Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Nov 4;51(7):856–866. doi: 10.1007/s11055-021-01144-9

Direct and Indirect Neurological Signs of COVID-19

O A Gromova 1,2,, I Yu Torshin 1,2, V A Semenov 3, M V Putilina 4, A G Chuchalin 4
PMCID: PMC8566113  PMID: 34751196

Abstract

Objective. To systematize the neurological manifestations of COVID-19. Materials and methods. A systematic computerized analysis of all currently available publications on the neurological manifestations of COVID-19 was undertaken (2374 reports in PubMed) by topological data analysis. Results. A set of interactions between infection with SARS-CoV-2, metabolic impairments affecting neurotransmitters (acetylcholine, dopamine, serotonin, and GABA), enkephalins, and neurotrophins, micronutrients, chronic and acute inflammation, encephalopathy, cerebral ischemia, and neurodegeneration (including demyelination) was described. The most typical neurological manifestations of COVID-19 were anosmia/ageusia due to ischemia, neurodegeneration, and/or systematic increases in proinflammatory cytokine levels. COVID-19 provoked ischemic stroke, Guillain–Barré syndrome, polyneuropathy, encephalitis, meningitis, and parkinsonism. Coronavirus infection increased the severity of multiple sclerosis and myopathies. The possible roles of the human virome in the pathophysiology of COVID-19 are considered. A clinical case of a patient with neurological complications of COVID-19 is described. Conclusions. In the long-term perspective, COVID-19 promotes increases in neurodegenerative changes, which requires special neurological rehabilitation programs. Use of cholinergic drugs and antihypoxic agents compatible with COVID-19 therapy is advised.

Keywords: COVID-19, neurological symptoms, complications, cholinergic drugs

Footnotes

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 120, No. 11, Iss. 1, pp. 11–21, November, 2020.

References

  • 1.Koralnik IJ, Tyler KL. COVID-19: A global threat to the nervous system. Ann. Neurol. 2020;88(1):1–11. doi: 10.1002/ana.25807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.F. J. Carod-Artal, “Neurological complications of coronavirus and COVID-19,” Rev. Neurol., 70, No. 9, 311–322 (2020), 10.33588/rn.7009.2020179. [DOI] [PubMed]
  • 3.Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun. 2020;87:18–22. doi: 10.1016/j.bbi.2020.03.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Manto M, Dupre N, Hadjivassiliou M, et al. Medical and paramedical care of patients with cerebellar ataxia during the COVID-19 Outbreak: Seven practical recommendations of the COVID 19 Cerebellum Task Force. Front. Neurol. 2020;11:516. doi: 10.3389/fneur.2020.00516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Munhoz RP, Pedroso JL, Nascimento FA, et al. Neurological complications in patients with SARS-CoV-2 infection: a systematic review. Arq. Neuropsiquiatr. 2020;78(5):290–300. doi: 10.1590/0004-282x20200051. [DOI] [PubMed] [Google Scholar]
  • 6.Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: A literature review. J. Clin. Neurosci. 2020;77:8–12. doi: 10.1016/j.jocn.2020.05.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Butler MJ, Barrientos RM. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav. Immun. 2020;87:53–54. doi: 10.1016/j.bbi.2020.04.040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Torshin IY, Gromova OA, Chuchalina AG, editors. Micronutrients against Coronaviruses. Moscow: GEOTAR-Media; 2020. [Google Scholar]
  • 9.Torshin IY, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 1: Factorization approach. Patt. Recog. Image Anal. 2017;27:16–28. doi: 10.1134/S1054661817010151. [DOI] [Google Scholar]
  • 10.Torshin IY, Rudakov KV. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: Metric approach within the framework of the theory of classification of feature values. Patt. Recog. Image Anal. 2017;27:184–199. doi: 10.1134/S1054661817020110. [DOI] [Google Scholar]
  • 11.Torshin IY, Rudakov KV. On metric spaces arising during formalization of recognition and classification problems. Part 1: Properties of compactness. Patt. Recog. Image Anal. 2016;26:274–284. doi: 10.1134/S1054661816020255. [DOI] [Google Scholar]
  • 12.Torshin IY, Rudakov KV. On the procedures of generation of numerical features over partitions of sets of objects in the problem of predicting numerical target variables. Patt. Recog. Image Anal. 2019;29:654–667. doi: 10.1134/S1054661819040175. [DOI] [Google Scholar]
  • 13.Mi H, Huang X, Muruganujan A, et al. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419–D426. doi: 10.1093/nar/gky1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.M. V. Putilina, “Combined use of neuroprotectors in the treatment of cerebrovascular diseases,” Zh. Nevrol. Psikhiatr., 116, No. 11, 58–63 (2016), 10.17116/jnevro201611611158-63. [DOI] [PubMed]
  • 15.Fan S, Xiao M, Han F, et al. Neurological manifestations in critically ill patients with COVID-19: A retrospective study. Front. Neurol. 2020;11:806. doi: 10.3389/fneur.2020.00806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.N. Poyiadji, G. Shahin, D. Noujaim, et al., “COVID-19-associated acute hemorrhagic necrotizing encephalopathy: Imaging features,” Radiology, 296, No. 2, E119–E120 (2020), 10.1148/radiol.2020201187. [DOI] [PMC free article] [PubMed]
  • 17.Niazkar HR, Zibaee B, Nasimi A, Bahri N. The neurological manifestations of COVID-19: a review article. Neurol. Sci. 2020;41(7):1667–1671. doi: 10.1007/s10072-020-04486-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Montalvan V, Lee J, Bueso T, et al. Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review. Clin. Neurol. Neurosurg. 2020;194:105921. doi: 10.1016/j.clineuro.2020.105921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Correia AO, Feitosa PWG, Moreira JLS, et al. Neurological manifestations of COVID-19 and other coronaviruses: A systematic review. Neurol. Psychiatry Brain Res. 2020;37:27–32. doi: 10.1016/j.npbr.2020.05.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Petrescu AM, Taussig D, Bouilleret V. Electroencephalogram (EEG) in COVID-19: A systematic retrospective study. Neurophysiol. Clin. 2020;50(3):155–165. doi: 10.1016/j.neucli.2020.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Jain R, Young M, Dogra S, et al. COVID-19 related neuroimaging findings: A signal of thromboembolic complications and a strong prognostic marker of poor patient outcome. J. Neurol. Sci. 2020;414:116923. doi: 10.1016/j.jns.2020.116923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Li Z, Liu T, Yang N, et al. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front. Med. 2020;14(5):533–541. doi: 10.1007/s11684-020-0786-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.M. T. Heneka, D. Golenbock, E. Latz, et al., “Immediate and longterm consequences of COVID-19 infections for the development of neurological disease,” Alzheimers Res. Ther., 12, No. 1, 69 (2020), 10.1186/s13195-020-00640-3. [DOI] [PMC free article] [PubMed]
  • 24.Farsalinos K, Niaura R, Le Houezec J, et al. Nicotine and SARSCoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol. Rep. 2020;7:658–663. doi: 10.1016/j.toxrep.2020.04.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Pérez Álvarez AI, Suárez Cuervo C, Fernández Menéndez S. SARS-CoV-2 infection associated with diplopia and anti-acetylcholine receptor antibodies. Neurologia. 2020;35(4):264–265. doi: 10.1016/j.nrl.2020.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Al Saiegh F, Ghosh R, Leibold A, et al. Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J Neurol. Neurosurg. Psychiatry. 2020;91(8):846–848. doi: 10.1136/jnnp-2020-323522. [DOI] [PubMed] [Google Scholar]
  • 27.M. Bellon, C. Schweblin, N. Lambeng, et al., “Cerebrospinal fluid features in SARS-CoV-2 RT-PCR positive patients,” Clin. Infect. Dis., ciaa1165 (2020), 10.1093/cid/ciaa1165. [DOI] [PMC free article] [PubMed]
  • 28.J. B. Caress, R. J. Castoro, Z. Simmons, et al., “COVID-19-associated Guillain–Barré syndrome: The early pandemic experience,” Muscle Nerve, 62, No. 4, 485–491 (2020), 10.1002/mus.27024. [DOI] [PMC free article] [PubMed]
  • 29.J. R. Lechien, C. M. Chiesa-Estomba, D. R. De Siati, et al., “Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19, a multicenter European study,” Eur. Arch. Otorhinolaryngol., 277, No. 8, 2251–2261 (2020), 10.1007/s00405-020-05965-1. [DOI] [PMC free article] [PubMed]
  • 30.A. Y. Han, L. Mukdad, J. L. Long, and I. A. Lopez, “Anosmia in COVID-19: Mechanisms and significance,” Chem. Senses, bjaa040 (2020), 10.1093/chemse/bjaa040. [DOI] [PMC free article] [PubMed]
  • 31.Yazdanpanah N, Saghazadeh A, Rezaei N. Anosmia: a missing link in the neuroimmunology of coronavirus disease 2019 (COVID-19) Rev. Neurosci. 2020;31(7):691–701. doi: 10.1515/revneuro-2020-0039. [DOI] [PubMed] [Google Scholar]
  • 32.A. J. Zhang, A. C. Lee, H. Chu, et al., “SARS-CoV-2 infects and damages the mature and immature olfactory sensory neurons of hamsters,” Clin. Infect. Dis., ciaa995 (2020), 10.1093/cid/ciaa995. [DOI] [PMC free article] [PubMed]
  • 33.Cazzolla AP, Lovero R, Lo Muzio L, et al. Taste and smell disorders in COVID-19 patients: Role of interleukin-6. ACS Chem. Neurosci. 2020;11(17):2774–2781. doi: 10.1021/acschemneuro.0c00447. [DOI] [PubMed] [Google Scholar]
  • 34.Li Y, Li M, Wang M, et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc. Neurol. 2020;5(3):279–284. doi: 10.1136/svn-2020-000431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.C. Lodigiani, G. Iapichino, L. Carenzo, et al., “Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy,” Thromb. Res., 191, 9–14; (2020), 10.1016/j.thromres.2020.04.024. [DOI] [PMC free article] [PubMed]
  • 36.Tan YK, Goh C, Leow AST, et al. COVID-19 and ischemic stroke: a systematic review and meta-summary of the literature. J. Thromb. Thrombolysis. 2020;50(3):587–595. doi: 10.1007/s11239-020-02228-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Belani P, Schefflein J, Kihira S, et al. COVID-19 is an independent risk factor for acute ischemic stroke. AJNR Am. J. Neuroradiol. 2020;41(8):1361–1364. doi: 10.3174/ajnr.A6650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.E. I. Gusev, M. Yu. Martynov, A. N. Boiko, et al., “Novel coronavirus infection (COVID-19) and nervous system involvement: mechanisms of neurological disorders, clinical manifestations, and organization of neurological care,” Zh. Nevrol. Psikhiatr., 120, No. 6, 7–16 (2020), 10.17116/jnevro20201200617 PMID:32678542. [DOI] [PubMed]
  • 39.Cao X, Yin R, Albrecht H, et al. Cholesterol: A new game player accelerating vasculopathy caused by SARS-CoV-2? Am. J. Physiol. Endocrinol. Metab. 2020;319(1):E197–E202. doi: 10.1152/ajpendo.00255.2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.M. Bodro, Y. Compta, L. Llansó, et al., “Increased CSF levels of IL-1β, IL-6, and ACE in SARS-CoV-2-associated encephalitis,” Neurol. Neuroimmunol. Neuroinflamm., 7, No. 5, e821 (2020), 10.1212/NXI.0000000000000821. [DOI] [PMC free article] [PubMed]
  • 41.Benameur K, Agarwal A, Auld SC, et al. Encephalopathy and encephalitis associated with cerebrospinal fluid cytokine alterations and coronavirus disease, Atlanta, Georgia, USA, 2020. Emerg. Infect. Dis. 2020;26(9):2016–2021. doi: 10.3201/eid2609.202122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.M. K. Taha and A. E. Deghmane, “Impact of COVID-19 pandemic and the lockdown on invasive meningococcal disease,” BMC Res. Notes, 13, No. 1, 399 (2020), 10.1186/s13104-020-05241-9. [DOI] [PMC free article] [PubMed]
  • 43.Guidon AC, Amato AA. COVID-19 and neuromuscular disorders. Neurology. 2020;94(22):959–969. doi: 10.1212/WNL.0000000000009566. [DOI] [PubMed] [Google Scholar]
  • 44.Haji Akhoundi F, Sahraian MA, Naser Moghadasi A. Neuropsychiatric and cognitive effects of the COVID-19 outbreak on multiple sclerosis patients. Mult. Scler. Relat. Disord. 2020;41:102164. doi: 10.1016/j.msard.2020.102164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Veerapandiyan A, Wagner KR, Apkon S, et al. The care of patients with Duchenne, Becker, and other muscular dystrophies in the COVID-19 pandemic. Muscle Nerve. 2020;62(1):41–45. doi: 10.1002/mus. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Benny R, Khadilkar SV. COVID 19: Neuromuscular Manifestations. Ann. Ind. Acad. Neurol. 2020;23(Suppl. 1):S40–S42. doi: 10.4103/aian.AIAN_309_20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Putilina MV. Current concepts in the treatment of anxiety-depressive disorders in chronic cerebral ischemia. Ross. Med. Zh. 2011;19(9):569–573. [Google Scholar]
  • 48.M. A. Eldeeb, F. S. Hussain, nanbd Z. A. Siddiqi, “COVID-19 infection may increase the risk of parkinsonism — Remember the Spanish flu?” Cytokine Growth Factor Rev., 54, 6–7 (2020), 10.1016/j.cytogfr.2020.06.009. [DOI] [PMC free article] [PubMed]
  • 49.Bracaglia M, Naldi I, Govoni A, et al. Acute inflammatory demyelinating polyneuritis in association with an asymptomatic infection by SARS-CoV-2. J. Neurol. 2020;267(11):3166–3168. doi: 10.1007/s00415-020-10014-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.A. A. Pinto, L. S. Carroll, V. Nar, et al., “CNS inflammatory vasculopathy with antimyelin oligodendrocyte glycoprotein antibodies in COVID-19.,” Neurol. Neuroimmunol. Neuroinflamm., 7, No. 5, e813 (2020), 10.1212/NXI.0000000000000813. [DOI] [PMC free article] [PubMed]
  • 51.N. Kanberg, N. J. Ashton, L. M. Andersson, et al., “Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19,” Neurology, 95, No. 12, e1754–e1759 (2020), 10.1212/WNL.0000000000010111. [DOI] [PubMed]
  • 52.I. Yu. Torshin, O. A. Gromova, I. N. Zakharova, and V. A. Maksimov, “Chemomicrobiome analysis of Lactitol,” Eksperim. Klin. Gastroenterol., 164, No. 4, 111–121 (2019), 10.31146/1682-8658-ecg-164-4-111-121.
  • 53.L. Kachuri, S. S. Francis, M. Morrison, et al., “The landscape of host genetic factors involved in infection to common viruses and SARSCoV-2,” medRxiv (2020), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273301, 10.1101/2020.05.01.2008805, acc. Nov 23, 2020.
  • 54.R. Kumata, J. Ito, K. Takahashi, et al., “A tissue level atlas of the healthy human virome,” BMC Biol., 18, No. 1, 55 (2020), 10.1186/s12915-020-00785-5. [DOI] [PMC free article] [PubMed]
  • 55.Z. Zhang, S. Ye, A. Wu, et al., “Prediction of the receptorome for the human-infecting virome,” Virol. Sin. (2020), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385468, 10.1007/s12250-020-00259-6, acc. Nov 23, 2020. [DOI] [PMC free article] [PubMed]
  • 56.Focosi D, Antonelli G, Pistello M, Maggi F. Torquetenovirus: the human virome from bench to bedside. Clin. Microbiol. Infect. 2016;22(7):589–593. doi: 10.1016/j.cmi.2016.04.007. [DOI] [PubMed] [Google Scholar]
  • 57.Maggi F, Bendinelli M. Human anelloviruses and the central nervous system. Rev. Med. Virol. 2010;20(6):392–407. doi: 10.1002/rmv.668. [DOI] [PubMed] [Google Scholar]
  • 58.Temporary Methodological Guidelines “Prophylaxis, Diagnosis, and Treatment of the Novel Coronavirus Infection (COVID-19)”, Vers. 9, Oct. 26, 2020, http://www.consultant.ru/law/hotdocs/65400. html, Ref. active on Nov. 23, 2020.
  • 59.O. A. Gromova, I. Yu. Torshin, M. V. Putilina, et al., “Optimizing the choice of neuroprotective therapy regimens in patients with chronic cerebral ischemia taking account of the synergy of drug interactions,” Zh. Nevrol. Psikhiatr., 120, No. 8, 42–50 (2020), 10.17116/jnevro202012008142. [DOI] [PubMed]

Articles from Neuroscience and Behavioral Physiology are provided here courtesy of Nature Publishing Group

RESOURCES