculosis drug: pyridomycin—nature’s isoniazid. EMBO Mol Med. 2012;4:1032–1042. doi: 10.1002/emmm.201201689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harvey AL, Edrada-Ebel RA, Quinn RJ. The reemergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov. 2015;14:111–129. doi: 10.1038/nrd4510. [DOI] [PubMed] [Google Scholar]
- He M, Yan X, Zhou J, Xie G. Traditional Chinese medicine database and application on the web. J Chem Inf Comput Sci. 2001;41:273–277. doi: 10.1021/ci0003101. [DOI] [PubMed] [Google Scholar]
- Hecker N, Ahmed J, von Eichborn J, Dunkel M, Macha K, Eckert A, Gilson MK, Bourne PE, Preissner R. SuperTarget goes quantitative: update on drug-target interactions. Nucleic Acids Res. 2012;40:D1113–D1117. doi: 10.1093/nar/gkr912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hemaiswarya S, Kruthiventi AK, Doble M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine. 2008;15:639–652. doi: 10.1016/j.phymed.2008.06.008. [DOI] [PubMed] [Google Scholar]
- Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, Green A, Khankhanian P, Baranzini SE. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife. 2017;6:e26726. doi: 10.7554/eLife.26726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann MF, Preissner SC, Nickel J, Dunkel M, Preissner R, Preissner S. The Transformer database: biotransformation of xenobiotics. Nucl Acids Res. 2014;42:D1113–D1117. doi: 10.1093/nar/gkt1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann T, Krug D, Bozkurt N, Duddela S, Jansen R, Garcia R, Gerth K, Steinmetz H, Müller R. Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria. Nat Commun. 2018;9:803. doi: 10.1038/s41467-018-03184-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard KC, Dennis EK, Watt DS, Garneau-Tsodikova S. A comprehensive overview of the medicinal chemistry of antifungal drugs: perspectives and promise. Chem Soc Rev. 2020;49:2426–2480. doi: 10.1039/C9CS00556K. [DOI] [PubMed] [Google Scholar]
- Huang R, Southall N, Wang Y, Yasgar A, Shinn P, Jadhav A, Nguyen DT, Austin CP. The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci Transl Med. 2011;3:80ps16. doi: 10.1126/scitranslmed.3001862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huerta-Reyes M, Basualdo MDC, Abe F, Jimenez-Estrada M, Soler C, Reyes-Chilpa R. HIV-1 inhibitory compounds from Calophyllum brasiliense leaves. Biol Pharm Bull. 2004;27:1471–1475. doi: 10.1248/bpb.27.1471. [DOI] [PubMed] [Google Scholar]
- Ichimura T, Watanabe O, Maruyama S. Inhibition of HIV-1 protease by water-soluble lignin-like substance from an edible mushroom, Fuscoporia obliqua. Biosci Biotechnol Biochem. 1998;62:575–577. doi: 10.1271/bbb.62.575. [DOI] [PubMed] [Google Scholar]
- Imberdis T, Heeres JT, Yueh H, Fang C, Zhen J, Rich CB, Glicksman M, Beeler AB, Harris DA. Identification of anti-prion compounds using a novel cellular assay. J Biol Chem. 2016;291:26164–26176. doi: 10.1074/jbc.M116.745612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishibashi D, Nakagaki T, Ishikawa T, Atarashi R, Watanabe K, Cruz FA, Hamada T, Nishida N. Structure-based drug discovery for prion disease using a novel binding simulation. Ebiomedicine. 2016;9:238–249. doi: 10.1016/j.ebiom.2016.06.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishibashi M, Tsuda M, Ohizumi Y, Sasaki T, Kobayashi J. Purealidin A, a new cytotoxic bromotyrosine-derived alkaloid from the Okinawan marine spongePsammaplysilla purea. Experientia. 1991;47:299–300. doi: 10.1007/BF01958166. [DOI] [PubMed] [Google Scholar]
- Jatsa HB, Kenfack CM, Simo DN, Feussom NG, Nkondo ET, Tchuem Tchuente LA, Tsague CD, Dongo E, Kamtchouing P. Schistosomicidal, hepatoprotective and antioxidant activities of the methanolic fraction from Clerodendrum umbellatum Poir leaves aqueous extract in Schistosoma mansoni infection in mice. BMC Complement Altern Med. 2015;15:248. doi: 10.1186/s12906-015-0788-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jennings LK, Ahmed I, Munn AL, Carroll AR. Yeast-based screening of natural product extracts results in the identification of prion inhibitors from a marine sponge. Prion. 2018;12:234–244. doi: 10.1080/19336896.2018.1513315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jensen PR, Chavarria KL, Fenical W, Moore BS, Ziemert N. Challenges and triumphs to genomics-based natural product discovery. J Ind Microbiol Biotech. 2014;41:203–209. doi: 10.1007/s10295-013-1353-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jo S, Kim H, Kim S, Shin DH, Kim MS. Characteristics of flavonoids as potent MERS-CoV 3C-like protease inhibitors. Chem Biol Drug Des. 2019;94:2023–2030. doi: 10.1111/cbdd.13604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneda Y, Torii M, Tanaka T, Aikawa M. In vitro effects of berberine sulphate on the growth and structure of Entamoeba histolytica, Giardia lamblia and Trichomonas vaginalis. Ann Trop Med Parasitol. 1991;85:417–425. doi: 10.1080/00034983.1991.11812586. [DOI] [PubMed] [Google Scholar]
- Kinghorn AD, Falk H, Gibbons S, Kobayashi J, Asakawa Y, Liu JK. Progress in the Chemistry of Organic Natural Products-Cheminformatics in Natural Product-Based Drug Discovery. Cham: Springer International Publishing; 2019. [Google Scholar]
- Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keenan AB, Jenkins SL, Jagodnik KM, Koplev S, He E, Torre D, Wang Z, Dohlman AB, Silverstein MC, Lachmann A, et al. The Library of Integrated Network-based Cellular Signatures NIH Program: system-level cataloging of human cells response to perturbations. Cell Syst. 2018;6:13–24. doi: 10.1016/j.cels.2017.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, Jensen NH, Kuijer MB, Matos RC, Tran TB, et al. Predicting new molecular targets for known drugs. Nature. 2009;462:175–181. doi: 10.1038/nature08506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim HJ, Woo ER, Shin CG, Park H. A new flavonol glycoside gallate ester from Acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase. J Nat Prod. 1998;61:145–148. doi: 10.1021/np970171q. [DOI] [PubMed] [Google Scholar]
- Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44:D1202–D1213. doi: 10.1093/nar/gkv951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirchmair J, Göller AH, Lang D, Kunze J, Testa B, Wilson ID, Glen RC, Schneider G. Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov. 2015;14:387–404. doi: 10.1038/nrd4581. [DOI] [PubMed] [Google Scholar]
- Kitazato K, Wang Y, Kobayashi N. Viral infectious disease and natural products with antiviral activity. Drug Discov Ther. 2007;1:14–22. [PubMed] [Google Scholar]
- Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3:935–949. doi: 10.1038/nrd1549. [DOI] [PubMed] [Google Scholar]
- Klöhn PC, Stoltze L, Flechsig E, Enari M, Weissmann C. A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc Natl Acad Sci USA. 2003;100:11666–11671. doi: 10.1073/pnas.1834432100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kocisko DA, Baron GS, Rubenstein R, Chen J, Kuizon S, Caughey B. New inhibitors of scrapie-associated prion protein formation in a library of 2,000 drugs and natural products. J Virol. 2003;77:10288–10294. doi: 10.1128/JVI.77.19.10288-10294.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov. 2005;4:206–220. doi: 10.1038/nrd1657. [DOI] [PubMed] [Google Scholar]
- Kong DX, Guo MY, Xiao ZH, Chen LL, Zhang HY. Historical variation of structural novelty in a natural product library. Chem Biodivers. 2011;8:1968–1977. doi: 10.1002/cbdv.201100156. [DOI] [PubMed] [Google Scholar]
- Kuhn M, Letunic I, Jensen LJ, Bork P. The SIDER database of drugs and side effects. Nucleic Acids Res. 2016;44:D1075–D1079. doi: 10.1093/nar/gkv1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laconi S, Madeddu MA, Pompei R. Autophagy activation and antiviral activity by a licorice triterpene. Phytother Res. 2014;28:1890–1892. doi: 10.1002/ptr.5189. [DOI] [PubMed] [Google Scholar]
- Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucl Acids Res. 2014;42:D1091–D1097. doi: 10.1093/nar/gkt1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–W245. doi: 10.1093/nar/gkw290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li B, Ma C, Zhao X, Hu Z, Du T, Xu X, Wang Z, Lin J. YaTCM: Yet another Traditional Chinese Medicine Database for Drug Discovery. Comput Struct Biotech J. 2018;16:600–610. doi: 10.1016/j.csbj.2018.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li FS, Weng JK. Demystifying traditional herbal medicine with modern approach. Nat Plants. 2017;3:17109. doi: 10.1038/nplants.2017.109. [DOI] [PubMed] [Google Scholar]
- Li HY, Sun NJ, Kashiwada Y, Sun L, Snider JV, Cosentino LM, Lee KH. Anti-AIDS Agents, 9. Suberosol, a New C31 lanostane-type triterpene and anti-HIV principle from Polyalthia suberosa. J Nat Prod. 1993;56:1130–1133. doi: 10.1021/np50097a017. [DOI] [PubMed] [Google Scholar]
- Li L, Wei W, Jia WJ, Zhu Y, Zhang Y, Chen JH, Tian J, Liu H, He YX, Yao X. Discovery of small molecules binding to the normal conformation of prion by combining virtual screening and multiple biological activity evaluation methods. J Comput Aided Mol Des. 2017;31:1053–1062. doi: 10.1007/s10822-017-0086-6. [DOI] [PubMed] [Google Scholar]
- Lin YM, Anderson H, Flavin MT, Pai YHS, Mata-Greenwood E, Pengsuparp T, Pezzuto JM, Schinazi RF, Hughes SH, Chen FC. In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J Nat Prod. 1997;60:884–888. doi: 10.1021/np9700275. [DOI] [PubMed] [Google Scholar]
- Liu B, Zhou J. SARS-CoV protease inhibitors design using virtual screening method from natural products libraries. J Comput Chem. 2005;26:484–490. doi: 10.1002/jcc.20186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu TB, Perlin DS, Xue C. Molecular mechanisms of cryptococcal meningitis. Virulence. 2012;3:173–181. doi: 10.4161/viru.18685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lo YC, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today. 2018;23:1538–1546. doi: 10.1016/j.drudis.2018.05.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, Lavan P, Weber E, Doak AK, Côté S, et al. Large-scale prediction and testing of drug activity on side-effecttargets. Nature. 2012;486:361–367. doi: 10.1038/nature11159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludovico P, Sansonetty F, Côrte-Real M. Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology. 2001;147:3335–3343. doi: 10.1099/00221287-147-12-3335. [DOI] [PubMed] [Google Scholar]
- Lung J, Lin YS, Yang YH, Chou YL, Shu LH, Cheng YC, Liu H T, Wu CY. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol. 2020;92:693–697. doi: 10.1002/jmv.25761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo L, Jiang J, Wang C, Fitzgerald M, Hu W, Zhou Y, Zhang H, Chen S. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharm Sin B. 2020;10:1192–1204. doi: 10.1016/j.apsb.2020.05.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma Y. Conception on infectious diseases from the perspective of traditional medicine. J Tradit Chin Med. 1981;3:1–3. [Google Scholar]
- Malachowski AN, Yosri M, Park G, Bahn YS, He Y, Olszewski MA. Systemic approach to virulence gene network analysis for gaining new insight into cryptococcal virulence. Front Microbiol. 2016;7:1–4. doi: 10.3389/fmicb.2016.01652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- March-Vila, E., Pinzi, L., Sturm, N., Tinivella, A., Engkvist, O., Chen, H., and Rastelli, G. (2017). On the integration of in silico drug design methods for drug repurposing. Front Pharmacol 8. [DOI] [PMC free article] [PubMed]
- Matsuda Y, Abe I. Biosynthesis of fungal meroterpenoids. Nat Prod Rep. 2016;33:26–53. doi: 10.1039/C5NP00090D. [DOI] [PubMed] [Google Scholar]
- Mazandu GK, Opap K, Mulder NJ. Contribution of microarray data to the advancement of knowledge on the Mycobacterium tuberculosis interactome: use of the random partial least squares approach. Infect Genet Evol. 2011;11:181–189. doi: 10.1016/j.meegid.2010.09.003. [DOI] [PubMed] [Google Scholar]
- Min BS, Jung HJ, Lee JS, Kim YH, Bok SH, Ma CM, Nakamura N, Hattori M, Bae K. Inhibitory effect of triterpenes from Crataegus pinatifida on HIV-I protease. Planta Med. 1999;65:374–375. doi: 10.1055/s-2006-960792. [DOI] [PubMed] [Google Scholar]
- Morisset S, Rouleau A, Ligneau X, Gbahou F, Tardivel-Lacombe J, Stark H, Schunack W, Ganellin CR, Schwartz JC, Arrang J M. High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature. 2000;408:860–864. doi: 10.1038/35048583. [DOI] [PubMed] [Google Scholar]
- Mujawar, S., Gatherer, D., and Lahiri, C. (2018). Paradigm shift in drug re-purposing from phenalenone to phenaleno-furanone to combat multi-drug resistant Salmonella enterica serovar typhi. Front Cell Infect Microbiol 8. [DOI] [PMC free article] [PubMed]
- Mulat M, Pandita A, Khan F. Medicinal plant compounds for combating the multi-drug resistant pathogenic bacteria: a review. Curr Pharm Biotechnol. 2019;20:183–196. doi: 10.2174/1872210513666190308133429. [DOI] [PubMed] [Google Scholar]
- Müller C, Schulte FW, Lange-Grünweller K, Obermann W, Madhugiri R, Pleschka S, Ziebuhr J, Hartmann RK, Grünweller A. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res. 2018;150:123–129. doi: 10.1016/j.antiviral.2017.12.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura K, Shimura N, Otabe Y, Hirai-Morita A, Nakamura Y, Ono N, Ul-Amin MA, Kanaya S. KNApSAcK-3D: a three-dimensional structure database of plant metabolites. Plant Cell Physiol. 2013;54:e4. doi: 10.1093/pcp/pcs186. [DOI] [PubMed] [Google Scholar]
- Naman CB, Leber CA, Gerwick WH. Microbial Resources. New York: Academic Press; 2017. Chapter 5. Modern natural products drug discovery and its relevance to biodiversity conservation; pp. 103–120. [Google Scholar]
- Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055. [DOI] [PubMed] [Google Scholar]
- Nguyen DT, Mathias S, Bologa C, Brunak S, Fernandez N, Gaulton A, Hersey A, Holmes J, Jensen LJ, Karlsson A, et al. Pharos: collating protein information to shed light on the druggable genome. Nucleic Acids Res. 2017;45:D995–D1002. doi: 10.1093/nar/gkw1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ntie-Kang F, Zofou D, Babiaka SB, Meudom R, Scharfe M, Lifongo LL, Mbah JA, Mbaze LM, Sippl W, Efange SMN. AfroDb: a select highly potent and diverse natural product library from African medicinal plants. PLoS ONE. 2013;8:e78085. doi: 10.1371/journal.pone.0078085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pang R, Tao JY, Zhang SL, Chen KL, Zhao L, Yue X, Wang YF, Ye P, Zhu Y, Wu JG. Ethanol extract from ampelopsis sinica root exerts anti-hepatitis B virus activity via inhibition of p53 pathway in vitro. Evid Based Complement Alternat Med. 2011;2011:1–7. doi: 10.1093/ecam/neq011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panthong P, Bunluepuech K, Boonnak N, Chaniad P, Pianwanit S, Wattanapiromsakul C, Tewtrakul S. Anti-HIV-1 integrase activity and molecular docking of compounds from Albizia procera bark. Pharm Biol. 2015;53:1861–1866. doi: 10.3109/13880209.2015.1014568. [DOI] [PubMed] [Google Scholar]
- Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS. 2009;23:525–530. doi: 10.1097/QAD.0b013e328322ffac. [DOI] [PubMed] [Google Scholar]
- Pascolutti M, Campitelli M, Nguyen B, Pham N, Gorse AD, Quinn RJ. Capturing nature’s diversity. PLoS ONE. 2015;10:e0120942. doi: 10.1371/journal.pone.0120942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patwardhan B. Ethnopharmacology and drug discovery. J Ethnopharmacol. 2005;100:50–52. doi: 10.1016/j.jep.2005.06.006. [DOI] [PubMed] [Google Scholar]
- Pavan S, Rommel K, Mateo Marquina ME, Höhn S, Lanneau V, Rath A. Clinical practice guidelines for rare diseases: the orphanet database. PLoS ONE. 2017;12:e0170365. doi: 10.1371/journal.pone.0170365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng X, Qiu M. Meroterpenoids from Ganoderma species: a review of last five years. Nat Prod Bioprospect. 2018;8:137–149. doi: 10.1007/s13659-018-0164-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petersen RK, Christensen KB, Assimopoulou AN, Fretté X, Papageorgiou VP, Kristiansen K, Kouskoumvekaki I. Pharmacophore-driven identification of PPARγ agonists from natural sources. J Comput Aided Mol Des. 2011;25:107–116. doi: 10.1007/s10822-010-9398-5. [DOI] [PubMed] [Google Scholar]
- Pham JV, Yilma MA, Feliz A, Majid MT, Maffetone N, Walker J R, Kim E, Cho HJ, Reynolds JM, Song MC, et al. A review of the microbial production of bioactive natural products and biologics. Front Microbiol. 2019;10:1404. doi: 10.3389/fmicb.2019.01404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prachayasittikul V, Worachartcheewan A, Shoombuatong W, Songtawee N, Simeon S, Prachayasittikul V, Nantasenamat C. Computer-aided drug design of bioactive natural products. Curr Top Med Chem. 2015;15:1780–1800. doi: 10.2174/1568026615666150506151101. [DOI] [PubMed] [Google Scholar]
- Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG. Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA. 2017;114:5601–5606. doi: 10.1073/pnas.1614680114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qian H, Jin Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J Plant Ecol. 2016;9:233–239. doi: 10.1093/jpe/rtv047. [DOI] [Google Scholar]
- Ramos Barbosa WL, do Nascimento MS, Nascimento Pinto L, do Costa Maia FL, Ataide Sousa AJ, Silva Junior JOC, Monteiro MM, de Oliveira DR. Selecting medicinal plants for development of phytomedicine and use in primary health care. In: Rasooli I, editor. Bioactive Compounds in Phytomedicine. London: In-techOpen; 2012. [Google Scholar]
- Reddy KH, Sharma PVGK, Reddy OVS. A comparative in vitro study on antifungal and antioxidant activities of Nervilia aragoana and Atlantia monophylla. Pharma Biol. 2010;48:595–602. doi: 10.3109/13880200903218927. [DOI] [PubMed] [Google Scholar]
- Reller LB, Weinstein MP, Procop GW, Wilson M. Infectious disease pathology. Clin Infect Dis. 2001;32:1589–1601. doi: 10.1086/320537. [DOI] [PubMed] [Google Scholar]
- Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Rawling M, Savory E, Stebbing J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395:e30–e31. doi: 10.1016/S0140-6736(20)30304-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodgers G, Austin C, Anderson J, Pawlyk A, Colvis C, Margolis R, Baker J. Glimmers in illuminating the druggable genome. Nat Rev Drug Discov. 2018;17:301–302. doi: 10.1038/nrd.2017.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosén J, Gottfries J, Muresan S, Backlund A, Oprea TI. Novel chemical space exploration via natural products. J Med Chem. 2009;52:1953–1962. doi: 10.1021/jm801514w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6:13. doi: 10.1186/1758-2946-6-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saag MS, Graybill RJ, Larsen RA, Pappas PG, Perfect JR, Powderly WG, Sobel JD, Dismukes WE. Practice guidelines for the management of cryptococcal disease. Clin Infect Dis. 2000;30:710–718. doi: 10.1086/313757. [DOI] [PubMed] [Google Scholar]
- Salam AM, Quave CL. Opportunities for plant natural products in infection control. Curr Opin Microbiol. 2018;45:189–194. doi: 10.1016/j.mib.2018.08.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samie S, Trollope KM, Joubert LM, Makunga NP, Volschenk H. The antifungal and Cryptococcus neoformans virulence attenuating activity of Pelargonium sidoides extracts. J Ethnopharmacol. 2019;235:122–132. doi: 10.1016/j.jep.2019.02.008. [DOI] [PubMed] [Google Scholar]
- Saslis-Lagoudakis CH, Klitgaard BB, Forest F, Francis L, Savolainen V, Williamson EM, Hawkins JA. The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: an example from Pterocarpus (Leguminosae) PLoS ONE. 2011;6:e22275. doi: 10.1371/journal.pone.0022275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saslis-Lagoudakis CH, Savolainen V, Williamson EM, Forest F, Wagstaff SJ, Baral SR, Watson MF, Pendry CA, Hawkins J A. Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proc Natl Acad Sci USA. 2012;109:15835–15840. doi: 10.1073/pnas.1202242109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuster D, Kern L, Hristozov DP, Terfloth L, Bienfait B, Laggner C, Kirchmair J, Grienke U, Wolber G, Langer T, et al. Applications of integrated data mining methods to exploring natural product space for acetylcholinesterase inhibitors. Comb Chem High Throughput Screen. 2010;13:54–66. doi: 10.2174/138620710790218212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen J, Xu X, Cheng F, Liu H, Luo X, Shen J, Chen K, Zhao W, Shen X, Jiang H. Virtual screening on natural products for discovering active compounds and target information. Curr Med Chem. 2003;10:2327–2342. doi: 10.2174/0929867033456729. [DOI] [PubMed] [Google Scholar]
- Silber J, Kramer A, Labes A, Tasdemir D. From discovery to production: biotechnology of marine fungi for the production of new antibiotics. Mar Drugs. 2016;14:137. doi: 10.3390/md14070137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silva HAMF, Sá JLF, Siqueira WN, Lima MV, Martins MCB, Aires AL, Albuquerque MCPA, Falcão EPS, Buril MLL, Pereira EC, et al. Toxicological effects of Ramalina aspera (lichen) on Biomphalaria glabrata snails and Schistosoma mansoni cercariae. Acta Trop. 2019;196:172–179. doi: 10.1016/j.actatropica.2019.05.010. [DOI] [PubMed] [Google Scholar]
- Singh D, Narayanamoorthy S, Gamre S, Majumdar AG, Goswami M, Gami U, Cherian S, Subramanian M. Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division. Free Radic Biol Med. 2018;120:62–71. doi: 10.1016/j.freeradbiomed.2018.03.021. [DOI] [PubMed] [Google Scholar]
- Sloan DJ, Parris V. Cryptococcal meningitis: epidemiology and therapeutic options. Clin Epidemiol. 2014;6:169–182. doi: 10.2147/CLEP.S38850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, Iosifidis C, Agha R. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19) Int J Surg. 2020;76:71–76. doi: 10.1016/j.ijsu.2020.02.034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Su F, Zhao Z, Ma S, Wang R, Li Y, Liu Y, Li Y, Li L, Qu J, Yu S. Cnidimonins A-C, Three types of hybrid dimer from Cnidium monnieri: structural elucidation and semisynthesis. Org Lett. 2017;19:4920–4923. doi: 10.1021/acs.orglett.7b02290. [DOI] [PubMed] [Google Scholar]
- Su HX, Yao S, Zhao WF, Li MJ, Liu J, Shang WJ, Xie H, Ke C Q, Hu HC, Gao MN, et al. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol Sin. 2020;41:1167–1177. doi: 10.1038/s41401-020-0483-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szklarczyk D, Santos A, von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016;44:D380–D384. doi: 10.1093/nar/gkv1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanrikulu Y, Rau O, Schwarz O, Proschak E, Siems K, Müller-Kuhrt L, Schubert-Zsilavecz M, Schneider G. Structure-based pharmacophore screening for Natural-Product-Derived PPARγ agonists. Chembiochem. 2009;10:75–78. doi: 10.1002/cbic.200800520. [DOI] [PubMed] [Google Scholar]
- Teijaro CN, Adhikari A, Shen B. Challenges and opportunities for natural product discovery, production, and engineering in native producers versus heterologous hosts. J Ind Microbiol Biotech. 2018;46:433–444. doi: 10.1007/s10295-018-2094-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- The R Core Team. (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/.
- Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018;19:1578. doi: 10.3390/ijms19061578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilvi S, Rodrigues C, Naik CG, Parameswaran PS, Wahidhulla S. New bromotyrosine alkaloids from the marine sponge Psammaplysilla purpurea. Tetrahedron. 2004;60:10207–10215. doi: 10.1016/j.tet.2004.09.009. [DOI] [Google Scholar]
- Torrent J, Vilchez-Acosta A, Muñoz-Torrero D, Trovaslet M, Nachon F, Chatonnet A, Grznarova K, Acquatella-Tran Van Ba I, Le Goffic R, Herzog L, et al. Interaction of prion protein with acetylcholinesterase: potential pathobiological implications in prion diseases. Acta Neuropathol Commun. 2015;3:1–8. doi: 10.1186/s40478-015-0188-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torres CA, Nuñez MB, Isla MI, Castro MP, Gonzalez AM, Zampini IC. Antibacterial synergism of extracts from climbers belonging to Bignoniaceae family and commercial antibiotics against multi-resistant bacteria. J Herbal Med. 2017;8:24–30. doi: 10.1016/j.hermed.2017.02.002. [DOI] [Google Scholar]
- Trosset JY, Cavé C. In silico drug-target profiling. In: Moll J, Carotta S, editors. Target Identification and Validation in Drug Discovery. Methods in Molecular Biology. New York: Humana Press; 2019. pp. 89–103. [DOI] [PubMed] [Google Scholar]
- Tsai TY, Chang KW, Chen CYC. iScreen: world’s first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan. J Comput Aided Mol Des. 2011;25:525–531. doi: 10.1007/s10822-011-9438-9. [DOI] [PubMed] [Google Scholar]
- Tsukamoto S, Kato H, Hirota H, Fusetani N. Ceratinamine: an unprecedented antifouling cyanoformamide from the marine sponge Pseudoceratina purpurea. J Org Chem. 1996;61:2936–2937. doi: 10.1021/jo9602884. [DOI] [PubMed] [Google Scholar]
- Valli M, dos Santos RN, Figueira LD, Nakajima CH, Castro-Gamboa I, Andricopulo AD, Bolzani VS. Development of a natural products database from the biodiversity of Brazil. J Nat Prod. 2013;76:439–444. doi: 10.1021/np3006875. [DOI] [PubMed] [Google Scholar]
- Veras LM, Guimaraes MA, Campelo YD, Vieira MM, Nascimento C, Lima DF, Vasconcelos L, Nakano E, Kuckelhaus SS, Batista MC, et al. Activity of epiisopiloturine against Schistosoma mansoni. Curr Med Chem. 2012;19:2051–2058. doi: 10.2174/092986712800167347. [DOI] [PubMed] [Google Scholar]
- Viegas FPD, de Castro AT, Castro AP, Siqueira Í, Rosa W, Espuri PF, Coelho LFL, Marques MJ, Soares MG. In vitro schistosomicidal activity of the crude extract, fractions and Primin, the major active benzoquinone constituent from the leaves of Miconia willdenowii (Melastomaceae) South Afr J Bot. 2017;111:365–370. doi: 10.1016/j.sajb.2017.04.008. [DOI] [Google Scholar]
- Vine R. Google scholar. J Med Libr Assoc. 2006;94:97–99. [Google Scholar]
- Wagner AH, Coffman AC, Ainscough BJ, Spies NC, Skidmore Z L, Campbell KM, Krysiak K, Pan D, McMichael JF, Eldred J M, et al. DGIdb 2.0: mining clinically relevant drug-gene interactions. Nucleic Acids Res. 2016;44:D1036–D1044. doi: 10.1093/nar/gkv1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang K. New target and development direction of chronic hepatitis B treatment (in Chinese) Chin J Front Med. 2008;1:11–14. [Google Scholar]
- Wang J, Chen F, Liu Y, Liu Y, Li K, Yang X, Liu S, Zhou X, Yang J. Spirostaphylotrichin X from a marine-derived fungus as an anti-influenza agent targeting RNA polymerase PB2. J Nat Prod. 2018;81:2722–2730. doi: 10.1021/acs.jnatprod.8b00656. [DOI] [PubMed] [Google Scholar]
- Wang YM, Shi LL. Comparison among the search platforms of Wanfang Database, CNKI database and VIP database (in Chinese) Shanxi Libr J. 2012;6:22–34. [Google Scholar]
- Wangchuk P, Pearson MS, Giacomin PR, Becker L, Sotillo J, Pickering D, Smout MJ, Loukas A. Compounds derived from the bhutanese daisy, ajania nubigena, demonstrate dual anthelmintic activity against schistosoma mansoni and trichuris muris. PLoS Negl Trop Dis. 2016;10:e0004908. doi: 10.1371/journal.pntd.0004908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weaver DC. Applying data mining techniques to library design, lead generation and lead optimization. Curr Opin Chem Biol. 2004;8:264–270. doi: 10.1016/j.cbpa.2004.04.005. [DOI] [PubMed] [Google Scholar]
- Winder M. Paul U. Unschuld, Medicine in China. A history of pharmaceutics. Berkeley, Los Angeles and London: University of California Press; 1988. p. xiii. [Google Scholar]
- Wishart D, Arndt D, Pon A, Sajed T, Guo AC, Djoumbou Y, Knox C, Wilson M, Liang Y, Grant J, et al. T3DB: the toxic exposome database. Nucleic Acids Res. 2015;43:D928–D934. doi: 10.1093/nar/gku1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu J, Zhao Y. Machine learning technology in the application of genome analysis: A systematic review. Gene. 2019;705:149–156. doi: 10.1016/j.gene.2019.04.062. [DOI] [PubMed] [Google Scholar]
- Wu L, Ai N, Liu Y, Wang Y, Fan X. Relating anatomical therapeutic indications by the ensemble similarity of drug sets. J Chem Inf Model. 2013;53:2154–2160. doi: 10.1021/ci400155x. [DOI] [PubMed] [Google Scholar]
- Xia J, Wright J, Adams CE. Five large Chinese biomedical bibliographic databases: accessibility and coverage. Health Inf Libr J. 2008;25:55–61. doi: 10.1111/j.1471-1842.2007.00734.x. [DOI] [PubMed] [Google Scholar]
- Xu HX, Zeng FQ, Wan M, Sim KY. Anti-HIV triterpene acids from Geum japonicum. J Nat Prod. 1996;59:643–645. doi: 10.1021/np960165e. [DOI] [PubMed] [Google Scholar]
- Xue R, Fang Z, Zhang M, Yi Z, Wen C, Shi T. TCMID: Traditional Chinese Medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res. 2013;41:D1089–D1095. doi: 10.1093/nar/gks1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu MS, Lee J, Lee JM, Kim Y, Chin YW, Jee JG, Keum YS, Jeong YJ. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett. 2012;22:4049–4054. doi: 10.1016/j.bmcl.2012.04.081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yao C. Inner Cannon of Yellow Emperor (Huang Di Nei Jing) (in Chinese) Beijing: Zhonghua Book Company; 2010. [Google Scholar]
- Zaragoza O, Telzak A, Bryan RA, Dadachova E, Casadevall A. The polysaccharide capsule of the pathogenic fungus Cryptococcus neoformans enlarges by distal growth and is rearranged during budding. Mol Microbiol. 2006;59:67–83. doi: 10.1111/j.1365-2958.2005.04928.x. [DOI] [PubMed] [Google Scholar]
- Zeng X, Zhang P, He W, Qin C, Chen S, Tao L, Wang Y, Tan Y, Gao D, Wang B, et al. Npass: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res. 2018;46:D1217–D1222. doi: 10.1093/nar/gkx1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang L, Wang CC. Inflammatory response of macrophages in infection. Hepatobiliary Pancreat Dis Int. 2014;13:138–152. doi: 10.1016/S1499-3872(14)60024-2. [DOI] [PubMed] [Google Scholar]
- Zhao Z, Wu L, Xie J, Feng Y, Tian J, He X, Li B, Wang L, Wang X, Zhang Y, et al. Rhodomyrtus tomentosa (Aiton.): A review of phytochemistry, pharmacology and industrial applications research progress. Food Chem. 2020;309:125715. doi: 10.1016/j.foodchem.2019.125715. [DOI] [PubMed] [Google Scholar]
- Zhong T, Zhang LY, Wang ZY, Wang Y, Song FM, Zhang YH, Yu JH. Rheum emodin inhibits enterovirus 71 viral replication and affects the host cell cycle environment. Acta Pharmacol Sin. 2017;38:392–401. doi: 10.1038/aps.2016.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou J, Xu R, Du XZ, Zhou XD, Li Q. Saxifragifolin D attenuates phagosome maturation arrest in Mycobacterium tuberculosis-infected macrophages via an AMPK and VPS34-dependent pathway. AMB Expr. 2017;7:11. doi: 10.1186/s13568-016-0317-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu K, Cordeiro ML, Atienza J, Robinson WE, Jr., Chow SA. Irreversible inhibition of human immunodeficiency virus type 1 integrase by dicaffeoylquinic acids. J Virol. 1999;73:3309–3316. doi: 10.1128/JVI.73.4.3309-3316.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuo GY, Zhang XJ, Yang CX, Han J, Wang GC, Bian ZQ. Evaluation of traditional Chinese medicinal plants for anti-MRSA activity with reference to the treatment record of infectious diseases. Molecules. 2012;17:2955–2967. doi: 10.3390/molecules17032955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuzarte M, Gonçalves MJ, Cavaleiro C, Canhoto J, Vale-Silva L, Silva MJ, Pinto E, Salgueiro L. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L’Hér. J Med Microbiol. 2011;60:612–618. doi: 10.1099/jmm.0.027748-0. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Natural products for infectious microbes and diseases: an overview of sources, compounds, and chemical diversities
