Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Oct 30;70(10):1934–1938. doi: 10.1007/s11172-021-3299-8

N-Acetylcysteine is an effective analog of glutathione in reactions with reactive oxygen species

K M Zinatullina 1,, A V Orekhova 1, O T Kasaikina 1, N P Khrameeva 2, M P Berezin 3, I F Rusina 1
PMCID: PMC8556857  PMID: 34744411

Abstract

The kinetic characteristics of the interaction of N-acetylcysteine (ASH) with reactive oxygen species (ROS), peroxyl radicals and hydrogen peroxide were determined. It was found that in terms of activity ASH in these reactions is similar to glutathione GSH, the main endogenous bioantioxidant. The kinetics of heat release in the interaction of GSH and ASH with H2O2 was studied for the first time by isothermal calorimetry. It is shown that the kinetic curves of heat release and changes in specific heat release rates practically coincide for both thiols taken in the stoichiometric ratio in the known reaction 2 TSH + H2O2 → TSST + 2 H2O. This indicates the relative autonomy of the S–H and S–S bonds in thiols and disulfides, which are not affected by other groups in the molecule. At pH<7, ASH, like GSH, interacts with H2O2 to form thiyl radicals, which initiate thiol-ene reactions with unsaturated phenol resveratrol. Under the same conditions, ASH ensures nearly the same radical initiation rates as GSH, and thiyl radicals from ASH are close in activity to GS in chain propagation reactions.

Key words: N-acetylcysteine, glutathione, hydrogen peroxide, peroxyl radicals, thiyl radicals, thiol-ene reaction, resveratrol

Footnotes

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1934–1938, October, 2021.

This work was financially supported in part by the Russian Foundation for Basic Research (Project No. 20-03-00753) and state assignment (themes No. AAAA-0082-2018-0006 and No. AAAA-A19-119041090087-4).

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

References

  • 1.I. Smaga, M. Frankowska, M. Filip, British J. Pharmacol., 2021, 1; DOI: 10.1111/bph.15456. [DOI] [PubMed]
  • 2.Kamali M, Noori A, Soufdoost R S. Biointerface Res. Appl. Chem. 2021;11:8957. [Google Scholar]
  • 3.Rahimi A, Samimagham H R, Azad M H, Hooshyar D, Arabi M, Kazemijahromi M. Trials. 2021;22:271. doi: 10.1186/s13063-021-05242-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Green J L, Heard K J, Reynolds K M, Albert D. The Western J. Emerg. Med. 2013;14(3):218. doi: 10.5811/westjem.2012.4.6885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.McClure E A, Gipson C D, Malcolm R J, Kalivas P W, Gray K M. CNS Drugs. 2014;28(2):95. doi: 10.1007/s40263-014-0142-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Zafarullah M, Li W Q, Sylvester J, Ahmad M. Cell. Mol. Life Sci. 2003;60:6. doi: 10.1007/s000180300001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Gregory S, Kelly G S. Alternative Med. Rev. 1998;3(2):114. [PubMed] [Google Scholar]
  • 8.N-Acetylcysteine, Alternative Med. Rev., 2000, 5, 467. [PubMed]
  • 9.Smilkstein M J, Knapp G L, Kulig K W, Rumack B H. Engl. J. Med. 1988;319:1557. doi: 10.1056/NEJM198812153192401. [DOI] [PubMed] [Google Scholar]
  • 10.Zinatullina K M, Kasaikina O T, Kuzmin V A, Khrameeva N P. Kinet. Catal. 2019;60:266. doi: 10.1134/S0023158419030169. [DOI] [Google Scholar]
  • 11.Zinatullina K M, Khrameeva N P, Kasaikina O T, Shapiro B I, Kuzmin V A. Russ. Chem. Bull. 2017;66:1300. doi: 10.1007/s11172-017-1888-3. [DOI] [Google Scholar]
  • 12.Zinatullina K M, Kasaikina O T, Kuzmin V A, Khrameeva N P. Russ. Chem. Bull. 2018;67:726. doi: 10.1007/s11172-018-2129-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Zinatullina K M, Khrameeva N P, Kasaikina O T, Shapiro B I, Kuzmin V A. Russ. Chem. Bull. 2017;66:2145. doi: 10.1007/s11172-017-1995-1. [DOI] [Google Scholar]
  • 14.Zinatullina K M, Khrameeva N P, Kasaikina O T. Bulg. Chem. Commun. 2018;50:25. [Google Scholar]
  • 15.Zinatullina K M, Kasaikina O T, Kuzmin V A, Khrameeva N P, Shapiro B I. Russ. Chem. Bull. 2016;65:2825. doi: 10.1007/s11172-016-1663-x. [DOI] [Google Scholar]
  • 16.Zinatullina K M, Kasaikina O T, Motyakin M V, Ionova I S, Degtyarev E N, Khrameeva N P. Russ. Chem. Bull. 2020;69:1865. doi: 10.1007/s11172-020-2971-8. [DOI] [Google Scholar]
  • 17.Zinatullina K M, Kasaikina O T, Khrameeva N P, Indeykina M I, Kononikhin A S. Kinet. Catal. 2021;62:255. doi: 10.1134/S0023158421020130. [DOI] [Google Scholar]
  • 18.Bonnefont-Rousselot D. Nutrients. 2016;8:250. doi: 10.3390/nu8050250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Salehi B, Mishra A P, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou P V T, Martins N, Sharifi-Rad J. Biomedicines. 2018;6(3):91. doi: 10.3390/biomedicines6030091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Berrougu H, Grenier G, Loued S, Drouin G, Khalil A. Atherosclerosis. 2009;207:420. doi: 10.1016/j.atherosclerosis.2009.05.017. [DOI] [PubMed] [Google Scholar]
  • 21.Ellman G L. Arch. Biochem. Biophys. 1959;82:70. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  • 22.Rusina I F, Karpukhin O N, Kasaikina O T. Russ. J. Phys. Chem. 2013;7(4):463. doi: 10.1134/S1990793113040192. [DOI] [Google Scholar]
  • 23.Abedinzadeh Z, Arroub J, Gardes-Albert M. Can. J. Chem. 1994;72:2102. doi: 10.1139/v94-267. [DOI] [Google Scholar]
  • 24.Singh B, Das R S, Banerjee R, Mukhopadhyay S. Inorg. Chim. Acta. 2014;418:51. doi: 10.1016/j.ica.2014.03.003. [DOI] [Google Scholar]
  • 25.Winterbourn C C, Hampton M B. Free Radic. Biol. Med. 2008;45:549. doi: 10.1016/j.freeradbiomed.2008.05.004. [DOI] [PubMed] [Google Scholar]
  • 26.Deutsch J C, Santhosh-Kumar C R, Kolhouse J F. J. Chromatogr. A. 1999;862(2):161. doi: 10.1016/S0021-9673(99)00932-2. [DOI] [PubMed] [Google Scholar]
  • 27.Abedinzadeh Z. Can. J. Physiol. Pharmacol. 2001;79:166. doi: 10.1139/y00-085. [DOI] [PubMed] [Google Scholar]
  • 28.Abedinzadeh Z, Gardes-Albert M, Ferradini C. Can. J. Chem. 1989;67:1247. doi: 10.1139/v89-190. [DOI] [Google Scholar]
  • 29.Berges J, Caillet J, Langlet J, Abedinzadeh Z. Theor. Chim. Acta. 1993;85(1–3):87. doi: 10.1007/BF01374579. [DOI] [Google Scholar]
  • 30.Chatgilialoglu C, Ferreri C. Acc. Chem. Res. 2005;38:441. doi: 10.1021/ar0400847. [DOI] [PubMed] [Google Scholar]
  • 31.Hellwege K-H, Madelung O, Martienssen W. Landolt-Bornstein. Numerical Data and Functional Relationships in Science and Technology. Berlin: Springer-Verlag; 1983. [Google Scholar]
  • 32.Zinatullina K M, Kasaikina O T, Kuzmin V A, Khrameeva N P, Pisarenko L M. Russ. Chem. Bull. 2019;68:1441. doi: 10.1007/s11172-019-2574-4. [DOI] [Google Scholar]
  • 33.Aldini G, Altomare A, Baron G, Vistoli G, Carini M, Borsani L F, Sergio F. Free Radic. Res. 2018;52:751. doi: 10.1080/10715762.2018.1468564. [DOI] [PubMed] [Google Scholar]

Articles from Russian Chemical Bulletin are provided here courtesy of Nature Publishing Group

RESOURCES