ABSTRACT
We report the whole-genome sequences and annotations of 42 Lactobacillales isolated from commercial cucumber fermentations performed in North Carolina (n = 34) and Minnesota (n = 9), USA. The isolates include representatives from 12 acid-producing species.
ANNOUNCEMENT
Vegetable preservation is enabled by acidifying Lactobacillales. Lactiplantibacillus plantarum, Lactiplantibacillus pentosus, and Levilactobacillus brevis prevail in commercial cucumber fermentations, followed by Lactococcus, Weissella, Leuconostoc, and Pediococcus species (1–3). Enterobacteriaceae and Enterococcaceae may also participate in vegetable fermentations (3).
We present the genome sequences and annotations of 39 Lactobacillales isolated from commercial cucumber fermentations conducted in 2009 and 2010 in North Carolina (NC) and Minnesota (MN), respectively (3). These isolates were isolated from fermentations at varied time points (1, 3, 7, 14, and 30 days) and two collection tank depths (2 or 8 feet from the brine surface). Also included are L. pentosus strain LA0445, isolated from an anaerobic cucumber fermentation in 1983 (4), its derivative MU0445, which is deficient in malic acid decarboxylation (5), and L. plantarum strain T1R2b, isolated in 2020 from a low-salt cucumber fermentation with an irregular slimy brine (6). A similar slimy fermentation brine is produced by L. plantarum 3.2.8 (7).
All isolates were obtained from cucumber fermentation brines spiral plated on lactobacilli de Man Rogosa and Sharpe agar (MRS), supplemented with 0.0001% cycloheximide solution, and incubated at 30°C in anaerobic jars. The isolated colonies were streaked onto MRS prior to preparing frozen stocks in MRS broth supplemented with 1.5% glycerol. Pure cultures were transferred to MRS broth from frozen stocks prior to DNA extraction. The cultures were incubated at 30°C statically. DNA extraction was conducted using the Promega Wizard high-molecular-weight (HMW) extraction kit (Madison, WI). Whole-genome sequencing was performed by CosmosID (Rockville, MD). Most samples were sequenced on an Illumina NextSeq 550 platform (San Diego, CA), producing paired-end reads with a maximum length of 150 bases. Libraries for Illumina reads were prepared using the Illumina Nextera XT kit. In an earlier effort, isolates L. plantarum 3.2.8 and L. pentosus LA0445 were sequenced on a Thermo Ion S5 XL sequencer (Waltham, MA) with an average read length of 200 bp, using the Thermo Fisher Ion Xpress Plus fragment kit for the preparation of libraries. All libraries were assessed for quantity with Qubit (Thermo Fisher Scientific). The raw sequence data were trimmed for adapters and low-quality bases using BBDuk (https://sourceforge.net/projects/bbmap) with standard parameters (phred quality trimq = 22 and minimum length minlen = 36).
Initial assembly and annotation were performed using PATRIC (8). De novo assembly was performed using Unicycler version 0.4.8 (9) with a minimum contig cutoff of 300. Quality assessment of the assemblies was performed using QUAST version 5.0.2 (10), SAMtools version 13 (11), and Pilon version 1.23 (12). The assembled genomes were annotated using RASTtk (13). The closest reference genomes were identified using Mash/MinHash with the PATRIC database (14). Upon submission to GenBank (BioProject accession number PRJNA674638), the assemblies were reannotated using the NCBI Prokaryotic Genome Annotation Pipeline (15). Default parameters for software were used except when noted.
A diverse range of Lactobacillales were detected in both culturing sources.
Data availability.
The GenBank and Sequence Read Archive (SRA) accession numbers for each sequence are included in Table 1.
TABLE 1.
Organism | Genome assembly data |
Site of sample collectiona | |||||||
---|---|---|---|---|---|---|---|---|---|
GenBank accession no. | SRA accession no. | Assembly size (bp) | No. of contigs | Estimated coverage (×) | Total no. of reads | %GC | N50 (bp) | ||
Lactiplantibacillus plantarum | |||||||||
3.2.8 (Ion Torrent sequencing) | JAGXCA000000000 | SRR14682920 | 3,360,349 | 185 | 525.231 | 8,824,794 | 44 | 67,416 | NC |
3.2.8 (Illumina sequencing) | JAGYGQ000000000 | SRR14682926 | 3,379,107 | 137 | 183.78 | 4,311,400 | 44 | 90,946 | NC |
7.8.4 | JAGYGR000000000 | SRR14682928 | 3,378,788 | 166 | 75.298 | 1,775,922 | 44 | 114,082 | NC |
T1R2b | JAGYGT000000000 | SRR14682929 | 3,477,739 | 66 | 207.009 | 5,003,588 | 44 | 370,452 | NC |
Lactiplantibacillus pentosus | |||||||||
1.2.11 | JAGYGW000000000 | SRR14682931 | 3,634,568 | 116 | 262.253 | 6,694,680 | 46 | 120,249 | NC |
1.2.13 | JAGYGX000000000 | SRR14682932 | 3,651,781 | 133 | 126.918 | 3,226,422 | 46 | 120,291 | NC |
1.8.6 | JAGYGY000000000 | SRR14682933 | 3,640,616 | 130 | 103.011 | 2,602,654 | 46 | 100,780 | NC |
1.8.9 | JAHLEP000000000 | SRR14767539 | 3,590,254 | 122 | 160.689 | 4,005,764 | 46 | 118,490 | NC |
3.8.24 | JAGYGZ000000000 | SRR14682934 | 3,662,066 | 136 | 96.685 | 2,478,812 | 46 | 118,379 | NC |
3.2.37 | JAGYHA000000000 | SRR14682939 | 3,655,808 | 111 | 129.527 | 3,282,012 | 46 | 118,381 | NC |
LA0445 (Ion Torrent sequencing) | JAGXBZ000000000 | SRR14682919 | 3,745,923 | 170 | 325.425 | 6,175,578 | 46 | 90,946 | NC |
LA0445 (Illumina sequencing) | JAHLEN000000000 | SRR14767540 | 3,787,716 | 145 | 144.751 | 3,792,958 | 46 | 70,955 | NC |
MU045 | JAGYHB000000000 | SRR14682940 | 3,787,629 | 141 | 138.382 | 3,626,306 | 46 | 73,822 | NC |
7.2.11 | JAGWDS000000000 | SRR14682941 | 3,740,476 | 218 | 162.95 | 4,290,304 | 46 | 53,207 | NC |
7.2.23 | JAGWDT000000000 | SRR14682937 | 3,704,147 | 155 | 140.436 | 3,615,368 | 46 | 118,490 | NC |
7.2.15 | JAGWDU000000000 | SRR14682936 | 3,714,586 | 116 | 147.609 | 3,837,482 | 46 | 99,059 | NC |
1.2.7 | JAGWDV000000000 | SRR14682935 | 3,652,706 | 125 | 154.37 | 3,942,254 | 46 | 118,379 | NC |
14.8.42 | JAGXBO000000000 | SRR14682942 | 3,826,173 | 157 | 145.397 | 3,863,260 | 46 | 77,733 | NC |
14.2.3 | JAGXBP000000000 | SRR14682946 | 3,720,999 | 136 | 167.201 | 4,329,784 | 46 | 83,353 | NC |
14.2.16 | JAGXBQ000000000 | SRR14682945 | 3,762,332 | 156 | 141.166 | 3,710,262 | 46 | 85,333 | NC |
7.8.46 | JAGXBR000000000 | SRR14682944 | 3,770,960 | 165 | 181.512 | 4,782,008 | 46 | 85,642 | NC |
3.2.36 | JAGXBS000000000 | SRR14682943 | 3,696,926 | 135 | 119.126 | 3,052,726 | 46 | 118,498 | NC |
1.8.18 | JAGXBT000000000 | SRR14682951 | 3,697,126 | 165 | 151.843 | 3,973,090 | 46 | 70,228 | NC |
3.8.45 | JAGXBU000000000 | SRR14682950 | 3,695,384 | 164 | 125.153 | 3,262,878 | 46 | 99059 | NC |
7.2.4 | JAGYGS000000000 | SRR14682957 | 3,676,354 | 184 | 194.933 | 3,169,794 | 46 | 54,739 | NC |
30.2.29 | JAGYGU000000000 | SRR14682917 | 3,650,647 | 133 | 103.713 | 3,417,848 | 46 | 118,379 | NC |
7.8.11 | JAGYGV000000000 | SRR14682930 | 3,825,364 | 152 | 143.177 | 5,020,878 | 46 | 78,065 | NC |
7.8.2 | JAGXBV000000000 | SRR14682948 | 3,790,800 | 99 | 119.032 | 2,657,720 | 46 | 123,926 | MN |
7.2.20 | JAGXBW000000000 | SRR14682947 | 3,795,850 | 140 | 127.716 | 3,830,314 | 46 | 81,129 | MN |
Levilactobacillus brevis | |||||||||
14.2.10 | JAGXCC000000000 | SRR14682955 | 2,601,264 | 205 | 237.321 | 4,384,696 | 45 | 36,176 | MN |
14.2.24 | JAGXCD000000000 | SRR14682954 | 2,598,957 | 210 | 181.27 | 3,730,730 | 45 | 35,671 | MN |
3.2.41 | JAGXIY000000000 | SRR14682923 | 2,538,609 | 173 | 175.342 | 3,320,688 | 46 | 40,908 | MN |
Pediococcus ethanolidurans | |||||||||
7.8.48 | JAGXJC000000000 | SRR14682925 | 2,119,735 | 183 | 331.606 | 5,082,050 | 37 | 35,566 | NC |
NC579 | JAGXJE000000000 | SRR14682927 | 2,212,777 | 144 | 303.213 | 4,902,456 | 37 | 39,228 | NC |
Leuconostoc citreum | |||||||||
3.8.12 | JAGYGO000000000 | SRR14682949 | 1,913,902 | 25 | 375.513 | 5,132,798 | 39 | 398,202 | MN |
Leuconostoc fallax | |||||||||
1.2.22 | JAGYGP000000000 | SRR14682953 | 1,671,397 | 16 | 262.353 | 5,652,968 | 37 | 1,028,303 | NC |
Leuconostoc lactis | |||||||||
1.2.28 | JAGXCE000000000 | SRR14682952 | 1,712,162 | 25 | 333.01 | 3,977,482 | 43 | 174,610 | MN |
Leuconostoc mesenteroides | |||||||||
1.2.47 | JAHLEO000000000 | SRR14767538 | 2,074,914 | 33 | 284.43 | 4,124,492 | 38 | 253,442 | MN |
Weissella cibaria | |||||||||
3.8.44 | JAGXIZ000000000 | SRR14682922 | 2,425,944 | 27 | 240.751 | 4,048,644 | 45 | 225,548 | NC |
7.8.34 | JAGXJD000000000 | SRR14682938 | 2,443,125 | 34 | 212.237 | 3,605,434 | 45 | 198,098 | MN |
Weissella hellenica | |||||||||
1.2.50 | JAGXJA000000000 | SRR14682921 | 1,960,091 | 21 | 453.948 | 6,116,734 | 37 | 322,542 | NC |
Weissella paramesenteroides | |||||||||
3.2.24 | JAGXJB000000000 | SRR14682924 | 1,950,523 | 31 | 237.635 | 3,187,080 | 38 | 238,023 | NC |
Lactococcus lactis | |||||||||
1.8.12 | JAGXCF000000000 | SRR14682956 | 2,599,249 | 42 | 304.64 | 5,436,048 | 35 | 322,542 | NC |
LA0312 | JAGXIX000000000 | SRR14682918 | 2,357,047 | 31 | 323.83 | 5,242,810 | 35 | 300,240 | NC |
Sample collection sites: NC, North Carolina; MN, Minnesota (USA).
ACKNOWLEDGMENT
Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture or North Carolina Agricultural Research Service, nor does it imply approval to the exclusion of other products that may be suitable.
Contributor Information
Ilenys M. Pérez-Díaz, Email: ilenys.perez-diaz@ars.usda.gov.
Irene L. G. Newton, Indiana University, Bloomington
REFERENCES
- 1.Etchells JL, Jones ID. 1946. Characteristics of lactic acid bacteria from commercial cucumber fermentations. J Bacteriol 52:593–599. doi: 10.1128/jb.52.5.593-599.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Pérez-Díaz IM. 2019. Fermented vegetables as vectors for relocation of microbial diversity from the environment to the human gut, p 91–123. In Azcarate-Peril M, Arnold R, Bruno-Bárcena J (ed), How fermented foods feed a healthy gut microbiota. Springer, Cham, Switzerland. [Google Scholar]
- 3.Pérez-Díaz IM, Hayes J, Medina E, Anekella K, Daughtry K, Dieck S, Levi M, Price R, Butz N, Lu Z, Azcarate-Peril MA. 2017. Reassessment of the succession of lactic acid bacteria in commercial cucumber fermentations and physiological and genomic features associated with their dominance. Food Microbiol 63:217–227. doi: 10.1016/j.fm.2016.11.025. [DOI] [PubMed] [Google Scholar]
- 4.Fleming HP, McFeeters RF, Daeschel MA, Humphries EG, Thompson RL. 1988. Fermentation of cucumbers in anaerobic tanks. J Food Sci 53:127–133. doi: 10.1111/j.1365-2621.1988.tb10192.x. [DOI] [Google Scholar]
- 5.Daeschel MA, McFeeters RF, Fleming HP, Klaenhammer TR, Sanozky RB. 1984. Mutation and selection of Lactobacillus plantarum strains that do not produce carbon dioxide from malate. Appl Environ Microbiol 47:419–420. doi: 10.1128/aem.47.2.419-420.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Fideler J. 2021. Generation of bioactive peptides and γ-aminobutyric acid during natural lactic acid fermentation of cucumber. Doctoral thesis. North Carolina State University, Raleigh, NC. https://www.lib.ncsu.edu/resolver/1840.20/38713. [Google Scholar]
- 7.Anekella K, Pérez Díaz IM. 2020. Characterization of robust Lactobacillus plantarum and Lactobacillus pentosus starter cultures for environmentally friendly low-salt cucumber fermentations. J Food Sci 85:3487–3497. doi: 10.1111/1750-3841.15416. [DOI] [PubMed] [Google Scholar]
- 8.Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad N, Dickerman A, Dietrich EM, Gabbard JL, Gerdes S, Guard A, Kenyon RW, Machi D, Mao C, Murphy-Olson D, Nguyen M, Nordberg EK, Olsen GJ, Olson RD, Overbeek JC, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomas C, VanOeffelen M, Vonstein V, Warren AS, Xia F, Xie D, Yoo H, Stevens R. 2020. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 48:D606–D612. doi: 10.1093/nar/gkz943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. doi: 10.1371/journal.pcbi.1005595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi: 10.1093/bioinformatics/btt086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. 2021. Twelve years of SAMtools and BCFtools. Gigascience 10:giab008. doi: 10.1093/gigascience/giab008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. doi: 10.1371/journal.pone.0112963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, III, Stevens R, Vonstein V, Wattam AR, Xia F. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. doi: 10.1038/srep08365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:132. doi: 10.1186/s13059-016-0997-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. doi: 10.1093/nar/gkw569. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
The GenBank and Sequence Read Archive (SRA) accession numbers for each sequence are included in Table 1.
TABLE 1.
Organism | Genome assembly data |
Site of sample collectiona | |||||||
---|---|---|---|---|---|---|---|---|---|
GenBank accession no. | SRA accession no. | Assembly size (bp) | No. of contigs | Estimated coverage (×) | Total no. of reads | %GC | N50 (bp) | ||
Lactiplantibacillus plantarum | |||||||||
3.2.8 (Ion Torrent sequencing) | JAGXCA000000000 | SRR14682920 | 3,360,349 | 185 | 525.231 | 8,824,794 | 44 | 67,416 | NC |
3.2.8 (Illumina sequencing) | JAGYGQ000000000 | SRR14682926 | 3,379,107 | 137 | 183.78 | 4,311,400 | 44 | 90,946 | NC |
7.8.4 | JAGYGR000000000 | SRR14682928 | 3,378,788 | 166 | 75.298 | 1,775,922 | 44 | 114,082 | NC |
T1R2b | JAGYGT000000000 | SRR14682929 | 3,477,739 | 66 | 207.009 | 5,003,588 | 44 | 370,452 | NC |
Lactiplantibacillus pentosus | |||||||||
1.2.11 | JAGYGW000000000 | SRR14682931 | 3,634,568 | 116 | 262.253 | 6,694,680 | 46 | 120,249 | NC |
1.2.13 | JAGYGX000000000 | SRR14682932 | 3,651,781 | 133 | 126.918 | 3,226,422 | 46 | 120,291 | NC |
1.8.6 | JAGYGY000000000 | SRR14682933 | 3,640,616 | 130 | 103.011 | 2,602,654 | 46 | 100,780 | NC |
1.8.9 | JAHLEP000000000 | SRR14767539 | 3,590,254 | 122 | 160.689 | 4,005,764 | 46 | 118,490 | NC |
3.8.24 | JAGYGZ000000000 | SRR14682934 | 3,662,066 | 136 | 96.685 | 2,478,812 | 46 | 118,379 | NC |
3.2.37 | JAGYHA000000000 | SRR14682939 | 3,655,808 | 111 | 129.527 | 3,282,012 | 46 | 118,381 | NC |
LA0445 (Ion Torrent sequencing) | JAGXBZ000000000 | SRR14682919 | 3,745,923 | 170 | 325.425 | 6,175,578 | 46 | 90,946 | NC |
LA0445 (Illumina sequencing) | JAHLEN000000000 | SRR14767540 | 3,787,716 | 145 | 144.751 | 3,792,958 | 46 | 70,955 | NC |
MU045 | JAGYHB000000000 | SRR14682940 | 3,787,629 | 141 | 138.382 | 3,626,306 | 46 | 73,822 | NC |
7.2.11 | JAGWDS000000000 | SRR14682941 | 3,740,476 | 218 | 162.95 | 4,290,304 | 46 | 53,207 | NC |
7.2.23 | JAGWDT000000000 | SRR14682937 | 3,704,147 | 155 | 140.436 | 3,615,368 | 46 | 118,490 | NC |
7.2.15 | JAGWDU000000000 | SRR14682936 | 3,714,586 | 116 | 147.609 | 3,837,482 | 46 | 99,059 | NC |
1.2.7 | JAGWDV000000000 | SRR14682935 | 3,652,706 | 125 | 154.37 | 3,942,254 | 46 | 118,379 | NC |
14.8.42 | JAGXBO000000000 | SRR14682942 | 3,826,173 | 157 | 145.397 | 3,863,260 | 46 | 77,733 | NC |
14.2.3 | JAGXBP000000000 | SRR14682946 | 3,720,999 | 136 | 167.201 | 4,329,784 | 46 | 83,353 | NC |
14.2.16 | JAGXBQ000000000 | SRR14682945 | 3,762,332 | 156 | 141.166 | 3,710,262 | 46 | 85,333 | NC |
7.8.46 | JAGXBR000000000 | SRR14682944 | 3,770,960 | 165 | 181.512 | 4,782,008 | 46 | 85,642 | NC |
3.2.36 | JAGXBS000000000 | SRR14682943 | 3,696,926 | 135 | 119.126 | 3,052,726 | 46 | 118,498 | NC |
1.8.18 | JAGXBT000000000 | SRR14682951 | 3,697,126 | 165 | 151.843 | 3,973,090 | 46 | 70,228 | NC |
3.8.45 | JAGXBU000000000 | SRR14682950 | 3,695,384 | 164 | 125.153 | 3,262,878 | 46 | 99059 | NC |
7.2.4 | JAGYGS000000000 | SRR14682957 | 3,676,354 | 184 | 194.933 | 3,169,794 | 46 | 54,739 | NC |
30.2.29 | JAGYGU000000000 | SRR14682917 | 3,650,647 | 133 | 103.713 | 3,417,848 | 46 | 118,379 | NC |
7.8.11 | JAGYGV000000000 | SRR14682930 | 3,825,364 | 152 | 143.177 | 5,020,878 | 46 | 78,065 | NC |
7.8.2 | JAGXBV000000000 | SRR14682948 | 3,790,800 | 99 | 119.032 | 2,657,720 | 46 | 123,926 | MN |
7.2.20 | JAGXBW000000000 | SRR14682947 | 3,795,850 | 140 | 127.716 | 3,830,314 | 46 | 81,129 | MN |
Levilactobacillus brevis | |||||||||
14.2.10 | JAGXCC000000000 | SRR14682955 | 2,601,264 | 205 | 237.321 | 4,384,696 | 45 | 36,176 | MN |
14.2.24 | JAGXCD000000000 | SRR14682954 | 2,598,957 | 210 | 181.27 | 3,730,730 | 45 | 35,671 | MN |
3.2.41 | JAGXIY000000000 | SRR14682923 | 2,538,609 | 173 | 175.342 | 3,320,688 | 46 | 40,908 | MN |
Pediococcus ethanolidurans | |||||||||
7.8.48 | JAGXJC000000000 | SRR14682925 | 2,119,735 | 183 | 331.606 | 5,082,050 | 37 | 35,566 | NC |
NC579 | JAGXJE000000000 | SRR14682927 | 2,212,777 | 144 | 303.213 | 4,902,456 | 37 | 39,228 | NC |
Leuconostoc citreum | |||||||||
3.8.12 | JAGYGO000000000 | SRR14682949 | 1,913,902 | 25 | 375.513 | 5,132,798 | 39 | 398,202 | MN |
Leuconostoc fallax | |||||||||
1.2.22 | JAGYGP000000000 | SRR14682953 | 1,671,397 | 16 | 262.353 | 5,652,968 | 37 | 1,028,303 | NC |
Leuconostoc lactis | |||||||||
1.2.28 | JAGXCE000000000 | SRR14682952 | 1,712,162 | 25 | 333.01 | 3,977,482 | 43 | 174,610 | MN |
Leuconostoc mesenteroides | |||||||||
1.2.47 | JAHLEO000000000 | SRR14767538 | 2,074,914 | 33 | 284.43 | 4,124,492 | 38 | 253,442 | MN |
Weissella cibaria | |||||||||
3.8.44 | JAGXIZ000000000 | SRR14682922 | 2,425,944 | 27 | 240.751 | 4,048,644 | 45 | 225,548 | NC |
7.8.34 | JAGXJD000000000 | SRR14682938 | 2,443,125 | 34 | 212.237 | 3,605,434 | 45 | 198,098 | MN |
Weissella hellenica | |||||||||
1.2.50 | JAGXJA000000000 | SRR14682921 | 1,960,091 | 21 | 453.948 | 6,116,734 | 37 | 322,542 | NC |
Weissella paramesenteroides | |||||||||
3.2.24 | JAGXJB000000000 | SRR14682924 | 1,950,523 | 31 | 237.635 | 3,187,080 | 38 | 238,023 | NC |
Lactococcus lactis | |||||||||
1.8.12 | JAGXCF000000000 | SRR14682956 | 2,599,249 | 42 | 304.64 | 5,436,048 | 35 | 322,542 | NC |
LA0312 | JAGXIX000000000 | SRR14682918 | 2,357,047 | 31 | 323.83 | 5,242,810 | 35 | 300,240 | NC |
Sample collection sites: NC, North Carolina; MN, Minnesota (USA).