Skip to main content
Elsevier - PMC COVID-19 Collection logoLink to Elsevier - PMC COVID-19 Collection
. 2021 Nov 2;54(15):151–156. doi: 10.1016/j.ifacol.2021.10.247

Vaccination and social distance to prevent COVID-19

Cristiane M Batistela , Marien M Ramos ⁎⁎, Manuel AM Cabrera ⁎⁎⁎, Giovanni M Dieguez ⁎⁎⁎⁎, José RC Piqueira
PMCID: PMC8562104  PMID: 38620952

Abstract

In order to analyze the effect of vaccination in a population with the presence of viruses, a variation of the SIR (Susceptible-Infected-Removed) model is proposed taking into account social distancing and the effect of the vaccine. The equilibrium points of the proposed model are calculated and the stability analysis of the system is carried out. For the proposed model, disease-free equilibrium point and endemic equilibrium point are found and the conditions of existence are discussed. For the disease-free equilibrium point the bifurcation conditions are derived and simulations show that reducing the vaccination effort can lead the disease-free equilibrium to the endemic equilibrium. From the theoretical analysis, a minimum value of effort is obtained to guarantee a disease-free equilibrium point. Simulations were carried out from the value obtained from Rv to validate the theoretical results.

Keywords: SIR model, social distancing, stability, vaccination, reproduction number

Footnotes

Marien M. Ramos is supported by FDTE/CAPES-Brazil; Manuel A.M. Cabrera is supported by CAPES-Brazil; Jose R.C. Piqueira is supported by CNPq.

References

  1. Álvarez A.M., Andrus J. Consideraciones para la vacunación en caso de una pandemia de influenza. Med UNAB. 2005;8(3):191–196. [Google Scholar]
  2. Batistela C.M., Cabrera M.A., et al. Covid-19: Estudo da imunização usando modelo sir. Anais da Sociedade Brasileira de Automática. 2020;2(1) [Google Scholar]
  3. Batistela C.M., Correa D.P., Bueno Á.M., Piqueira J.R.C. Sirsi compartmental model for covid-19 pandemic with immunity loss. Chaos, Solitons & Fractals. 2021;142:110388. doi: 10.1016/j.chaos.2020.110388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chauhan S., Misra O.P., Dhar J. Stability analysis of sir model with vaccination. American journal of computational and applied mathematics. 2014;4(1):17–23. [Google Scholar]
  5. Cotta R.M., Naveira-Cotta C.P., Magal P. Mathematical parameters of the covid-19 epidemic in brazil and evaluation of the impact of different public health measures. Biology. 2020;9(8):220. doi: 10.3390/biology9080220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elie R., Hubert E., Turinici G. Contact rate epidemic control of covid-19: an equilibrium view. Mathematical Modelling of Natural Phenomena. 2020;15:35. [Google Scholar]
  7. Galindo Santana B.M., Arroyo Rojas L., Concepción Díaz D. Seguridad de las vacunas y su repercusión en la población. Revista Cubana de Salud Pública. 2011;37:149–158. [Google Scholar]
  8. Graunt J. In: Natural and political observations mentioned in a following index, and made upon the bills of mortality. Wilcox W.F., editor. Johns Hopkins University Press; Baltimore, MD: 1662. [Google Scholar]
  9. Kampf G., Todt D., Pfaender S., Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of hospital infection. 2020;104(3):246–251. doi: 10.1016/j.jhin.2020.01.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kermack, W.O. and McKendrick, A.G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115(772), 700–721.
  11. Kermack, W.O. and McKendrick, A.G. (1932). Contributions to the mathematical theory of epidemics. ii.the problem of endemicity. Proceedings of the Royal Society of London. Series A, containing papers of a mathematical and physical character, 138(834), 55–83.
  12. Kermack, W.O. and McKendrick, A.G. (1933). Contributions to the mathematical theory of epidemics. iii.further studies of the problem of endemicity. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 141(843), 94–122.
  13. Khoshnaw S.H., Salih R.H., Sulaimany S. Mathematical modelling for coronavirus disease (covid-19) in predicting future behaviours and sensitivity analysis. Mathematical Modelling of Natural Phenomena. 2020;15:33. [Google Scholar]
  14. Lee C., Li Y., Kim J. The susceptible-unidentified infected-confirmed (suc) epidemic model for estimating unidentified infected population for covid-19. Chaos, Solitons & Fractals. 2020;139:110090. doi: 10.1016/j.chaos.2020.110090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee, S.H. (2008). Familias de polinômios estáveis: teo-remas de Routh-Hurwitz e Kharitonov. Ph.D. thesis, Universidade de São Paulo.
  16. Llop, F.A.M. (2020). Las vacunaciones caen durante la pandemia. sema, 2.
  17. Martí O. Debate social en torno a las vacunas: un análisis en forma de contribución desde la medicina social. Papeles de relaciones ecosociales y cambio global. 2016:59–65. (134) [Google Scholar]
  18. Mishra B.K., Keshri A.K., Rao Y.S., Mishra B.K., Mahato B., Ayesha S., Rukhaiyyar B.P., Saini D.K., Singh A.K. Covid-19 created chaos across the globe: Three novel quarantine epidemic models. Chaos, Solitons & Fractals. 2020;138:109928. doi: 10.1016/j.chaos.2020.109928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Organization, W.H. et al. (2020). Covid-19 vaccine introduction and deployment costing tool (cvic tool), 7 december 2020. Technical report.
  20. Organization W.H., et al. Evaluation of covid-19 vaccine effectiveness: interim guidance, 17 march 2021. World Health Organization; 2021. Technical report. [Google Scholar]
  21. Osterholm M.T. Preparing for the next pandemic. New England Journal of Medicine. 2005;352(18):1839–1842. doi: 10.1056/NEJMp058068. [DOI] [PubMed] [Google Scholar]
  22. Pan Q., Gao T., He M. Influence of isolation measures for patients with mild symptoms on the spread of covid-19. Chaos, Solitons & Fractals. 2020;139:110022. doi: 10.1016/j.chaos.2020.110022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sanchez-Castro E.E., Pajuelo-Reyes C. Im-portancia de la genética como ciencia en relación a la pandemia de covid-19. Revista de la Facultad de Medicina Humana. 2020;20(4):690–695. [Google Scholar]
  24. Volpert V., Banerjee M., Petrovskii S. On a quarantine model of coronavirus infection and data analysis. Mathematical Modelling of Natural Phenomena. 2020;15:24. [Google Scholar]
  25. Zine H., Boukhouima A., Lotfi E.M., Mahrouf M., Torres D.F., Yousfi N. A stochastic time-delayed model for the effectiveness of moroccan covid-19 deconfinement strategy. Mathematical Modelling of Natural Phenomena. 2020;15:50. [Google Scholar]

Articles from Ifac-Papersonline are provided here courtesy of Elsevier

RESOURCES