Skip to main content
Membranes logoLink to Membranes
. 2021 Oct 12;11(10):781. doi: 10.3390/membranes11100781

Optimization of Energy Efficiency, Operation Costs, Carbon Footprint and Ecological Footprint with Reverse Osmosis Membranes in Seawater Desalination Plants

Federico Leon 1,*, Alejandro Ramos 1, Sebastian O Perez-Baez 1
Editors: Jianhua Zhang1, Ranil Wickramasinghe1, Hongge Guo1
PMCID: PMC8549010  PMID: 34677547

Abstract

This article shows the optimization of the reverse osmosis process in seawater desalination plants, taking the example of the Canary Islands, where there are more than 320 units of different sizes, both private and public. The objective is to improve the energy efficiency of the system in order to save on operation costs as well as reduce the carbon and ecological footprints. Reverse osmosis membranes with higher surface area have lower energy consumption, as well as energy recovery systems to recover the brine pressure and introduce it in the system. Accounting for the operation, maintenance and handling of the membranes is also important in energy savings, in order to improve the energy efficiency. The energy consumption depends on the permeate water quality required and the model of the reverse osmosis membrane installed in the seawater desalination plant, as it is shown in this study.

Keywords: energy efficiency, reverse osmosis, membranes, desalination

1. Introduction

Seawater desalination in water treatment plants has evolved considerably in the last five decades, in which the desalination process and its technology have changed and become more and more profitable and efficient. Initially, the water desalination process was a thermal process, but it has been changing with scientific technological advances towards a process of reverse osmosis, which dominates the current market [1,2,3,4,5].

Following the state of the art in water desalination and the evolution of this process not only at the regional Canary level but also at national and international levels, there are now different desalination processes, such as Vapor Compression (VC), Multi-Effect Distillation (MSF), Multi-Stage Distillation (MED) and reverse osmosis, which currently account for 65% of all the processes used around the world [4,5,6,7].

The main objective is to study the improvements in seawater desalination, based on the reduction of energy consumption in the production of fresh water. Consequently, reverse osmosis is the most suitable process due to its lower energy consumption per cubic meter of water produced, and therefore it occupies a privileged position in the sector. So far, in the 21st century, research efforts in water desalination have focused on advances in reverse osmosis membranes, with higher surface area and lower energy consumption, as well as energy recovery systems to recover the brine pressure and introduce it in the system, reducing the energy consumption of the desalination process [8,9,10].

The operation, maintenance and handling of the membranes have been studied in detail, due to their importance in energy savings, detailing how to optimize all the processes in which they are involved to improve energy efficiency [7].

In the same way, we analyze data from the different seawater desalination plants we visited, obtaining data on thousands of hours of operation in many cases. We have developed techniques to improve the energy efficiency of seawater desalination membranes in strict compliance with the water quality parameters established by national and international regulations, or even by organizations such as the World Health Organization [11,12,13,14,15,16,17,18,19].

To carry out a general cost analysis of the components or elements of the plant and their operation, it is necessary to determine the direct costs, indirect costs and other considerable expenses for this purpose [20,21,22,23,24].

Among the direct costs, we can highlight the acquisition cost of the elements, both initial and replacement, and among the most significant expenses are those related to the initial capital investment, operation and maintenance [25,26,27].

2. Materials and Methods

As stated earlier, energy consumption depends on the permeate water quality required and the reverse osmosis membrane model installed in the desalination plant. Therefore, we developed a methodology, in the following equations, to calculate the permeate quality–cost ratio [15,16,17,18,19].

CEE = f1 × EE = f1 × Eb/µe = f1 × Eh/b × µe) = f1 × ρ × g × hb/(c × µb × µe) (1)
Q = Q′/c (2)
Ph = ρ × g × Q × hb = ρ × g × Q’/c × hb (3)
Eh = Ph/Q′ = ρ × g × hb/c (4)
EB = Ehb (5)
EE = EBe (6)
hb(año 1–5) = (1.2 × tm + 0.6) + hb(año 0) (7)

c: Plant recovery.

ρ: Fluid density (1000 kg/m3 for water).

g: Acceleration of gravity (generally adopted: 9.81 m/s2).

hb: Manometric pump height (m).

CEE: Cost of electricity per cubic meter of water produced.

f1: Factor about the price of the electric energy consumed EUR/kWh.

Ph: Hydraulic power transmitted to water.

Pe: Power consumption.

Q′: Permeate flow rate.

Q: Feed rate.

µb: High pressure pump performance.

µe: Electrical performance of the high-pressure pump.

PB: Pump power.

EE: Electrical energy consumed per cubic meter of water produced.

EB: Total energy consumed by the pump per cubic meter of produced water.

Eh: Hydraulic energy per cubic meter of produced water.

δE: Electrical losses.

δh: Hydraulic losses.

δm: Mechanical pump losses.

hb: Pump head (m).

tm: Age of the membrane.

Figure 1 below shows the energy block diagram, which includes the electrical, hydraulic and mechanical pressure losses that occur in the process.

Figure 1.

Figure 1

Energy block diagram.

General Analysis of Element and Operation Costs

In this sense, and as a guide, according to data from a construction company of desalination plants in Gran Canaria with more than 100 references in the market, it should be noted that the cost of the membranes in a seawater desalination plant represents approximately 13% of the total investment in the facility’s equipment. The rest of the components (high-pressure pump, booster pump, pressure pipes, pre-treatment, etc.) represent 87% of the total amount, not including industrial profit and before taxes [1,2,28].

Table 1 and Figure 2 show all the significant variables that affect operating costs per cubic meter of water produced [3,4,5,6,7].

Table 1.

Operation costs.

Operation Cost Nomenclature Percentage (%)
Membranes replacement Cm 4
Reagents consumption Cr 11
Chemical cleanings Cq 2
Maintenance Cm 10
Staff Cp 11
Pumps energy consumption Ce 62

Figure 2.

Figure 2

Operation costs.

In this sense, it is demonstrated that the cost of energy consumption in the pumps and mainly in the high-pressure pump is by far the most significant of a seawater desalination plant, and we can reduce it considerably with the introduction of last-generation reverse osmosis membranes, which were confirmed to be suitable through the same through-plant pilots [29,30].

If the membranes are not replaced, an action that has the lowest cost of those studied, this will have a negative impact with a considerable increase in the energy consumption of the high-pressure pump, which very significantly affects the cost per m3 of water produced, as discussed below [31,32,33,34].

In Figure 3 and Figure 4, the most important issues of this model are represented, which are the costs, energy consumption, water quality and environment.

Figure 3.

Figure 3

Energy, exergy and economic block diagram.

Figure 4.

Figure 4

Environmental and water quality block diagram.

A reduction in energy consumption will have a direct impact on environmental improvement and we study this through the carbon footprint produced by these desalination plants and their ecological footprint, with the latter as a future line of action. The corresponding diagram according to Figure 4 is shown below.

To produce a quantity of water from a reverse osmosis plant, a quantity of electrical energy must be consumed, and to generate this energy in a conventional electrical network, emissions in the form of greenhouse gases are emitted.

The magnitude of these emissions depends on the set of technologies that make up the energy generation system of the electrical network to which the water production plant is connected. The energy produced by this set is often referred to as the energy mix, which tends to depend largely on the territory and energy policy [3,4].

In relation to territorial dependence, electricity networks generally have energy mixes that cause higher greenhouse gas emissions, as they generally have systems based on lower performance technologies. These electrical energy production technologies can mainly be classified as two types: Conventional and renewable [3].

Within the conventional technologies, which have a direct impact on the carbon footprint of the installations, several can be considered: Diesel engines, gas turbines, combined cycles and steam turbines, which generally have different performances and quantities of emissions. On the other hand, there are technologies based on renewable energies, such as solar photovoltaic, wind, waves, etc. [4,5].

Therefore, in order to reduce greenhouse gas emissions, it is possible to propose the generation of electrical energy necessary for water production in the same facility through hybrid energy systems. These hybrid energy systems can be composed of several types of technologies, in which the largest amount of energy from renewable sources tends to be integrated with the support of an energy storage system or conventional technology such as a diesel engine [3].

Therefore, a methodology can be proposed to achieve the stable operation of a high-efficiency diesel engine with a small integrated autonomous diesel engine and a photovoltaic solar energy generating system to power a reverse osmosis plant, thus reducing the greenhouse gas emissions associated with water production. This application would be very useful in hotel complexes, private facilities, industries, isolated areas, etc. [3].

For the specific case of seawater desalination plants in the Canary Islands, with regard to the production of seawater desalination plants, the following permeate flows can be confirmed: Gran Canaria (220,870 m3/d), Tenerife (106,034 m3/d), Fuerteventura (90,755 m3/d) and Lanzarote (87,480 m3/d). These produce a significant carbon footprint with respect to the overall footprint of each island, especially on Fuerteventura and Lanzarote. In this sense, renewable energies can make a great contribution, mainly through wind and solar photovoltaics. For example, Fuerteventura and Lanzarote are windy islands with high solar radiation all year round, which also have large areas of flat land suitable for these installations. These installations could be for the energy consumption of public desalination plants, or for those that are private, which are normally smaller and can also be self-supplied with renewable energies and a diesel engine for the security of the electricity supply at all times without resorting to the island network, as may be the case of hotels or isolated areas where the electricity network does not reach. In Gran Canaria and Tenerife, it is also possible to implement this, although the orography is more complicated throughout the year in the coastal areas where the seawater desalination plants are located, as the solar radiation and the winds are quite significant, especially in the months between June and September with sunnier days and trade winds. Therefore, the possibility of introducing renewable energies for the supply of electricity to seawater desalination plants in the Canary Islands is studied in order to reduce the carbon footprint and the ecological footprint of the sector, due to the considerable influence of the whole archipelago.

Similarly, to calculate the ecological footprint, we follow previous methodology [11,12,13,14], which is expressed in Table 2.

Table 2.

Average and equivalent CO2 absorption per hectare of the different surfaces of planet Earth. Surface area equivalence factors.

Category Surfice ABS. Average (tCO2/ha/Year) Surface (Millions ha) % ABS. Hectarea Equivalent (tCO2/ha/Year) Equivalence Factor (fi)
Forests 19.35 3858.10 7.56 1.46 9.66
Crops 8.09 1958.32 3.84 0.31 4.04
Medows and pastures 2.44 3363.72 6.59 0.16 1.22
Oceans, seas, etc… 0.10 36,010.00 70.60 0.07 0.05
Deserts 0.00 3600.00 7.06 0.00 0.00
Others 0.00 2217.06 4.35 0.00 0.00
Total Surface 51,007.20 2.00 1.00

3. Results

Taking into account these parameters, the typical production of a seawater plant of 100,000 m3/d, Equation (7) explained above and the reverse osmosis membrane software, we obtain the common results presented in Table 3, Table 4 and Table 5.

Table 3.

Pressure increases without membrane replacement at 22 °C.

Year Pressure (bar) Power (kW) Energy (kWh/d) Cost (€/d)
0 66.6 10,023.5 240,564.9 21,625.6
1 68.4 10,294.4 247,066.7 22,210.1
2 69.6 10,475.0 251,401.2 22,599.7
3 70.8 10,655.7 255,735.7 22,989.4
4 72.0 10,836.3 260,070.2 23,379.0
5 73.2 11,016.9 264,404.7 23,768.7

Table 4.

Pressure increases without membrane replacement at 17 °C.

Year Pressure (bar) Power (kW) Energy (kWh/d) Cost (€/d)
0 69.5 10,460.0 251,039.9 22,567.2
1 72.6 10,926.5 262,237.5 23,573.8
2 74.4 11,197.4 268,739.2 24,158.3
3 76.0 11,438.3 274,518.5 24,677.8
4 77.5 11,664.1 279,936.7 25,164.9
5 78.9 11,874.8 284,993.6 25,619.5

Table 5.

Pressure increases without membrane replacement at 27 °C.

Year Pressure (bar) Power (kW) Energy (kWh/d) Cost (€/d)
0 62.9 9466.6 227,200.2 20,424.1
1 65.1 9797.7 235,146.8 21,138.5
2 66.3 9978.3 239,481.3 21,528.2
3 67.3 10,128.9 243,093.4 21,852.9
4 68.3 10,279.4 246,705.5 22,177.6
5 69.2 10,414.9 249,956.4 22,469.8

In Table 3, there is a pressure difference essentially every year, due to the age of the membranes. At start up, in year 0, the elements are new so they need less feed pressure than in years 1 to 5. This is because fouling and scaling could damage the membranes little by little, and consequently, the feed pressure increases every year. This shows that the pressure measured in year 1 grows more in the first year, and from year 2, it is constant at 1.2 bar.

Consequently, one can observe from Figure 5 that the pressure varies over 5 years without replacing the membranes, whereas the energy consumption of the pump increases accordingly.

Figure 5.

Figure 5

Pressure, power, energy and cost.

In Table 4, feed temperature is low (17 °C), and due to this, the feed pressure is higher than in Table 5 where the feed temperature is high (27 °C). At start up, the feed pressure is 6–7 bars higher at 17 °C than at 27 °C. After 5 years, without replacement, the pressure difference is even higher between the minimum and maximum temperature, at around 9–10 bars.

In Table 6, we show the existing seawater desalination plants in the Canary Islands, including consumption, and the introduction of renewable energies.

Table 6.

Existing seawater desalination plants in the Canary Islands, consumption and solution of renewable energies. Source: FCCA 2013, REE 2020 and own elaboration.

Name of the Plant Production (m3/d) Consume (kWh/m3) Island Habitants per Plant Renewable Solution
Cercado de Don Andrés 200 3.5 Lanzarote Irrigation Photovoltaic
Lanzarote III 1 10,000 3.5 Lanzarote 10,541 Wind
Lanzarote III 2 5000 3.5 Lanzarote 5271 Wind
Lanzarote III 3 5000 3.5 Lanzarote 5271 Wind
Lanzarote IV 20,000 3.5 Lanzarote 21,083 Wind
Lanzarote V 18,000 2.4 Lanzarote 18,975 Wind
Aeropuerto 700 3.04 Lanzarote 18,327 Photovoltaic
Agua Park 30 3.04 Lanzarote 500 Photovoltaic
Apartamentos Ficus 60 3.5 Lanzarote 120 Photovoltaic
Apartamentos Puerto Tahiche 150 3.5 Lanzarote 300 Photovoltaic
Apartamentos Trebol 80 3.5 Lanzarote 160 Photovoltaic
Ercros 2500 3.5 Lanzarote 11,057 Wind
Ercros 2200 3.5 Lanzarote 9731 Wind
Famara 350 3.5 Lanzarote 700 Photovoltaic
Hotel Golf y Mar 90 3.5 Lanzarote 180 Photovoltaic
Hotel Gran Meliá Salinas 400 2.61 Lanzarote 800 Photovoltaic
Hotel Playa Verde 250 3.5 Lanzarote 500 Photovoltaic
Hotel Teguise Playa 250 3.5 Lanzarote 500 Photovoltaic
La Galea 150 3.04 Lanzarote 300 Photovoltaic
Lanzarote Beach Club II 70 3.04 Lanzarote 140 Photovoltaic
Las Arenas. Costa Teguise 80 3.04 Lanzarote 160 Photovoltaic
Playa Roca 250 3.04 Lanzarote 500 Photovoltaic
Apartamentos Don Paco Castilla 320 2.61 Lanzarote 640 Photovoltaic
Apartamentos Sol Lanzarote 350 2.61 Lanzarote 700 Photovoltaic
Cdad Apartamentos CAMP 2.61 Lanzarote Tourism Photovoltaic
Holiday Land S.A. 3000 3.5 Lanzarote 6000 Wind
Hotel Fariones Playa 500 3.5 Lanzarote 1000 Photovoltaic
Hotel Playa Azul 300 3.5 Lanzarote 600 Photovoltaic
Hoteles Canarios S.A. 3.5 Lanzarote Tourism Photovoltaic
Iberhotel 3.5 Lanzarote Tourism Photovoltaic
Zorilla 40 3.04 Lanzarote 80 Photovoltaic
Hotel Jameos Playa 336 2.61 Lanzarote 672 Photovoltaic
La Santa Sport I 250 3.5 Lanzarote 500 Photovoltaic
La Santa Sport II 250 3.5 Lanzarote 500 Photovoltaic
Ria La Santa 400 3.5 Lanzarote 800 Photovoltaic
Apartamentos Son Boy Family Suites 500 3.04 Lanzarote 1000 Photovoltaic
Bungalows Atlantic Gardens 3.5 Lanzarote Tourism Photovoltaic
Costa los Limones S.A. 350 3.5 Lanzarote 700 Photovoltaic
Hotel Corbeta 3.5 Lanzarote Tourism Photovoltaic
Hotel Costa Calero 324 3.04 Lanzarote 642 Photovoltaic
Marina Rubicón 300 3.04 Lanzarote 600 Photovoltaic
Hotel Paradise Island 300 3.04 Lanzarote 600 Photovoltaic
Hotel Princesa Yaiza 500 3.04 Lanzarote 1000 Photovoltaic
Hotel Rubicón Palace 450 3.04 Lanzarote 900 Photovoltaic
Inalsa Sur 1 600 3.5 Lanzarote 1859 Photovoltaic
Inalsa Sur 2 1200 3.5 Lanzarote 3718 Wind
Inalsa Sur 3 3000 3.5 Lanzarote 9294 Wind
Janubio 3.04 Lanzarote Tourism Photovoltaic
Lanzasur Club 200 3.04 Lanzarote 400 Photovoltaic
Playa Blanca S.A. 3.5 Lanzarote Tourism Photovoltaic
Club Lanzarote 4500 3.5 Lanzarote 9000 Wind
Apartamentos Moromar 250 3.5 Lanzarote 500 Photovoltaic
Gea Fonds Numero Uno Lanzarote S.A. 3.5 Lanzarote Tourism Photovoltaic
Grupo Rosa 1000 3.5 Lanzarote 2000 Wind
Hipotels 300 3.5 Lanzarote 600 Photovoltaic
Hotel Corona 300 3.5 Lanzarote 600 Photovoltaic
Hotel Costa Calero S.L. 300 3.04 Lanzarote 600 Photovoltaic
Hotel Sunbou 500 3.04 Lanzarote 1000 Photovoltaic
Isla Lobos 100 3.04 Lanzarote 200 Photovoltaic
Leas Hotel S.A. 3.5 Lanzarote Tourism Photovoltaic
Niels Prahm 3.5 Lanzarote Tourism Photovoltaic
Occidental Hotel Oasis 250 3.04 Lanzarote 500 Photovoltaic
Playa Flamingo 200 3.04 Lanzarote 400 Photovoltaic
Tjaereborg Timesharing, S.A. 500 3.04 Lanzarote 1000 Photovoltaic
Empresa Mixta de Aguas de Antigua, S.L. 4800 3.04 Fuerteventura 11,948 Wind
Grupo Turístico Barceló, S.L. 240 3.5 Fuerteventura 480 Photovoltaic
Aguas Cristóbal Franquis, S.L. 1200 3.5 Fuerteventura 2400 Wind
Anjoca Canarias, S.A. 3000 3.5 Fuerteventura 6000 Wind
Ramiterra, S.L. 3000 3.04 Fuerteventura 6000 Wind
Inver Canary Dos, S.L. 300 3.04 Fuerteventura 600 Photovoltaic
Suministros de Agua de La Oliva, S.A. 9000 3.04 Fuerteventura 17,920 Wind
Consorcio Abastecimiento de Aguas a Fuerteventura 4000 3.04 Fuerteventura 7964 Wind
Parque de Ocio y Cultura (BAKU) 1 300 3.04 Fuerteventura 600 Photovoltaic
Parque de Ocio y Cultura (BAKU) 2 90 3.04 Fuerteventura 180 Photovoltaic
RIU Palace Tres Islas 100 3.5 Fuerteventura 200 Photovoltaic
RIU Oliva Beach 400 3.5 Fuerteventura 800 Photovoltaic
Nombredo, S.L. 500 3.5 Fuerteventura 1000 Photovoltaic
Consorcio Abastecimiento de Aguas a Fuerteventura 4400 3.5 Fuerteventura 20,539 Wind
Puertito de la Cruz 60 3.5 Fuerteventura 120 Photovoltaic
Vinamar, S.A. 3600 3.5 Fuerteventura 7200 Wind
Fuercan, S.L. Cañada del Rio I 2000 3.5 Fuerteventura 4000 Wind
Fuercan, S.L. Cañada del Rio II 1000 3.04 Fuerteventura 2000 Wind
Fuercan, S.L. Cañada del Rio III 2000 3.04 Fuerteventura 4000 Wind
Club Aldiana 200 3.5 Fuerteventura 400 Photovoltaic
Erwin Sick 30 3.5 Fuerteventura 60 Photovoltaic
Esquinzo Urbanización II 1200 3.5 Fuerteventura 2400 Wind
Esquinzo Urbanización III 1200 3.5 Fuerteventura 2400 Wind
Hotel Sol Élite Los Gorriones 1 400 3.5 Fuerteventura 800 Photovoltaic
Hotel Sol Élite Los Gorriones 2 400 3.5 Fuerteventura 800 Photovoltaic
Stella Canaris I 300 3.5 Fuerteventura 600 Photovoltaic
Stella Canaris II 300 3.5 Fuerteventura 600 Photovoltaic
Stella Canaris III 250 3.5 Fuerteventura 500 Photovoltaic
Hotel H 10 Playa Esmeralda. 250 3.5 Fuerteventura 500 Photovoltaic
Hotel “Club Paraíso Playa” 300 3.5 Fuerteventura 600 Photovoltaic
Urbanización Costa Calma. 110 3.5 Fuerteventura 220 Photovoltaic
Urbanización Tierra Dorada. 120 3.5 Fuerteventura 240 Photovoltaic
Zoo-Parque La Lajita. 1300 3.5 Fuerteventura 500 Wind
Apartamentos Esmeralda Maris 120 3.5 Fuerteventura 240 Photovoltaic
Hotel H10 Tindaya 280 3.5 Fuerteventura 560 Photovoltaic
Aparthotels Morasol 80 3.5 Fuerteventura 160 Photovoltaic
Consorcio Abastecimiento de Aguas a Fuerteventura 36,500 3.5 Fuerteventura 39,382 Wind
Aeropuerto 500 3.5 Fuerteventura 15,439 Photovoltaic
GranTarajal 4000 3.5 Fuerteventura 14,791 Wind
Sotavento, S.A. 2925 3.5 Fuerteventura 5850 Wind
Arucas-Moya I 10,000 3.5 Gran Canaria 45,419 Wind
Granja experimental 500 3.5 Gran Canaria Irrigation Photovoltaic
Granja experimental 500 3.5 Gran Canaria Irrigation Photovoltaic
Comunidad Fuentes de Quintanilla 800 3.04 Gran Canaria Irrigation Photovoltaic
Granja experimental 500 3.5 Gran Canaria Irrigation Photovoltaic
Gáldar-Agaete I 3000 3.5 Gran Canaria 16,199 Wind
Gáldar II 7000 3.04 Gran Canaria 37,799 Wind
Agragua 15,000 3.5 Gran Canaria Irrigation Wind
Guía I 5000 3.5 Gran Canaria 6962 Wind
Guía II 5000 2.61 Gran Canaria 6962 Wind
Félix Santiago Melián 5000 2.61 Gran Canaria Irrigation Wind
Las Palmas III 65,000 3.5 Gran Canaria 307,545 Wind
Las Palmas IV 15,000 2.61 Gran Canaria 70,972 Wind
BAXTER S.A. 100 3.5 Gran Canaria 200 Photovoltaic
El Corte Inglés, S.A. 300 3.5 Gran Canaria 3000 Photovoltaic
Anfi del Mar I 250 3.5 Gran Canaria 500 Photovoltaic
Anfi del Mar II 250 3.5 Gran Canaria 500 Photovoltaic
AQUALING 2000 3.04 Gran Canaria 4000 Wind
Puerto Rico 4000 3.04 Gran Canaria 8000 Wind
Puerto Rico I 4000 3.04 Gran Canaria 8000 Wind
Hotel Taurito 400 3.04 Gran Canaria 800 Photovoltaic
Hotel Costa Meloneras 300 3.04 Gran Canaria 600 Photovoltaic
Hotel Villa del Conde 500 3.04 Gran Canaria 1000 Photovoltaic
Bahia Feliz 600 3.5 Gran Canaria 1200 Photovoltaic
Bonny 8000 3.5 Gran Canaria Irrigation Wind
Maspalomas I Mar 14,500 3.5 Gran Canaria 19,572 Wind
Maspalomas II 25,200 3.04 Gran Canaria 34,016 Wind
UNELCO II 600 3.5 Gran Canaria Industrial Photovoltaic
Ayto. San Nicolas 5000 3.04 Gran Canaria 7608 Wind
Asociación de agricultores de la Aldea 5400 3.04 Gran Canaria Irrigation Wind
Sureste III 8000 3.5 Gran Canaria 133,846 Wind
Aeropuerto I 1000 3.5 Gran Canaria 24,791 Wind
Salinetas 16,000 3.5 Gran Canaria 102,424 Wind
Aeropuerto II 500 3.5 Gran Canaria 12,396 Photovoltaic
Hoya León 1500 3.5 Gran Canaria Irrigation Wind
Bco. García Ruiz 1000 3.5 Gran Canaria Irrigation Wind
Mando Aéreo de Canarias 1000 3.5 Gran Canaria 3000 Wind
UNELCO I 1000 3.5 Gran Canaria Industrial Wind
Anfi del Mar 1500 3.04 Gran Canaria 3000 Wind
Norcrost. S.A. 170 3.04 Gran Canaria 340 Photovoltaic
Adeje Arona 30,000 3.04 Tenerife 126,728 Wind
Gran Hotel Anthelia Park 3.04 Tenerife Tourism Photovoltaic
La Caleta (Ayto. Adeje) 10,000 3.04 Tenerife 20,000 Wind
UTE Tenerife Oeste 14,000 2.16 Tenerife 40,000 Wind
Hotel Sheraton La Caleta 3.04 Tenerife Tourism Photovoltaic
Hotel Gran Tacande 3.04 Tenerife Tourism Photovoltaic
Hotel Rocas de Nivaria. Playa Paraíso 3.04 Tenerife Tourism Photovoltaic
Hotel Bahía del Duque. Costa Adeje 3.04 Tenerife Tourism Photovoltaic
Siam Park 3.04 Tenerife Tourism Photovoltaic
Tenerife-Sol S. A. 3.04 Tenerife Tourism Photovoltaic
Hotel Conquistador, P. de Las Américas 3.04 Tenerife Tourism Photovoltaic
Arona Gran Hotel, Los Cristianos 3.04 Tenerife Tourism Photovoltaic
Bonny S.A., Finca El Fraile. 3.04 Tenerife Tourism Photovoltaic
El Toscal, La Estrella (C. Regantes Las Galletas) 3.04 Tenerife Tourism Photovoltaic
Complejo Mare Nostrum, P. Las Américas 3.04 Tenerife Tourism Photovoltaic
Hotel Villa Cortés 3.04 Tenerife Tourism Photovoltaic
Buenavista Golf, S.A. 3.04 Tenerife Tourism Photovoltaic
Rural Teno 3.04 Tenerife Agrícola Photovoltaic
Ropa Rent, S.A. (P.I. Güímar) 3.04 Tenerife Industrial Photovoltaic
Unelco 600 3.5 Tenerife Industrial Photovoltaic
I.T.E.R. Cabildo de Tenerife 14 3.5 Tenerife Industrial Photovoltaic
C.T. en P.I. de Granadilla 3.5 Tenerife Industrial Photovoltaic
Bonny S.A., Finca El Confital. 3.5 Tenerife Irrigation Photovoltaic
Polígono Industrial de Granadilla (portátil) 3.5 Tenerife Industrial Photovoltaic
UTE Desalinizadora de Granadilla 14,000 3.04 Tenerife 50,146 Wind
Guia de ISORA Hoya de la leña 3.5 Tenerife Tourism Photovoltaic
Club Campo Guía de Isora, Abama 3.5 Tenerife Tourism Photovoltaic
Hotel Meliá Palacio de Isora, Alcalá. 3.5 Tenerife Tourism Photovoltaic
Loro Parque 3.5 Tenerife Tourism Photovoltaic
Santa Cruz I 20,000 3.04 Tenerife 204,856 Wind
Recinto Portuario Santa Cruz (portátil) 3.04 Tenerife Industrial Photovoltaic
CEPSA 1000 3.04 Tenerife Industrial Wind
Hotel Playa la Arena 3.04 Tenerife Tourism Photovoltaic
Hotel Jardín Tecina 2000 3.04 La Gomera 4000 Wind
La Restinga 500 3.5 El Hierro 297 Photovoltaic
La Restinga 1200 3.04 El Hierro 712 Wind
El Cangrejo 1200 3.04 El Hierro 2478 Wind
El Cangrejo 1200 3.04 El Hierro 2478 Wind
El Golfo 1350 3.04 El Hierro 4093 Wind

Table 7 shows the existing seawater desalination plants in the Canary Islands including the carbon and ecological footprints.

Table 7.

Existing seawater desalination plants in the Canary Islands. Source: FCCA 2013 and REE 2020.

Name of the Plant Production (m3/d) Consume (kWh/m3) Economic Cost (€/m3) Carbon Footprint (tCO2/m3) Ecological Footprint (ha/Year/tCO2/m3)
Cercado de Don Andrés 200 3.5 0.040448289 0.0021 0.00105
Lanzarote III 1 10,000 3.5 0.040448289 0.0021 0.00105
Lanzarote III 2 5000 3.5 0.040448289 0.0021 0.00105
Lanzarote III 3 5000 3.5 0.040448289 0.0021 0.00105
Lanzarote IV 20,000 3.5 0.040448289 0.0021 0.00105
Lanzarote V 18,000 2.4 0.02773597 0.001566 0.00072
Aeropuerto 700 3.04 0.035132228 0.001824 0.000912
Agua Park 30 3.04 0.035132228 0.001824 0.000912
Apartamentos Ficus 60 3.5 0.040448289 0.0021 0.00105
Apartamentos Puerto Tahiche 150 3.5 0.040448289 0.0021 0.00105
Apartamentos Trebol 80 3.5 0.040448289 0.0021 0.00105
Ercros 2500 3.5 0.040448289 0.0021 0.00105
Ercros 2200 3.5 0.040448289 0.0021 0.00105
Famara 350 3.5 0.040448289 0.0021 0.00105
Hotel Golf y Mar 90 3.5 0.040448289 0.0021 0.00105
Hotel Gran Meliá Salinas 400 2.61 0.030162867 0.001566 0.000783
Hotel Playa Verde 250 3.5 0.040448289 0.0021 0.00105
Hotel Teguise Playa 250 3.5 0.040448289 0.0021 0.00105
La Galea 150 3.04 0.035132228 0.001824 0.000912
Lanzarote Beach Club II 70 3.04 0.035132228 0.001824 0.000912
Las Arenas, Costa Teguise 80 3.04 0.035132228 0.001824 0.000912
Playa Roca 250 3.04 0.035132228 0.001824 0.000912
Apartamentos Don Paco Castilla 320 2.61 0.030162867 0.001566 0.000783
Apartamentos Sol Lanzarote 350 2.61 0.030162867 0.001566 0.000783
Cdad Apartamentos CAMP 2.61 0.030162867 0.001566 0.000783
Holiday Land S.A. 3000 3.5 0.040448289 0.0021 0.00105
Hotel Fariones Playa 500 3.5 0.040448289 0.0021 0.00105
Hotel Playa Azul 300 3.5 0.040448289 0.0021 0.00105
Hoteles Canarios S.A. 3.5 0.040448289 0.0021 0.00105
Iberhotel 3.5 0.040448289 0.0021 0.00105
Zorilla 40 3.04 0.035132228 0.001824 0.000912
Hotel Jameos Playa 336 2.61 0.030162867 0.001566 0.000783
La Santa Sport I 250 3.5 0.040448289 0.0021 0.00105
La Santa Sport II 250 3.5 0.040448289 0.0021 0.00105
Ria La Santa 400 3.5 0.040448289 0.0021 0.00105
Apartamentos Son Boy Family Suites 500 3.04 0.035132228 0.001824 0.000912
Bungalows Atlantic Gardens 3.5 0.040448289 0.0021 0.00105
Costa los Limones S.A. 350 3.5 0.040448289 0.0021 0.00105
Hotel Corbeta 3.5 0.040448289 0.0021 0.00105
Hotel Costa Calero 324 3.04 0.035132228 0.001824 0.000912
Marina Rubicón 300 3.04 0.035132228 0.001824 0.000912
Hotel Paradise Island 300 3.04 0.035132228 0.001824 0.000912
Hotel Princesa Yaiza 500 3.04 0.035132228 0.001824 0.000912
Hotel Rubicón Palace 450 3.04 0.035132228 0.001824 0.000912
Inalsa Sur 1 600 3.5 0.040448289 0.0021 0.00105
Inalsa Sur 2 1200 3.5 0.040448289 0.0021 0.00105
Inalsa Sur 3 3000 3.5 0.040448289 0.0021 0.00105
Janubio 3.04 0.035132228 0.001824 0.000912
Lanzasur Club 200 3.04 0.035132228 0.001824 0.000912
Playa Blanca S.A. 3.5 0.040448289 0.0021 0.00105
Club Lanzarote 4500 3.5 0.040448289 0.0021 0.00105
Apartamentos Moromar 250 3.5 0.040448289 0.0021 0.00105
Gea Fonds Numero Uno Lanzarote S.A. 3.5 3.5 0.001623494 0.0021
Grupo Rosa 1000 3.5 0.040448289 0.0021 0.00105
Hipotels 300 3.5 0.040448289 0.0021 0.00105
Hotel Corona 300 3.5 0.040448289 0.0021 0.00105
Hotel Costa Calero S.L. 300 3.04 0.035132228 0.001824 0.000912
Hotel Sunbou 500 3.04 0.035132228 0.001824 0.000912
Isla Lobos 100 3.04 0.035132228 0.001824 0.000912
Leas Hotel S.A. 3.5 0.040448289 0.0021 0.00105
Niels Prahm 3.5 0.040448289 0.0021 0.00105
Occidental Hotel Oasis 250 3.04 0.035132228 0.001824 0.000912
Playa Flamingo 200 3.04 0.035132228 0.001824 0.000912
Tjaereborg Timesharing, S.A. 500 3.04 0.035132228 0.001824 0.000912
Empresa Mixta de Aguas de Antigua, S.L. 4800 3.04 0.035132228 0.001824 0.000912
Grupo Turístico Barceló, S.L. 240 3.5 0.040448289 0.0021 0.00105
Aguas Cristóbal Franquis, S.L. 1200 3.5 0.040448289 0.0021 0.00105
Anjoca Canarias, S.A. 3000 3.5 0.040448289 0.0021 0.00105
Ramiterra, S.L. 3000 3.04 0.035132228 0.001824 0.000912
Inver Canary Dos, S.L. 300 3.04 0.035132228 0.001824 0.000912
Suministros de Agua de La Oliva, S.A. 9000 3.04 0.035132228 0.001824 0.000912
Consorcio Abastecimiento de Aguas a Fuerteventura 4000 3.04 0.035132228 0.001824 0.000912
Parque de Ocio y Cultura BAKU 1 300 3.04 0.035132228 0.001824 0.000912
Parque de Ocio y Cultura BAKU 2 90 3.04 0.035132228 0.001824 0.000912
RIU Palace Tres Islas 100 3.5 0.040448289 0.0021 0.00105
RIU Oliva Beach 400 3.5 0.040448289 0.0021 0.00105
Nombredo, S.L. 500 3.5 0.040448289 0.0021 0.00105
Consorcio Abastecimiento de Aguas a Fuerteventura 4400 3.5 0.040448289 0.0021 0.00105
Puertito de la Cruz 60 3.5 0.040448289 0.0021 0.00105
Vinamar, S.A. 3600 3.5 0.040448289 0.0021 0.00105
Fuercan, S.L. Cañada del Rio I 2000 3.5 0.040448289 0.0021 0.00105
Fuercan, S.L. Cañada del Rio II 1000 3.04 0.035132228 0.001824 0.000912
Fuercan, S.L. Cañada del Rio III 2000 3.04 0.035132228 0.001824 0.000912
Club Aldiana 200 3.5 0.040448289 0.0021 0.00105
Erwin Sick 30 3.5 0.040448289 0.0021 0.00105
Esquinzo Urbanización II 1200 3.5 0.040448289 0.0021 0.00105
Esquinzo Urbanización III 1200 3.5 0.040448289 0.0021 0.00105
Hotel Sol Élite Los Gorriones 1 400 3.5 0.040448289 0.0021 0.00105
Hotel Sol Élite Los Gorriones 2 400 3.5 0.040448289 0.0021 0.00105
Stella Canaris I 300 3.5 0.040448289 0.0021 0.00105
Stella Canaris II 300 3.5 0.040448289 0.0021 0.00105
Stella Canaris III 250 3.5 0.040448289 0.0021 0.00105
Hotel H 10 Playa Esmeralda. 250 3.5 0.040448289 0.0021 0.00105
Hotel “Club Paraíso Playa” 300 3.5 0.040448289 0.0021 0.00105
Urbanización Costa Calma. 110 3.5 0.040448289 0.0021 0.00105
Urbanización Tierra Dorada. 120 3.5 0.040448289 0.0021 0.00105
Zoo-Parque La Lajita. 1300 3.5 0.040448289 0.0021 0.00105
Apartamentos Esmeralda Maris 120 3.5 0.040448289 0.0021 0.00105
Hotel H10 Tindaya 280 3.5 0.040448289 0.0021 0.00105
Aparthotels Morasol 80 3.5 0.040448289 0.0021 0.00105
Consorcio Abastecimiento de Aguas a Fuerteventura 36,500 3.5 0.040448289 0.0021 0.00105
Aeropuerto 500 3.5 0.040448289 0.0021 0.00105
GranTarajal 4000 3.5 0.040448289 0.0021 0.00105
Sotavento, S.A. 2925 3.5 0.040448289 0.0021 0.00105
Arucas-Moya I 10,000 3.5 0.040448289 0.0021 0.00105
Granja experimental 500 3.5 0.040448289 0.0021 0.00105
Granja experimental 500 3.5 0.040448289 0.0021 0.00105
Comunidad Fuentes de Quintanilla 800 3.04 0.035132228 0.001824 0.000912
Granja experimental 500 3.5 0.040448289 0.0021 0.00105
Gáldar-Agaete I 3000 3.5 0.040448289 0.0021 0.00105
Gáldar II 7000 3.04 0.035132228 0.001824 0.000912
Agragua 15,000 3.5 0.040448289 0.0021 0.00105
Guía I 5000 3.5 0.040448289 0.0021 0.00105
Guía II 5000 2.61 0.030162867 0.001566 0.000783
Félix Santiago Melián 5000 2.61 0.030162867 0.001566 0.000783
Las Palmas III 65,000 3.5 0.040448289 0.0021 0.00105
Las Palmas IV 15,000 2.61 0.030162867 0.001566 0.000783
BAXTER S.A. 100 3.5 0.040448289 0.0021 0.00105
El Corte Inglés, S.A. 300 3.5 0.040448289 0.0021 0.00105
Anfi del Mar I 250 3.5 0.040448289 0.0021 0.00105
Anfi del Mar II 250 3.5 0.040448289 0.0021 0.00105
AQUALING 2000 3.04 0.035132228 0.001824 0.000912
Puerto Rico I 4000 3.04 0.035132228 0.001824 0.000912
Puerto Rico II 4000 3.04 0.035132228 0.001824 0.000912
Hotel Taurito 400 3.04 0.035132228 0.001824 0.000912
Hotel Costa Meloneras 300 3.04 0.035132228 0.001824 0.000912
Hotel Villa del Conde 500 3.04 0.035132228 0.001824 0.000912
Bahia Feliz 600 3.5 0.040448289 0.0021 0.00105
Bonny 8000 3.5 0.040448289 0.0021 0.00105
Maspalomas I Mar 14,500 3.5 0.040448289 0.0021 0.00105
Maspalomas II 25,200 3.04 0.035132228 0.001824 0.000912
UNELCO II 600 3.5 0.040448289 0.0021 0.00105
Ayto. San Nicolas 5000 3.04 0.035132228 0.001824 0.000912
Asociación de agricultores de la Aldea 5400 3.04 0.035132228 0.001824 0.000912
Sureste III 8000 3.5 0.040448289 0.0021 0.00105
Aeropuerto I 1000 3.5 0.040448289 0.0021 0.00105
Salinetas 16,000 3.5 0.040448289 0.0021 0.00105
Aeropuerto II 500 3.5 0.040448289 0.0021 0.00105
Hoya León 1500 3.5 0.040448289 0.0021 0.00105
Bco. García Ruiz 1000 3.5 0.040448289 0.0021 0.00105
Mando Aéreo de Canarias 1000 3.5 0.040448289 0.0021 0.00105
UNELCO I 1000 3.5 0.040448289 0.0021 0.00105
Anfi del Mar 1500 3.04 0.035132228 0.001824 0.000912
Norcrost, S.A. 170 3.04 0.035132228 0.001824 0.000912
Adeje Arona 30,000 3.04 0.035132228 0.001824 0.000912
Gran Hotel Anthelia Park 3.04 0.035132228 0.001824 0.000912
La Caleta (Ayto. Adeje) 3.04 0.035132228 0.001824 0.000912
Hotel Sheraton La Caleta 2.16 0.035132228 0.001824 0.000912
Hotel Gran Tacande 3.04 0.035132228 0.001824 0.000912
Hotel Rocas de Nivaria, Playa Paraíso 3.04 3.04 0.00141012 0.001824
Hotel Bahía del Duque, Costa Adeje 3.04 3.04 0.00141012 0.001824
Siam Park 3.04 0.035132228 0.001824 0.000912
Tenerife-Sol S. A. 3.04 0.035132228 0.001824 0.000912
Hotel Conquistador, P. de Las Américas 3.04 3.04 0.00141012 0.001824
Arona Gran Hotel, Los Cristianos 3.04 0.035132228 0.001824 0.000912
Bonny S.A., Finca El Fraile. 3.04 0.035132228 0.001824 0.000912
El Toscal, La Estrella (C. Regantes Las Galletas) 3.04 3.04 0.00141012 0.001824
Complejo Mare Nostrum, P. Las Américas 3.04 3.04 0.00141012 0.001824
Hotel Villa Cortés 3.04 0.035132228 0.001824 0.000912
Buenavista Golf S.A, 3.04 0.035132228 0.001824 0.000912
Rural Teno 3.04 0.035132228 0.001824 0.000912
Ropa Rent, S.A. (P.I. Güímar) 3.04 0.035132228 0.001824 0.000912
Unelco 600 3.04 0.040448289 0.0021 0.00105
I.T.E.R. Cabildo de Tenerife 14 3.5 0.040448289 0.0021 0.00105
C.T. en P.I. de Granadilla 3.5 0.040448289 0.0021 0.00105
Bonny S.A., Finca El Confital. 3.5 0.040448289 0.0021 0.00105
Polígono Industrial de Granadilla (portatil) 3.5 3.5 0.001623494 0.0021
Guia de ISORA Hoya de la leña 3.5 0.040448289 0.0021 0.00105
Club Campo Guía de Isora, Abama 3.5 3.04 0.001623494 0.0021
Hotel Meliá Palacio de Isora, Alcalá 3.5 3.5 0.001623494 0.0021
Loro Parque 3.5 0.040448289 0.0021 0.00105
Santa Cruz I 20,000 3.5 0.035132228 0.001824 0.000912
Recinto Portuario Santa Cruz (portátil) 3,04 3.5 0.00141012 0.001824
CEPSA 1000 3.04 0.035132228 0.001824 0.000912
Hotel Playa la Arena 3.04 0.035132228 0.001824 0.000912
Hotel Jardín Tecina 2000 3.04 0.035132228 0.001824 0.000912
La Restinga 500 3.04 0.040448289 0.0021 0.00105
La Restinga 1200 3.04 0.035132228 0.001824 0.000912
El Cangrejo 1200 3.5 0.035132228 0.001824 0.000912
El Cangrejo 1200 3.04 0.035132228 0.001824 0.000912
El Golfo 1350 3.04 0.035132228 0.001824 0.000912

Figure 6 shows the most significant plants in the Canary Islands, in terms of size, that produce the largest share of the ecological footprint mentioned above. Moreover, the positions of the RO desalination plants are shown on the map, including the permeate flow of each one in the picture.

Figure 6.

Figure 6

Most significant seawater desalination plants (2019).

Considering the type of specific environmental impact indicators [10], the results are classified according to the non-renewable technology and island in Table 8 (2019).

Table 8.

Carbon footprint according to the technological structure of the generation parks that uses oil products in the Canary Islands, broken down by islands (2017) [15].

CO2 Footprint per Non-Renewable Technology in Canaries (tCO2)
Technology Gran Canaria Tenerife Lanzarote Fuerteventura La Palma La Gomera El Hierro
Vapor Turbine 274,429 279,289 550,154 34,9597 268,273 68,688.22 48,276
Diesel Motor 110,730 193,188 39,888 50,483 14,360 - -
Gas Turbine 1,270,058 1,110,153 - - - - -
Combined Cycle 1,175,213 1,162,741 - - - - -

Table 9 presents the above values per MW of installed power on each island.

Table 9.

Carbon footprint by installed power according to the technological structure of the generation park that uses oil products in the Canary Islands, broken down by islands (2017) [15].

CO2 Carbon Footprint per Power Installed of Non-Renewable Technology in Canaries (tCO2/MW)
Technology tCO2/MW
Vapor Turbine 3240
Diesel Motor 638
Gas Turbine 4175
Combined Cycle 2545

Similarly, we can calculate the CO2 footprint per MWh taking into account the thermal consumption by technology and island in Table 10 and Table 11.

Table 10.

CO2 footprint of each non-renewable technology per MWh in the Canary Islands (tCO2/MWh) (2017) [16].

CO2 Footprint of Each Non-Renewable Technology per MWh in Canarias (tCO2/MWh)
Technology Gran Canaria Tenerife Lanzarote Fuerteventura La Palma La Gomera El Hierro
Diesel Motor 0.224621 0.204929 0.151737 0.12329 0.215532 0.168356 0.364811
Gas Turbine 0.178854 0.170368 0.278681 0.045057 2.494326 0 0
Vapor Turbine 0.145261 0.134765 0 0 0 0 0
Combined Cycle 0.175115 0.162457 0 0 0 0 0

Table 11.

Percentages of water consumption by islands and sectors (%) (2017) [15].

Water Consumes in Canarias per Sectors (%)
Consume Lanzarote Fuerteventura Gran Canaria Tenerife La Gomera El Hierro La Palma
Urban 26% 29% 32% 27% 9% 23% 8%
Touristic 40% 48% 11% 10% 9% 3% 2%
Industrial 3% 4% 4% 5% 0% 1% 0%
Irrigation 23% 11% 43% 49% 69% 63% 77%
Losses 7% 9% 9% 9% 13% 9% 13%
Total 100% 100% 100% 100% 100% 100% 100%

4. Conclusions

The most important conclusions obtained from this study are the following:

  • -

    By reducing the operation costs outlined in this article, it is possible to improve the energy efficiency of the system.

  • -

    To reduce the carbon footprint and ecological footprint, the energy consumption needs to be decreased.

  • -

    There are different results regarding the optimization of energy efficiency and environmental footprints.

  • -

    These conclusions of the study may serve as a tool for the decision-making processes related to improving energy efficiency in seawater reverse osmosis plants.

  • -

    The main objective was to study the improvements in seawater desalination based on the reduction of energy consumption in the production of fresh water.

  • -

    Reverse osmosis is the most suitable process due to its lower energy consumption per cubic meter of water produced.

  • -

    Reverse osmosis membranes with higher surface area have lower energy consumption, as well as energy recovery systems to recover the brine pressure and introduce it in the system, reducing the energy consumption of the desalination process.

  • -

    Considering the operation, maintenance and handling of the membranes is also important in energy savings, in order to improve energy efficiency.

  • -

    Energy consumption depends on the permeate water quality required and the model of the reverse osmosis membrane installed in the desalination plant.

Author Contributions

F.L.: Writing—original draft, Methodology, Formal analisys, Revision; A.R.: Writing—review & editing, Methodology, Software, Revision; S.O.P.-B.: Revision, Validation, Resources. All authors have read and agreed to the published version of the manuscript.

Funding

This research was co-funded by the INTERREG V-A Cooperation, Spain-Portugal MAC (Madeira-Azores-Canarias) 2014–2020 program and the MITIMAC project (MAC2/1.1a/263).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Kurihara M. Seawater Reverse Osmosis Desalination. Membranes. 2021;11:243. doi: 10.3390/membranes11040243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Ruiz A., Melian-Martel N., Nuez I. Short Review on Predicting Fouling in RO Desalination. Membranes. 2017;7:62. doi: 10.3390/membranes7040062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Leon F., Ramos A., Vaswani J., Mendieta C., Brito S. Climate Change Mitigation Strategy through Membranes Replacement and Determination Methodology of Carbon Footprint in Reverse Osmosis RO Desalination Plants for Islands and Isolated Territories. Water. 2021;13:293. doi: 10.3390/w13030293. [DOI] [Google Scholar]
  • 4.Sadhwani J.J., Veza J.M. Desalination and energy consumption in Canary Islands. Desalination. 2008;221:143–150. doi: 10.1016/j.desal.2007.02.051. [DOI] [Google Scholar]
  • 5.Schallenberg-Rodriguez J., Veza J.M., Blanco-Marigorta A. Energy efficiency and desalination in the Canary Islands. Renew. Sustain. Energy Rev. 2014;40:741–748. doi: 10.1016/j.rser.2014.07.213. [DOI] [Google Scholar]
  • 6.Cohen Y., Semiat R., Rahardianto A. A perspective on reverse osmosis water desalination: Quest for sustainability. AIchE J. 2017;63:1771–1784. doi: 10.1002/aic.15726. [DOI] [Google Scholar]
  • 7.Frank W., de Fluidos M. Hemos Tenido en Cuenta el Coste a Partir un Valor Medio de la Tarifa Industrial Actual 3.1A de OHMIA. 6th ed. McGraw-Hill; NewYork, NY, USA: 2008. [(accessed on 20 July 2021)]. Available online: https://ohmia.es/industria/ [Google Scholar]
  • 8.Burn S., Hoang M., Zarzo D., Olewniak F., Campos E., Bolto B., Barron O. Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination. 2015;364:2–16. doi: 10.1016/j.desal.2015.01.041. [DOI] [Google Scholar]
  • 9.León F.A., Ramos A. Analysis of high efficiency membrane pilot testing for membrane design optimization. Desalination Water Treat. 2017;73:208–214. doi: 10.5004/dwt.2017.20573. [DOI] [Google Scholar]
  • 10.Jiménez C. Seawater temperature measured at the surface and at two depths (7 and 12 m) in one coral reef at Culebra Bay, Gulf of Papagayo. Costa Rica. Rev. Biol. Trop. 2001;49((Suppl. 2)):153–161. [PubMed] [Google Scholar]
  • 11.Du Y., Liang X., Liu Y., Xie L., Zhang S. Economic, Energy, Exergo-Economic, and Environmental Analyses and Multiobjective Optimization of Seawater Reverse Osmosis Desalination Systems with Boron Removal. [(accessed on 10 July 2021)];Ind. Eng. Chem. Res. 2019 58:14193–14208. doi: 10.1021/acs.iecr.9b01933. Available online: http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.iecr.9b01933. [DOI] [Google Scholar]
  • 12.Penela A.C. Utilidad de la Huella Ecológica y del Carbono en el ámbito de la Responsablidad Social Corporativa (RSC) y el Ecoetiquetado de Bienes y Servicios. 2009. [(accessed on 10 June 2021)]. Available online: http://www.eumed.net/rev/delos/08.
  • 13.Consejería de Medio Ambiente de la Junta de Andalucía . La Huella Ecológica de Andalucía, una Herramienta Para Medir la Sostenibilidad. Junta de Anadalucía; Seville, Spain: 2006. [Google Scholar]
  • 14.Ministerio de Medio Ambiente Medio Rural y Marino . Análisis de la Huella Ecológica de España. Ministerio de medio ambiente medio rural y marino; Madrid, Spain: 2008. [Google Scholar]
  • 15.Javier L.P. Ph.D. Thesis. Universidad de Las Palmas de Gran Canaria; Las palmas de Gran Canaria, Spain: 2015. Propuesta Metodológica Para la Determinación de la Huella Ecológica en el Sector Hotelero. [Google Scholar]
  • 16.Dirección General de Industria y Energía . Anuario Energético de Canarias 2017. Gobierno de Canarias; Las Palmas de Gran Canaria, Spain: 2017. [Google Scholar]
  • 17.Jafari M., Vanoppen M., van Agtmaal J.M.C., Cornelissen E.R., Vrouwenvelder J.S., Verliefde A., van Loosdrecht M.C.M., Picioreanu C. Cost of founling in full-scale reverse osmosis nanofiltration installations in the Netherlands. Desalination. 2021;500:114865. doi: 10.1016/j.desal.2020.114865. [DOI] [Google Scholar]
  • 18.Latorre F.J.G., Báez S.O.P., Gotor A.G. Energy performance of a reverse osmosis desalination plant operating with variable pressure and flow. Desalination. 2015;366:146–153. doi: 10.1016/j.desal.2015.02.039. [DOI] [Google Scholar]
  • 19.Koutsou C.P., Kritikos E., Karabelas A.J., Kostoglou M. Analysis of Temperature effects on the specific energy consumption in reverse osmosis desalination processes. Desalination. 2020;476:114123. doi: 10.1016/j.desal.2019.114213. [DOI] [Google Scholar]
  • 20.Avlonitis S.A., Kouroumbas K., Vlachakis N. Energy consumption and membrane replacement cost for. Desalination. 2003;157:151–158. doi: 10.1016/S0011-9164(03)00395-3. [DOI] [Google Scholar]
  • 21.Elmaadawy K., Kotb M., Elkadeem M.R., Sharshif S.W., Dan A., Moawad A., Liu B. Optimal sizing and techno-enviroeconomic feasibility assessment of large-scale reverse osmosis desalination powered with hybrid renewable energy sources. Energy Convers. Manag. 2020;224:113377. doi: 10.1016/j.enconman.2020.113377. [DOI] [Google Scholar]
  • 22.Busch M., Meckols W.E. Reducing energy consumption in seawater desalination. Desalination. 2020;165:299–312. doi: 10.1016/j.desal.2004.06.035. [DOI] [Google Scholar]
  • 23.Voutchkov N. Energy use for membrane seawater desalination—Current status and trends. Desalination. 2018;431:2–14. doi: 10.1016/j.desal.2017.10.033. [DOI] [Google Scholar]
  • 24.Rana M.W., Chen B., Hayat T., Alsaedi A. Energy consumption for water use cycles in different countries: A review. Appl. Energy. 2016;178:868–885. [Google Scholar]
  • 25.Altmann T., Das R. Process improvement of sea water reverse osmosis (SWRO) and subsequent decarbonization. Desalination. 2021;499:114791. doi: 10.1016/j.desal.2020.114791. [DOI] [Google Scholar]
  • 26.Wittholz M.K., Neil B.O., Colby C.B., Lewis D.M. Estimating the cost of desalination plants using a cost database. Desalination. 2008;229:10–20. doi: 10.1016/j.desal.2007.07.023. [DOI] [Google Scholar]
  • 27.Heihsel M., Lenzen M., Malik A., Geschke A. The carbon footprint of desalination. An input-output analysis of seawater reverse osmosis desalination in Australia 2005–2015. Desalination. 2019;454:71–81. doi: 10.1016/j.desal.2018.12.008. [DOI] [Google Scholar]
  • 28.Giwa A., Akther N., Dufour V.M., Hasan S.W. A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis process. RSC Adv. 2015;6:8134–8163. doi: 10.1039/C5RA17221G. [DOI] [Google Scholar]
  • 29.Kim J., Park K., Yang D.R., Hong S. Talnsive review of energy consumption of sea water reverse osmosis desalination plants. Appl. Energy. 2019;254:113652. doi: 10.1016/j.apenergy.2019.113652. [DOI] [Google Scholar]
  • 30.Alanezi A.A., Altaee A., Sharif A.O. The effect of energy recovery device and feed flow rate on the energy efficiency of reverse osmosis process. Chem. Eng. Res. Des. 2020;158:12–23. doi: 10.1016/j.cherd.2020.03.018. [DOI] [Google Scholar]
  • 31.Gualous H., Bouquain D., Berthon A., Kauffmann J.M. Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J. Power Sources. 2003;123:86–93. doi: 10.1016/S0378-7753(03)00527-5. [DOI] [Google Scholar]
  • 32.Brouji H.E., Vinassa J.-M., Briat O., Bertrand N., Woirgard E. Ultracapacitors self discharge modelling using a physical description of porous electrode impedance; Proceedings of the 2008 IEEE Vehicle Power and Propulsion Conference; Harbin, China. 3–5 September 2018. [Google Scholar]
  • 33.Tal A. Addressing Desalination’s Carbon Footprint: The Israeli Experience. Water. 2018;10:197. doi: 10.3390/w10020197. [DOI] [Google Scholar]
  • 34.Ruiz-Garcia A., De la Nuez I. Feed Spacer Geometries and Permeability Coefficients. Effect on the Performance in BWRO Spriral-Wound Membrane Modules. Water. 2019;11:152. doi: 10.3390/w11010152. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not applicable.


Articles from Membranes are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES