Skip to main content
Non-coding RNA Research logoLink to Non-coding RNA Research
. 2021 Oct 26;6(4):167–173. doi: 10.1016/j.ncrna.2021.10.002

The epitranscriptome of small non-coding RNAs

Xiaoyu Li a,b, Jinying Peng b, Chengqi Yi b,c,d,
PMCID: PMC8581453  PMID: 34820590

Abstract

Small non-coding RNAs are short RNA molecules and involved in many biological processes, including cell proliferation and differentiation, immune response, cell death, epigenetic regulation, metabolic control. A diversity of RNA modifications have been identified in these small non-coding RNAs, including transfer RNAs (tRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nuclear RNA (snRNA), small nucleolar RNAs (snoRNAs), and tRNA-derived small RNAs (tsRNAs). These post-transcriptional modifications are involved in the biogenesis and function of these small non-coding RNAs. In this review, we will summarize the existence of RNA modifications in the small non-coding RNAs and the emerging roles of these epitranscriptomic marks.

Keywords: RNA modification, Small non-coding RNAs, Biogenesis, Function

1. Introduction

More than 150 types of chemical modifications have been documented in RNAs, and these post-transcriptional modifications play profound roles in influencing RNA biogenesis and maintaining their biological functions [[1], [2], [3], [4], [5]]. RNA modifications are involved in many aspects of RNA metabolism including transcription, splicing, localization, stability, and translation through affecting RNA structure, base-pairing properties of RNA, and interactions with other molecules. Development of detection technologies and functional studies of those RNA modifications give rise to an emerging research field called epitranscriptome or RNA epigenetics [[6], [7], [8]].

Small non-coding RNAs are RNA molecules with a length of 18–200 nucleotides (nt), including transfer RNAs (tRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nuclear RNA (snRNA), small nucleolar RNAs (snoRNAs), and tRNA-derived small RNAs (tsRNAs) [9,10]. These small non-coding RNAs participate in a multitude of distinct biological processes including RNA transcription, processing, RNA decay, and translation. Besides, these regulatory small non-coding RNAs are also involved in various physiological and pathological processes, including tumorigenesis, neuron development and metabolic disorders [[11], [12], [13]]. Benefiting from the development of sensitive and robust RNA modification detection technologies, a diverse set of chemical modifications are identified in small non-coding RNAs [7,14](Fig. 1). Emerging evidence shows that these chemical modifications play pivotal roles in maintaining the proper structure and function of these small non-coding RNAs [15]. As the function of modifications in tRNAs has been well-summarized by several excellent reviews [16,17], here we will mainly focus on the epitranscriptome of miRNAs, piRNAs, snRNA, snoRNAs, and tsRNAs.

Fig. 1.

Fig. 1

Schematic depicting small non-coding RNAs and RNA modifications. Here, we show several small non-coding RNAs' secondary structure and mark the major modifications with different colored circle. Modification types are listed aside. Pri-miRNA, primary miRNA; pre-miRNA, miRNA precursor; miRNA, microRNA; piRNA, PIWI-interacting RNA; snRNA, small nuclear RNA; snoRNA, small nucleolar RNA; tsRNA, transfer RNA-derived small RNA; m6A, 6-methyladenosine; A to I, adenosine to inosine editing; m7G, 7-methylguanidine; o8G, 8-oxoguanine; Uridylation, addition of non-templated uridine(s) to the 3′ end of RNAs; 2′-O-Me, 2′-O ribose methylation; 5′Pme2, 5′ phosphodimethylation; 8-OHG, oxidatively modified 8-hydroxyguanosine; m6Am, N6,2'-O-dimethyladenosine; TMG, 2,2,7-trimethylguanosine; Ψ, pseudouridylation; m5C, 5-methylcytosin; m2G, 2-methylguanidine; Q, Queuosine; m1A, N1-methyladenine; m3C, N3-methylcytidine; m1G, N1-methylguanine; hm5C, 5-hydroxymethylcytosine; mcm5S2, 5-methoxycarbonylmethyl-2-thiouridine.

2. Chemical modifications in miRNA

MicroRNAs (miRNAs), with a length of ∼22 nucleotides (nt), play important roles in regulating gene expression [[18], [19], [20], [21]]. The DNA sequences are first transcribed to primary-microRNAs (pri-miRNAs) and further processed into precursor-microRNA (pre-miRNAs) by DGCR8/Drosha [20]. Then the pre-miRNAs are exported to the cytoplasm and cleaved by Dicer to release miRNA duplex. One strand of miRNA duplex associates with Argonaute (AGO) protein and forms RNA-induced silencing complexes (RISCs) to repress translation or promote mRNA decay [18].

Several post-transcriptional modifications have been identified in miRNAs or miRNA precursors and are involved in affecting their biogenesis and function [[22], [23], [24]]. N6-methyladenosine (m6A) is one of the most prevalent RNA modifications in eukaryotic cells and it influences miRNA biogenesis and function from several distinct aspects. For example, recent studies have shown that m6A methylation on pri-miRNAs enhances DGCR8 recognition and binding to its substrates, and thus promotes the maturation of miRNA [[25], [26], [27]]. Mechanistically, further study showed that m6A-methylated pri-miRNA can recruit HNRNPA2B1, which facilitates the binding of DGCR8 to the methylated transcripts [28]. In addition, m6A methylation in pre-miRNA affects the cleavage of Dicer and consequently promotes mature miRNAs biogenesis [29]. On the other hand, miRNAs can also regulate m6A methylation by modulating METTL3 binding to mRNAs [30]. m6A methylations are involved in several pathological processes through affecting the biogenesis or stability of the miRNAs that targeting oncogenes or tumor suppressors. For instance, m6A on pre-miR-143-3p and pri-miR221/222 promotes the biogenesis of the corresponding mature miRNAs, and further promote brain metastasis and bladder carcinogenesis, respectively [27,29,31,32]. Non-templated uridine(s) addition is another important modification occurring in miRNA. Mono-uridylation and oligo-uridylation of miRNA can have both positive and negative effects on its biogenesis, respectively [33,34]. For instance, Mono-uridylation of let-7 and miR-105, catalyzed by TUT7/4/2, promotes subsequent Dicer processing and increases the mature microRNA levels [35,36]. However, TUT4-mediated 3′ RNA poly-uridylation blocks the biogenesis of let-7 miRNA [[37], [38], [39]]. Notably, let-7 miRNAs act as tumor suppressors by negatively regulating numerous oncogenes including c-Myc and RAS, and hence uridylation also participate in miRNA-mediated tumorigenesis [[40], [41], [42]]. Besides, ADARs-mediated Adenosine to Inosine (A to I) editing is also prevalent in mature miRNA and miRNA precursors [43,44]. A-to-I editing in miRNA precursors can interfere with both cleavage by Drosha/Dicer and AGO loading, and hence affects miRNA biogenesis. RNA editing events in mature miRNA alter miRNA-mRNA interaction and thus affect miRNA targeting specificity and efficiency [45]. miRNA editing plays important roles in both physiological and pathological process, including postnatal development, aging and metabolic processes [[46], [47], [48]]. For instance, the increased A to I editing level on miR-381 and miR-376b influences their targeting specificity, and thus affect dendritic outgrowth [47]. Besides, downregulation of the editing level on miR-589 promotes glioblastoma cancer cell migration and invasion [49].

Except these well-documented RNA modifications, several novel modifications are also identified in miRNAs, including N7-methylguanosine (m7G), 2′-O-methylation (2′-O-Me), 5′ phosphodimethylation (5′Pme2) and 8-oxoguanine (o8G). Owing to the development of several m7G sequencing technologies, m7G methylation sites are identified in miRNA [[50], [51], [52]]. And the modified sites, catalyzed by METTL1, are located in a subset of miRNAs including let-7 family miRNAs. m7G methylation destroys the secondary structure within the pri-miRNA transcript and thus regulates miRNA biogenesis and structure [51]. In plants and drosophila, 2′-O-methylation exists in the 3′-terminal of miRNAs, which is catalyzed by a methyltransferase HEN1, and this is a crucial step in miRNA biogenesis [53,54]. In addition, 2′-O-methylation has also been identified in the 3′-terminal of mammalian miRNAs and plays an important role in enhancing miRNA stability and association with AGO2 [55]. Although HENMT1, a HEN1 homologue, has been identified in mammalian cells, whether it is responsible for the 2′-O-methylation in mammalian miRNAs remains unknown. 5′Pme2 in miRNAs is catalyzed by BCDIN3D and negatively regulates miRNA maturation by antagonizing the Dicer-dependent processing [56]. 8-oxoguanine (o8G) is identified in seed regions (positions 2–8) of selective miRNAs such as miR-1 and interferes the interaction between miRNA and targeting mRNA through o8G•A base pairing. This position-specific oxidation of miRNAs serves as a post-transcriptional mechanism to coordinate pathophysiological redox-mediated gene expression [57]. Excessive reactive oxygen species (ROS) can cause cell-damaging effects through oxidatively modifying guanine to 8-hydroxyguanine (8-OHG) in miRNAs. Upon oxidatively modified, miR-184 associates with the 3′ UTRs of Bcl-xL and Bcl-w, leading to the initiation of apoptosis, which is related to cancers, aging, and neurodegenerative and cardiovascular diseases [58].

Except the direct roles of RNA modifications in miRNAs, recent studies revealed that some RNA modifying enzymes can function independently of their catalytic activity. For instance, the pseudouridine synthase, PUS10, promotes miRNA biogenesis via enhance interaction between pri-miRNAs and microprocessor proteins [59]; Another pseudouridine synthase, TRUB1 functions in a similar manner and regulates the maturation of let-7 miRNA [60]. Whether there are other RNA modification related proteins function in the similar manner are still worth to be investigated.

3. Chemical modifications in piRNA

piRNAs, with 23–32 nt in length, is a kind of animal-specific small non-coding RNAs originating from single-stranded precursors [[61], [62], [63]]. Ranging from hydra to humans, the ancestral function of piRNAs is silencing transposons in the germ line [62,64]. Mosquitoes also use piRNAs to fight against viral infections in the soma [65].

piRNAs are methylated by an S-adenosylmethionine (SAM)-dependent methyltransferase (Hen1 in flies; HENN-1 in worms; HENMT1 in mice) [[66], [67], [68], [69]], and forming 2′-O-methylation (2′-O-Me) at the 3ʹ ends of pre-piRNA, which influences piRNA biogenesis [[70], [71], [72], [73], [74]]. In detail, it has been reported that Hili, one of the human PIWI proteins, exhibits a higher binding affinity to RNAs containing 2′-OCH3 but not 2′-OH. And thus, RNA harboring 2′-O-Me tends to the formation of piRISC (piRNA-induced silencing complexes) [75,76]. This character is also supported by the studies of homologues of Hili in other species including Siwi (silkworm) and Miwi (mouse) [75,77]. 2ʹ- O–Me as a defining feature of piRNA, which improves stability of piRNA by protecting piRNA from non-templated nucleotide addition and RNA decay [70,71,78]. Although the link between piRNA and cancers has been established, the role of 2ʹ-O-Me in these pathological processes remains unclear and needs to be further explored [79].

4. Chemical modifications in snRNA

Small nuclear RNAs (snRNAs), with approximately 150 nt in length in mammals, are critical components of the spliceosome and involved in RNA splicing [80,81]. RNA-RNA and RNA-protein interactions between snRNA and other molecules are essential to correctly position the spliceosome on substrate pre-mRNAs [82].

The most abundant modifications in snRNAs are pseudouridine (Ψ) and 2′-O-Me, and majority of these modifications are catalyzed in RNA-dependent manners by box H/ACA RNP and box C/D RNP in eukaryotes [83]. Moreover, RNA-independent pseudouridine synthases, including PUS1 and PUS7, are also responsible for several Ψ sites in snRNA [[84], [85], [86], [87]]. Pseudouridylation often occurs in the conserved and functional regions of snRNA, indicating that Ψ can influence snRNA function. For instance, both the mammalian cell free system and the Xenopus oocyte reconstitution system showed that Ψ in U2 snRNA are necessary for complete snRNP assembly and further pre-mRNA splicing [[88], [89], [90], [91]]. Besides Ψ and 2′-O-Me, m6A and N6,2′-O-dimethyladenosine (m6Am) are also present in several snRNAs. m6A methylation at position 43 in mammalian U6 snRNA is catalyzed by METTL16 and plays an important role in facilitating efficient recognition of the splice sites [[92], [93], [94], [95], [96], [97]]. Also, m6Am30 in U2 snRNA, catalyzed by METTL4, is important for proper pre-mRNA splicing and lack of m6Am in U2 snRNA leads to over 1000 significantly altered splicing events [98,99]. Besides, several other post-transcriptional modifications have also been identified in snRNAs, including 5-methylcytosine (m5C) [100], 5′ γ-monomethyl cap in nascent U6 transcript catalyzed by MEPCE [101], 3′ end oligouridylation catalyzed by TUTase [102], and 2,2,7-trimethylguanosine (TMG) catalyzed by TGS1. TMG cap also regulates pre-mRNA splicing and depletion of tgs1 leads to embryo lethality in mice and Drosophila [103].

5. Chemical modifications in snoRNA

snoRNAs, with a length of 60–300 nt, are crucial small non-coding RNAs in all eukaryotic organisms and guides posttranscriptional modifications on ribosomal (rRNAs) and snRNAs [104,105].

Classified by sequences and binding proteins, there are two types of snoRNA, including box C/D snoRNA (core proteins including FBL, NOP56, NOP58, and SNU13) and box H/ACA snoRNA (core proteins including DKC1, NHP2, NOP10, and GAR1). Box C/D snoRNAs form a closed loop (boxC/D), which contained special conserved RUGAUGA and CUGA motifs, and box H/ACA snoRNAs is usually composed by two stem-loops which is linked by the H box (ANANNA motif) and an ACA sequence near the 3’ end [106,107]. Six Ψ sites were identified in snoRNAs, with four within C/D box snoRNAs, and two in H/ACA box snoRNAs. All four Ψ sites in C/D box snoRNAs occurred in the 5′ terminus of the snoRNA guiding sequence, but the function of these pseudouridylations is still unknown [87]. m6A methylations are also identified in snoRNAs, which can be demethylated by the mRNA demethylase FTO, and impacts box C/D snoRNP assembly through affecting the formation of trans Hoogsteen-sugar A·G base pairs [[108], [109], [110]].

6. Chemical modifications in tsRNA

tsRNAs are a class of small non-coding regulatory RNAs, derived from tRNA. Emerging studies elucidated that tsRNAs take an important part in post-transcriptional regulation [[111], [112], [113], [114]]. Ranging from prokaryotes to eukaryotes, many tsRNAs have been discovered in diverse species with the advent of deep-sequencing [[115], [116], [117]]. Originating from mature tRNAs or precursor tRNAs, tsRNAs play distinct roles in various biological processes, including interactions with proteins or RNAs, translation inhibition, chromatin regulation, and epigenetic modifications [118,119].

As derived from the heavily modified tRNAs, tsRNAs also harbor many post-transcriptional modifications [[120], [121], [122]]. Among these modifications, m5C methylation has been well studied and demonstrated to influence both tsRNAs biogenesis and biological functions. tiRNAs are generated by stress-induced tRNA cleavage mediated by endonuclease angiogenin (ANG). m5C38 in tRNA are methylated by DNMT2 and m5C34, m5C48, m5C49, or m5C50 are catalyzed by NSUN2 [[123], [124], [125], [126]]. And the biogenesis of tiRNA can be affected by m5C methylation which inhibits ANG binding to the methylated tRNA and therefore increases tRNA stability [127]. Hence, the lack of m5C leads to the accumulation of tiRNAs, and further reduced protein translation rate and codon mistranslation [128,129]. In addition, RNA modifications also influence tsRNA function. For instance, recent studies showed that, tsRNAs are involved in paternal epigenetic memory [130,131], and DNMT2-mediated m5C and m2G methylation are essential for this process [130,132]. Besides, TET2, the dioxygenase, which oxidizes m5C to hm5C, can also regulate distinct types of tsRNA processing [133].

Moreover, other prevalent methylations in tRNAs including N1-methyladenine (m1A), N3-methylcytidine (m3C), and N1-methylguanine (m1G) [[134], [135], [136]], also inhibit ANG-mediated tRNA cleavage and further decrease tsRNA production. Knockout of m1A and m3C demethylase ALKBH3 leads to hypermethylated tRNAs and decrease the abundance of 5′-tsRNAs [134]. TRMT10A deficiency leads to m1G9 hypomethylated tRNA and further induces the accumulation of tsRNAGln [135]. Another abundant tRNA modification, Ψ, is also involved in tsRNA biogenesis and function. PUS7 mediated Ψ8 promotes 18 nt 5'terminal oligoguanine tRF-5s (mTOGs) biogenesis. Besides, the mTOGs harboring Ψ also represses translation initiation by displacing eIF4A/G from the m7G cap, which further impacts hematopoiesis [137].

Besides these abundant modifications, several other chemical modifications are also involved in regulating tsRNA biogenesis. Queuosine (Q) is a hyper-modified 7-deaza-guanosine occurring at the wobble anticodon position 34 of four tRNAs (tRNAHis, tRNAAsn, tRNATyr, and tRNAAsp). Q in tRNA is catalyzed by the heterodimeric enzyme QTRT1/QTRT2 and can protect its cognate tRNA against ANG cleavage [138]. An unanticipated role of Q34 modification is that it promotes DNMT2-mediated m5C38 methylation in tRNAAsp, revealing the crosstalk between distinct modifications [139,140]. SNORD97 and SCARNA97 mediated Cm34 in human elongator tRNAMet can also prevent site-specific cleavage of ANG and reduce tsRNA production [141]. In addition, 5-methoxycarbonylmethyl-2-thiouridine (mcm5S2) at the anticodon wobble position U34 plays the opposite role in tsRNA biogenesis which enhances the cleavage activity of tRNA endonuclease γ-toxin in yeast [142]. As more than 90 chemical modifications occurs in tRNA, whether there are other chemical modifications and modifying enzymes involved in regulating tsRNA biogenesis and function is still needed to be elucidated.

7. Summary

Until now, enriched knowledge of chemical modifications in small non-coding RNAs have been achieved. And for a certain chemical modification, it can occur in various RNA species, nevertheless the writer protein (modifying enzyme) and reader protein (binding protein) may be distinct, which are mainly dependent on the catalytic machinery and binding properties of the related proteins (Table 1). Therefore, the same chemical modification may play distinct roles in different RNA species.

Table 1.

The epitranscriptome of small non-coding RNAs.

SncRNAs Species Described Chemical Modifiction Writers Readers
miRNA m6A METTL3/ METTL14 HNRNPA2B1/ HNRNPC
m7G METTL1 /
2′-O-Me HEN1 /
5′Pme2 BCDIN3D /
Uridylation TUT7/4/2 /
A to I ADARs /
o8G / /
8-OHG / /
piRNA 2′-O-Me HEN1
snRNA Ψ Box H/ACA RNP/ Pus1 and Pus7 /
2′-O-Me Box C/D RNP /
m6A METTL16 /
m6Am METTL4 /
TMG TGS1 /
m5C / YPS
snoRNA Ψ Box H/ACA RNP /
m6A / /
tsRNA m5C DNMT2/ NSUN2 /
m2G DNMT2 /
Q QTRT1/QTRT2 /
2′-O-Me TRM7/FTSJ1 /
m1A TRMT6/61A /
m3C METTL2/ METTL6 /
m1G TRMT10A /
hm5C TET2 /
Ψ PUS7 /
mcm5S2 / /

To comprehensively understand the epitranscriptome of small non-coding RNAs, much work is still needed. Firstly, robust RNA modification detection technologies for small non-coding RNAs are urgent to be developed to identify novel types and precise positions of chemical modifications. As most existing RNA modification sequencing technologies use the polyA-enriched RNA or small RNA depleted RNA as the starting materials, detection technologies for the low abundance of small non-coding RNAs are still lack. Secondly, as several distinct chemical modifications have been identified in small non-coding RNAs, the crosstalk between those chemical modifications are needed to be elucidated. Lastly, emerging evidence has shown that the catalytic-independent functions of RNA modifying enzymes participate in the regulation of small non-coding RNA biogenesis, and cautions are needed to be taken to distinguish the non-canonical roles of modification enzymes and RNA modifications. Collectively, we summarize our current knowledge of these intriguing RNA modifications in small non-coding RNA functions, and we believe that a more comprehensive understanding of those epitranscriptomic marks in small non-coding RNA will spring up in the future.

Funding

This work was supported by the Ministry of Science and Technology of China (no. 2019YFA0802200 and no.2019YFA0110900) and the National Natural Science Foundation of China (21825701 to C·Y.). The authors apologize for not being able to cite all the publications related to this topic owing to space constraints of the journal.

Declaration of competing interest

The authors declare no conflict of interest.

Acknowledgments

We thank Liang Lu, Yan Zhang and Liaoliao Gao for the kind help in the manuscript preparation. The authors apologize for not being able to cite all the publications related to this topic owing to space constraints of the journal.

References

  • 1.Boccaletto P., Machnicka M.A., Purta E., Piatkowski P., Baginski B., Wirecki T.K., de Crecy-Lagard V., Ross R., Limbach P.A., Kotter A., et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46:D303–D307. doi: 10.1093/nar/gkx1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Frye M., Harada B.T., Behm M., He C. RNA modifications modulate gene expression during development. Science. 2018;361:1346–1349. doi: 10.1126/science.aau1646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Frye M., Jaffrey S.R., Pan T., Rechavi G., Suzuki T. RNA modifications: what have we learned and where are we headed? Nat. Rev. Genet. 2016;17:365–372. doi: 10.1038/nrg.2016.47. [DOI] [PubMed] [Google Scholar]
  • 4.Helm M., Motorin Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat. Rev. Genet. 2017;18:275–291. doi: 10.1038/nrg.2016.169. [DOI] [PubMed] [Google Scholar]
  • 5.Roundtree I.A., Evans M.E., Pan T., He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169:1187–1200. doi: 10.1016/j.cell.2017.05.045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.He C. Grand challenge commentary: RNA epigenetics? Nat. Chem. Biol. 2010;6:863–865. doi: 10.1038/nchembio.482. [DOI] [PubMed] [Google Scholar]
  • 7.Li X., Xiong X., Yi C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat. Methods. 2016;14:23–31. doi: 10.1038/nmeth.4110. [DOI] [PubMed] [Google Scholar]
  • 8.Saletore Y., Meyer K., Korlach J., Vilfan I.D., Jaffrey S., Mason C.E. The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 2012;13:175. doi: 10.1186/gb-2012-13-10-175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Bartel D.P. Metazoan MicroRNAs. Cell. 2018;173:20–51. doi: 10.1016/j.cell.2018.03.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Cech T.R., Steitz J.A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157:77–94. doi: 10.1016/j.cell.2014.03.008. [DOI] [PubMed] [Google Scholar]
  • 11.Esteller M. Non-coding RNAs in human disease. Nat. Rev. Genet. 2011;12:861–874. doi: 10.1038/nrg3074. [DOI] [PubMed] [Google Scholar]
  • 12.Gebetsberger J., Wyss L., Mleczko A.M., Reuther J., Polacek N. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol. 2017;14:1364–1373. doi: 10.1080/15476286.2016.1257470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Stefani G., Slack F.J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol. 2008;9:219–230. doi: 10.1038/nrm2347. [DOI] [PubMed] [Google Scholar]
  • 14.Motorin Y., Marchand V. Analysis of RNA modifications by second- and third-generation deep sequencing: 2020 update. Genes. 2021;12 doi: 10.3390/genes12020278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Zhang X., Cozen A.E., Liu Y., Chen Q., Lowe T.M. Small RNA modifications: integral to function and disease. Trends Mol. Med. 2016;22:1025–1034. doi: 10.1016/j.molmed.2016.10.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Pan T. Modifications and functional genomics of human transfer RNA. Cell Res. 2018;28:395–404. doi: 10.1038/s41422-018-0013-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Suzuki T. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 2021;22:375–392. doi: 10.1038/s41580-021-00342-0. [DOI] [PubMed] [Google Scholar]
  • 18.Ha M., Kim V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014;15:509–524. doi: 10.1038/nrm3838. [DOI] [PubMed] [Google Scholar]
  • 19.Kim V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 2005;6:376–385. doi: 10.1038/nrm1644. [DOI] [PubMed] [Google Scholar]
  • 20.Kim V.N., Han J., Siomi M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 2009;10:126–139. doi: 10.1038/nrm2632. [DOI] [PubMed] [Google Scholar]
  • 21.Lewis B.P., Burge C.B., Bartel D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20. doi: 10.1016/j.cell.2004.12.035. [DOI] [PubMed] [Google Scholar]
  • 22.Michlewski G., Caceres J.F. Post-transcriptional control of miRNA biogenesis. RNA. 2019;25:1–16. doi: 10.1261/rna.068692.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Nachtergaele S., He C. The emerging biology of RNA post-transcriptional modifications. RNA Biol. 2017;14:156–163. doi: 10.1080/15476286.2016.1267096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Yao Q., Chen Y., Zhou X. The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol. 2019;51:11–17. doi: 10.1016/j.cbpa.2019.01.024. [DOI] [PubMed] [Google Scholar]
  • 25.Alarcon C.R., Lee H., Goodarzi H., Halberg N., Tavazoie S.F. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015;519:482–485. doi: 10.1038/nature14281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Chen X., Xu M., Xu X., Zeng K., Liu X., Sun L., Pan B., He B., Pan Y., Sun H., et al. METTL14 suppresses CRC progression via regulating N6-methyladenosine-dependent primary miR-375 processing. Mol. Ther. 2020;28:599–612. doi: 10.1016/j.ymthe.2019.11.016. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 27.Han X., Guo J., Fan Z. Interactions between m6A modification and miRNAs in malignant tumors. Cell Death Dis. 2021;12:598. doi: 10.1038/s41419-021-03868-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Alarcon C.R., Goodarzi H., Lee H., Liu X., Tavazoie S., Tavazoie S.F. HNRNPA2B1 is a mediator of m(6)a-dependent nuclear RNA processing events. Cell. 2015;162:1299–1308. doi: 10.1016/j.cell.2015.08.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Wang H., Deng Q., Lv Z., Ling Y., Hou X., Chen Z., Dinglin X., Ma S., Li D., Wu Y., et al. N6-methyladenosine induced miR-143-3p promotes the brain metastasis of lung cancer via regulation of VASH1. Mol. Cancer. 2019;18:181. doi: 10.1186/s12943-019-1108-x. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
  • 30.Chen T., Hao Y.J., Zhang Y., Li M.M., Wang M., Han W., Wu Y., Lv Y., Hao J., Wang L., et al. m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. 2015;16:289–301. doi: 10.1016/j.stem.2015.01.016. [DOI] [PubMed] [Google Scholar]
  • 31.Chen Z., Chen X., Lei T., Gu Y., Gu J., Huang J., Lu B., Yuan L., Sun M., Wang Z. Integrative analysis of NSCLC identifies LINC01234 as an oncogenic lncRNA that interacts with HNRNPA2B1 and regulates miR-106b biogenesis. Mol. Ther. 2020;28:1479–1493. doi: 10.1016/j.ymthe.2020.03.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Han J., Wang J.Z., Yang X., Yu H., Zhou R., Lu H.C., Yuan W.B., Lu J.C., Zhou Z.J., Lu Q., et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol. Cancer. 2019;18:110. doi: 10.1186/s12943-019-1036-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Menezes M.R., Balzeau J., Hagan J.P. 3' RNA uridylation in epitranscriptomics, gene regulation, and disease. Front Mol Biosci. 2018;5:61. doi: 10.3389/fmolb.2018.00061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Yu S., Kim V.N. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat. Rev. Mol. Cell Biol. 2020;21:542–556. doi: 10.1038/s41580-020-0246-8. [DOI] [PubMed] [Google Scholar]
  • 35.Heo I., Ha M., Lim J., Yoon M.J., Park J.E., Kwon S.C., Chang H., Kim V.N. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell. 2012;151:521–532. doi: 10.1016/j.cell.2012.09.022. [DOI] [PubMed] [Google Scholar]
  • 36.Kim H., Kim J., Yu S., Lee Y.Y., Park J., Choi R.J., Yoon S.J., Kang S.G., Kim V.N. A mechanism for microRNA arm switching regulated by uridylation. Mol. Cell. 2020;78:1224–1236. doi: 10.1016/j.molcel.2020.04.030. e1225. [DOI] [PubMed] [Google Scholar]
  • 37.Chang H.M., Triboulet R., Thornton J.E., Gregory R.I. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature. 2013;497:244–248. doi: 10.1038/nature12119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Hagan J.P., Piskounova E., Gregory R.I. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 2009;16:1021–1025. doi: 10.1038/nsmb.1676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Yang A., Shao T.J., Bofill-De Ros X., Lian C., Villanueva P., Dai L., Gu S. AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2. Nat. Commun. 2020;11:2765. doi: 10.1038/s41467-020-16533-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Johnson S.M., Grosshans H., Shingara J., Byrom M., Jarvis R., Cheng A., Labourier E., Reinert K.L., Brown D., Slack F.J. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–647. doi: 10.1016/j.cell.2005.01.014. [DOI] [PubMed] [Google Scholar]
  • 41.Kim H.H., Kuwano Y., Srikantan S., Lee E.K., Martindale J.L., Gorospe M. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 2009;23:1743–1748. doi: 10.1101/gad.1812509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Sampson V.B., Rong N.H., Han J., Yang Q., Aris V., Soteropoulos P., Petrelli N.J., Dunn S.P., Krueger L.J. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 2007;67:9762–9770. doi: 10.1158/0008-5472.CAN-07-2462. [DOI] [PubMed] [Google Scholar]
  • 43.Gebert L.F.R., MacRae I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019;20:21–37. doi: 10.1038/s41580-018-0045-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Yang W., Chendrimada T.P., Wang Q., Higuchi M., Seeburg P.H., Shiekhattar R., Nishikura K. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol. 2006;13:13–21. doi: 10.1038/nsmb1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Shoshan E., Mobley A.K., Braeuer R.R., Kamiya T., Huang L., Vasquez M.E., Salameh A., Lee H.J., Kim S.J., Ivan C., et al. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat. Cell Biol. 2015;17:311–321. doi: 10.1038/ncb3110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Correia de Sousa M., Gjorgjieva M., Dolicka D., Sobolewski C., Foti M. Deciphering miRNAs' action through miRNA editing. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20246249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Ekdahl Y., Farahani H.S., Behm M., Lagergren J., Ohman M. A-to-I editing of microRNAs in the mammalian brain increases during development. Genome Res. 2012;22:1477–1487. doi: 10.1101/gr.131912.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Warnefors M., Liechti A., Halbert J., Valloton D., Kaessmann H. Conserved microRNA editing in mammalian evolution, development and disease. Genome Biol. 2014;15:R83. doi: 10.1186/gb-2014-15-6-r83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Cesarini V., Silvestris D.A., Tassinari V., Tomaselli S., Alon S., Eisenberg E., Locatelli F., Gallo A. ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion. Nucleic Acids Res. 2018;46:2045–2059. doi: 10.1093/nar/gkx1257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Lin S., Liu Q., Lelyveld V.S., Choe J., Szostak J.W., Gregory R.I. Mettl1/Wdr4-Mediated m(7)G tRNA methylome is required for normal mRNA translation and embryonic stem cell self-renewal and differentiation. Mol. Cell. 2018;71:244–255 e245. doi: 10.1016/j.molcel.2018.06.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Pandolfini L., Barbieri I., Bannister A.J., Hendrick A., Andrews B., Webster N., Murat P., Mach P., Brandi R., Robson S.C., et al. METTL1 promotes let-7 MicroRNA processing via m7G methylation. Mol. Cell. 2019;74:1278–1290. doi: 10.1016/j.molcel.2019.03.040. e1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Zhang L.S., Liu C., Ma H., Dai Q., Sun H.L., Luo G., Zhang Z., Zhang L., Hu L., Dong X., et al. Transcriptome-wide mapping of internal N(7)-methylguanosine methylome in mammalian mRNA. Mol. Cell. 2019;74:1304–1316. doi: 10.1016/j.molcel.2019.03.036. e1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Ji L., Chen X. Regulation of small RNA stability: methylation and beyond. Cell Res. 2012;22:624–636. doi: 10.1038/cr.2012.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Yu B., Yang Z., Li J., Minakhina S., Yang M., Padgett R.W., Steward R., Chen X. Methylation as a crucial step in plant microRNA biogenesis. Science. 2005;307:932–935. doi: 10.1126/science.1107130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Liang H., Jiao Z., Rong W., Qu S., Liao Z., Sun X., Wei Y., Zhao Q., Wang J., Liu Y., et al. 3'-Terminal 2'-O-methylation of lung cancer miR-21-5p enhances its stability and association with Argonaute 2. Nucleic Acids Res. 2020;48:7027–7040. doi: 10.1093/nar/gkaa504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Xhemalce B., Robson S.C., Kouzarides T. Human RNA methyltransferase BCDIN3D regulates microRNA processing. Cell. 2012;151:278–288. doi: 10.1016/j.cell.2012.08.041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Seok H., Lee H., Lee S., Ahn S.H., Lee H.S., Kim G.D., Peak J., Park J., Cho Y.K., Jeong Y., et al. Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature. 2020;584:279–285. doi: 10.1038/s41586-020-2586-0. [DOI] [PubMed] [Google Scholar]
  • 58.Wang J.X., Gao J., Ding S.L., Wang K., Jiao J.Q., Wang Y., Sun T., Zhou L.Y., Long B., Zhang X.J., et al. Oxidative modification of miR-184 enables it to target bcl-xL and bcl-w. Mol. Cell. 2015;59:50–61. doi: 10.1016/j.molcel.2015.05.003. [DOI] [PubMed] [Google Scholar]
  • 59.Song J., Zhuang Y., Zhu C., Meng H., Lu B., Xie B., Peng J., Li M., Yi C. Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat. Chem. Biol. 2020;16:160–169. doi: 10.1038/s41589-019-0420-5. [DOI] [PubMed] [Google Scholar]
  • 60.Kurimoto R., Chiba T., Ito Y., Matsushima T., Yano Y., Miyata K., Yashiro Y., Suzuki T., Tomita K., Asahara H. The tRNA pseudouridine synthase TruB1 regulates the maturation of let-7 miRNA. EMBO J. 2020;39 doi: 10.15252/embj.2020104708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Czech B., Munafo M., Ciabrelli F., Eastwood E.L., Fabry M.H., Kneuss E., Hannon G.J. piRNA-guided genome defense: from biogenesis to silencing. Annu. Rev. Genet. 2018;52:131–157. doi: 10.1146/annurev-genet-120417-031441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Lau N.C., Seto A.G., Kim J., Kuramochi-Miyagawa S., Nakano T., Bartel D.P., Kingston R.E. Characterization of the piRNA complex from rat testes. Science. 2006;313:363–367. doi: 10.1126/science.1130164. [DOI] [PubMed] [Google Scholar]
  • 63.Ozata D.M., Gainetdinov I., Zoch A., O'Carroll D., Zamore P.D. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 2019;20:89–108. doi: 10.1038/s41576-018-0073-3. [DOI] [PubMed] [Google Scholar]
  • 64.Vagin V.V., Sigova A., Li C., Seitz H., Gvozdev V., Zamore P.D. A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006;313:320–324. doi: 10.1126/science.1129333. [DOI] [PubMed] [Google Scholar]
  • 65.Morazzani E.M., Wiley M.R., Murreddu M.G., Adelman Z.N., Myles K.M. Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog. 2012;8 doi: 10.1371/journal.ppat.1002470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Billi A.C., Alessi A.F., Khivansara V., Han T., Freeberg M., Mitani S., Kim J.K. The Caenorhabditis elegans HEN1 ortholog, HENN-1, methylates and stabilizes select subclasses of germline small RNAs. PLoS Genet. 2012;8 doi: 10.1371/journal.pgen.1002617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Kamminga L.M., Luteijn M.J., den Broeder M.J., Redl S., Kaaij L.J., Roovers E.F., Ladurner P., Berezikov E., Ketting R.F. Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J. 2010;29:3688–3700. doi: 10.1038/emboj.2010.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Kamminga L.M., van Wolfswinkel J.C., Luteijn M.J., Kaaij L.J., Bagijn M.P., Sapetschnig A., Miska E.A., Berezikov E., Ketting R.F. Differential impact of the HEN1 homolog HENN-1 on 21U and 26G RNAs in the germline of Caenorhabditis elegans. PLoS Genet. 2012;8 doi: 10.1371/journal.pgen.1002702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Lim S.L., Qu Z.P., Kortschak R.D., Lawrence D.M., Geoghegan J., Hempfling A.L., Bergmann M., Goodnow C.C., Ormandy C.J., Wong L., et al. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet. 2015;11 doi: 10.1371/journal.pgen.1005620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Horwich M.D., Li C., Matranga C., Vagin V., Farley G., Wang P., Zamore P.D. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 2007;17:1265–1272. doi: 10.1016/j.cub.2007.06.030. [DOI] [PubMed] [Google Scholar]
  • 71.Kirino Y., Mourelatos Z. Mouse Piwi-interacting RNAs are 2'-O-methylated at their 3' termini. Nat. Struct. Mol. Biol. 2007;14:347–348. doi: 10.1038/nsmb1218. [DOI] [PubMed] [Google Scholar]
  • 72.Kirino Y., Mourelatos Z. The mouse homolog of HEN1 is a potential methylase for Piwi-interacting RNAs. RNA. 2007;13:1397–1401. doi: 10.1261/rna.659307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Ohara T., Sakaguchi Y., Suzuki T., Ueda H., Miyauchi K., Suzuki T. The 3' termini of mouse Piwi-interacting RNAs are 2'-O-methylated. Nat. Struct. Mol. Biol. 2007;14:349–350. doi: 10.1038/nsmb1220. [DOI] [PubMed] [Google Scholar]
  • 74.Saito K., Sakaguchi Y., Suzuki T., Suzuki T., Siomi H., Siomi M.C. Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' ends. Genes Dev. 2007;21:1603–1608. doi: 10.1101/gad.1563607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Matsumoto N., Nishimasu H., Sakakibara K., Nishida K.M., Hirano T., Ishitani R., Siomi H., Siomi M.C., Nureki O. Crystal structure of silkworm PIWI-clade Argonaute Siwi bound to piRNA. Cell. 2016;167:484–497 e489. doi: 10.1016/j.cell.2016.09.002. [DOI] [PubMed] [Google Scholar]
  • 76.Tian Y., Simanshu D.K., Ma J.B., Patel D.J. Structural basis for piRNA 2'-O-methylated 3'-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proc. Natl. Acad. Sci. U. S. A. 2011;108:903–910. doi: 10.1073/pnas.1017762108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Simon B., Kirkpatrick J.P., Eckhardt S., Reuter M., Rocha E.A., Andrade-Navarro M.A., Sehr P., Pillai R.S., Carlomagno T. Recognition of 2'-O-methylated 3'-end of piRNA by the PAZ domain of a Piwi protein. Structure. 2011;19:172–180. doi: 10.1016/j.str.2010.11.015. [DOI] [PubMed] [Google Scholar]
  • 78.Gainetdinov I., Colpan C., Cecchini K., Arif A., Jouravleva K., Albosta P., Vega-Badillo J., Lee Y., Ozata D.M., Zamore P.D. Terminal modification, sequence, length, and PIWI-protein identity determine piRNA stability. Mol. Cell. 2021 doi: 10.1016/j.molcel.2021.09.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Guo B., Li D., Du L., Zhu X. piRNAs: biogenesis and their potential roles in cancer. Cancer Metastasis Rev. 2020;39:567–575. doi: 10.1007/s10555-020-09863-0. [DOI] [PubMed] [Google Scholar]
  • 80.Bohnsack M.T., Sloan K.E. Modifications in small nuclear RNAs and their roles in spliceosome assembly and function. Biol. Chem. 2018;399:1265–1276. doi: 10.1515/hsz-2018-0205. [DOI] [PubMed] [Google Scholar]
  • 81.Matera A.G., Terns R.M., Terns M.P. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat. Rev. Mol. Cell Biol. 2007;8:209–220. doi: 10.1038/nrm2124. [DOI] [PubMed] [Google Scholar]
  • 82.Karijolich J., Yu Y.T. Spliceosomal snRNA modifications and their function. RNA Biol. 2010;7:192–204. doi: 10.4161/rna.7.2.11207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Karijolich J., Yi C., Yu Y.T. Transcriptome-wide dynamics of RNA pseudouridylation. Nat. Rev. Mol. Cell Biol. 2015;16:581–585. doi: 10.1038/nrm4040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Basak A., Query C.C. A pseudouridine residue in the spliceosome core is part of the filamentous growth program in yeast. Cell Rep. 2014;8:966–973. doi: 10.1016/j.celrep.2014.07.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Massenet S., Motorin Y., Lafontaine D.L., Hurt E.C., Grosjean H., Branlant C. Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. Mol. Cell Biol. 1999;19:2142–2154. doi: 10.1128/MCB.19.3.2142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Motorin Y., Keith G., Simon C., Foiret D., Simos G., Hurt E., Grosjean H. The yeast tRNA:pseudouridine synthase Pus1p displays a multisite substrate specificity. RNA. 1998;4:856–869. doi: 10.1017/s1355838298980396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Schwartz S., Bernstein D.A., Mumbach M.R., Jovanovic M., Herbst R.H., Leon-Ricardo B.X., Engreitz J.M., Guttman M., Satija R., Lander E.S., et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell. 2014;159:148–162. doi: 10.1016/j.cell.2014.08.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Donmez G., Hartmuth K., Luhrmann R. Modified nucleotides at the 5' end of human U2 snRNA are required for spliceosomal E-complex formation. RNA. 2004;10:1925–1933. doi: 10.1261/rna.7186504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Patton J.R. Ribonucleoprotein particle assembly and modification of U2 small nuclear RNA containing 5-fluorouridine. Biochemistry. 1993;32:8939–8944. doi: 10.1021/bi00085a027. [DOI] [PubMed] [Google Scholar]
  • 90.Yu Y.T., Shu M.D., Steitz J.A. Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J. 1998;17:5783–5795. doi: 10.1093/emboj/17.19.5783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Zhao X., Yu Y.T. Pseudouridines in and near the branch site recognition region of U2 snRNA are required for snRNP biogenesis and pre-mRNA splicing in Xenopus oocytes. RNA. 2004;10:681–690. doi: 10.1261/rna.5159504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Aoyama T., Yamashita S., Tomita K. Mechanistic insights into m6A modification of U6 snRNA by human METTL16. Nucleic Acids Res. 2020;48:5157–5168. doi: 10.1093/nar/gkaa227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Ishigami Y., Ohira T., Isokawa Y., Suzuki Y., Suzuki T. A single m(6)A modification in U6 snRNA diversifies exon sequence at the 5' splice site. Nat. Commun. 2021;12:3244. doi: 10.1038/s41467-021-23457-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Mendel M., Delaney K., Pandey R.R., Chen K.M., Wenda J.M., Vagbo C.B., Steiner F.A., Homolka D., Pillai R.S. Splice site m(6)A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell. 2021;184:3125–3142. doi: 10.1016/j.cell.2021.03.062. e3125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Pendleton K.E., Chen B., Liu K., Hunter O.V., Xie Y., Tu B.P., Conrad N.K. The U6 snRNA m(6)A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 2017;169:824–835. doi: 10.1016/j.cell.2017.05.003. e814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Warda A.S., Kretschmer J., Hackert P., Lenz C., Urlaub H., Hobartner C., Sloan K.E., Bohnsack M.T. Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18:2004–2014. doi: 10.15252/embr.201744940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Watabe E., Togo-Ohno M., Ishigami Y., Wani S., Hirota K., Kimura-Asami M., Hasan S., Takei S., Fukamizu A., Suzuki Y., et al. m(6) A-mediated alternative splicing coupled with nonsense-mediated mRNA decay regulates SAM synthetase homeostasis. EMBO J. 2021;40 doi: 10.15252/embj.2020106434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Chen H., Gu L., Orellana E.A., Wang Y., Guo J., Liu Q., Wang L., Shen Z., Wu H., Gregory R.I., et al. METTL4 is an snRNA m(6)Am methyltransferase that regulates RNA splicing. Cell Res. 2020;30:544–547. doi: 10.1038/s41422-019-0270-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Goh Y.T., Koh C.W.Q., Sim D.Y., Roca X., Goh W.S.S. METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res. 2020;48:9250–9261. doi: 10.1093/nar/gkaa684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Zou F., Tu R., Duan B., Yang Z., Ping Z., Song X., Chen S., Price A., Li H., Scott A., et al. Drosophila YBX1 homolog YPS promotes ovarian germ line stem cell development by preferentially recognizing 5-methylcytosine RNAs. Proc. Natl. Acad. Sci. U. S. A. 2020;117:3603–3609. doi: 10.1073/pnas.1910862117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Yang Y., Eichhorn C.D., Wang Y., Cascio D., Feigon J. Structural basis of 7SK RNA 5'-gamma-phosphate methylation and retention by MePCE. Nat. Chem. Biol. 2019;15:132–140. doi: 10.1038/s41589-018-0188-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Trippe R., Guschina E., Hossbach M., Urlaub H., Luhrmann R., Benecke B.J. Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. RNA. 2006;12:1494–1504. doi: 10.1261/rna.87706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Cheng L., Zhang Y., Zhang Y., Chen T., Xu Y.Z., Rong Y.S. Loss of the RNA trimethylguanosine cap is compatible with nuclear accumulation of spliceosomal snRNAs but not pre-mRNA splicing or snRNA processing during animal development. PLoS Genet. 2020;16 doi: 10.1371/journal.pgen.1009098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Bratkovic T., Bozic J., Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res. 2020;48:1627–1651. doi: 10.1093/nar/gkz1140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Kufel J., Grzechnik P. Small nucleolar RNAs tell a different tale. Trends Genet. 2019;35:104–117. doi: 10.1016/j.tig.2018.11.005. [DOI] [PubMed] [Google Scholar]
  • 106.Dieci G., Preti M., Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics. 2009;94:83–88. doi: 10.1016/j.ygeno.2009.05.002. [DOI] [PubMed] [Google Scholar]
  • 107.Massenet S., Bertrand E., Verheggen C. Assembly. And trafficking of box C/D and H/ACA snoRNPs. RNA Biol. 2017;14:680–692. doi: 10.1080/15476286.2016.1243646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Koh C.W.Q., Goh Y.T., Goh W.S.S. Atlas of quantitative single-base-resolution N(6)-methyl-adenine methylomes. Nat. Commun. 2019;10:5636. doi: 10.1038/s41467-019-13561-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Mauer J., Sindelar M., Despic V., Guez T., Hawley B.R., Vasseur J.J., Rentmeister A., Gross S.S., Pellizzoni L., Debart F., et al. FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis. Nat. Chem. Biol. 2019;15:340–347. doi: 10.1038/s41589-019-0231-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Huang L., Ashraf S., Wang J., Lilley D.M. Control of box C/D snoRNP assembly by N(6)-methylation of adenine. EMBO Rep. 2017;18:1631–1645. doi: 10.15252/embr.201743967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Chen Q., Zhang X., Shi J., Yan M., Zhou T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem. Sci. 2021;46:790–804. doi: 10.1016/j.tibs.2021.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Keam S.P., Hutvagner G. tRNA-derived fragments (tRFs): emerging new roles for an ancient RNA in the regulation of gene expression. Life. 2015;5:1638–1651. doi: 10.3390/life5041638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Shigematsu M., Honda S., Kirino Y. Transfer RNA as a source of small functional RNA. J. Mol. Biol. Mol. Imag. 2014;1 [PMC free article] [PubMed] [Google Scholar]
  • 114.Su Z., Wilson B., Kumar P., Dutta A. Noncanonical roles of tRNAs: tRNA fragments and beyond. Annu. Rev. Genet. 2020;54:47–69. doi: 10.1146/annurev-genet-022620-101840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Hu J.F., Yim D., Ma D., Huber S.M., Davis N., Bacusmo J.M., Vermeulen S., Zhou J., Begley T.J., DeMott M.S., et al. Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nat. Biotechnol. 2021;39:978–988. doi: 10.1038/s41587-021-00874-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Shi J., Zhang Y., Tan D., Zhang X., Yan M., Zhang Y., Franklin R., Shahbazi M., Mackinlay K., Liu S., et al. PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nat. Cell Biol. 2021;23:424–436. doi: 10.1038/s41556-021-00652-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Wang H., Huang R., Li L., Zhu J., Li Z., Peng C., Zhuang X., Lin H., Shi S., Huang P. CPA-seq reveals small ncRNAs with methylated nucleosides and diverse termini. Cell Discov. 2021;7:25. doi: 10.1038/s41421-021-00265-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Li S., Xu Z., Sheng J. tRNA-derived small RNA: a novel regulatory small non-coding RNA. Genes. 2018;9 doi: 10.3390/genes9050246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Xie Y., Yao L., Yu X., Ruan Y., Li Z., Guo J. Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct Target Ther. 2020;5:109. doi: 10.1038/s41392-020-00217-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Cozen A.E., Quartley E., Holmes A.D., Hrabeta-Robinson E., Phizicky E.M., Lowe T.M. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods. 2015;12:879–884. doi: 10.1038/nmeth.3508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Suzuki T., Yashiro Y., Kikuchi I., Ishigami Y., Saito H., Matsuzawa I., Okada S., Mito M., Iwasaki S., Ma D., et al. Complete chemical structures of human mitochondrial tRNAs. Nat. Commun. 2020;11:4269. doi: 10.1038/s41467-020-18068-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Zheng G., Qin Y., Clark W.C., Dai Q., Yi C., He C., Lambowitz A.M., Pan T. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods. 2015;12:835–837. doi: 10.1038/nmeth.3478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Blanco S., Dietmann S., Flores J.V., Hussain S., Kutter C., Humphreys P., Lukk M., Lombard P., Treps L., Popis M., et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 2014;33:2020–2039. doi: 10.15252/embj.201489282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Blanco S., Kurowski A., Nichols J., Watt F.M., Benitah S.A., Frye M. The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate. PLoS Genet. 2011;7 doi: 10.1371/journal.pgen.1002403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Goll M.G., Kirpekar F., Maggert K.A., Yoder J.A., Hsieh C.L., Zhang X., Golic K.G., Jacobsen S.E., Bestor T.H. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 2006;311:395–398. doi: 10.1126/science.1120976. [DOI] [PubMed] [Google Scholar]
  • 126.Schaefer M., Pollex T., Hanna K., Tuorto F., Meusburger M., Helm M., Lyko F. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 2010;24:1590–1595. doi: 10.1101/gad.586710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Tuorto F., Liebers R., Musch T., Schaefer M., Hofmann S., Kellner S., Frye M., Helm M., Stoecklin G., Lyko F. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat. Struct. Mol. Biol. 2012;19:900–905. doi: 10.1038/nsmb.2357. [DOI] [PubMed] [Google Scholar]
  • 128.Ivanov P., Emara M.M., Villen J., Gygi S.P., Anderson P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell. 2011;43:613–623. doi: 10.1016/j.molcel.2011.06.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Tuorto F., Herbst F., Alerasool N., Bender S., Popp O., Federico G., Reitter S., Liebers R., Stoecklin G., Grone H.J., et al. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J. 2015;34:2350–2362. doi: 10.15252/embj.201591382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Chen Q., Yan M., Cao Z., Li X., Zhang Y., Shi J., Feng G.H., Peng H., Zhang X., Zhang Y., et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351:397–400. doi: 10.1126/science.aad7977. [DOI] [PubMed] [Google Scholar]
  • 131.Sharma U., Conine C.C., Shea J.M., Boskovic A., Derr A.G., Bing X.Y., Belleannee C., Kucukural A., Serra R.W., Sun F., et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351:391–396. doi: 10.1126/science.aad6780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Zhang Y., Zhang X., Shi J., Tuorto F., Li X., Liu Y., Liebers R., Zhang L., Qu Y., Qian J., et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat. Cell Biol. 2018;20:535–540. doi: 10.1038/s41556-018-0087-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.He C., Bozler J., Janssen K.A., Wilusz J.E., Garcia B.A., Schorn A.J., Bonasio R. TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nat. Struct. Mol. Biol. 2021;28:62–70. doi: 10.1038/s41594-020-00526-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Chen Z., Qi M., Shen B., Luo G., Wu Y., Li J., Lu Z., Zheng Z., Dai Q., Wang H. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 2019;47:2533–2545. doi: 10.1093/nar/gky1250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Cosentino C., Toivonen S., Diaz Villamil E., Atta M., Ravanat J.L., Demine S., Schiavo A.A., Pachera N., Deglasse J.P., Jonas J.C., et al. Pancreatic beta-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes. Nucleic Acids Res. 2018;46:10302–10318. doi: 10.1093/nar/gky839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136.Rashad S., Han X., Sato K., Mishima E., Abe T., Tominaga T., Niizuma K. The stress specific impact of ALKBH1 on tRNA cleavage and tiRNA generation. RNA Biol. 2020;17:1092–1103. doi: 10.1080/15476286.2020.1779492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Guzzi N., Ciesla M., Ngoc P.C.T., Lang S., Arora S., Dimitriou M., Pimkova K., Sommarin M.N.E., Munita R., Lubas M., et al. Pseudouridylation of tRNA-derived fragments steers translational control in stem cells. Cell. 2018;173:1204–1216. doi: 10.1016/j.cell.2018.03.008. e1226. [DOI] [PubMed] [Google Scholar]
  • 138.Wang X., Matuszek Z., Huang Y., Parisien M., Dai Q., Clark W., Schwartz M.H., Pan T. Queuosine modification protects cognate tRNAs against ribonuclease cleavage. RNA. 2018;24:1305–1313. doi: 10.1261/rna.067033.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Muller M., Hartmann M., Schuster I., Bender S., Thuring K.L., Helm M., Katze J.R., Nellen W., Lyko F., Ehrenhofer-Murray A.E. Dynamic modulation of Dnmt2-dependent tRNA methylation by the micronutrient queuine. Nucleic Acids Res. 2015;43:10952–10962. doi: 10.1093/nar/gkv980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Tuorto F., Legrand C., Cirzi C., Federico G., Liebers R., Muller M., Ehrenhofer-Murray A.E., Dittmar G., Grone H.J., Lyko F. Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J. 2018;37 doi: 10.15252/embj.201899777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Vitali P., Kiss T. Cooperative 2'-O-methylation of the wobble cytidine of human elongator tRNA(Met)(CAT) by a nucleolar and a Cajal body-specific box C/D RNP. Genes Dev. 2019;33:741–746. doi: 10.1101/gad.326363.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Lu J., Esberg A., Huang B., Bystrom A.S. Kluyveromyces lactis gamma-toxin, a ribonuclease that recognizes the anticodon stem loop of tRNA. Nucleic Acids Res. 2008;36:1072–1080. doi: 10.1093/nar/gkm1121. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Non-coding RNA Research are provided here courtesy of KeAi Publishing

RESOURCES