Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2021 Oct 28;10(43):e00625-21. doi: 10.1128/MRA.00625-21

Whole-Genome Sequencing and Annotation of Selected Lactobacillales Isolated from Commercial Cucumber Fermentation

Clinton A Page a, Ilenys M Pérez-Díaz a,
Editor: Irene L G Newtonb
PMCID: PMC8552793  PMID: 34709055

ABSTRACT

We report the whole-genome sequences and annotations of 42 Lactobacillales isolated from commercial cucumber fermentations performed in North Carolina (n = 34) and Minnesota (n = 9), USA. The isolates include representatives from 12 acid-producing species.

ANNOUNCEMENT

Vegetable preservation is enabled by acidifying Lactobacillales. Lactiplantibacillus plantarum, Lactiplantibacillus pentosus, and Levilactobacillus brevis prevail in commercial cucumber fermentations, followed by Lactococcus, Weissella, Leuconostoc, and Pediococcus species (13). Enterobacteriaceae and Enterococcaceae may also participate in vegetable fermentations (3).

We present the genome sequences and annotations of 39 Lactobacillales isolated from commercial cucumber fermentations conducted in 2009 and 2010 in North Carolina (NC) and Minnesota (MN), respectively (3). These isolates were isolated from fermentations at varied time points (1, 3, 7, 14, and 30 days) and two collection tank depths (2 or 8 feet from the brine surface). Also included are L. pentosus strain LA0445, isolated from an anaerobic cucumber fermentation in 1983 (4), its derivative MU0445, which is deficient in malic acid decarboxylation (5), and L. plantarum strain T1R2b, isolated in 2020 from a low-salt cucumber fermentation with an irregular slimy brine (6). A similar slimy fermentation brine is produced by L. plantarum 3.2.8 (7).

All isolates were obtained from cucumber fermentation brines spiral plated on lactobacilli de Man Rogosa and Sharpe agar (MRS), supplemented with 0.0001% cycloheximide solution, and incubated at 30°C in anaerobic jars. The isolated colonies were streaked onto MRS prior to preparing frozen stocks in MRS broth supplemented with 1.5% glycerol. Pure cultures were transferred to MRS broth from frozen stocks prior to DNA extraction. The cultures were incubated at 30°C statically. DNA extraction was conducted using the Promega Wizard high-molecular-weight (HMW) extraction kit (Madison, WI). Whole-genome sequencing was performed by CosmosID (Rockville, MD). Most samples were sequenced on an Illumina NextSeq 550 platform (San Diego, CA), producing paired-end reads with a maximum length of 150 bases. Libraries for Illumina reads were prepared using the Illumina Nextera XT kit. In an earlier effort, isolates L. plantarum 3.2.8 and L. pentosus LA0445 were sequenced on a Thermo Ion S5 XL sequencer (Waltham, MA) with an average read length of 200 bp, using the Thermo Fisher Ion Xpress Plus fragment kit for the preparation of libraries. All libraries were assessed for quantity with Qubit (Thermo Fisher Scientific). The raw sequence data were trimmed for adapters and low-quality bases using BBDuk (https://sourceforge.net/projects/bbmap) with standard parameters (phred quality trimq = 22 and minimum length minlen = 36).

Initial assembly and annotation were performed using PATRIC (8). De novo assembly was performed using Unicycler version 0.4.8 (9) with a minimum contig cutoff of 300. Quality assessment of the assemblies was performed using QUAST version 5.0.2 (10), SAMtools version 13 (11), and Pilon version 1.23 (12). The assembled genomes were annotated using RASTtk (13). The closest reference genomes were identified using Mash/MinHash with the PATRIC database (14). Upon submission to GenBank (BioProject accession number PRJNA674638), the assemblies were reannotated using the NCBI Prokaryotic Genome Annotation Pipeline (15). Default parameters for software were used except when noted.

A diverse range of Lactobacillales were detected in both culturing sources.

Data availability.

The GenBank and Sequence Read Archive (SRA) accession numbers for each sequence are included in Table 1.

TABLE 1.

Putative identification, accession numbers, and statistics for the genome sequences in this study

Organism Genome assembly data
Site of sample collectiona
GenBank accession no. SRA accession no. Assembly size (bp) No. of contigs Estimated coverage (×) Total no. of reads %GC N50 (bp)
Lactiplantibacillus plantarum
 3.2.8 (Ion Torrent sequencing) JAGXCA000000000 SRR14682920 3,360,349 185 525.231 8,824,794 44 67,416 NC
 3.2.8 (Illumina sequencing) JAGYGQ000000000 SRR14682926 3,379,107 137 183.78 4,311,400 44 90,946 NC
 7.8.4 JAGYGR000000000 SRR14682928 3,378,788 166 75.298 1,775,922 44 114,082 NC
 T1R2b JAGYGT000000000 SRR14682929 3,477,739 66 207.009 5,003,588 44 370,452 NC
Lactiplantibacillus pentosus
 1.2.11 JAGYGW000000000 SRR14682931 3,634,568 116 262.253 6,694,680 46 120,249 NC
 1.2.13 JAGYGX000000000 SRR14682932 3,651,781 133 126.918 3,226,422 46 120,291 NC
 1.8.6 JAGYGY000000000 SRR14682933 3,640,616 130 103.011 2,602,654 46 100,780 NC
 1.8.9 JAHLEP000000000 SRR14767539 3,590,254 122 160.689 4,005,764 46 118,490 NC
 3.8.24 JAGYGZ000000000 SRR14682934 3,662,066 136 96.685 2,478,812 46 118,379 NC
 3.2.37 JAGYHA000000000 SRR14682939 3,655,808 111 129.527 3,282,012 46 118,381 NC
 LA0445 (Ion Torrent  sequencing) JAGXBZ000000000 SRR14682919 3,745,923 170 325.425 6,175,578 46 90,946 NC
 LA0445 (Illumina sequencing) JAHLEN000000000 SRR14767540 3,787,716 145 144.751 3,792,958 46 70,955 NC
 MU045 JAGYHB000000000 SRR14682940 3,787,629 141 138.382 3,626,306 46 73,822 NC
 7.2.11 JAGWDS000000000 SRR14682941 3,740,476 218 162.95 4,290,304 46 53,207 NC
 7.2.23 JAGWDT000000000 SRR14682937 3,704,147 155 140.436 3,615,368 46 118,490 NC
 7.2.15 JAGWDU000000000 SRR14682936 3,714,586 116 147.609 3,837,482 46 99,059 NC
 1.2.7 JAGWDV000000000 SRR14682935 3,652,706 125 154.37 3,942,254 46 118,379 NC
 14.8.42 JAGXBO000000000 SRR14682942 3,826,173 157 145.397 3,863,260 46 77,733 NC
 14.2.3 JAGXBP000000000 SRR14682946 3,720,999 136 167.201 4,329,784 46 83,353 NC
 14.2.16 JAGXBQ000000000 SRR14682945 3,762,332 156 141.166 3,710,262 46 85,333 NC
 7.8.46 JAGXBR000000000 SRR14682944 3,770,960 165 181.512 4,782,008 46 85,642 NC
 3.2.36 JAGXBS000000000 SRR14682943 3,696,926 135 119.126 3,052,726 46 118,498 NC
 1.8.18 JAGXBT000000000 SRR14682951 3,697,126 165 151.843 3,973,090 46 70,228 NC
 3.8.45 JAGXBU000000000 SRR14682950 3,695,384 164 125.153 3,262,878 46 99059 NC
 7.2.4 JAGYGS000000000 SRR14682957 3,676,354 184 194.933 3,169,794 46 54,739 NC
 30.2.29 JAGYGU000000000 SRR14682917 3,650,647 133 103.713 3,417,848 46 118,379 NC
 7.8.11 JAGYGV000000000 SRR14682930 3,825,364 152 143.177 5,020,878 46 78,065 NC
 7.8.2 JAGXBV000000000 SRR14682948 3,790,800 99 119.032 2,657,720 46 123,926 MN
 7.2.20 JAGXBW000000000 SRR14682947 3,795,850 140 127.716 3,830,314 46 81,129 MN
Levilactobacillus brevis
 14.2.10 JAGXCC000000000 SRR14682955 2,601,264 205 237.321 4,384,696 45 36,176 MN
 14.2.24 JAGXCD000000000 SRR14682954 2,598,957 210 181.27 3,730,730 45 35,671 MN
 3.2.41 JAGXIY000000000 SRR14682923 2,538,609 173 175.342 3,320,688 46 40,908 MN
Pediococcus ethanolidurans
 7.8.48 JAGXJC000000000 SRR14682925 2,119,735 183 331.606 5,082,050 37 35,566 NC
 NC579 JAGXJE000000000 SRR14682927 2,212,777 144 303.213 4,902,456 37 39,228 NC
Leuconostoc citreum
 3.8.12 JAGYGO000000000 SRR14682949 1,913,902 25 375.513 5,132,798 39 398,202 MN
Leuconostoc fallax
 1.2.22 JAGYGP000000000 SRR14682953 1,671,397 16 262.353 5,652,968 37 1,028,303 NC
Leuconostoc lactis
 1.2.28 JAGXCE000000000 SRR14682952 1,712,162 25 333.01 3,977,482 43 174,610 MN
Leuconostoc mesenteroides
 1.2.47 JAHLEO000000000 SRR14767538 2,074,914 33 284.43 4,124,492 38 253,442 MN
Weissella cibaria
 3.8.44 JAGXIZ000000000 SRR14682922 2,425,944 27 240.751 4,048,644 45 225,548 NC
 7.8.34 JAGXJD000000000 SRR14682938 2,443,125 34 212.237 3,605,434 45 198,098 MN
Weissella hellenica
 1.2.50 JAGXJA000000000 SRR14682921 1,960,091 21 453.948 6,116,734 37 322,542 NC
Weissella paramesenteroides
 3.2.24 JAGXJB000000000 SRR14682924 1,950,523 31 237.635 3,187,080 38 238,023 NC
Lactococcus lactis
 1.8.12 JAGXCF000000000 SRR14682956 2,599,249 42 304.64 5,436,048 35 322,542 NC
 LA0312 JAGXIX000000000 SRR14682918 2,357,047 31 323.83 5,242,810 35 300,240 NC
a

Sample collection sites: NC, North Carolina; MN, Minnesota (USA).

ACKNOWLEDGMENT

Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture or North Carolina Agricultural Research Service, nor does it imply approval to the exclusion of other products that may be suitable.

Contributor Information

Ilenys M. Pérez-Díaz, Email: ilenys.perez-diaz@ars.usda.gov.

Irene L. G. Newton, Indiana University, Bloomington

REFERENCES

  • 1.Etchells JL, Jones ID. 1946. Characteristics of lactic acid bacteria from commercial cucumber fermentations. J Bacteriol 52:593–599. doi: 10.1128/jb.52.5.593-599.1946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Pérez-Díaz IM. 2019. Fermented vegetables as vectors for relocation of microbial diversity from the environment to the human gut, p 91–123. In Azcarate-Peril M, Arnold R, Bruno-Bárcena J (ed), How fermented foods feed a healthy gut microbiota. Springer, Cham, Switzerland. [Google Scholar]
  • 3.Pérez-Díaz IM, Hayes J, Medina E, Anekella K, Daughtry K, Dieck S, Levi M, Price R, Butz N, Lu Z, Azcarate-Peril MA. 2017. Reassessment of the succession of lactic acid bacteria in commercial cucumber fermentations and physiological and genomic features associated with their dominance. Food Microbiol 63:217–227. doi: 10.1016/j.fm.2016.11.025. [DOI] [PubMed] [Google Scholar]
  • 4.Fleming HP, McFeeters RF, Daeschel MA, Humphries EG, Thompson RL. 1988. Fermentation of cucumbers in anaerobic tanks. J Food Sci 53:127–133. doi: 10.1111/j.1365-2621.1988.tb10192.x. [DOI] [Google Scholar]
  • 5.Daeschel MA, McFeeters RF, Fleming HP, Klaenhammer TR, Sanozky RB. 1984. Mutation and selection of Lactobacillus plantarum strains that do not produce carbon dioxide from malate. Appl Environ Microbiol 47:419–420. doi: 10.1128/aem.47.2.419-420.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Fideler J. 2021. Generation of bioactive peptides and γ-aminobutyric acid during natural lactic acid fermentation of cucumber. Doctoral thesis. North Carolina State University, Raleigh, NC. https://www.lib.ncsu.edu/resolver/1840.20/38713. [Google Scholar]
  • 7.Anekella K, Pérez Díaz IM. 2020. Characterization of robust Lactobacillus plantarum and Lactobacillus pentosus starter cultures for environmentally friendly low-salt cucumber fermentations. J Food Sci 85:3487–3497. doi: 10.1111/1750-3841.15416. [DOI] [PubMed] [Google Scholar]
  • 8.Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, Chlenski P, Conrad N, Dickerman A, Dietrich EM, Gabbard JL, Gerdes S, Guard A, Kenyon RW, Machi D, Mao C, Murphy-Olson D, Nguyen M, Nordberg EK, Olsen GJ, Olson RD, Overbeek JC, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomas C, VanOeffelen M, Vonstein V, Warren AS, Xia F, Xie D, Yoo H, Stevens R. 2020. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res 48:D606–D612. doi: 10.1093/nar/gkz943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. doi: 10.1371/journal.pcbi.1005595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi: 10.1093/bioinformatics/btt086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. 2021. Twelve years of SAMtools and BCFtools. Gigascience 10:giab008. doi: 10.1093/gigascience/giab008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. doi: 10.1371/journal.pone.0112963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, III, Stevens R, Vonstein V, Wattam AR, Xia F. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. doi: 10.1038/srep08365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. 2016. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:132. doi: 10.1186/s13059-016-0997-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. doi: 10.1093/nar/gkw569. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The GenBank and Sequence Read Archive (SRA) accession numbers for each sequence are included in Table 1.

TABLE 1.

Putative identification, accession numbers, and statistics for the genome sequences in this study

Organism Genome assembly data
Site of sample collectiona
GenBank accession no. SRA accession no. Assembly size (bp) No. of contigs Estimated coverage (×) Total no. of reads %GC N50 (bp)
Lactiplantibacillus plantarum
 3.2.8 (Ion Torrent sequencing) JAGXCA000000000 SRR14682920 3,360,349 185 525.231 8,824,794 44 67,416 NC
 3.2.8 (Illumina sequencing) JAGYGQ000000000 SRR14682926 3,379,107 137 183.78 4,311,400 44 90,946 NC
 7.8.4 JAGYGR000000000 SRR14682928 3,378,788 166 75.298 1,775,922 44 114,082 NC
 T1R2b JAGYGT000000000 SRR14682929 3,477,739 66 207.009 5,003,588 44 370,452 NC
Lactiplantibacillus pentosus
 1.2.11 JAGYGW000000000 SRR14682931 3,634,568 116 262.253 6,694,680 46 120,249 NC
 1.2.13 JAGYGX000000000 SRR14682932 3,651,781 133 126.918 3,226,422 46 120,291 NC
 1.8.6 JAGYGY000000000 SRR14682933 3,640,616 130 103.011 2,602,654 46 100,780 NC
 1.8.9 JAHLEP000000000 SRR14767539 3,590,254 122 160.689 4,005,764 46 118,490 NC
 3.8.24 JAGYGZ000000000 SRR14682934 3,662,066 136 96.685 2,478,812 46 118,379 NC
 3.2.37 JAGYHA000000000 SRR14682939 3,655,808 111 129.527 3,282,012 46 118,381 NC
 LA0445 (Ion Torrent  sequencing) JAGXBZ000000000 SRR14682919 3,745,923 170 325.425 6,175,578 46 90,946 NC
 LA0445 (Illumina sequencing) JAHLEN000000000 SRR14767540 3,787,716 145 144.751 3,792,958 46 70,955 NC
 MU045 JAGYHB000000000 SRR14682940 3,787,629 141 138.382 3,626,306 46 73,822 NC
 7.2.11 JAGWDS000000000 SRR14682941 3,740,476 218 162.95 4,290,304 46 53,207 NC
 7.2.23 JAGWDT000000000 SRR14682937 3,704,147 155 140.436 3,615,368 46 118,490 NC
 7.2.15 JAGWDU000000000 SRR14682936 3,714,586 116 147.609 3,837,482 46 99,059 NC
 1.2.7 JAGWDV000000000 SRR14682935 3,652,706 125 154.37 3,942,254 46 118,379 NC
 14.8.42 JAGXBO000000000 SRR14682942 3,826,173 157 145.397 3,863,260 46 77,733 NC
 14.2.3 JAGXBP000000000 SRR14682946 3,720,999 136 167.201 4,329,784 46 83,353 NC
 14.2.16 JAGXBQ000000000 SRR14682945 3,762,332 156 141.166 3,710,262 46 85,333 NC
 7.8.46 JAGXBR000000000 SRR14682944 3,770,960 165 181.512 4,782,008 46 85,642 NC
 3.2.36 JAGXBS000000000 SRR14682943 3,696,926 135 119.126 3,052,726 46 118,498 NC
 1.8.18 JAGXBT000000000 SRR14682951 3,697,126 165 151.843 3,973,090 46 70,228 NC
 3.8.45 JAGXBU000000000 SRR14682950 3,695,384 164 125.153 3,262,878 46 99059 NC
 7.2.4 JAGYGS000000000 SRR14682957 3,676,354 184 194.933 3,169,794 46 54,739 NC
 30.2.29 JAGYGU000000000 SRR14682917 3,650,647 133 103.713 3,417,848 46 118,379 NC
 7.8.11 JAGYGV000000000 SRR14682930 3,825,364 152 143.177 5,020,878 46 78,065 NC
 7.8.2 JAGXBV000000000 SRR14682948 3,790,800 99 119.032 2,657,720 46 123,926 MN
 7.2.20 JAGXBW000000000 SRR14682947 3,795,850 140 127.716 3,830,314 46 81,129 MN
Levilactobacillus brevis
 14.2.10 JAGXCC000000000 SRR14682955 2,601,264 205 237.321 4,384,696 45 36,176 MN
 14.2.24 JAGXCD000000000 SRR14682954 2,598,957 210 181.27 3,730,730 45 35,671 MN
 3.2.41 JAGXIY000000000 SRR14682923 2,538,609 173 175.342 3,320,688 46 40,908 MN
Pediococcus ethanolidurans
 7.8.48 JAGXJC000000000 SRR14682925 2,119,735 183 331.606 5,082,050 37 35,566 NC
 NC579 JAGXJE000000000 SRR14682927 2,212,777 144 303.213 4,902,456 37 39,228 NC
Leuconostoc citreum
 3.8.12 JAGYGO000000000 SRR14682949 1,913,902 25 375.513 5,132,798 39 398,202 MN
Leuconostoc fallax
 1.2.22 JAGYGP000000000 SRR14682953 1,671,397 16 262.353 5,652,968 37 1,028,303 NC
Leuconostoc lactis
 1.2.28 JAGXCE000000000 SRR14682952 1,712,162 25 333.01 3,977,482 43 174,610 MN
Leuconostoc mesenteroides
 1.2.47 JAHLEO000000000 SRR14767538 2,074,914 33 284.43 4,124,492 38 253,442 MN
Weissella cibaria
 3.8.44 JAGXIZ000000000 SRR14682922 2,425,944 27 240.751 4,048,644 45 225,548 NC
 7.8.34 JAGXJD000000000 SRR14682938 2,443,125 34 212.237 3,605,434 45 198,098 MN
Weissella hellenica
 1.2.50 JAGXJA000000000 SRR14682921 1,960,091 21 453.948 6,116,734 37 322,542 NC
Weissella paramesenteroides
 3.2.24 JAGXJB000000000 SRR14682924 1,950,523 31 237.635 3,187,080 38 238,023 NC
Lactococcus lactis
 1.8.12 JAGXCF000000000 SRR14682956 2,599,249 42 304.64 5,436,048 35 322,542 NC
 LA0312 JAGXIX000000000 SRR14682918 2,357,047 31 323.83 5,242,810 35 300,240 NC
a

Sample collection sites: NC, North Carolina; MN, Minnesota (USA).


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES