In the crystal, C—H⋯N, C—Cl⋯π interactions and face-to-face π–π stacking interactions connect the molecules, forming ribbons along the a-axis direction.
Keywords: crystal structure, short inter HL⋯HL contact, C—Cl⋯π interactions, face-to-face π–π stacking interactions, Hirshfeld surface analysis
Abstract
In the title compound, C14H7Cl4FN2, the dihedral angle between the 4-fluorophenyl ring and the 2,4-dichlorophenyl ring is 46.03 (19)°. In the crystal, the molecules are linked by C—H⋯N interactions along the a-axis direction, forming a C(6) chain. The molecules are further connected by C—Cl⋯π interactions and face-to-face π–π stacking interactions, forming ribbons along the a-axis direction. Hirshfeld surface analysis indicates that the greatest contributions to the crystal packing are from Cl⋯H/H⋯Cl (35.1%), H⋯H (10.6%), C⋯C (9.7%), Cl⋯Cl (9.4%) and C⋯H/H⋯C (9.2%) interactions.
Chemical context
Azo dyes find numerous applications in a diversity of areas, including as antimicrobial agents, in molecular recognition, optical data storage, molecular switches, non-linear optics, liquid crystals, dye-sensitized solar cells, color-changing materials, etc., mainly due to the possibility of the cis-to-trans isomerization and the chromophoric properties of the –N=N– synthon (Maharramov et al., 2018 ▸; Viswanathan et al., 2019 ▸). Not only azo-hydrazone tautomerisim, but also E/Z isomerization are important phenomena in the synthetic chemistry of azo dyes (Ma et al., 2017a ▸,b ▸; Mahmoudi et al., 2018a ▸,b ▸). The design of azo dyes with functional groups led to multifunctional ligands, the corresponding transition-metal complexes of which have been used effectively as catalysts in C—C coupling and oxidation reactions (Ma et al., 2020 ▸, 2021 ▸; Mahmudov et al., 2013 ▸; Mizar et al., 2012 ▸). Moreover, the functional properties of azo dyes can be improved by attaching substituents with non-covalent bond donor or acceptor site(s) to the –N=N– synthon (Gurbanov et al., 2020a ▸,b ▸; Kopylovich et al., 2011 ▸; Mahmudov et al., 2020 ▸; Shixaliyev et al., 2014 ▸). Thus, we have attached halogen-bond donor centres to the –N=N– moiety, leading to a new azo dye, (E)-1-[2,2-dichloro-1-(4-fluorophenyl)ethenyl]-2-(2,4-dichlorophenyl)diazene, which provides multiple intermolecular non-covalent interactions.
Structural commentary
In the title compound, (Fig. 1 ▸), the dihedral angle between the 4-fluorophenyl ring C3–C8 and the 2,4-dichlorophenyl ring C9–C14 is 46.0 (2)°. The N2/N1/C1/C2/Cl1/Cl2 moiety is approximately planar, with a maximum deviation of 0.029 (1) Å for Cl1, and makes dihedral angles of 50.53 (18) and 11.75 (18)° with the C3–C8 and C9–C14 rings, respectively. In the molecule, the aromatic ring and olefin synthon adopt a trans-configuration with respect to the N=N double bond and are almost coplanar with a C1—N1=N2—C9 torsion angle of 179.1 (4)°.
Figure 1.
The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
Supramolecular features
In the crystal, the molecules are linked by C—H⋯N interactions along the a-axis direction, forming a C(6) chain (Table 1 ▸; Fig. 2 ▸; Bernstein et al., 1995 ▸). Furthermore, molecules are connected by C—Cl⋯Cg2 interactions (Table 1 ▸) and face-to-face π-π stacking interactions [Cg1⋯Cg1i = 3.873 (3) Å, slippage = 1.831 Å; Cg2⋯Cg2i = 3.872 (3) Å, slippage = 1.554 Å; symmetry codes: (i) x − 1, y, z;; (ii) x + 1, y, z; where Cg1 and Cg2 are the centroids of the 4-fluorophenyl (C3–C8) and 2,4-dichlorophenyl ring (C9–C14) rings, respectively], forming ribbons along the a-axis direction (Figs. 2 ▸, 3 ▸ and 4 ▸).
Table 1. Hydrogen-bond geometry (Å, °).
Cg2 is the centroid of the 2,4-dichlorophenyl ring (C9–C14).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C4—H4⋯N2i | 0.95 | 2.53 | 3.265 (5) | 134 |
| C12—Cl4⋯Cg2ii | 1.735 (5) | 3.920 (3) | 3.569 (6) | 66.51 (18) |
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.
Figure 2.
A general view of the intermolecular C—H⋯N and C—Cl⋯π interactions and π–π stacking interactions, shown as dashed lines. Symmetry codes: (a) − 1 + x, y, z; (b) 1 + x, y, z.
Figure 3.
The crystal packing of the title compound viewed along the b axis with intermolecular C—H⋯N and C—Cl⋯π interactions and π–π stacking interactions shown as dashed lines.
Figure 4.

The crystal packing of the title compound viewed along the c axis with intermolecular C—H⋯N and C—Cl⋯π interactions and π-π stacking interactions shown as dashed lines.
Hirshfeld surface analysis
Crystal Explorer (Turner et al., 2017 ▸) was used to perform a Hirshfeld surface analysis and generate the associated two-dimensional fingerprint plots, with a standard resolution of the three-dimensional d norm surfaces plotted over a fixed colour scale of −0.1450 (red) to 1.1580 (blue) a.u (Fig. 5 ▸). In the Hirshfeld surface mapped over d norm (Fig. 5 ▸), the bright-red spots near atoms Cl1, Cl3, H4, N2 and F1 indicate the short C—H⋯N, C—H⋯Cl and Cl⋯F contacts (Table 2 ▸). Other contacts are equal to or longer than the sum of van der Waals radii. The Hirshfeld surface of the title compound mapped over the electrostatic potential (Spackman et al., 2008 ▸) is shown in Fig. 6 ▸. The positive electrostatic potential (blue regions) over the surface indicates hydrogen-donor potential, whereas the hydrogen-bond acceptors are represented by negative electrostatic potential (red regions).
Figure 5.
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.1450 to 1.1580 a.u.
Table 2. Summary of short interatomic contacts (Å) in the title compound.
| Contact | Distance | Symmetry operation |
|---|---|---|
| Cl1⋯H11 | 3.06 | −1 + x, 1 + y, z |
| H4⋯N2 | 2.53 | −1 + x, y, z |
| Cl1⋯F1 | 3.016 (3) | −1 − x, {1\over 2} + y, 1 − z |
| H5⋯H7 | 2.55 | −x, −{1\over 2} + y, 1 − z |
| Cl4⋯H13 | 2.95 | 2 − x, −{1\over 2} + y, 2 − z |
| Cl4⋯H14 | 2.93 | 1 − x, −{1\over 2} + y, 2 − z |
| Cl3⋯F1 | 3.116 (3) | −x, −{1\over 2} + y, 1 − z |
Figure 6.
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.
The overall two-dimensional fingerprint plot and those delineated into Cl⋯H/H⋯Cl, H⋯H, C⋯C, Cl⋯Cl and C⋯H/H⋯C contacts in the title molecule are illustrated in Fig. 7 ▸. The most important interaction is Cl⋯H/H⋯Cl, contributing 35.1% to the overall crystal packing (Fig. 7 ▸ b). The secondary important H⋯H and C⋯C interactions contribute 10.6% (Fig. 7 ▸ c) and 9.7% (Fig. 7 ▸ d), respectively, to the Hirshfeld surface. The remaining contributions for the title compound are from Cl⋯Cl, C⋯H/H⋯C, Cl⋯F/F⋯Cl, Cl⋯C/C⋯Cl, F⋯H/H⋯F, N⋯H/H⋯N, N⋯N and F⋯C/ C⋯F contacts, which are less than 9.7% and have a negligible effect on the packing. The percentage contributions of all interactions are listed in Table 3 ▸.
Figure 7.
The full two-dimensional fingerprint plot for the title compound and those delineated into (b) Cl⋯H/H⋯Cl (35.1%), (c) H⋯H (10.6%), (d) C⋯C (9.7%), (e) Cl⋯Cl (9.4%) and (f) C⋯H/H⋯C (9.2%) interactions.
Table 3. Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound.
| Contact | Percentage contribution |
|---|---|
| Cl⋯H/H⋯Cl | 35.1 |
| H⋯H | 10.6 |
| C⋯C | 9.7 |
| Cl⋯Cl | 9.4 |
| C⋯H/H⋯C | 9.2 |
| Cl⋯F/F⋯Cl | 6.7 |
| Cl⋯C/C⋯Cl | 5.0 |
| F⋯H/H⋯F | 5.0 |
| N⋯H/H⋯N | 4.4 |
| N⋯C/C⋯N | 3.5 |
| F⋯F | 0.9 |
| N⋯N | 0.3 |
| F⋯C/C⋯F | 0.1 |
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, update of November 2019; Groom et al., 2016 ▸) for the (E)-1-(2,2-dichloro-1-phenylethenyl)-2-phenyldiazene unit resulted in 28 hits. Nine compounds are closely related to the title compound, viz. LEQXOX (I; Shikhaliyev et al., 2018 ▸), LEQXIR (II; Shikhaliyev et al., 2018 ▸), XIZREG (III; Atioğlu et al., 2019 ▸), HODQAV (IV; Shikhaliyev et al., 2019 ▸), HONBUK (V; Akkurt et al., 2019 ▸), HONBOE (VI; Akkurt et al., 2019 ▸), DULTAI (VII; Özkaraca et al., 2020b ▸), GUPHIL (VIII; Özkaraca et al., 2020a ▸) and EBUCUD (IX; Shikhaliyev et al., 2021 ▸).
In the crystals of I and II, the dihedral angles between the aromatic rings are 56.18 (12) and 60.31 (14)°, respectively. In I, C—H⋯N and short Cl⋯Cl contacts are observed and in II, C—H⋯N and C—H⋯O hydrogen bonds and short C—Cl⋯O contacts occur. In III, the benzene rings form a dihedral angle of 63.29 (8)° and the molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the c-axis direction. The crystal packing also features C—Cl⋯π, C—F⋯π and N—O⋯π interactions. In IV, the benzene rings make a dihedral angle of 56.13 (13)°. Molecules are stacked in columns along the a-axis direction via weak C—H⋯Cl hydrogen bonds and face-to-face π–π stacking interactions. The crystal packing is further consolidated by short Cl⋯Cl contacts. In V and VI, the aromatic rings form dihedral angles of 60.9 (2) and 64.1 (2)°, respectively. In the crystals, molecules are linked through weak X⋯Cl contacts (X = Cl for V and Br for VI), C—H⋯Cl and C—Cl⋯π interactions into sheets parallel to the ab plane. Additional van der Waals interactions consolidate the three-dimensional packing. In VII, the dihedral angle between the two aromatic rings is 64.12 (14)°. The crystal structure is stabilized by a short C—H⋯Cl contact, C—Cl⋯π and van der Waals interactions. In VIII, the benzene rings subtend a dihedral angle of 77.07 (10)°. In the crystal, molecules are associated into inversion dimers via short Cl⋯Cl contacts [3.3763 (9) Å]. In IX, the asymmetric unit comprises two similar molecules, in which the dihedral angles between the two aromatic rings are 70.1 (3) and 73.2 (2)°. The crystal structure features short C—H⋯Cl and C—H⋯O contacts and C—H⋯π and van der Waals interactions.
Synthesis and crystallization
The title dye was synthesized according to the reported method (Shikhaliyev et al., 2018 ▸, 2019 ▸). A 20 mL screw-neck vial was charged with DMSO (10 mL), (E)-1-(2,4-dichlorophenyl)-2-(4-fluorobenzylidene)hydrazine (283 mg, 1 mmol), tetramethylethylenediamine (TMEDA) (295 mg, 2.5 mmol), CuCl (2 mg, 0.02 mmol) and CCl4 (20 mmol, 10 equiv.). After 1–3 h (until TLC analysis showed complete consumption of the corresponding Schiff base), the reaction mixture was poured into ∼0.01 M solution of HCl (100 mL, pH = 2–3), and extracted with dichloromethane (3 × 20 mL). The combined organic phase was washed with water (3 × 50 mL) and brine (30 mL), dried over anhydrous Na2SO4 and concentrated using a vacuum rotary evaporator. The residue was purified by column chromatography on silica gel using appropriate mixtures of hexane and dichloromethane (3/1–1/1). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution. Colourless solid (44%); m.p. 345 K. Analysis calculated for C14H7Cl4FN2 (M = 364.02): C 46.19, H 1.94, N 7.70; found: C 46.11, H 1.98, N 7.67%. 1H NMR (300 MHz, CDCl3) δ 7.31–7.83 (7H, Ar). 13C NMR (75 MHz, CDCl3) δ 114.89, 115.12, 115.41, 115.74, 115.97, 118.33, 127.73, 128.08, 128.67, 129.17, 130.48, 132.04, 132.15 and 136.83. ESI–MS: m/z: 365.11 [M + H]+.
Refinement details
Crystal data, data collection and structure refinement details are summarized in Table 4 ▸. The Moscow synchrotron radiation source was used for the data collection. H atoms were positioned geometrically and treated as riding atoms where C—H = 0.95 Å with U
iso(H) = 1.2U
eq(C). Five outliers
2 2,
2,
11 3,
2 1 and
1 were omitted during the final refinement cycle because of large differences between observed and calculated intensities.
Table 4. Experimental details.
| Crystal data | |
| Chemical formula | C14H7Cl4FN2 |
| M r | 364.02 |
| Crystal system, space group | Monoclinic, P21 |
| Temperature (K) | 100 |
| a, b, c (Å) | 3.8720 (8), 10.434 (2), 18.138 (4) |
| β (°) | 95.03 (3) |
| V (Å3) | 730.0 (3) |
| Z | 2 |
| Radiation type | Synchrotron, λ = 0.79475 Å |
| μ (mm−1) | 1.10 |
| Crystal size (mm) | 0.20 × 0.15 × 0.10 |
| Data collection | |
| Diffractometer | Rayonix SX165 CCD |
| Absorption correction | Multi-scan (SCALA; Evans, 2006 ▸) |
| T min, T max | 0.800, 0.880 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 8595, 3120, 2972 |
| R int | 0.027 |
| (sin θ/λ)max (Å−1) | 0.648 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.036, 0.106, 1.09 |
| No. of reflections | 3120 |
| No. of parameters | 191 |
| No. of restraints | 1 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 0.61, −0.30 |
| Absolute structure | Flack x determined using 1318 quotients [(I +)−(I −)]/[(I +)+(I −)] (Parsons et al., 2013 ▸) |
| Absolute structure parameter | 0.04 (2) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010756/vm2255sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010756/vm2255Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021010756/vm2255Isup3.cml
CCDC reference: 2116300
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The author’s contributions are as follows. Conceptualization, NQS, MA and SM; synthesis, XNB, GTS and MSA; X-ray analysis, KÖ and MA; writing (review and editing of the manuscript), funding acquisition, NQS, XNB, GTS and MSA; supervision, NQS, MA and SM.
supplementary crystallographic information
Crystal data
| C14H7Cl4FN2 | F(000) = 364 |
| Mr = 364.02 | Dx = 1.656 Mg m−3 |
| Monoclinic, P21 | Synchrotron radiation, λ = 0.79475 Å |
| a = 3.8720 (8) Å | Cell parameters from 600 reflections |
| b = 10.434 (2) Å | θ = 2.8–28.0° |
| c = 18.138 (4) Å | µ = 1.12 mm−1 |
| β = 95.03 (3)° | T = 100 K |
| V = 730.0 (3) Å3 | Prism, colourless |
| Z = 2 | 0.20 × 0.15 × 0.10 mm |
Data collection
| Rayonix SX165 CCD diffractometer | 2972 reflections with I > 2σ(I) |
| /f scan | Rint = 0.027 |
| Absorption correction: multi-scan (Scala; Evans, 2006) | θmax = 31.0°, θmin = 2.5° |
| Tmin = 0.800, Tmax = 0.880 | h = −5→5 |
| 8595 measured reflections | k = −12→13 |
| 3120 independent reflections | l = −23→23 |
Refinement
| Refinement on F2 | H-atom parameters constrained |
| Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0549P)2 + 0.7552P] where P = (Fo2 + 2Fc2)/3 |
| R[F2 > 2σ(F2)] = 0.036 | (Δ/σ)max < 0.001 |
| wR(F2) = 0.106 | Δρmax = 0.61 e Å−3 |
| S = 1.09 | Δρmin = −0.30 e Å−3 |
| 3120 reflections | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| 191 parameters | Extinction coefficient: 0.044 (8) |
| 1 restraint | Absolute structure: Flack x determined using 1318 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
| Hydrogen site location: inferred from neighbouring sites | Absolute structure parameter: 0.04 (3) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | −0.3214 (3) | 0.89506 (12) | 0.70389 (6) | 0.0309 (3) | |
| Cl2 | −0.0221 (4) | 0.81658 (13) | 0.84672 (7) | 0.0392 (3) | |
| Cl3 | 0.2392 (3) | 0.19949 (12) | 0.70702 (6) | 0.0334 (3) | |
| Cl4 | 0.8795 (3) | 0.10530 (13) | 0.97679 (6) | 0.0340 (3) | |
| F1 | −0.2885 (9) | 0.5192 (3) | 0.42861 (16) | 0.0383 (7) | |
| N1 | 0.1181 (11) | 0.5745 (4) | 0.7820 (2) | 0.0281 (9) | |
| N2 | 0.1962 (11) | 0.4658 (4) | 0.7569 (2) | 0.0273 (8) | |
| C1 | −0.0396 (12) | 0.6583 (5) | 0.7275 (3) | 0.0274 (9) | |
| C2 | −0.1180 (12) | 0.7756 (5) | 0.7555 (3) | 0.0293 (10) | |
| C3 | −0.1089 (12) | 0.6232 (5) | 0.6480 (2) | 0.0255 (9) | |
| C4 | −0.2763 (12) | 0.5073 (5) | 0.6280 (3) | 0.0267 (9) | |
| H4 | −0.347529 | 0.452035 | 0.665430 | 0.032* | |
| C5 | −0.3391 (13) | 0.4726 (5) | 0.5540 (3) | 0.0288 (10) | |
| H5 | −0.455606 | 0.394787 | 0.540530 | 0.035* | |
| C6 | −0.2292 (13) | 0.5531 (5) | 0.5008 (3) | 0.0295 (10) | |
| C7 | −0.0634 (12) | 0.6678 (5) | 0.5181 (3) | 0.0289 (10) | |
| H7 | 0.006934 | 0.722093 | 0.480114 | 0.035* | |
| C8 | −0.0016 (12) | 0.7022 (5) | 0.5920 (3) | 0.0281 (9) | |
| H8 | 0.114818 | 0.780287 | 0.604727 | 0.034* | |
| C9 | 0.3594 (11) | 0.3839 (5) | 0.8125 (2) | 0.0261 (9) | |
| C10 | 0.3960 (12) | 0.2556 (5) | 0.7935 (3) | 0.0265 (9) | |
| C11 | 0.5577 (13) | 0.1679 (5) | 0.8440 (3) | 0.0275 (9) | |
| H11 | 0.581566 | 0.080365 | 0.830976 | 0.033* | |
| C12 | 0.6813 (13) | 0.2120 (5) | 0.9131 (3) | 0.0291 (10) | |
| C13 | 0.6495 (12) | 0.3405 (5) | 0.9334 (3) | 0.0289 (10) | |
| H13 | 0.736480 | 0.368972 | 0.981195 | 0.035* | |
| C14 | 0.4893 (13) | 0.4255 (5) | 0.8827 (3) | 0.0300 (10) | |
| H14 | 0.467401 | 0.513039 | 0.895888 | 0.036* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0349 (6) | 0.0218 (6) | 0.0353 (6) | 0.0044 (5) | −0.0005 (4) | −0.0001 (4) |
| Cl2 | 0.0528 (8) | 0.0325 (7) | 0.0312 (6) | 0.0116 (6) | −0.0029 (5) | −0.0065 (5) |
| Cl3 | 0.0426 (6) | 0.0263 (6) | 0.0301 (6) | 0.0037 (5) | −0.0030 (4) | −0.0036 (4) |
| Cl4 | 0.0385 (6) | 0.0315 (7) | 0.0318 (5) | 0.0058 (5) | 0.0018 (4) | 0.0071 (5) |
| F1 | 0.0507 (18) | 0.0339 (18) | 0.0296 (15) | 0.0000 (14) | 0.0002 (12) | −0.0029 (12) |
| N1 | 0.031 (2) | 0.022 (2) | 0.032 (2) | 0.0034 (16) | 0.0042 (15) | −0.0011 (15) |
| N2 | 0.028 (2) | 0.025 (2) | 0.0291 (19) | 0.0041 (15) | 0.0052 (15) | 0.0005 (15) |
| C1 | 0.027 (2) | 0.023 (2) | 0.033 (2) | 0.0038 (17) | 0.0032 (17) | 0.0004 (18) |
| C2 | 0.027 (2) | 0.027 (3) | 0.034 (2) | 0.0060 (18) | 0.0015 (18) | −0.0031 (19) |
| C3 | 0.027 (2) | 0.020 (2) | 0.029 (2) | 0.0037 (17) | 0.0026 (16) | 0.0005 (17) |
| C4 | 0.028 (2) | 0.019 (2) | 0.034 (2) | 0.0029 (17) | 0.0062 (17) | 0.0004 (17) |
| C5 | 0.029 (2) | 0.022 (2) | 0.036 (2) | 0.0031 (17) | 0.0024 (18) | 0.0000 (18) |
| C6 | 0.030 (2) | 0.030 (3) | 0.028 (2) | 0.0053 (18) | 0.0009 (17) | −0.0018 (17) |
| C7 | 0.028 (2) | 0.025 (3) | 0.033 (2) | 0.0024 (17) | 0.0034 (17) | 0.0035 (18) |
| C8 | 0.028 (2) | 0.023 (2) | 0.033 (2) | 0.0029 (19) | 0.0019 (16) | 0.0018 (19) |
| C9 | 0.024 (2) | 0.026 (2) | 0.029 (2) | 0.0012 (18) | 0.0052 (15) | 0.0031 (18) |
| C10 | 0.029 (2) | 0.024 (2) | 0.027 (2) | 0.0040 (18) | 0.0044 (17) | −0.0001 (17) |
| C11 | 0.029 (2) | 0.024 (3) | 0.030 (2) | 0.0045 (17) | 0.0046 (16) | 0.0013 (17) |
| C12 | 0.029 (2) | 0.027 (3) | 0.032 (2) | 0.0030 (19) | 0.0055 (17) | 0.0057 (19) |
| C13 | 0.031 (2) | 0.029 (3) | 0.026 (2) | −0.0010 (19) | 0.0017 (17) | −0.0041 (18) |
| C14 | 0.035 (2) | 0.024 (3) | 0.031 (2) | 0.0021 (18) | 0.0043 (18) | 0.0002 (18) |
Geometric parameters (Å, º)
| Cl1—C2 | 1.709 (5) | C5—H5 | 0.9500 |
| Cl2—C2 | 1.718 (5) | C6—C7 | 1.381 (7) |
| Cl3—C10 | 1.733 (5) | C7—C8 | 1.388 (7) |
| Cl4—C12 | 1.735 (5) | C7—H7 | 0.9500 |
| F1—C6 | 1.357 (6) | C8—H8 | 0.9500 |
| N1—N2 | 1.269 (6) | C9—C10 | 1.393 (7) |
| N1—C1 | 1.416 (6) | C9—C14 | 1.398 (7) |
| N2—C9 | 1.426 (6) | C10—C11 | 1.403 (7) |
| C1—C2 | 1.369 (7) | C11—C12 | 1.380 (7) |
| C1—C3 | 1.490 (6) | C11—H11 | 0.9500 |
| C3—C8 | 1.399 (7) | C12—C13 | 1.399 (7) |
| C3—C4 | 1.404 (7) | C13—C14 | 1.384 (7) |
| C4—C5 | 1.390 (7) | C13—H13 | 0.9500 |
| C4—H4 | 0.9500 | C14—H14 | 0.9500 |
| C5—C6 | 1.375 (7) | ||
| N2—N1—C1 | 113.8 (4) | C8—C7—H7 | 120.7 |
| N1—N2—C9 | 112.8 (4) | C7—C8—C3 | 120.8 (5) |
| C2—C1—N1 | 112.9 (4) | C7—C8—H8 | 119.6 |
| C2—C1—C3 | 123.4 (4) | C3—C8—H8 | 119.6 |
| N1—C1—C3 | 123.6 (4) | C10—C9—C14 | 119.2 (4) |
| C1—C2—Cl1 | 123.8 (4) | C10—C9—N2 | 116.7 (4) |
| C1—C2—Cl2 | 122.9 (4) | C14—C9—N2 | 124.1 (5) |
| Cl1—C2—Cl2 | 113.3 (3) | C9—C10—C11 | 121.0 (4) |
| C8—C3—C4 | 118.7 (4) | C9—C10—Cl3 | 120.9 (4) |
| C8—C3—C1 | 121.2 (4) | C11—C10—Cl3 | 118.1 (4) |
| C4—C3—C1 | 120.1 (4) | C12—C11—C10 | 118.4 (5) |
| C5—C4—C3 | 120.8 (4) | C12—C11—H11 | 120.8 |
| C5—C4—H4 | 119.6 | C10—C11—H11 | 120.8 |
| C3—C4—H4 | 119.6 | C11—C12—C13 | 121.8 (5) |
| C6—C5—C4 | 118.6 (5) | C11—C12—Cl4 | 119.3 (4) |
| C6—C5—H5 | 120.7 | C13—C12—Cl4 | 118.9 (4) |
| C4—C5—H5 | 120.7 | C14—C13—C12 | 118.9 (4) |
| F1—C6—C5 | 118.8 (5) | C14—C13—H13 | 120.5 |
| F1—C6—C7 | 118.7 (5) | C12—C13—H13 | 120.5 |
| C5—C6—C7 | 122.5 (5) | C13—C14—C9 | 120.7 (5) |
| C6—C7—C8 | 118.7 (5) | C13—C14—H14 | 119.6 |
| C6—C7—H7 | 120.7 | C9—C14—H14 | 119.6 |
| C1—N1—N2—C9 | 179.1 (4) | C6—C7—C8—C3 | −0.8 (7) |
| N2—N1—C1—C2 | −179.2 (4) | C4—C3—C8—C7 | 0.9 (7) |
| N2—N1—C1—C3 | 0.0 (7) | C1—C3—C8—C7 | 179.1 (4) |
| N1—C1—C2—Cl1 | −178.0 (4) | N1—N2—C9—C10 | 168.4 (4) |
| C3—C1—C2—Cl1 | 2.8 (7) | N1—N2—C9—C14 | −13.2 (7) |
| N1—C1—C2—Cl2 | 1.7 (6) | C14—C9—C10—C11 | 0.6 (7) |
| C3—C1—C2—Cl2 | −177.6 (4) | N2—C9—C10—C11 | 179.1 (4) |
| C2—C1—C3—C8 | 50.4 (7) | C14—C9—C10—Cl3 | 180.0 (4) |
| N1—C1—C3—C8 | −128.7 (5) | N2—C9—C10—Cl3 | −1.6 (6) |
| C2—C1—C3—C4 | −131.3 (5) | C9—C10—C11—C12 | −0.2 (7) |
| N1—C1—C3—C4 | 49.5 (6) | Cl3—C10—C11—C12 | −179.6 (4) |
| C8—C3—C4—C5 | −0.9 (7) | C10—C11—C12—C13 | −0.1 (7) |
| C1—C3—C4—C5 | −179.2 (4) | C10—C11—C12—Cl4 | 179.5 (4) |
| C3—C4—C5—C6 | 1.0 (7) | C11—C12—C13—C14 | 0.1 (7) |
| C4—C5—C6—F1 | 179.7 (4) | Cl4—C12—C13—C14 | −179.6 (4) |
| C4—C5—C6—C7 | −0.9 (7) | C12—C13—C14—C9 | 0.3 (7) |
| F1—C6—C7—C8 | −179.8 (4) | C10—C9—C14—C13 | −0.7 (7) |
| C5—C6—C7—C8 | 0.9 (7) | N2—C9—C14—C13 | −179.0 (4) |
Hydrogen-bond geometry (Å, º)
Cg2 is the centroid of the C9–C14 2,4-dichlorophenyl ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| C4—H4···N2i | 0.95 | 2.53 | 3.265 (6) | 134 |
| C12—Cl4···Cg2ii | 1.74 (1) | 3.92 (1) | 3.569 (6) | 66 (1) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.
Funding Statement
This work was funded by Science Development Foundation under the President of the Republic of Azerbaijan grant EIF-BGM-4- RFTF-1/2017–21/13/4.
References
- Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Babayeva, G. V., Mammadova, G. Z., Niyazova, A. A., Shikhaliyeva, I. M. & Toze, F. A. A. (2019). Acta Cryst. E75, 1199–1204. [DOI] [PMC free article] [PubMed]
- Atioğlu, Z., Akkurt, M., Shikhaliyev, N. Q., Suleymanova, G. T., Bagirova, K. N. & Toze, F. A. A. (2019). Acta Cryst. E75, 237–241. [DOI] [PMC free article] [PubMed]
- Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. [DOI] [PMC free article] [PubMed]
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Doyle, R. A. (2011). Marccd software manual. Rayonix L. L. C., Evanston, IL 60201, USA.
- Evans, P. (2006). Acta Cryst. D62, 72–82. [DOI] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
- Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
- Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. [DOI] [PubMed]
- Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.
- Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
- Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.
- Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.
- Mahmoudi, G., Afkhami, F. A., Castiñeiras, A., García-Santos, I., Gurbanov, A., Zubkov, F. I., Mitoraj, M. P., Kukułka, M., Sagan, F., Szczepanik, D. W., Konyaeva, I. A. & Safin, D. A. (2018a). Inorg. Chem. 57, 4395–4408. [DOI] [PubMed]
- Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018b). New J. Chem. 42, 4959–4971.
- Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.
- Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.
- Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.
- Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Mammadova, G. Z. & Shadrack, D. M. (2020a). Acta Cryst. E76, 1251–1254. [DOI] [PMC free article] [PubMed]
- Özkaraca, K., Akkurt, M., Shikhaliyev, N. Q., Askerova, U. F., Suleymanova, G. T., Shikhaliyeva, I. M. & Bhattarai, A. (2020b). Acta Cryst. E76, 811–815. [DOI] [PMC free article] [PubMed]
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
- Shikhaliyev, N. Q., Atioğlu, Z., Akkurt, M., Qacar, A. M., Askerov, R. K. & Bhattarai, A. (2021). Acta Cryst. E77, 965–970. [DOI] [PMC free article] [PubMed]
- Shikhaliyev, N. Q., Çelikesir, S. T., Akkurt, M., Bagirova, K. N., Suleymanova, G. T. & Toze, F. A. A. (2019). Acta Cryst. E75, 465–469. [DOI] [PMC free article] [PubMed]
- Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
- Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Viswanathan, A., Kute, D., Musa, A., Konda Mani, S., Sipilä, V., Emmert-Streib, F., Zubkov, F. I., Gurbanov, A. V., Yli-Harja, O. & Kandhavelu, M. (2019). Eur. J. Med. Chem. 166, 291–303. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010756/vm2255sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010756/vm2255Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989021010756/vm2255Isup3.cml
CCDC reference: 2116300
Additional supporting information: crystallographic information; 3D view; checkCIF report






