Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Oct 26;2021(10):201. doi: 10.1007/JHEP10(2021)201

Entanglement entropy and edge modes in topological string theory. Part I. Generalized entropy for closed strings

William Donnelly 1, Yikun Jiang 2, Manki Kim 2, Gabriel Wong 3,
PMCID: PMC8550866  PMID: 34725539

Abstract

Progress in identifying the bulk microstate interpretation of the Ryu-Takayanagi formula requires understanding how to define entanglement entropy in the bulk closed string theory. Unfortunately, entanglement and Hilbert space factorization remains poorly understood in string theory. As a toy model for AdS/CFT, we study the entanglement entropy of closed strings in the topological A-model in the context of Gopakumar-Vafa duality. We will present our results in two separate papers. In this work, we consider the bulk closed string theory on the resolved conifold and give a self-consistent factorization of the closed string Hilbert space using extended TQFT methods. We incorporate our factorization map into a Frobenius algebra describing the fusion and splitting of Calabi-Yau manifolds, and find string edge modes transforming under a q-deformed surface symmetry group. We define a string theory analogue of the Hartle-Hawking state and give a canonical calculation of its entanglement entropy from the reduced density matrix. Our result matches with the geometrical replica trick calculation on the resolved conifold, as well as a dual Chern-Simons theory calculation which will appear in our next paper [1]. We find a realization of the Susskind-Uglum proposal identifying the entanglement entropy of closed strings with the thermal entropy of open strings ending on entanglement branes. We also comment on the BPS microstate counting of the entanglement entropy. Finally we relate the nonlocal aspects of our factorization map to analogous phenomenon recently found in JT gravity.

Keywords: Gauge-gravity correspondence, Quantum Groups, Topological Field Theories, Topological Strings

Footnotes

ArXiv ePrint: 2010.15737

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

William Donnelly, Email: wdonnelly@perimeterinstitute.ca.

Yikun Jiang, Email: phys.yk.jiang@gmail.com.

Manki Kim, Email: mk2427@cornell.edu.

Gabriel Wong, Email: gabrielwon@gmail.com.

References

  • [1].Y. Jiang, M. Kim and G. Wong, Entanglement entropy and edge modes in topological string theory. Part II. The dual gauge theory story, JHEP10 (2021) 202 [arXiv:2012.13397] [INSPIRE]. [DOI] [PMC free article] [PubMed]
  • [2].Maldacena JM. The Large N limit of superconformal field theories and supergravity . Adv. Theor. Math. Phys. 1998;2:231. doi: 10.4310/ATMP.1998.v2.n2.a1. [DOI] [Google Scholar]
  • [3].Gubser SS, Klebanov IR, Polyakov AM. Gauge theory correlators from noncritical string theory . Phys. Lett. B. 1998;428:105. doi: 10.1016/S0370-2693(98)00377-3. [DOI] [Google Scholar]
  • [4].Witten E. Anti-de Sitter space and holography . Adv. Theor. Math. Phys. 1998;2:253. doi: 10.4310/ATMP.1998.v2.n2.a2. [DOI] [Google Scholar]
  • [5].Ryu S, Takayanagi T. Holographic derivation of entanglement entropy from AdS/CFT . Phys. Rev. Lett. 2006;96:181602. doi: 10.1103/PhysRevLett.96.181602. [DOI] [PubMed] [Google Scholar]
  • [6].Maldacena JM. Eternal black holes in anti-de Sitter . JHEP. 2003;04:021. doi: 10.1088/1126-6708/2003/04/021. [DOI] [Google Scholar]
  • [7].Faulkner T, Lewkowycz A, Maldacena J. Quantum corrections to holographic entanglement entropy . JHEP. 2013;11:074. doi: 10.1007/JHEP11(2013)074. [DOI] [Google Scholar]
  • [8].L.Y. Hung and G. Wong, Entanglement branes and factorization in conformal field theory, Phys. Rev. D104 (2021) 026012 [arXiv:1912.11201] [INSPIRE].
  • [9].J. Lin, Ryu-Takayanagi Area as an Entanglement Edge Term, arXiv:1704.07763 [INSPIRE].
  • [10].Takayanagi T, Tamaoka K. Gravity Edges Modes and Hayward Term . JHEP. 2020;02:167. doi: 10.1007/JHEP02(2020)167. [DOI] [Google Scholar]
  • [11].Susskind L, Uglum J. Black hole entropy in canonical quantum gravity and superstring theory . Phys. Rev. D. 1994;50:2700. doi: 10.1103/PhysRevD.50.2700. [DOI] [PubMed] [Google Scholar]
  • [12].Donnelly W, Wong G. Entanglement branes in a two-dimensional string theory . JHEP. 2017;09:097. doi: 10.1007/JHEP09(2017)097. [DOI] [Google Scholar]
  • [13].Strominger A, Vafa C. Microscopic origin of the Bekenstein-Hawking entropy . Phys. Lett. B. 1996;379:99. doi: 10.1016/0370-2693(96)00345-0. [DOI] [Google Scholar]
  • [14].Tseytlin AA. Mobius Infinity Subtraction and Effective Action in σ Model Approach to Closed String Theory . Phys. Lett. B. 1988;208:221. doi: 10.1016/0370-2693(88)90421-2. [DOI] [Google Scholar]
  • [15].Dabholkar A. Strings on a cone and black hole entropy . Nucl. Phys. B. 1995;439:650. doi: 10.1016/0550-3213(95)00050-3. [DOI] [Google Scholar]
  • [16].He S, Numasawa T, Takayanagi T, Watanabe K. Notes on Entanglement Entropy in String Theory . JHEP. 2015;05:106. doi: 10.1007/JHEP05(2015)106. [DOI] [Google Scholar]
  • [17].Witten E. Open Strings On The Rindler Horizon . JHEP. 2019;01:126. doi: 10.1007/JHEP01(2019)126. [DOI] [Google Scholar]
  • [18].V. Balasubramanian and O. Parrikar, Remarks on entanglement entropy in string theory, Phys. Rev. D97 (2018) 066025 [arXiv:1801.03517] [INSPIRE].
  • [19].Buividovich PV, Polikarpov MI. Entanglement entropy in gauge theories and the holographic principle for electric strings . Phys. Lett. B. 2008;670:141. doi: 10.1016/j.physletb.2008.10.032. [DOI] [Google Scholar]
  • [20].Donnelly W, Freidel L. Local subsystems in gauge theory and gravity . JHEP. 2016;09:102. doi: 10.1007/JHEP09(2016)102. [DOI] [Google Scholar]
  • [21].Donnelly W, Wall AC. Entanglement entropy of electromagnetic edge modes . Phys. Rev. Lett. 2015;114:111603. doi: 10.1103/PhysRevLett.114.111603. [DOI] [PubMed] [Google Scholar]
  • [22].Donnelly W, Wall AC. Geometric entropy and edge modes of the electromagnetic field . Phys. Rev. D. 2016;94:104053. doi: 10.1103/PhysRevD.94.104053. [DOI] [Google Scholar]
  • [23].Kabat DN. Black hole entropy and entropy of entanglement . Nucl. Phys. B. 1995;453:281. doi: 10.1016/0550-3213(95)00443-V. [DOI] [Google Scholar]
  • [24].R. Gopakumar and C. Vafa, M theory and topological strings. 1, hep-th/9809187 [INSPIRE].
  • [25].R. Gopakumar and C. Vafa, M theory and topological strings. 2, hep-th/9812127 [INSPIRE].
  • [26].Gopakumar R, Vafa C. On the gauge theory/geometry correspondence . Adv. Theor. Math. Phys. 1999;3:1415. doi: 10.4310/ATMP.1999.v3.n5.a5. [DOI] [Google Scholar]
  • [27].Gopakumar R, Vafa C. Topological gravity as large N topological gauge theory . Adv. Theor. Math. Phys. 1998;2:413. doi: 10.4310/ATMP.1998.v2.n2.a8. [DOI] [Google Scholar]
  • [28].Ooguri H, Vafa C. Knot invariants and topological strings . Nucl. Phys. B. 2000;577:419. doi: 10.1016/S0550-3213(00)00118-8. [DOI] [Google Scholar]
  • [29].Aganagic M, Mariño M, Vafa C. All loop topological string amplitudes from Chern-Simons theory . Commun. Math. Phys. 2004;247:467. doi: 10.1007/s00220-004-1067-x. [DOI] [Google Scholar]
  • [30].Dedushenko M, Witten E. Some Details On The Gopakumar-Vafa and Ooguri-Vafa Formulas . Adv. Theor. Math. Phys. 2016;20:1. doi: 10.4310/ATMP.2016.v20.n1.a1. [DOI] [Google Scholar]
  • [31].Candelas P, de la Ossa XC. Comments on Conifolds . Nucl. Phys. B. 1990;342:246. doi: 10.1016/0550-3213(90)90577-Z. [DOI] [Google Scholar]
  • [32].J. Bryan and R. Pandharipande, Curves in Calabi-Yau 3 folds and topological quantum field theory, math/0306316 [INSPIRE].
  • [33].Aganagic M, Ooguri H, Saulina N, Vafa C. Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings. Nucl. Phys. B. 2005;715:304. doi: 10.1016/j.nuclphysb.2005.02.035. [DOI] [Google Scholar]
  • [34].J. Bryan and R. Pandharipande, The Local Gromov-Witten theory of curves, J. Am. Math. Soc.21 (2008) 101 [math/0411037] [INSPIRE].
  • [35].Lewkowycz A, Maldacena J. Exact results for the entanglement entropy and the energy radiated by a quark . JHEP. 2014;05:025. doi: 10.1007/JHEP05(2014)025. [DOI] [Google Scholar]
  • [36].Jensen K, Karch A. Holographic Dual of an Einstein-Podolsky-Rosen Pair has a Wormhole . Phys. Rev. Lett. 2013;111:211602. doi: 10.1103/PhysRevLett.111.211602. [DOI] [PubMed] [Google Scholar]
  • [37].Jensen K, O’Bannon A. Holography, Entanglement Entropy, and Conformal Field Theories with Boundaries or Defects . Phys. Rev. D. 2013;88:106006. doi: 10.1103/PhysRevD.88.106006. [DOI] [Google Scholar]
  • [38].Gomis J, Okuda T. Wilson loops, geometric transitions and bubbling Calabi-Yau’s . JHEP. 2007;02:083. doi: 10.1088/1126-6708/2007/02/083. [DOI] [Google Scholar]
  • [39].Dymarsky A, Gubser SS, Guralnik Z, Maldacena JM. Calibrated surfaces and supersymmetric Wilson loops . JHEP. 2006;09:057. doi: 10.1088/1126-6708/2006/09/057. [DOI] [Google Scholar]
  • [40].Donnelly W, Timmerman S, Valdés-Meller N. Entanglement entropy and the large N expansion of two-dimensional Yang-Mills theory . JHEP. 2020;04:182. doi: 10.1007/JHEP04(2020)182. [DOI] [Google Scholar]
  • [41].Aguilera-Damia J, Correa DH, Fucito F, Giraldo-Rivera VI, Morales JF, Pando Zayas LA. Strings in Bubbling Geometries and Dual Wilson Loop Correlators . JHEP. 2017;12:109. doi: 10.1007/JHEP12(2017)109. [DOI] [Google Scholar]
  • [42].S.A. Gentle and M. Gutperle, Entanglement entropy of Wilson loops: Holography and matrix models, Phys. Rev. D90 (2014) 066011 [arXiv:1407.5629] [INSPIRE].
  • [43].Hubeny VE, Pius R, Rangamani M. Topological string entanglement . JHEP. 2019;10:239. doi: 10.1007/JHEP10(2019)239. [DOI] [Google Scholar]
  • [44].G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B72 (1974) 461 [INSPIRE].
  • [45].Witten E. Chern-Simons gauge theory as a string theory . Prog. Math. 1995;133:637. [Google Scholar]
  • [46].Witten E. Topological Sigma Models . Commun. Math. Phys. 1988;118:411. doi: 10.1007/BF01466725. [DOI] [Google Scholar]
  • [47].Witten E. Mirror manifolds and topological field theory . AMS/IP Stud. Adv. Math. 1998;9:121. doi: 10.1090/amsip/009/04. [DOI] [Google Scholar]
  • [48].Hartle JB, Hawking SW. Wave Function of the Universe . Phys. Rev. D. 1983;28:2960. doi: 10.1103/PhysRevD.28.2960. [DOI] [Google Scholar]
  • [49].Witten E. Noncommutative Geometry and String Field Theory . Nucl. Phys. B. 1986;268:253. doi: 10.1016/0550-3213(86)90155-0. [DOI] [Google Scholar]
  • [50].Witten E. Interacting Field Theory of Open Superstrings . Nucl. Phys. B. 1986;276:291. doi: 10.1016/0550-3213(86)90298-1. [DOI] [Google Scholar]
  • [51].Zwiebach B. Closed string field theory: Quantum action and the B-V master equation . Nucl. Phys. B. 1993;390:33. doi: 10.1016/0550-3213(93)90388-6. [DOI] [Google Scholar]
  • [52].Aganagic M, Klemm A, Mariño M, Vafa C. The Topological vertex . Commun. Math. Phys. 2005;254:425. doi: 10.1007/s00220-004-1162-z. [DOI] [Google Scholar]
  • [53].D. Maulik, A. Oblomkov, A. Okounkov and R. Pandharipande, Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, arXiv:0809.3976 [INSPIRE].
  • [54].Donnelly W, Wong G. Entanglement branes, modular flow, and extended topological quantum field theory . JHEP. 2019;10:016. doi: 10.1007/JHEP10(2019)016. [DOI] [Google Scholar]
  • [55].R. Couvreur, J.L. Jacobsen and H. Saleur, Entanglement in nonunitary quantum critical spin chains, Phys. Rev. Lett.119 (2017) 040601 [arXiv:1611.08506] [INSPIRE]. [DOI] [PubMed]
  • [56].T. Quella, Symmetry-protected topological phases beyond groups: The q-deformed Affleck-Kennedy-Lieb-Tasaki model, Phys. Rev. B102 (2020) 081120 [arXiv:2005.09072] [INSPIRE].
  • [57].D.L. Jafferis and D.K. Kolchmeyer, Entanglement Entropy in Jackiw-Teitelboim Gravity, arXiv:1911.10663 [INSPIRE].
  • [58].K. Hori et al., Mirror symmetry, vol. 1, American Mathematical Soc. (2003).
  • [59].A. Neitzke and C. Vafa, Topological strings and their physical applications, hep-th/0410178 [INSPIRE].
  • [60].Mariño M. Chern-Simons theory and topological strings . Rev. Mod. Phys. 2005;77:675. doi: 10.1103/RevModPhys.77.675. [DOI] [Google Scholar]
  • [61].Huang M-X. Recent Developments in Topological String Theory . Sci. China Phys. Mech. Astron. 2019;62:990001. doi: 10.1007/s11433-018-9352-5. [DOI] [Google Scholar]
  • [62].M. Mariño, Chern-Simons theory, matrix models, and topological strings, vol. 131, Oxford University Press (2005) [DOI].
  • [63].M. Vonk, A Mini-course on topological strings, hep-th/0504147 [INSPIRE].
  • [64].Klemm A, Zaslow E. Local mirror symmetry at higher genus . AMS/IP Stud. Adv. Math. 2001;23:183. doi: 10.1090/amsip/023/07. [DOI] [Google Scholar]
  • [65].Dijkgraaf R, Vafa C. Matrix models, topological strings, and supersymmetric gauge theories . Nucl. Phys. B. 2002;644:3. doi: 10.1016/S0550-3213(02)00766-6. [DOI] [Google Scholar]
  • [66].Aganagic M, Dijkgraaf R, Klemm A, Mariño M, Vafa C. Topological strings and integrable hierarchies . Commun. Math. Phys. 2006;261:451. doi: 10.1007/s00220-005-1448-9. [DOI] [Google Scholar]
  • [67].C. Vafa, Two dimensional Yang-Mills, black holes and topological strings, hep-th/0406058 [INSPIRE].
  • [68].S.H. Katz and C.-C.M. Liu, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Adv. Theor. Math. Phys.5 (2001) 1 [math/0103074] [INSPIRE].
  • [69].Gross DJ, Taylor W. Two-dimensional QCD is a string theory . Nucl. Phys. B. 1993;400:181. doi: 10.1016/0550-3213(93)90403-C. [DOI] [Google Scholar]
  • [70].Bershadsky M, Cecotti S, Ooguri H, Vafa C. Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes . Commun. Math. Phys. 1994;165:311. doi: 10.1007/BF02099774. [DOI] [Google Scholar]
  • [71].C. Vafa, Brane/anti-brane systems and U(N|M) supergroup, hep-th/0101218 [INSPIRE].
  • [72].W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev. D85 (2012) 085004 [arXiv:1109.0036] [INSPIRE].
  • [73].Gromov A, Santos RA. Entanglement Entropy in 2D Non-abelian Pure Gauge Theory. Phys. Lett. B. 2014;737:60. doi: 10.1016/j.physletb.2014.08.023. [DOI] [Google Scholar]
  • [74].Donnelly W. Entanglement entropy and nonabelian gauge symmetry . Class. Quant. Grav. 2014;31:214003. doi: 10.1088/0264-9381/31/21/214003. [DOI] [Google Scholar]
  • [75].J. Kock, Frobenius algebras and 2-d topological quantum field theories, vol. 59, Cambridge University Press (2004).
  • [76].Atiyah MF. Topological quantum field theory . Publ. Math. IHÉS. 1988;68:175. doi: 10.1007/BF02698547. [DOI] [Google Scholar]
  • [77].Lazaroiu CI. On the structure of open-closed topological field theory in two-dimensions . Nucl. Phys. B. 2001;603:497. doi: 10.1016/S0550-3213(01)00135-3. [DOI] [Google Scholar]
  • [78].G.W. Moore and G. Segal, D-branes and k-theory in 2D topological field theory, hep-th/0609042 [INSPIRE].
  • [79].Runkel I, Szegedy L. Area-Dependent Quantum Field Theory . Commun. Math. Phys. 2021;381:83. doi: 10.1007/s00220-020-03902-1. [DOI] [Google Scholar]
  • [80].de Haro S, Ramgoolam S, Torrielli A. Large N expansion of q-deformed two-dimensional Yang-Mills theory and Hecke algebras . Commun. Math. Phys. 2007;273:317. doi: 10.1007/s00220-007-0232-4. [DOI] [Google Scholar]
  • [81].Witten E. Quantum Field Theory and the Jones Polynomial . Commun. Math. Phys. 1989;121:351. doi: 10.1007/BF01217730. [DOI] [Google Scholar]
  • [82].Elitzur S, Moore GW, Schwimmer A, Seiberg N. Remarks on the Canonical Quantization of the Chern-Simons-Witten Theory . Nucl. Phys. B. 1989;326:108. doi: 10.1016/0550-3213(89)90436-7. [DOI] [Google Scholar]
  • [83].Guadagnini E, Martellini M, Mintchev M. Braids and Quantum Group Symmetry in Chern-Simons Theory . Nucl. Phys. B. 1990;336:581. doi: 10.1016/0550-3213(90)90443-H. [DOI] [Google Scholar]
  • [84].Seiberg N, Witten E. String theory and noncommutative geometry . JHEP. 1999;09:032. doi: 10.1088/1126-6708/1999/09/032. [DOI] [Google Scholar]
  • [85].A. Connes, Noncommutative Geometry, Academic Press (1995).
  • [86].Douglas MR, Nekrasov NA. Noncommutative field theory . Rev. Mod. Phys. 2001;73:977. doi: 10.1103/RevModPhys.73.977. [DOI] [Google Scholar]
  • [87].Woronowicz SL. Compact matrix pseudogroups . Commun. Math. Phys. 1987;111:613. doi: 10.1007/BF01219077. [DOI] [Google Scholar]
  • [88].A. Klimyk and K. Schmudgen, Quantum groups and their representations, Springer (1997) [DOI].
  • [89].Kitaev A, Suh SJ. Statistical mechanics of a two-dimensional black hole . JHEP. 2019;05:198. doi: 10.1007/JHEP05(2019)198. [DOI] [Google Scholar]
  • [90].Blommaert A, Mertens TG, Verschelde H. Fine Structure of Jackiw-Teitelboim Quantum Gravity . JHEP. 2019;09:066. doi: 10.1007/JHEP09(2019)066. [DOI] [Google Scholar]
  • [91].E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B311 (1988) 46 [INSPIRE].
  • [92].Teschner J. Liouville theory revisited . Class. Quant. Grav. 2001;18:R153. doi: 10.1088/0264-9381/18/23/201. [DOI] [Google Scholar]
  • [93].McGough L, Verlinde H. Bekenstein-Hawking Entropy as Topological Entanglement Entropy . JHEP. 2013;11:208. doi: 10.1007/JHEP11(2013)208. [DOI] [Google Scholar]
  • [94].M. Dupuis, L. Freidel, F. Girelli, A. Osumanu and J. Rennert, On the origin of the quantum group symmetry in 3d quantum gravity, arXiv:2006.10105 [INSPIRE].
  • [95].Mertens TG, Turiaci GJ. Liouville quantum gravity — holography, JT and matrices . JHEP. 2021;01:073. doi: 10.1007/JHEP01(2021)073. [DOI] [Google Scholar]
  • [96].Berkooz M, Isachenkov M, Narovlansky V, Torrents G. Towards a full solution of the large N double-scaled SYK model . JHEP. 2019;03:079. doi: 10.1007/JHEP03(2019)079. [DOI] [Google Scholar]
  • [97].J. Lin, Entanglement entropy in Jackiw-Teitelboim Gravity, arXiv:1807.06575 [INSPIRE].
  • [98].P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].
  • [99].G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].
  • [100].Almheiri A, Hartman T, Maldacena J, Shaghoulian E, Tajdini A. Replica Wormholes and the Entropy of Hawking Radiation . JHEP. 2020;05:013. doi: 10.1007/JHEP05(2020)013. [DOI] [Google Scholar]
  • [101].R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, Baby universes in string theory, Phys. Rev. D73 (2006) 066002 [hep-th/0504221] [INSPIRE].
  • [102].Aganagic M, Ooguri H, Okuda T. Quantum Entanglement of Baby Universes . Nucl. Phys. B. 2007;778:36. doi: 10.1016/j.nuclphysb.2007.04.006. [DOI] [Google Scholar]
  • [103].Coleman SR. Black Holes as Red Herrings: Topological Fluctuations and the Loss of Quantum Coherence . Nucl. Phys. B. 1988;307:867. doi: 10.1016/0550-3213(88)90110-1. [DOI] [Google Scholar]
  • [104].Giddings SB, Strominger A. Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity . Nucl. Phys. B. 1988;307:854. doi: 10.1016/0550-3213(88)90109-5. [DOI] [Google Scholar]
  • [105].Giddings SB, Strominger A. Baby Universes, Third Quantization and the Cosmological Constant . Nucl. Phys. B. 1989;321:481. doi: 10.1016/0550-3213(89)90353-2. [DOI] [Google Scholar]
  • [106].D.L. Jafferis, Bulk reconstruction and the Hartle-Hawking wavefunction, arXiv:1703.01519 [INSPIRE].
  • [107].Marolf D, Maxfield H. Transcending the ensemble: baby universes, spacetime wormholes, and the order and disorder of black hole information . JHEP. 2020;08:044. doi: 10.1007/JHEP08(2020)044. [DOI] [Google Scholar]
  • [108].J. McNamara and C. Vafa, Baby Universes, Holography, and the Swampland, arXiv:2004.06738 [INSPIRE].
  • [109].J. McNamara and C. Vafa, Cobordism Classes and the Swampland, arXiv:1909.10355 [INSPIRE].
  • [110].Vafa C. Gas of D-branes and Hagedorn density of BPS states . Nucl. Phys. B. 1996;463:415. doi: 10.1016/0550-3213(96)00025-9. [DOI] [Google Scholar]
  • [111].Candelas P, De La Ossa XC, Green PS, Parkes L. A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory . AMS/IP Stud. Adv. Math. 1998;9:31. doi: 10.1090/amsip/009/02. [DOI] [Google Scholar]

Articles from Journal of High Energy Physics are provided here courtesy of Nature Publishing Group

RESOURCES