Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2021 Oct 20;41(10):1464–1472. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2021.10.04

抑制Notch1/Jagged1通路可促进大鼠骨髓间充质干细胞“归巢”并改善哮喘

Inhibition of the Notch1/Jagged1 pathway promotes homing of bone mesenchymal stem cells to improve asthma in rats

王 坤 1,2,3, 朱 慧志 4,*, 杨 磊 5, 徐 晴雯 5, 任 冯春 5, 刘 向国 6
PMCID: PMC8586851  PMID: 34755661

Abstract

目的

观察间充质干细胞(BMSCs)归巢调节哮喘Th1/Th“ 2漂移”与Notch1/Jagged1通路的关系。

方法

20只SD大鼠用随机数字表法均分为4组:正常对照组(NC)、模型对照组(MC)、BMSCs移植组(BMSCs)、BMSC+Notch抑制剂组。采用卵清蛋白致敏和激发建立哮喘模型,尾静脉注射BMSCs。HE染色观察肺组织病理形态学,酶联免疫吸附法检测肺组织白介素(IL)-5、IL-13、IFN-γ,RT-PCR法检测肺组织Notch1、Jagged1基因表达,免疫荧光染色检测支气管上皮细胞中CXCR4蛋白表达,免疫印迹法检测肺组织T-bet、GATA-3、Notch1、Jagged1蛋白表达。

结果

与NC组比较,MC组IFN-γ、T-bet蛋白表达降低,IL-5、IL-13、GATA-3蛋白表达升高,Notch1、Jagged1mRNA和蛋白表达升高(P<0.05或P<0.01)。与MC组比较,BMSCs组、BMSCs+Notch抑制剂组CXCR4、IFN-γ、T-bet蛋白表达量显著升高,BMSCs组Notch1、Jagged1蛋白表达降低,BMSCs+Notch抑制剂组IL-5、IL-13、Notch1、Jagged1mRNA和蛋白降低(P<0.05或P<0.01)。与BMSCs组比较,BMSCs+Notch抑制剂组CXCR4、IFN-γ表达升高,IL-13、Notch1mRNA表达降低(P<0.05)。

结论

BMSCs向哮喘肺组织归巢对Th1/Th2 “漂移”产生调节作用,Notch1/ Jagged1通路可能参与其过程。

Keywords: 哮喘, 骨髓间充质干细胞, 归巢, Th1/Th“2漂移”, Notch1/Jagged1信号通路


支气管哮喘是由多种细胞及细胞组分参与的气道免疫炎症性疾病[1-2],其中辅助T细胞Th1/Th“ 2漂移”在哮喘炎症的发生发展中起重要作用[3-4]。Th1/Th2间维持动态平衡是机体应对外界刺激的基本免疫调节方式[5]。哮喘作为一种免疫疾病,在过敏原刺激下其发病以Th1/Th2间平衡向Th“ 2漂移”,形成炎症反应为主要特征[6]。积极有效地调控Th1/Th“ 2漂移”是治疗哮喘的重要手段。骨髓间充质干细胞(BMSCs)是骨髓中的成体干细胞[7]。既往研究发现[8-9],BMSCs驱动的免疫调节可重新调控Th1/Th2平衡,减少Th2细胞因子,抑制嗜酸性粒细胞在肺组织的聚集,降低哮喘炎症损伤。这一过程的前提是“归巢”:组织发生炎症损伤时,BMSCs向受损部位迁移。归巢能在靶向部位发挥免疫效应。BMSCs归巢对哮喘中的免疫失衡虽有调节作用,但具体作用机制尚不明确。Notch信号通路广泛参与细胞发育、分化及免疫调节等功能活动[10]。Notch受体(Notch1等)和配体(Jagged1等)结合后,其胞内段易位至细胞核,与DNA结合转录阻遏物结合并作用,将其转化为诱导靶基因转录的转录激活复合物,活化下游靶基因的表达[11]。Notch通路中的受体Notch1和配体Jagged1是哮喘Th1/Th2平衡向Th2 “漂移”的关键因素。研究表明[12-13],Jagged1蛋白参与了Th2细胞的发育,而Notch1通过促进Th2特异性转录因子GATA-3的表达,诱导Th2细胞分化。BMSCs归巢与Notch通路均与哮喘Th1/Th“ 2漂移”关系密切,其中可能存在更深入的关联。为进一步观察Notch通路是否参与哮喘BMSCs归巢过程,本文拟通过阻断Notch信号通路研究BMSCs归巢对哮喘Th2型炎症反应的调节及归巢与Notch1/Jagged1通路的关联性。旨在推测Notch信号通路可能参与了Th1/Th“ 2漂移”和BMSCs归巢免疫调节,从而改善哮喘炎症反应。

1. 材料和方法

1.1. 材料

1.1.1. 实验动物

清洁级雄性SD大鼠(20只,体质量180~200 g),用于实验分组。4周龄清洁级雄性SD大鼠(10只,体质量80~100 g)用于骨髓间充质干细胞及哮喘支气管上皮细胞提取。以上大鼠均由安徽医科大学实验动物管理中心提供。动物伦理由安徽中医药大学动物伦理委员会批准(批号:AHUCM-rats-2019005)。

1.1.2. 主要设备和试剂

显微镜(OLYMPUS);超声雾化器(上海鱼跃医疗设备股份有限公司);荧光定量PCR仪(Thermo)。流式细胞仪(贝克曼)。卵清蛋白(OVA):V级(Sigma);酶联免疫吸附法(ELISA)试剂盒(Invitrogen);角蛋白8(keratin 8)抗体(Abcam)。CD29-异硫氰基荧光素(FITC)、CD45-FITC、CD44-藻红蛋白(PE)、CD11b/c-PE单克隆抗体(eBioscience)。PCR试剂盒(赛默飞);趋化因子受体4抗体(Proteintech);Cy3标记山羊抗兔IgG(H+L)(Beyotime);T-bet、GATA-3、Notch1、Jagged1抗体(Santa Cruz)。

1.2. 方法

1.2.1. 分组

将20只大鼠用随机数字表法分为正常对照组(NC)、模型对照组(MC)、BMSCs移植组(BMSCs)、BMSC+Notch抑制剂组,5只/组。

1.2.2. 间充质干细胞的分离、培养、鉴定

4周龄大鼠断颈处死后,取股骨并剪去两端,吸取胎牛血清+双抗溶液多次冲出骨髓细胞后吹打,1000 r/min离心5 min,弃上清,用PBS重悬细胞,以2×106/cm2密度接种,置于37 ℃、5% CO2恒温培养箱中培养。每3~4 d更换1次培养基。原代细胞融合至80%~90%左右开始传代培养,调整细胞浓度至1×106/mL,倒置显微镜下观察细胞形态。取融合达90%的第4代BMSCs,分别加入荧光标记的抗体(Anti-CD29-FITC、Anti-CD44-PE、AntiCD45-FITC、Anti-CD11b/c-PE),混匀,4 ℃避光孵育30 min,PBS漂洗2遍以去除未结合的抗体,流式细胞仪鉴定其表面标志物。

1.2.3. CFSE标记BMSCs

将荧光染料羧基荧光素二醋酸盐琥珀酰亚胺(CFSE)以DMSO溶解,配成使用液,贮存于4 ℃条件下,避免反复冻融。移植前将5×106 BMSCs细胞悬浮于2 mL 0.1% BSA/PBS内,加入2 μL CFSE工作液,置37 ℃ 10 min;4倍体积4 ℃的胎牛血清终止反应,室温5 min;PBS室温洗涤3次,第2次结束后37 ℃ 5 min;将1×106BMSCs细胞悬浮于1 mL PBS内,备用于移植。

1.2.4. 哮喘模型建立[14]及细胞移植

除正常对照组外的各组大鼠,在第0和7天腹腔注射致敏混合液(含1 mg 10%卵清蛋白和100 mg氢氧化铝凝胶),第14天将大鼠置于密闭容器内,予1%卵清蛋白雾化激发,30 min/次,1次/d,连续7 d。正常组予生理盐水替代完成上述操作。BMSCs组及BMSCs+Notch抑制剂组在激发最后一天经尾静脉将CFSE标记的1×106/mL BMSCs悬液植入体内,其余2组以PBS替代注射。BMSCs+Notch抑制剂组在激发前1 h按1 mg/kg体质量腹腔注射抑制剂,隔日1次,连续7 d。

1.2.5. 哮喘支气管上皮细胞的分离及鉴定

大鼠麻醉后在无菌环境下取出气管,清除肺组织及表面其他软组织后,灌入1%链酶蛋白酶,结扎上端,4 ℃过夜,置于90 mm培养皿中,剪开气管, 予培养基冲洗,细胞刷充分刷洗,收集培养皿中的刷洗液,离心洗涤收集细胞。1000 r/min离心5 min,弃上清,用原代细胞培养液吹打细胞后置于无菌培养瓶,置于37 ℃、5% CO2恒温培养箱中培养,备用于实验。各组分离培养获得的支气管上皮细胞与角蛋白单克隆抗体作用后,经细胞核荧光染料4', 6-二脒基-2-苯基吲哚(DAPI)染色,磷酸缓冲盐溶液(PBS)漂洗,置于荧光显微镜下观察。

1.3. 观察指标

1.3.1. 间充质干细胞归巢至肺组织观察

在BMSCs移植后24、72、144 h取大鼠肺组织,将组织剪成1~2 mm3小块,用消化酶消化,不锈钢过滤网过滤消化液,调整各组全肺单个细胞悬液浓度,采用流式细胞术和荧光显微镜分析CFSE-BMSCs(绿色)荧光强度。

1.3.2. 支气管上皮细胞CXCR4表达检测

采用免疫荧光检测支气管上皮细胞CXCR4表达。将分离培养获得的支气管上皮细胞传代,待长至80%~90%经PBS洗涤、胰酶消化,充分吹打成单细胞悬液,接种于已置玻片的6孔板。爬片以4%多聚甲醛避光固定,滴加5% BSA均匀覆盖。经CXCR4抗体(1∶100),Cy3标记山羊抗兔IgG(H+L)(1∶500)作用后,予以DAPI染色,封片,置于荧光显微镜下观察并采集图像。(DAPI紫外激发波长330~380 nm,发射波长420 nm,发蓝光;CY3激发波长510~560 nm,发射波长590 nm,发红光)。

1.3.3. 肺组织病理形态学观察

取大鼠右下肺组织,石蜡包埋,HE染色,光学显微镜下观察肺组织病理形态学变化。

1.3.4. 哮喘大鼠肺组织Th1/Th2细胞表达

检测各组大鼠肺组织IFN-γ、IL-5、IL-13的蛋白水平,操作方法按照美国Invitrogen的ELISA试剂盒操作步骤,用酶标仪测定并计算各组蛋白含量。

1.3.5. 肺组织Notch1/Jagged1通路相关基因表达

提取大鼠肺组织总mRNA,Notch1、Jagged1引物设计由上海生工合成(Notch1、Jagged1引物序列见表 1)。反转录试剂盒反转录第一链互补DNA(cDNA),PCR扩增,扩增产物进行1.5%琼脂糖电泳,UVP凝胶显像仪扫描,图像分析。以β-actin作为内源参照,使用2-ΔΔCT方法计算Notch1、Jagged1 mRNA的相对表达量。

1.

Notch1、Jagged1引物序列

Primer sequences of Notch1 and Jagged1

Gene Sequence Length (bp)
Notch1 148
 Sense primer 5'-AGGCTCTGCCGACATCA-3'
 Antisense primer 5'-AGGAAGGGGTGCTCTGG-3'
Jagged1 140
 Sense primer 5'-CAGGGATTGCCCACTTT-3'
 Antisense primer 5'-GCAGGTTTTGTTGCCATT-3'
β-actin 120
 Sense primer 5'-CCTCACTGTCCACCTTCCA-3'
 Antisense primer 5'-GGGTGTAAAACGCAGCTCA-3'

1.3.6. 肺组织T-bet、GATA-3、Notch1、Jagged1蛋白表达

将肺组织在冷的组织裂解缓冲液中均匀化、溶解,提取肺组织总蛋白。将样品放入标准蛋白样品缓冲液中煮沸,用10%三甘氨酸凝胶进行蛋白电泳,然后转移至聚偏二氟乙烯膜膜。将膜依次加入T- bet、GATA- 3、Notch1、Jagged1一抗(稀释浓度分别为1∶1000、1∶1000,1∶800、1∶1000)、二抗(山羊抗兔IgG,上海碧云天生物技术有限公司,A0516)孵育,稀释浓度为1∶5000,按照标准规程对膜进行显影。使用发光试剂盒检测试剂对这些条带进行曝光、显影。Image J量化各个条带的强度,并以相对于内参β-actin的百分比表示T-bet、GATA-3、Notch1、Jagged1蛋白表达量。

1.4. 统计学分析

采用SPSS19.0统计软件对数据进行统计分析,结果用均数±标准差表示,各组间比较采用单因素方差分析,两组间比较采用独立样本t检验,P<0.05表示差异有统计学意义。

2. 结果

2.1. 骨髓间充质干细胞、支气管上皮细胞鉴定骨髓间充质干细胞观察及鉴定

初次接种2 h后开始贴壁,细胞呈类圆形,密集分布,排列无序。原代培养7 d后,细胞开始增殖,形态呈锤形或梭形。第3代未分化间充质干细胞,形态均一呈成纤维细胞样,漩涡状分布,排列整齐有序。流式细胞仪分析发现,BMSCs表面标志物CD29、CD44呈阳性,表达量分别为97.4%、96.5%。CD45、CD11b呈阴性,表达量分别为1.62%、1.08%(图 1)。支气管上皮细胞鉴定:经DAPI染色后细胞核呈蓝色荧光,支气管上皮细胞特异性目的蛋白keratin 8的抗体表达于胞浆,呈红色荧光,鉴定为支气管上皮细胞(图 2)。

1.

1

BMSCs表面标志物CD29、CD44、CD45、CD11b表达

Expression of BMSC surface markers CD29, CD44, CD45 and CD11b.

2.

2

支气管上皮细胞鉴定

Identification of bronchial epithelial cells (Immunofluorescence staining, original magnification: ×200). A: The nuclei of bronchial epithelial cells were blue after DAPI staining; B: The cytoplasm showed red fluorescence; C: Merged image.

2.2. 骨髓间充质干细胞归巢至肺组织观察

通过将CFSE标记BMSCs移植至哮喘大鼠体内,追踪CFSE表达量来反映BMSCs在肺组织中的归巢程度。流式细胞术观察肺组织CFSE表达量发现,BMSCs体内移植后,24 h CFSE表达量为(4.89±1.65)%,72 h CFSE表达量为(14.78±4.65)%,144 h CFSE表达量为(3.07±1.06)%,CFSE在肺组织表达量随着时间推移逐渐升高,在72 h达到高峰,后逐渐降低,证明移植后BMSCs可向肺组织归巢,表明同源异体BMSCs经尾静脉注射入哮喘大鼠体内后可向肺组织迁移(图 3)。

3.

3

CFSE标记的BMSCs在哮喘大鼠肺组织中表达

Expression of CFSE-labeled BMSCs in lung tissues of asthmatic rats. A: Homing amount of CFSE+ cells at 24 h. B: Homing amount of CFSE +cells at 72 h. C: Homing amount of CFSE +cells at 144 h. D: Comparison of CFSE expression across the time points. **P < 0.01 vs 24 h; ▲▲P < 0.01 vs 72 h.

2.3. 支气管上皮细胞中CXCR4表达

NC组与MC组之间比较,MC组CXCR4表达量较NC组升高(t=2.8271、P=0.0222)。BMSCs移植及Notch抑制剂干预后发现,与NC组、MC组比较,BMSCs组、BMSCs+Notch抑制剂组CXCR4表达量均显著升高(t=2.6021、P=0.0315,t=5.8649、P=0.0004)。与BMSCs组比较,BMSCs+Notch抑制剂组CXCR4表达量升高(t=3.254、P=0.0116,图 4)。

4.

4

支气管上皮细胞中CXCR4表达

CXCR4 expression in bronchial epithelial cells (immunofluorescence staining, ×200). A: NC group; B: MC group; C: BMSCs group; D: BMSCs + Notch inhibitor group; E: Comparison of relative expression of CXCR4 among the groups. *P < 0.05, **P < 0.01 vs NC group; ΔP < 0.05, ΔΔP < 0.01 vs MC group; P < 0.05 vs BMSCs.

2.4. 肺组织病理形态学观察

NC组大鼠肺组织结构完整,支气管管腔无狭窄,管腔壁无增厚紊乱,周围无明显炎症细胞浸润。MC组大鼠肺组织结构受损明显,支气管管腔狭窄,平滑肌增生明显,周围大量炎症细胞浸润,以嗜酸性粒细胞为主,成团聚集。BMSCs组及BMSCs+Notch抑制剂组肺组织受损、管腔狭窄及炎症细胞浸润情况均较模型组有不同程度减轻(图 5)。

5.

5

各组大鼠肺组织病理形态学观察

Observation of pathologies of rat lung tissue in each group (HE staining, ×200). A: NC group; B: MC group; C: BMSCs group; D: BMSCs+Notch inhibitor group.

2.5. 肺组织Th1、Th2细胞因子表达

ELISA结果显示,与NC组比较,MC组IFN-γ表达降低(t=5.2001、P=0.0008),IL-5、IL-13表达升高(t=4.2173、P=0.0029,t=3.7989、P=0.0052)。

与MC组比较,BMSCs组、BMSCs+Notch抑制剂组IFN- γ表达升高(t=2.653、P=0.0291,t=5.4014、P= 0.0006);BMSCs+Notch抑制剂组IL-5、IL-13降低(t= 2.5386、P=0.0348,t=3.7295、P=0.0058)。BMSCs组IL-5(t=1.8189、P=0.1064)、IL-13(t=1.1298、P=0.2913)表达降低,但差异无统计学意义(P>0. 05)。

与BMSCs组比较,BMSCs+Notch抑制剂组IFN-γ表达升高(t=2.7269、P=0.0260),IL-13降低(t=2.9032、P=0.0198,表 2)。

2.

肺组织Th1/Th2细胞表达

IFN-γ, IL-5 and IL-3 expressions in the lung tissue (Mean±SD, pg/mL, n=5)

Group IFN-γ IL-5 IL-13
*P<0.05, **P<0.01 vs NC; ΔP<0.05, ΔΔP<0.01 vs MC; P<0.05 vs BMSCs.
NC 1397.348±175.864 48.374±9.615 24.342±5.965
MC 924.137±102.359** 79.305±13.286** 42.252±8.692**
BMSCs 1108.365±116.759 65.432±10.694* 36.627±6.957*
BMSCs+Notch inhibitor 1319.296±127.608ΔΔ▲ 60.189±10.344Δ 25.267±5.306ΔΔ▲

2.6. 肺组织Th1、Th2细胞特异性转录因子蛋白表达

免疫印迹结果显示,与NC组比较,MC组肺组织Th1细胞特异性转录因子T- bet蛋白表达降低(t= 5.3118、P=0.0007),Th2细胞特异性转录因子GATA-3蛋白表达升高(t=5.9062、P=0.0004)。经BMSCs移植及Notch1通路阻滞剂后,与MC组比较,BMSCs组、BMSCs+N抑制剂组T-bet蛋白表达升高(t=4.2132、P= 0.0029,t=5.9316、P=0.0003),BMSCs组、BMSCs+N抑制剂组GATA-3蛋白表达降低,但无统计学意义(P>0.05,表4,图 6)。

6.

6

肺组织Th1、Th2细胞特异性转录因子蛋白表达

Th1 and Th2 cell specific transcription factor protein expression in lung tissue.

3.

肺组织Th1、Th2细胞特异性转录因子蛋白表达

Expression of Th1 and Th2 cell-specific transcription factor proteins in the lung (Mean±SD, n=5)

Group T-bet GATA-3
*P<0.05, **P<0.01 vs NC; ΔP<0.05, ΔΔP<0.01 vs MC.
NC 1.057±0.316 0.342±0.095
MC 0.302±0.034** 1.138±0.286**
BMSCs 0.714±0.216**ΔΔ 0.876±0.147**
BMSCs+Notch inhibitor 0.924±0.232**ΔΔ 0.897±0.156**

2.7. 肺组织Notch1/Jagged1表达

RT- PCR检测结果显示,与NC组比较,MC组Notch1、Jagged1 mRNA和蛋白表达升高(P<0.01)。与MC组比较,BMSCs组Notch1、Jagged1蛋白表达降低,BMSCs+Notch抑制剂组Notch1、Jagged1mRNA和蛋白表达降低(P<0.05或P<0.01)。与BMSCs组比较,BMSCs+ Notch抑制剂组Notch1mRNA表达降低(P<0.05,表 5图 7)。

5.

肺组织Notch1/Jagged1表达

Expression of Notch1/Jagged1 in lung tissue (Mean±SD, n=5)

Group mRNA Protein
Notch1 Jagged1 Notch1 Jagged1
*P<0.05, **P<0.01 vs NC; ΔP<0.05, ΔΔP<0.01 vs MC; P<0.05 vs BMSCs.
NC 1.042±0.125 1.078±0.236 0.597±0.157 0.586±0.142
MC 2.374±0.787** 2.355±0.964** 1.036±0.305** 2.427±0.597**
BMSCs 1.996±0.414* 1.732±0.343* 0.645±0.249Δ 1.146±0.376**ΔΔ
BMSCs+Notch inhibitor 1.142±0.475*Δ▲ 1.684±0.354 0.648±0.186Δ 1.542±0.413**Δ

7.

7

肺组织Notch1、Jagged1蛋白表达

Expression of Notch1 and Jagged1 protein in lung tissue.

3. 讨论

哮喘作为免疫相关的疾病,是以Th1/Th2失衡诱发的Th2型免疫炎症占主导[15]。骨髓反应机制参与了哮喘炎症的发生发展。在过敏原刺激下,Eos/B祖细胞自骨髓释放量增多,经外周循环周转至肺,在Th2细胞因子IL-4、IL-5等调控下分化成熟,出现以嗜酸性粒细胞气道浸润为主的哮喘病理变化[16-17]。哮喘气道炎症反应是多种炎症细胞及细胞组分相互作用的结果[18]。过敏原刺激下,细胞免疫调节功能下降,导致Th1/Th2平衡向Th“ 2漂移”,Th1细胞因子(IFN-γ等)分化受抑制,Th2炎症因子(IL-5、IL-13等)大量产生,通过促进肥大细胞募集,IgE合成,嗜酸性粒细胞浸润等方式,促进哮喘炎症反应的发生发展[19-20]。本研究结果显示,与NC组比较,MC组IFN-γ表达降低,IL-5、IL-13表达升高。而Th1、Th2转录因子亦随之变化,同时大量Th2型炎性因子分化并对相关炎症介质的调控作用,致使慢性气道炎症发生及加剧。此研究结果与Abdolreza等[21]的研究结果相似。

源于骨髓的间充质干细胞具有多向分化能力,增殖性高且具有良好的免疫调节性和免疫相容性。BMSCs通过调节免疫炎症可有效改善哮喘[22]。哮喘发作时,BMSCs通过调节树突状细胞和T细胞功能,抑制相关炎症细胞的分泌,发挥免疫调节剂的作用[23]。本次研究发现,将间充质干细胞注射入哮喘大鼠体内后,支气管上皮细胞中CXCR4表达随之升高,且肺组织病理形态学改善。说明BMSCs可有效缓解哮喘炎症损伤。而改善的前提是“归巢”,“归巢”使得骨髓中休眠的BMSCs被炎症损伤部位分泌的趋化因子“唤醒”,迁移至受伤的肺组织,免疫调节炎症环境和修复受损肺组织,从而改善哮喘症状。Th1/Th“ 2漂移”即Th2型反应模式是哮喘气道炎症的重要特征,也是哮喘炎症形成的始动和维持因素。BMSCs具有免疫相容性和免疫调节的特征[24]。免疫相容性使得BMSCs不易被机体的免疫细胞识别,有效逃脱免疫系统的攻击排斥,为异体应用提供可能[25]。本研究发现,经BMSCs干预后,BMSCs组、BMSCs + Notch抑制剂组IFN-γ表达升高,IL-5、IL-13表达降低。提示在机体出现炎症反应时,受损部位释放趋化因子与BMSCs表面的趋化因子受体(CXCR4)结合,沿着趋化轴,BMSCs归巢至炎症损伤部位,调节免疫内环境,发挥抑制炎症和组织修复作用,从而改善哮喘大鼠肺组织病理形态学变化。研究表明[26],在哮喘的炎症反应中,BMSCs可通过分泌和调节生长因子、细胞因子、抗纤维化因子等实现旁分泌效应,抑制T细胞的过度活化,改变Th1/Th2平衡,缓解哮喘气道炎症。

Notch信号通路广泛参与多种组织细胞的信号识别、增殖、分化和凋亡等功能活动[27]。在哺乳动物中,Notch通路由Notch配体和Notch受体组成,它们都是I型跨膜蛋白[28]。受体与配体结合,在受体Jagged1触发后由γ-分泌酶介导的蛋白水解机制释放Notch胞内域(NICD),通过与DNA结合蛋白(DNA结合转录阻遏物)关联介导了Notch信号的传导[29]。这种蛋白质-蛋白质间的相互作用可激活下游的基因[30]。Notch信号通路参与了对BMSCs的调控。有研究发现[31],Notch信号通路可抑制间充质干细胞向成骨细胞转化。用Jagged1处理BMSCs后,BMSCs中下游的基因mRNA水平显着增加,BMSCs中的白蛋白表达被阻断。研究还发现[32],通过γ-促分泌酶抑制剂阻断Notch信号传导或敲除BMSCs中Notch信号的转录因子RBP- J可导致CXCR4表达上调,并促进BMSCs在体外和小鼠肝脏缺血/ 再灌注模型体内肝脏组织中对SDF-1的反应,说明通过阻断Notch信号传导可上调BMSCs中的CXCR4表达以达到增强BMSCs归巢能力的目的。本次研究结果显示,与NC组比较,MC组Notch1mRNA、Jagged1mRNA表达升高,Notch1、Jagged1蛋白表达升高。说明哮喘发生时存在Notch信号通路受体和配体表达的变化。而通过BMSCs植入归巢后发现,BMSCs组、BMSCs+ Notch抑制剂组Notch1mRNA、Jagged1mRNA表达降低,且BMSCs+Notch抑制剂组Jagged1蛋白降低更明显,说明抑制Notch通路过激活可促进BMSCs归巢,从而影响哮喘的进展。

综上所述,哮喘存在Th1/Th2平衡向Th2 “漂移”,且BMSCs向哮喘肺组织归巢对Th1/Th“ 2漂移”产生调节作用,而Notch1/Jagged1通路可能参与其过程,通过抑制Notch1/Jagged1通路过激活可改善哮喘炎症的发作。

Biography

王坤,医学博士,E-mail: yxwangk@163.com

Funding Statement

国家自然科学基金(81373600),安徽省教育厅高校自然科学研究项目(KJ2020A0426)

Supported by National Natural Science Foundation of China (81373600)

Contributor Information

王 坤 (Kun WANG), Email: yxwangk@163.com.

朱 慧志 (Huizhi ZHU), Email: huizhizhu87@163.com.

References

  • 1.Peebles RS. Prostaglandins in asthma and allergic diseases. Pharmacol Ther. 2019;193:1–19. doi: 10.1016/j.pharmthera.2018.08.001. [Peebles RS. Prostaglandins in asthma and allergic diseases[J]. Pharmacol Ther, 2019, 193: 1-19.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Kalmarzi RN, Rajabinejad M, Lotfi R. Immune semaphorins: Crucial regulatory signals and novel therapeutic targets in asthma and allergic diseases. Eur J Pharmacol. 2020;881:173209. doi: 10.1016/j.ejphar.2020.173209. [Kalmarzi RN, Rajabinejad M, Lotfi R. Immune semaphorins: Crucial regulatory signals and novel therapeutic targets in asthma and allergic diseases[J]. Eur J Pharmacol, 2020, 881: 173209.] [DOI] [PubMed] [Google Scholar]
  • 3.Anatriello E, Cunha M, Nogueira J, et al. Oral feeding of Lactobacillus bulgaricus N45.10 inhibits the lung inflammation and airway remodeling in murine allergic asthma: Relevance to the Th1/ Th2 cytokines and STAT6/T-bet. Cell Immunol. 2019;341:103928. doi: 10.1016/j.cellimm.2019.103928. [Anatriello E, Cunha M, Nogueira J, et al. Oral feeding of Lactobacillus bulgaricus N45.10 inhibits the lung inflammation and airway remodeling in murine allergic asthma: Relevance to the Th1/ Th2 cytokines and STAT6/T-bet[J]. Cell Immunol, 2019, 341: 103928.] [DOI] [PubMed] [Google Scholar]
  • 4.Gandhi GR, Neta MTSL, Sathiyabama RG, et al. Flavonoids as Th1/Th2 cytokines immunomodulators: a systematic review of studies on animal models. Phytomedicine. 2018;44:74–84. doi: 10.1016/j.phymed.2018.03.057. [Gandhi GR, Neta MTSL, Sathiyabama RG, et al. Flavonoids as Th1/Th2 cytokines immunomodulators: a systematic review of studies on animal models[J]. Phytomedicine, 2018, 44: 74-84.] [DOI] [PubMed] [Google Scholar]
  • 5.Yu N, Weng Y, Liu W, et al. TLRs induce Th1/Th2 responses by affecting the secretion of CCL2 at the maternal-foetal interface. Int Immunopharmacol. 2021;100:108070. doi: 10.1016/j.intimp.2021.108070. [Yu N, Weng Y, Liu W, et al. TLRs induce Th1/Th2 responses by affecting the secretion of CCL2 at the maternal-foetal interface[J]. Int Immunopharmacol, 2021, 100: 108070.] [DOI] [PubMed] [Google Scholar]
  • 6.Abdelaziz MH, Ji X, Wan J, et al. Mycobacterium-induced Th1, helminths-induced Th2 cells and the potential vaccine candidates for allergic asthma: imitation of natural infection. Front Immunol. 2021;12:696734. doi: 10.3389/fimmu.2021.696734. [Abdelaziz MH, Ji X, Wan J, et al. Mycobacterium-induced Th1, helminths-induced Th2 cells and the potential vaccine candidates for allergic asthma: imitation of natural infection[J]. Front Immunol, 2021, 12: 696734.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Zhao Y, Huang Y, Jia L, et al. A novel tension machine promotes bone marrow mesenchymal stem cell osteoblastic and fibroblastic differentiation by applying cyclic tension. https://pubmed.ncbi.nlm.nih.gov/34422062/ Stem Cells Int. 2021;2021:6647651. doi: 10.1155/2021/6647651. [Zhao Y, Huang Y, Jia L, et al. A novel tension machine promotes bone marrow mesenchymal stem cell osteoblastic and fibroblastic differentiation by applying cyclic tension[J]. Stem Cells Int, 2021, 2021: 6647651.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Zhang LB, He M. Effect of mesenchymal stromal (stem) cell (MSC) transplantation in asthmatic animal models: a systematic review and meta-analysis. Pulm Pharmacol Ther. 2019;54:39–52. doi: 10.1016/j.pupt.2018.11.007. [Zhang LB, He M. Effect of mesenchymal stromal (stem) cell (MSC) transplantation in asthmatic animal models: a systematic review and meta-analysis[J]. Pulm Pharmacol Ther, 2019, 54: 39-52.] [DOI] [PubMed] [Google Scholar]
  • 9.Du YM, Zhuansun YX, Chen R, et al. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Exp Cell Res. 2018;363(1):114–20. doi: 10.1016/j.yexcr.2017.12.021. [Du YM, Zhuansun YX, Chen R, et al. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma[J]. Exp Cell Res, 2018, 363(1): 114-20.] [DOI] [PubMed] [Google Scholar]
  • 10.Zheng ZK, Zhang B, Yu HX, et al. UBE3A activates the NOTCH pathway and promotes esophageal cancer progression by degradation of ZNF185. Int J Biol Sci. 2021;17(12):3024–35. doi: 10.7150/ijbs.61117. [Zheng ZK, Zhang B, Yu HX, et al. UBE3A activates the NOTCH pathway and promotes esophageal cancer progression by degradation of ZNF185[J]. Int J Biol Sci, 2021, 17(12): 3024-35.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Matsuno Y, Kiwamoto T, Morishima Y, et al. Notch Signaling Regulates Cell Density-dependent Apoptosis of NIH 3T3 through an IL-6/STAT3 Dependent Mechanism. Eur J Cell Biol. 2018;97(7):512–22. doi: 10.1016/j.ejcb.2018.09.001. [Matsuno Y, Kiwamoto T, Morishima Y, et al. Notch Signaling Regulates Cell Density-dependent Apoptosis of NIH 3T3 through an IL-6/STAT3 Dependent Mechanism[J]. Eur J Cell Biol, 2018, 97 (7): 512-22.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Dua B, Upadhyay R, Natrajan M, et al. Notch signaling induces lymphoproliferation, T helper cell activation and Th1/Th2 differentiation in leprosy. Immunol Lett. 2019;207:6–16. doi: 10.1016/j.imlet.2019.01.003. [Dua B, Upadhyay R, Natrajan M, et al. Notch signaling induces lymphoproliferation, T helper cell activation and Th1/Th2 differentiation in leprosy[J]. Immunol Lett, 2019, 207: 6-16.] [DOI] [PubMed] [Google Scholar]
  • 13.Xu S, Kong YG, Jiao WE, et al. Tangeretin promotes regulatory T cell differentiation by inhibiting Notch1/Jagged1 signaling in allergic rhinitis. Int Immunopharmacol. 2019;72:402–12. doi: 10.1016/j.intimp.2019.04.039. [Xu S, Kong YG, Jiao WE, et al. Tangeretin promotes regulatory T cell differentiation by inhibiting Notch1/Jagged1 signaling in allergic rhinitis[J]. Int Immunopharmacol, 2019, 72: 402-12.] [DOI] [PubMed] [Google Scholar]
  • 14.Yan Y, Liu L, Dou Z, et al. Soufeng Yuchuan decoction mitigates the ovalbumin-induced lung damage in a rat model of asthma. Biomed Pharmacother. 2020;125:109933. doi: 10.1016/j.biopha.2020.109933. [Yan Y, Liu L, Dou Z, et al. Soufeng Yuchuan decoction mitigates the ovalbumin-induced lung damage in a rat model of asthma[J]. Biomed Pharmacother, 2020, 125: 109933.] [DOI] [PubMed] [Google Scholar]
  • 15.Shrestha Palikhe N, Wu Y, Konrad E, et al. Th2 cell markers in peripheral blood increase during an acute asthma exacerbation. Allergy. 2021;76(1):281–90. doi: 10.1111/all.14543. [Shrestha Palikhe N, Wu Y, Konrad E, et al. Th2 cell markers in peripheral blood increase during an acute asthma exacerbation[J]. Allergy, 2021, 76(1): 281-90.] [DOI] [PubMed] [Google Scholar]
  • 16.Nelson RK, Bush A, Stokes J, et al. Eosinophilic Asthma. J Allergy Clin Immunol Pract. 2020;8(2):465–473. doi: 10.1016/j.jaip.2019.11.024. [Nelson RK, Bush A, Stokes J, et al. Eosinophilic Asthma[J]. J Allergy Clin Immunol Pract, 2020, 8(2): 465-473.] [DOI] [PubMed] [Google Scholar]
  • 17.Humbert M, Albers FC, Bratton DJ, et al. Effect of mepolizumab in severeeosinophilic asthma according to omalizumab eligibility. Respir Med. 2019;154:69–75. doi: 10.1016/j.rmed.2019.06.004. [Humbert M, Albers FC, Bratton DJ, et al. Effect of mepolizumab in severeeosinophilic asthma according to omalizumab eligibility[J]. Respir Med, 2019, 154: 69-75.] [DOI] [PubMed] [Google Scholar]
  • 18.Finotto S. Resolution of allergic asthma. Semin Immunopathol. 2019;41(6):665–74. doi: 10.1007/s00281-019-00770-3. [Finotto S. Resolution of allergic asthma[J]. Semin Immunopathol, 2019, 41(6): 665-74.] [DOI] [PubMed] [Google Scholar]
  • 19.欧阳 若芸, 胡 成平, 陈 平, et al. 哮喘中Th1/Th2类细胞因子免疫失衡对神经生长因子表达的影响. 中南大学学报: 医学版. 2007;9(1):119–23. doi: 10.3321/j.issn:1672-7347.2007.01.021. [欧阳若芸, 胡成平, 陈平, 等. 哮喘中Th1/Th2类细胞因子免疫失衡对神经生长因子表达的影响[J]. 中南大学学报: 医学版, 2007, 9(1): 119-23.] [DOI] [Google Scholar]
  • 20.Kardan M, Rafiei A, Ghaffari J, et al. Effect of ginger extract on expression of GATA3, T-bet and ROR-γt in peripheral blood mononuclear cells of patients with Allergic Asthma. Allergol Immunopathol: Madr. 2019;47(4):378–85. doi: 10.1016/j.aller.2018.12.003. [Kardan M, Rafiei A, Ghaffari J, et al. Effect of ginger extract on expression of GATA3, T-bet and ROR-γt in peripheral blood mononuclear cells of patients with Allergic Asthma[J]. Allergol Immunopathol: Madr, 2019, 47(4): 378-85.] [DOI] [PubMed] [Google Scholar]
  • 21.Esmaeilzadeh A, Tahmasebi S, Athari SS. Chimeric antigen receptor -T cell therapy: Applications and challenges in treatment of allergy and asthma. Biomed Pharmacother. 2020;123:109685. doi: 10.1016/j.biopha.2019.109685. [Esmaeilzadeh A, Tahmasebi S, Athari SS. Chimeric antigen receptor -T cell therapy: Applications and challenges in treatment of allergy and asthma[J]. Biomed Pharmacother, 2020, 123: 109685.] [DOI] [PubMed] [Google Scholar]
  • 22.Özdemir RBÖ, Özdemir AT, Sarıboyacı AE, et al. The investigation of immunomodulatory effects of adipose tissue mesenchymal stem cell educated macrophages on the CD4 T cells. Immunobiology. 2019;224(4):585–94. doi: 10.1016/j.imbio.2019.04.002. [Özdemir RBÖ, Özdemir AT, Sarıboyacı AE, et al. The investigation of immunomodulatory effects of adipose tissue mesenchymal stem cell educated macrophages on the CD4 T cells[J]. Immunobiology, 2019, 224(4): 585-94.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Court AC, Le-Gatt A, Luz-Crawford P, et al. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. http://onlinelibrary.wiley.com/doi/pdf/10.15252/embr.201948052. EMBO Rep. 2020;21(2):e48052. doi: 10.15252/embr.201948052. [Court AC, Le-Gatt A, Luz-Crawford P, et al. Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response[J]. EMBO Rep, 2020, 21(2): e48052.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med. 2019;13(9):1738–55. doi: 10.1002/term.2914. [Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential[J]. J Tissue Eng Regen Med, 2019, 13(9): 1738-55.] [DOI] [PubMed] [Google Scholar]
  • 25.Rendra E, Scaccia E, Bieback K. Recent advances in understanding mesenchymal stromal cells. https://pubmed.ncbi.nlm.nih.gov/32148780/#:~:text=Recent%20advances%20in%20understanding%20mesenchymal%20stromal%20cells%20Mesenchymal,cultivation%2C%20and%20the%20high%20%3Ci%3Eex%20vivo%3C%2Fi%3E%20expansion%20potential. F1000Res. 2020;9:F1000 Faculty Rev-156. doi: 10.12688/f1000research.21862.1. [Rendra E, Scaccia E, Bieback K. Recent advances in understanding mesenchymal stromal cells[J]. F1000Res, 2020, 9: F1000 Faculty Rev-156.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Ullah M, Liu DD, Thakor AS. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. http://www.sciencedirect.com/science/article/pii/S2589004219301415. iScience. 2019;1531:421–38. doi: 10.1016/j.isci.2019.05.004. [Ullah M, Liu DD, Thakor AS. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement[J]. iScience, 2019, 1531: 421-38.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Monticone G, Miele L. Notch pathway: a journey from notching phenotypes to cancer immunotherapy. http://link.springer.com/chapter/10.1007/978-3-030-55031-8_13. Adv Exp Med Biol. 2021;1287:201–22. doi: 10.1007/978-3-030-55031-8_13. [Monticone G, Miele L. Notch pathway: a journey from notching phenotypes to cancer immunotherapy[J]. Adv Exp Med Biol, 2021, 1287: 201-22.] [DOI] [PubMed] [Google Scholar]
  • 28.Zohorsky K, Lin S, Mequanint K. Immobilization of Jagged1 Enhances Vascular Smooth Muscle Cells Maturation by Activating the Notch Pathway. Cells. 2021;10(8):2089. doi: 10.3390/cells10082089. [Zohorsky K, Lin S, Mequanint K. Immobilization of Jagged1 Enhances Vascular Smooth Muscle Cells Maturation by Activating the Notch Pathway[J]. Cells, 2021, 10(8): 2089.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Viswanathan R, Hartmann J, Pallares Cartes C, et al. Desensitisation of Notch signalling through dynamic adaptation in the nucleus. https://www.embopress.org/doi/full/10.15252/embj.2020107245. EMBO J. 2021;40(18):e107245. doi: 10.15252/embj.2020107245. [Viswanathan R, Hartmann J, Pallares Cartes C, et al. Desensitisation of Notch signalling through dynamic adaptation in the nucleus[J]. EMBO J, 2021, 40(18): e107245.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.王 知广, 姜 京植, 王 重阳, et al. Pyrin重组蛋白通过TGF-β1/SMAD及jagged1/notch1信号通路减轻慢性支气管哮喘小鼠气道炎症及气道重塑. https://www.cnki.com.cn/Article/CJFDTOTAL-XBFM202003006.htm. 细胞与分子免疫学杂志. 2020;36(3):220–7. [王知广, 姜京植, 王重阳, 等. Pyrin重组蛋白通过TGF-β1/SMAD及jagged1/notch1信号通路减轻慢性支气管哮喘小鼠气道炎症及气道重塑[J]. 细胞与分子免疫学杂志, 2020, 36(3): 220-7.] [Google Scholar]
  • 31.Zhang H, Lin J, Chen J, et al. Effects of Notch/p38MAPK signaling pathway on articular cartilage defect recovery by BMSCs tissue based on the rabbit articular cartilage defect models. Saudi J Biol Sci. 2020;27(3):859–64. doi: 10.1016/j.sjbs.2019.12.021. [Zhang H, Lin J, Chen J, et al. Effects of Notch/p38MAPK signaling pathway on articular cartilage defect recovery by BMSCs tissue based on the rabbit articular cartilage defect models[J]. Saudi J Biol Sci, 2020, 27(3): 859-64.] [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Xie J, Wang W, Si JW, et al. Notch signaling regulates CXCR4 expression and the migration of mesenchymal stem cells. Cell Immunol. 2013;281(1):68–75. doi: 10.1016/j.cellimm.2013.02.001. [Xie J, Wang W, Si JW, et al. Notch signaling regulates CXCR4 expression and the migration of mesenchymal stem cells[J]. Cell Immunol, 2013, 281(1): 68-75.] [DOI] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES