Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Oct 26;77(Pt 11):1158–1163. doi: 10.1107/S2056989021010756

Crystal structure and Hirshfeld surface analysis of (E)-1-[2,2-di­chloro-1-(4-fluoro­phen­yl)ethen­yl]-2-(2,4-di­chloro­phen­yl)diazene

Namiq Q Shikhaliyev a, Kadiriye Özkaraca b, Mehmet Akkurt c, Xanim N Bagirova a, Gulnar T Suleymanova a, Mirjalil S Abdulov a, Sixberth Mlowe d,*
PMCID: PMC8587971  PMID: 34868655

In the crystal, C—H⋯N, C—Cl⋯π inter­actions and face-to-face π–π stacking inter­actions connect the mol­ecules, forming ribbons along the a-axis direction.

Keywords: crystal structure, short inter HL⋯HL contact, C—Cl⋯π inter­actions, face-to-face π–π stacking inter­actions, Hirshfeld surface analysis

Abstract

In the title compound, C14H7Cl4FN2, the dihedral angle between the 4-fluoro­phenyl ring and the 2,4-di­chloro­phenyl ring is 46.03 (19)°. In the crystal, the mol­ecules are linked by C—H⋯N inter­actions along the a-axis direction, forming a C(6) chain. The mol­ecules are further connected by C—Cl⋯π inter­actions and face-to-face π–π stacking inter­actions, forming ribbons along the a-axis direction. Hirshfeld surface analysis indicates that the greatest contributions to the crystal packing are from Cl⋯H/H⋯Cl (35.1%), H⋯H (10.6%), C⋯C (9.7%), Cl⋯Cl (9.4%) and C⋯H/H⋯C (9.2%) inter­actions.

Chemical context

Azo dyes find numerous applications in a diversity of areas, including as anti­microbial agents, in mol­ecular recognition, optical data storage, mol­ecular switches, non-linear optics, liquid crystals, dye-sensitized solar cells, color-changing materials, etc., mainly due to the possibility of the cis-to-trans isomerization and the chromophoric properties of the –N=N– synthon (Maharramov et al., 2018; Viswanathan et al., 2019). Not only azo-hydrazone tautomerisim, but also E/Z isomerization are important phenomena in the synthetic chemistry of azo dyes (Ma et al., 2017a ,b ; Mahmoudi et al., 2018a ,b ). The design of azo dyes with functional groups led to multifunctional ligands, the corresponding transition-metal complexes of which have been used effectively as catalysts in C—C coupling and oxidation reactions (Ma et al., 2020, 2021; Mahmudov et al., 2013; Mizar et al., 2012). Moreover, the functional properties of azo dyes can be improved by attaching substituents with non-covalent bond donor or acceptor site(s) to the –N=N– synthon (Gurbanov et al., 2020a ,b ; Kopylovich et al., 2011; Mahmudov et al., 2020; Shixaliyev et al., 2014). Thus, we have attached halogen-bond donor centres to the –N=N– moiety, leading to a new azo dye, (E)-1-[2,2-di­chloro-1-(4-fluoro­phen­yl)ethen­yl]-2-(2,4-di­chloro­phen­yl)diazene, which provides multiple inter­molecular non-covalent inter­actions.

Structural commentary

In the title compound, (Fig. 1), the dihedral angle between the 4-fluoro­phenyl ring C3–C8 and the 2,4-di­chloro­phenyl ring C9–C14 is 46.0 (2)°. The N2/N1/C1/C2/Cl1/Cl2 moiety is approximately planar, with a maximum deviation of 0.029 (1) Å for Cl1, and makes dihedral angles of 50.53 (18) and 11.75 (18)° with the C3–C8 and C9–C14 rings, respectively. In the mol­ecule, the aromatic ring and olefin synthon adopt a trans-configuration with respect to the N=N double bond and are almost coplanar with a C1—N1=N2—C9 torsion angle of 179.1 (4)°. graphic file with name e-77-01158-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features

In the crystal, the mol­ecules are linked by C—H⋯N inter­actions along the a-axis direction, forming a C(6) chain (Table 1; Fig. 2; Bernstein et al., 1995). Furthermore, mol­ecules are connected by C—Cl⋯Cg2 inter­actions (Table 1) and face-to-face π-π stacking inter­actions [Cg1⋯Cg1i = 3.873 (3) Å, slippage = 1.831 Å; Cg2⋯Cg2i = 3.872 (3) Å, slippage = 1.554 Å; symmetry codes: (i) x − 1, y, z;; (ii) x + 1, y, z; where Cg1 and Cg2 are the centroids of the 4-fluoro­phenyl (C3–C8) and 2,4-di­chloro­phenyl ring (C9–C14) rings, respectively], forming ribbons along the a-axis direction (Figs. 2, 3 and 4).

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the 2,4-di­chloro­phenyl ring (C9–C14).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N2i 0.95 2.53 3.265 (5) 134
C12—Cl4⋯Cg2ii 1.735 (5) 3.920 (3) 3.569 (6) 66.51 (18)

Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Figure 2.

Figure 2

A general view of the inter­molecular C—H⋯N and C—Cl⋯π inter­actions and π–π stacking inter­actions, shown as dashed lines. Symmetry codes: (a) − 1 + x, y, z; (b) 1 + x, y, z.

Figure 3.

Figure 3

The crystal packing of the title compound viewed along the b axis with inter­molecular C—H⋯N and C—Cl⋯π inter­actions and π–π stacking inter­actions shown as dashed lines.

Figure 4.

Figure 4

The crystal packing of the title compound viewed along the c axis with inter­molecular C—H⋯N and C—Cl⋯π inter­actions and π-π stacking inter­actions shown as dashed lines.

Hirshfeld surface analysis

Crystal Explorer (Turner et al., 2017) was used to perform a Hirshfeld surface analysis and generate the associated two-dimensional fingerprint plots, with a standard resolution of the three-dimensional d norm surfaces plotted over a fixed colour scale of −0.1450 (red) to 1.1580 (blue) a.u (Fig. 5). In the Hirshfeld surface mapped over d norm (Fig. 5), the bright-red spots near atoms Cl1, Cl3, H4, N2 and F1 indicate the short C—H⋯N, C—H⋯Cl and Cl⋯F contacts (Table 2). Other contacts are equal to or longer than the sum of van der Waals radii. The Hirshfeld surface of the title compound mapped over the electrostatic potential (Spackman et al., 2008) is shown in Fig. 6. The positive electrostatic potential (blue regions) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red regions).

Figure 5.

Figure 5

(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.1450 to 1.1580 a.u.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

Contact Distance Symmetry operation
Cl1⋯H11 3.06 −1 + x, 1 + y, z
H4⋯N2 2.53 −1 + x, y, z
Cl1⋯F1 3.016 (3) −1 − x, {1\over 2} + y, 1 − z
H5⋯H7 2.55 x, −{1\over 2} + y, 1 − z
Cl4⋯H13 2.95 2 − x, −{1\over 2} + y, 2 − z
Cl4⋯H14 2.93 1 − x, −{1\over 2} + y, 2 − z
Cl3⋯F1 3.116 (3) x, −{1\over 2} + y, 1 − z

Figure 6.

Figure 6

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.

The overall two-dimensional fingerprint plot and those delineated into Cl⋯H/H⋯Cl, H⋯H, C⋯C, Cl⋯Cl and C⋯H/H⋯C contacts in the title mol­ecule are illustrated in Fig. 7. The most important inter­action is Cl⋯H/H⋯Cl, contributing 35.1% to the overall crystal packing (Fig. 7 b). The secondary important H⋯H and C⋯C inter­actions contribute 10.6% (Fig. 7 c) and 9.7% (Fig. 7 d), respectively, to the Hirshfeld surface. The remaining contributions for the title compound are from Cl⋯Cl, C⋯H/H⋯C, Cl⋯F/F⋯Cl, Cl⋯C/C⋯Cl, F⋯H/H⋯F, N⋯H/H⋯N, N⋯N and F⋯C/ C⋯F contacts, which are less than 9.7% and have a negligible effect on the packing. The percentage contributions of all inter­actions are listed in Table 3.

Figure 7.

Figure 7

The full two-dimensional fingerprint plot for the title compound and those delineated into (b) Cl⋯H/H⋯Cl (35.1%), (c) H⋯H (10.6%), (d) C⋯C (9.7%), (e) Cl⋯Cl (9.4%) and (f) C⋯H/H⋯C (9.2%) inter­actions.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound.

Contact Percentage contribution
Cl⋯H/H⋯Cl 35.1
H⋯H 10.6
C⋯C 9.7
Cl⋯Cl 9.4
C⋯H/H⋯C 9.2
Cl⋯F/F⋯Cl 6.7
Cl⋯C/C⋯Cl 5.0
F⋯H/H⋯F 5.0
N⋯H/H⋯N 4.4
N⋯C/C⋯N 3.5
F⋯F 0.9
N⋯N 0.3
F⋯C/C⋯F 0.1

Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016) for the (E)-1-(2,2-di­chloro-1-phenyl­ethen­yl)-2-phenyl­diazene unit resulted in 28 hits. Nine compounds are closely related to the title compound, viz. LEQXOX (I; Shikhaliyev et al., 2018), LEQXIR (II; Shikhaliyev et al., 2018), XIZREG (III; Atioğlu et al., 2019), HODQAV (IV; Shikhaliyev et al., 2019), HONBUK (V; Akkurt et al., 2019), HONBOE (VI; Akkurt et al., 2019), DULTAI (VII; Özkaraca et al., 2020b ), GUPHIL (VIII; Özkaraca et al., 2020a ) and EBUCUD (IX; Shikhaliyev et al., 2021).

In the crystals of I and II, the dihedral angles between the aromatic rings are 56.18 (12) and 60.31 (14)°, respectively. In I, C—H⋯N and short Cl⋯Cl contacts are observed and in II, C—H⋯N and C—H⋯O hydrogen bonds and short C—Cl⋯O contacts occur. In III, the benzene rings form a dihedral angle of 63.29 (8)° and the mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π inter­actions. In IV, the benzene rings make a dihedral angle of 56.13 (13)°. Mol­ecules are stacked in columns along the a-axis direction via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking inter­actions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In V and VI, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. In the crystals, mol­ecules are linked through weak X⋯Cl contacts (X = Cl for V and Br for VI), C—H⋯Cl and C—Cl⋯π inter­actions into sheets parallel to the ab plane. Additional van der Waals inter­actions consolidate the three-dimensional packing. In VII, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short C—H⋯Cl contact, C—Cl⋯π and van der Waals inter­actions. In VIII, the benzene rings subtend a dihedral angle of 77.07 (10)°. In the crystal, mol­ecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. In IX, the asymmetric unit comprises two similar mol­ecules, in which the dihedral angles between the two aromatic rings are 70.1 (3) and 73.2 (2)°. The crystal structure features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals inter­actions.

Synthesis and crystallization

The title dye was synthesized according to the reported method (Shikhaliyev et al., 2018, 2019). A 20 mL screw-neck vial was charged with DMSO (10 mL), (E)-1-(2,4-di­chloro­phen­yl)-2-(4-fluoro­benzyl­idene)hydrazine (283 mg, 1 mmol), tetra­methyl­ethylenedi­amine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv.). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into ∼0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with di­chloro­methane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL) and brine (30 mL), dried over anhydrous Na2SO4 and concentrated using a vacuum rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and di­chloro­methane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Colourless solid (44%); m.p. 345 K. Analysis calculated for C14H7Cl4FN2 (M = 364.02): C 46.19, H 1.94, N 7.70; found: C 46.11, H 1.98, N 7.67%. 1H NMR (300 MHz, CDCl3) δ 7.31–7.83 (7H, Ar). 13C NMR (75 MHz, CDCl3) δ 114.89, 115.12, 115.41, 115.74, 115.97, 118.33, 127.73, 128.08, 128.67, 129.17, 130.48, 132.04, 132.15 and 136.83. ESI–MS: m/z: 365.11 [M + H]+.

Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4. The Moscow synchrotron radiation source was used for the data collection. H atoms were positioned geometrically and treated as riding atoms where C—H = 0.95 Å with U iso(H) = 1.2U eq(C). Five outliers Inline graphic 2 2, Inline graphic Inline graphic 2, Inline graphic 11 3, Inline graphic 2 1 and Inline graphic Inline graphic 1 were omitted during the final refinement cycle because of large differences between observed and calculated intensities.

Table 4. Experimental details.

Crystal data
Chemical formula C14H7Cl4FN2
M r 364.02
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 3.8720 (8), 10.434 (2), 18.138 (4)
β (°) 95.03 (3)
V3) 730.0 (3)
Z 2
Radiation type Synchrotron, λ = 0.79475 Å
μ (mm−1) 1.10
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Rayonix SX165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006)
T min, T max 0.800, 0.880
No. of measured, independent and observed [I > 2σ(I)] reflections 8595, 3120, 2972
R int 0.027
(sin θ/λ)max−1) 0.648
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.106, 1.09
No. of reflections 3120
No. of parameters 191
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.30
Absolute structure Flack x determined using 1318 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter 0.04 (2)

Computer programs: Marccd (Doyle, 2011), iMosflm (Battye et al., 2011), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010756/vm2255sup1.cif

e-77-01158-sup1.cif (265.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010756/vm2255Isup2.hkl

e-77-01158-Isup2.hkl (249.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010756/vm2255Isup3.cml

CCDC reference: 2116300

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author’s contributions are as follows. Conceptualization, NQS, MA and SM; synthesis, XNB, GTS and MSA; X-ray analysis, KÖ and MA; writing (review and editing of the manuscript), funding acquisition, NQS, XNB, GTS and MSA; supervision, NQS, MA and SM.

supplementary crystallographic information

Crystal data

C14H7Cl4FN2 F(000) = 364
Mr = 364.02 Dx = 1.656 Mg m3
Monoclinic, P21 Synchrotron radiation, λ = 0.79475 Å
a = 3.8720 (8) Å Cell parameters from 600 reflections
b = 10.434 (2) Å θ = 2.8–28.0°
c = 18.138 (4) Å µ = 1.12 mm1
β = 95.03 (3)° T = 100 K
V = 730.0 (3) Å3 Prism, colourless
Z = 2 0.20 × 0.15 × 0.10 mm

Data collection

Rayonix SX165 CCD diffractometer 2972 reflections with I > 2σ(I)
/f scan Rint = 0.027
Absorption correction: multi-scan (Scala; Evans, 2006) θmax = 31.0°, θmin = 2.5°
Tmin = 0.800, Tmax = 0.880 h = −5→5
8595 measured reflections k = −12→13
3120 independent reflections l = −23→23

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0549P)2 + 0.7552P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036 (Δ/σ)max < 0.001
wR(F2) = 0.106 Δρmax = 0.61 e Å3
S = 1.09 Δρmin = −0.30 e Å3
3120 reflections Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
191 parameters Extinction coefficient: 0.044 (8)
1 restraint Absolute structure: Flack x determined using 1318 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sites Absolute structure parameter: 0.04 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.3214 (3) 0.89506 (12) 0.70389 (6) 0.0309 (3)
Cl2 −0.0221 (4) 0.81658 (13) 0.84672 (7) 0.0392 (3)
Cl3 0.2392 (3) 0.19949 (12) 0.70702 (6) 0.0334 (3)
Cl4 0.8795 (3) 0.10530 (13) 0.97679 (6) 0.0340 (3)
F1 −0.2885 (9) 0.5192 (3) 0.42861 (16) 0.0383 (7)
N1 0.1181 (11) 0.5745 (4) 0.7820 (2) 0.0281 (9)
N2 0.1962 (11) 0.4658 (4) 0.7569 (2) 0.0273 (8)
C1 −0.0396 (12) 0.6583 (5) 0.7275 (3) 0.0274 (9)
C2 −0.1180 (12) 0.7756 (5) 0.7555 (3) 0.0293 (10)
C3 −0.1089 (12) 0.6232 (5) 0.6480 (2) 0.0255 (9)
C4 −0.2763 (12) 0.5073 (5) 0.6280 (3) 0.0267 (9)
H4 −0.347529 0.452035 0.665430 0.032*
C5 −0.3391 (13) 0.4726 (5) 0.5540 (3) 0.0288 (10)
H5 −0.455606 0.394787 0.540530 0.035*
C6 −0.2292 (13) 0.5531 (5) 0.5008 (3) 0.0295 (10)
C7 −0.0634 (12) 0.6678 (5) 0.5181 (3) 0.0289 (10)
H7 0.006934 0.722093 0.480114 0.035*
C8 −0.0016 (12) 0.7022 (5) 0.5920 (3) 0.0281 (9)
H8 0.114818 0.780287 0.604727 0.034*
C9 0.3594 (11) 0.3839 (5) 0.8125 (2) 0.0261 (9)
C10 0.3960 (12) 0.2556 (5) 0.7935 (3) 0.0265 (9)
C11 0.5577 (13) 0.1679 (5) 0.8440 (3) 0.0275 (9)
H11 0.581566 0.080365 0.830976 0.033*
C12 0.6813 (13) 0.2120 (5) 0.9131 (3) 0.0291 (10)
C13 0.6495 (12) 0.3405 (5) 0.9334 (3) 0.0289 (10)
H13 0.736480 0.368972 0.981195 0.035*
C14 0.4893 (13) 0.4255 (5) 0.8827 (3) 0.0300 (10)
H14 0.467401 0.513039 0.895888 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0349 (6) 0.0218 (6) 0.0353 (6) 0.0044 (5) −0.0005 (4) −0.0001 (4)
Cl2 0.0528 (8) 0.0325 (7) 0.0312 (6) 0.0116 (6) −0.0029 (5) −0.0065 (5)
Cl3 0.0426 (6) 0.0263 (6) 0.0301 (6) 0.0037 (5) −0.0030 (4) −0.0036 (4)
Cl4 0.0385 (6) 0.0315 (7) 0.0318 (5) 0.0058 (5) 0.0018 (4) 0.0071 (5)
F1 0.0507 (18) 0.0339 (18) 0.0296 (15) 0.0000 (14) 0.0002 (12) −0.0029 (12)
N1 0.031 (2) 0.022 (2) 0.032 (2) 0.0034 (16) 0.0042 (15) −0.0011 (15)
N2 0.028 (2) 0.025 (2) 0.0291 (19) 0.0041 (15) 0.0052 (15) 0.0005 (15)
C1 0.027 (2) 0.023 (2) 0.033 (2) 0.0038 (17) 0.0032 (17) 0.0004 (18)
C2 0.027 (2) 0.027 (3) 0.034 (2) 0.0060 (18) 0.0015 (18) −0.0031 (19)
C3 0.027 (2) 0.020 (2) 0.029 (2) 0.0037 (17) 0.0026 (16) 0.0005 (17)
C4 0.028 (2) 0.019 (2) 0.034 (2) 0.0029 (17) 0.0062 (17) 0.0004 (17)
C5 0.029 (2) 0.022 (2) 0.036 (2) 0.0031 (17) 0.0024 (18) 0.0000 (18)
C6 0.030 (2) 0.030 (3) 0.028 (2) 0.0053 (18) 0.0009 (17) −0.0018 (17)
C7 0.028 (2) 0.025 (3) 0.033 (2) 0.0024 (17) 0.0034 (17) 0.0035 (18)
C8 0.028 (2) 0.023 (2) 0.033 (2) 0.0029 (19) 0.0019 (16) 0.0018 (19)
C9 0.024 (2) 0.026 (2) 0.029 (2) 0.0012 (18) 0.0052 (15) 0.0031 (18)
C10 0.029 (2) 0.024 (2) 0.027 (2) 0.0040 (18) 0.0044 (17) −0.0001 (17)
C11 0.029 (2) 0.024 (3) 0.030 (2) 0.0045 (17) 0.0046 (16) 0.0013 (17)
C12 0.029 (2) 0.027 (3) 0.032 (2) 0.0030 (19) 0.0055 (17) 0.0057 (19)
C13 0.031 (2) 0.029 (3) 0.026 (2) −0.0010 (19) 0.0017 (17) −0.0041 (18)
C14 0.035 (2) 0.024 (3) 0.031 (2) 0.0021 (18) 0.0043 (18) 0.0002 (18)

Geometric parameters (Å, º)

Cl1—C2 1.709 (5) C5—H5 0.9500
Cl2—C2 1.718 (5) C6—C7 1.381 (7)
Cl3—C10 1.733 (5) C7—C8 1.388 (7)
Cl4—C12 1.735 (5) C7—H7 0.9500
F1—C6 1.357 (6) C8—H8 0.9500
N1—N2 1.269 (6) C9—C10 1.393 (7)
N1—C1 1.416 (6) C9—C14 1.398 (7)
N2—C9 1.426 (6) C10—C11 1.403 (7)
C1—C2 1.369 (7) C11—C12 1.380 (7)
C1—C3 1.490 (6) C11—H11 0.9500
C3—C8 1.399 (7) C12—C13 1.399 (7)
C3—C4 1.404 (7) C13—C14 1.384 (7)
C4—C5 1.390 (7) C13—H13 0.9500
C4—H4 0.9500 C14—H14 0.9500
C5—C6 1.375 (7)
N2—N1—C1 113.8 (4) C8—C7—H7 120.7
N1—N2—C9 112.8 (4) C7—C8—C3 120.8 (5)
C2—C1—N1 112.9 (4) C7—C8—H8 119.6
C2—C1—C3 123.4 (4) C3—C8—H8 119.6
N1—C1—C3 123.6 (4) C10—C9—C14 119.2 (4)
C1—C2—Cl1 123.8 (4) C10—C9—N2 116.7 (4)
C1—C2—Cl2 122.9 (4) C14—C9—N2 124.1 (5)
Cl1—C2—Cl2 113.3 (3) C9—C10—C11 121.0 (4)
C8—C3—C4 118.7 (4) C9—C10—Cl3 120.9 (4)
C8—C3—C1 121.2 (4) C11—C10—Cl3 118.1 (4)
C4—C3—C1 120.1 (4) C12—C11—C10 118.4 (5)
C5—C4—C3 120.8 (4) C12—C11—H11 120.8
C5—C4—H4 119.6 C10—C11—H11 120.8
C3—C4—H4 119.6 C11—C12—C13 121.8 (5)
C6—C5—C4 118.6 (5) C11—C12—Cl4 119.3 (4)
C6—C5—H5 120.7 C13—C12—Cl4 118.9 (4)
C4—C5—H5 120.7 C14—C13—C12 118.9 (4)
F1—C6—C5 118.8 (5) C14—C13—H13 120.5
F1—C6—C7 118.7 (5) C12—C13—H13 120.5
C5—C6—C7 122.5 (5) C13—C14—C9 120.7 (5)
C6—C7—C8 118.7 (5) C13—C14—H14 119.6
C6—C7—H7 120.7 C9—C14—H14 119.6
C1—N1—N2—C9 179.1 (4) C6—C7—C8—C3 −0.8 (7)
N2—N1—C1—C2 −179.2 (4) C4—C3—C8—C7 0.9 (7)
N2—N1—C1—C3 0.0 (7) C1—C3—C8—C7 179.1 (4)
N1—C1—C2—Cl1 −178.0 (4) N1—N2—C9—C10 168.4 (4)
C3—C1—C2—Cl1 2.8 (7) N1—N2—C9—C14 −13.2 (7)
N1—C1—C2—Cl2 1.7 (6) C14—C9—C10—C11 0.6 (7)
C3—C1—C2—Cl2 −177.6 (4) N2—C9—C10—C11 179.1 (4)
C2—C1—C3—C8 50.4 (7) C14—C9—C10—Cl3 180.0 (4)
N1—C1—C3—C8 −128.7 (5) N2—C9—C10—Cl3 −1.6 (6)
C2—C1—C3—C4 −131.3 (5) C9—C10—C11—C12 −0.2 (7)
N1—C1—C3—C4 49.5 (6) Cl3—C10—C11—C12 −179.6 (4)
C8—C3—C4—C5 −0.9 (7) C10—C11—C12—C13 −0.1 (7)
C1—C3—C4—C5 −179.2 (4) C10—C11—C12—Cl4 179.5 (4)
C3—C4—C5—C6 1.0 (7) C11—C12—C13—C14 0.1 (7)
C4—C5—C6—F1 179.7 (4) Cl4—C12—C13—C14 −179.6 (4)
C4—C5—C6—C7 −0.9 (7) C12—C13—C14—C9 0.3 (7)
F1—C6—C7—C8 −179.8 (4) C10—C9—C14—C13 −0.7 (7)
C5—C6—C7—C8 0.9 (7) N2—C9—C14—C13 −179.0 (4)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C9–C14 2,4-dichlorophenyl ring.

D—H···A D—H H···A D···A D—H···A
C4—H4···N2i 0.95 2.53 3.265 (6) 134
C12—Cl4···Cg2ii 1.74 (1) 3.92 (1) 3.569 (6) 66 (1)

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

Funding Statement

This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan grant EIF-BGM-4- RFTF-1/2017–21/13/4.

References

  1. Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. [DOI] [PMC free article] [PubMed]
  2. Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. [DOI] [PMC free article] [PubMed]
  3. Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. [DOI] [PMC free article] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA.
  6. Evans, P. (2006). Acta Cryst. D62, 72–82. [DOI] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  10. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  11. Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. [DOI] [PubMed]
  12. Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
  13. Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.
  14. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
  15. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
  16. Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
  17. Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395–4408. [DOI] [PubMed]
  18. Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
  19. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.
  20. Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
  21. Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
  22. Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254. [DOI] [PMC free article] [PubMed]
  23. Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815. [DOI] [PMC free article] [PubMed]
  24. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
  28. Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021). Acta Cryst. E77, 965–970. [DOI] [PMC free article] [PubMed]
  29. Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. [DOI] [PMC free article] [PubMed]
  30. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  31. Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
  32. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  33. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  34. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  35. Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010756/vm2255sup1.cif

e-77-01158-sup1.cif (265.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010756/vm2255Isup2.hkl

e-77-01158-Isup2.hkl (249.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010756/vm2255Isup3.cml

CCDC reference: 2116300

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES