Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Nov 8;2021(11):45. doi: 10.1007/JHEP11(2021)045

The role of colour flows in matrix element computations and Monte Carlo simulations

Stefano Frixione 1,2,, Bryan R Webber 3
PMCID: PMC8575673  PMID: 34776729

Abstract

We discuss how colour flows can be used to simplify the computation of matrix elements, and in the context of parton shower Monte Carlos with accuracy beyond leading-colour. We show that, by systematically employing them, the results for tree-level matrix elements and their soft limits can be given in a closed form that does not require any colour algebra. The colour flows that we define are a natural generalization of those exploited by existing Monte Carlos; we construct their representations in terms of different but conceptually equivalent quantities, namely colour loops and dipole graphs, and examine how these objects may help to extend the accuracy of Monte Carlos through the inclusion of subleading-colour effects. We show how the results that we obtain can be used, with trivial modifications, in the context of QCD+QED simulations, since we are able to put the gluon and photon soft-radiation patterns on the same footing. We also comment on some peculiar properties of gluon-only colour flows, and their relationships with established results in the mathematics of permutations.

Keywords: NLO Computations, QCD Phenomenology

Footnotes

ArXiv ePrint: 2106.13471

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Stefano Frixione, Email: Stefano.Frixione@cern.ch.

Bryan R. Webber, Email: webber@hep.phy.cam.ac.uk

References

  • [1].Nagy Z, Soper DE. Parton shower evolution with subleading color. JHEP. 2012;06:044. doi: 10.1007/JHEP06(2012)044. [DOI] [Google Scholar]
  • [2].Nagy Z, Soper DE. Effects of subleading color in a parton shower. JHEP. 2015;07:119. doi: 10.1007/JHEP07(2015)119. [DOI] [Google Scholar]
  • [3].K. Hamilton, R. Medves, G.P. Salam, L. Scyboz and G. Soyez, Colour and logarithmic accuracy in final-state parton showers, arXiv:2011.10054 [INSPIRE].
  • [4].De Angelis M, Forshaw JR, Plätzer S. Resummation and Simulation of Soft Gluon Effects beyond Leading Color. Phys. Rev. Lett. 2021;126:112001. doi: 10.1103/PhysRevLett.126.112001. [DOI] [PubMed] [Google Scholar]
  • [5].Ángeles Martínez R, De Angelis M, Forshaw JR, Plätzer S, Seymour MH. Soft gluon evolution and non-global logarithms. JHEP. 2018;05:044. doi: 10.1007/JHEP05(2018)044. [DOI] [Google Scholar]
  • [6].J. Isaacson and S. Prestel, Stochastically sampling color configurations, Phys. Rev. D99 (2019) 014021 [arXiv:1806.10102] [INSPIRE].
  • [7].W.T. Giele, D.A. Kosower and P.Z. Skands, Higher-Order Corrections to Timelike Jets, Phys. Rev. D84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].
  • [8].Jadach S, Kusina A, Skrzypek M, Slawinska M. Two real parton contributions to non-singlet kernels for exclusive QCD DGLAP evolution. JHEP. 2011;08:012. doi: 10.1007/JHEP08(2011)012. [DOI] [Google Scholar]
  • [9].Hartgring L, Laenen E, Skands P. Antenna Showers with One-Loop Matrix Elements. JHEP. 2013;10:127. doi: 10.1007/JHEP10(2013)127. [DOI] [Google Scholar]
  • [10].Gituliar O, Jadach S, Kusina A, Skrzypek M. On regularizing the infrared singularities in QCD NLO splitting functions with the new Principal Value prescription. Phys. Lett. B. 2014;732:218. doi: 10.1016/j.physletb.2014.03.045. [DOI] [Google Scholar]
  • [11].Li HT, Skands P. A framework for second-order parton showers. Phys. Lett. B. 2017;771:59. doi: 10.1016/j.physletb.2017.05.011. [DOI] [Google Scholar]
  • [12].S. Höche and S. Prestel, Triple collinear emissions in parton showers, Phys. Rev. D96 (2017) 074017 [arXiv:1705.00742] [INSPIRE].
  • [13].Höche S, Krauss F, Prestel S. Implementing NLO DGLAP evolution in Parton Showers. JHEP. 2017;10:093. doi: 10.1007/JHEP10(2017)093. [DOI] [Google Scholar]
  • [14].F. Dulat, S. Höche and S. Prestel, Leading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole Showers, Phys. Rev. D98 (2018) 074013 [arXiv:1805.03757] [INSPIRE].
  • [15].Bewick G, Ferrario Ravasio S, Richardson P, Seymour MH. Logarithmic accuracy of angular-ordered parton showers. JHEP. 2020;04:019. doi: 10.1007/JHEP04(2020)019. [DOI] [Google Scholar]
  • [16].M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni, G.P. Salam and G. Soyez, Parton showers beyond leading logarithmic accuracy, Phys. Rev. Lett.125 (2020) 052002 [arXiv:2002.11114] [INSPIRE]. [DOI] [PubMed]
  • [17].Mangano ML, Parke SJ. Multiparton amplitudes in gauge theories. Phys. Rept. 1991;200:301. doi: 10.1016/0370-1573(91)90091-Y. [DOI] [Google Scholar]
  • [18].V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B571 (2000) 51 [hep-ph/9910563] [INSPIRE].
  • [19].F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color Flow Decomposition of QCD Amplitudes, Phys. Rev. D67 (2003) 014026 [hep-ph/0209271] [INSPIRE].
  • [20].Johansson H, Ochirov A. Color-Kinematics Duality for QCD Amplitudes. JHEP. 2016;01:170. doi: 10.1007/JHEP01(2016)170. [DOI] [Google Scholar]
  • [21].Melia T. Proof of a new colour decomposition for QCD amplitudes. JHEP. 2015;12:107. [Google Scholar]
  • [22].Sjodahl M, Thorén J. QCD multiplet bases with arbitrary parton ordering. JHEP. 2018;11:198. doi: 10.1007/JHEP11(2018)198. [DOI] [Google Scholar]
  • [23].Frixione S. Colourful FKS subtraction. JHEP. 2011;09:091. doi: 10.1007/JHEP09(2011)091. [DOI] [Google Scholar]
  • [24].Bern Z, Kosower DA. Color decomposition of one loop amplitudes in gauge theories. Nucl. Phys. B. 1991;362:389. doi: 10.1016/0550-3213(91)90567-H. [DOI] [Google Scholar]
  • [25].Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B425 (1994) 217 [hep-ph/9403226] [INSPIRE].
  • [26].Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B435 (1995) 59 [hep-ph/9409265] [INSPIRE].
  • [27].Kilian W, Ohl T, Reuter J, Speckner C. QCD in the Color-Flow Representation. JHEP. 2012;10:022. doi: 10.1007/JHEP10(2012)022. [DOI] [Google Scholar]
  • [28].Reuschle C, Weinzierl S. Decomposition of one-loop QCD amplitudes into primitive amplitudes based on shuffle relations. Phys. Rev. D. 2013;88:105020. doi: 10.1103/PhysRevD.88.105020. [DOI] [Google Scholar]
  • [29].Kälin G. Cyclic Mario worlds — color-decomposition for one-loop QCD. JHEP. 2018;04:141. doi: 10.1007/JHEP04(2018)141. [DOI] [Google Scholar]
  • [30].S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B467 (1996) 399 [hep-ph/9512328] [INSPIRE].
  • [31].S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys. B507 (1997) 295 [hep-ph/9706545] [INSPIRE].
  • [32].Frederix R, Frixione S, Hirschi V, Pagani D, Shao HS, Zaro M. The automation of next-to-leading order electroweak calculations. JHEP. 2018;07:185. doi: 10.1007/JHEP07(2018)185. [DOI] [Google Scholar]
  • [33].G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson et al., HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP01 (2001) 010 [hep-ph/0011363] [INSPIRE].
  • [34].Bahr M, et al. HERWIG++ Physics and Manual. Eur. Phys. J. C. 2008;58:639. doi: 10.1140/epjc/s10052-008-0798-9. [DOI] [Google Scholar]
  • [35].J. Bellm et al., HERWIG 7.1 Release Note, arXiv:1705.06919 [INSPIRE].
  • [36].J. Bellm et al., HERWIG 7.2 release note, Eur. Phys. J. C80 (2020) 452 [arXiv:1912.06509] [INSPIRE].
  • [37].K. Odagiri, Color connection structure of supersymmetric QCD (2 → 2) processes, JHEP10 (1998) 006 [hep-ph/9806531] [INSPIRE].
  • [38].Olsson J, Plätzer S, Sjödahl M. Resampling Algorithms for High Energy Physics Simulations. Eur. Phys. J. C. 2020;80:934. doi: 10.1140/epjc/s10052-020-08500-y. [DOI] [Google Scholar]
  • [39].Andersen JR, Gütschow C, Maier A, Prestel S. A Positive Resampler for Monte Carlo events with negative weights. Eur. Phys. J. C. 2020;80:1007. doi: 10.1140/epjc/s10052-020-08548-w. [DOI] [Google Scholar]
  • [40].B. Nachman and J. Thaler, Neural resampler for Monte Carlo reweighting with preserved uncertainties, Phys. Rev. D102 (2020) 076004 [arXiv:2007.11586] [INSPIRE].
  • [41].Platzer S, Sjodahl M. The Sudakov Veto Algorithm Reloaded. Eur. Phys. J. Plus. 2012;127:26. doi: 10.1140/epjp/i2012-12026-x. [DOI] [Google Scholar]
  • [42].Hoeche S, Krauss F, Schonherr M, Siegert F. A critical appraisal of NLO+PS matching methods. JHEP. 2012;09:049. doi: 10.1007/JHEP09(2012)049. [DOI] [Google Scholar]
  • [43].Lönnblad L. Fooling Around with the Sudakov Veto Algorithm. Eur. Phys. J. C. 2013;73:2350. doi: 10.1140/epjc/s10052-013-2350-9. [DOI] [Google Scholar]
  • [44].OEIS Foundation collaboration, The on-line encyclopedia of integer sequences, http://oeis.org/A002137.
  • [45].M. Bona, Combinatorics of Permutations, II ed., Taylor & Francis (2012) [DOI].
  • [46].S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP06 (2002) 029 [hep-ph/0204244] [INSPIRE].
  • [47].Bafna V, Pevner P. Sorting by transpositions. SIAM J. Discrete Math. 1998;11:224. doi: 10.1137/S089548019528280X. [DOI] [Google Scholar]
  • [48].A. Hultman, Toric permutations, MSc Thesis, Department of Mathematics, KTH, Stockholm, Sweden (1999).
  • [49].J.-P. Doignon and A. Labarre, On Hultman numbers, J. Integer Seq.10 (2007) 07.6.2.
  • [50].Christie D. Sorting permutations by block-interchanges. Inform. Proc. Lett. 1996;60:165. doi: 10.1016/S0020-0190(96)00155-X. [DOI] [Google Scholar]

Articles from Journal of High Energy Physics are provided here courtesy of Nature Publishing Group

RESOURCES