Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Oct 26;77(Pt 11):1153–1157. doi: 10.1107/S2056989021010653

Crystal structure and Hirshfeld surface analysis of di-μ-chlorido-bis­[(aceto­nitrile-κN)chlorido­(ethyl 5-methyl-1H-pyrazole-3-carboxyl­ate-κ2 N 2,O)copper(II)]

Oleksandr S Vynohradov a, Vadim A Pavlenko a, Olesia I Kucheriv a, Irina A Golenya a,*, Denys Petlovanyi b, Sergiu Shova c
PMCID: PMC8587973  PMID: 34868654

The title compound, [Cu2Cl4(C5H10N2O2)2(CH3CN)2] or [Cu22-Cl)2(CH3—Pz-COOCH2CH3)2Cl2(CH3CN)2], was synthesized using an one-pot reaction of copper powder, copper(II) chloride dihydrate and ethyl 5-methyl-1H-pyrazole-3-carboxyl­ate (CH3—Pz-COOCH2CH3) in aceto­nitrile under ambient conditions. This complex consists of discrete binuclear mol­ecules with a {Cu22-Cl)2} core.

Keywords: copper, copper complexes, crystal structure, pyrazole, X-ray crystallography, Hirshfeld surface analysis, one-pot reaction, direct synthesis, oxidative dissolution

Abstract

The title compound, [Cu2Cl4(C5H10N2O2)2(CH3CN)2] or [Cu22-Cl)2(CH3—Pz-COOCH2CH3)2Cl2(CH3CN)2], was synthesized using a one-pot reaction of copper powder, copper(II) chloride dihydrate and ethyl 5-methyl-1H-pyrazole-3-carboxyl­ate (CH3—Pz-COOCH2CH3) in aceto­nitrile under ambient conditions. This complex consists of discrete binuclear mol­ecules with a {Cu22-Cl)2} core, in which the Cu⋯Cu distance is 3.8002 (7) Å. The pyrazole-based ligands are bidentate coordinated, leading to the formation of two five-membered chelate rings. The coordination geometry of both copper atoms (ON2Cl3) can be described as distorted octa­hedral on account of the aceto­nitrile coordination. A Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯H (40%), H⋯Cl/Cl⋯H (24.3%), H⋯O/O⋯H (11.8%), H⋯C/C⋯H (9.2%) and H⋯N/N⋯H (8.3%) inter­actions.

Chemical context

Pyrazoles can form structures of various nuclearities, ranging from mononuclear (Mighell et al., 1975; Liu et al., 2001; Małecka et al., 2003) to polynuclear complexes (He, 2011; Contaldi et al., 2009; Chandrasekhar et al., 2008) and metallacycles (Vynohradov et al., 2020a ; Surmann et al., 2016; Galassi et al., 2012) with specific mol­ecular topologies. By performing the synthesis of metal complexes by oxidative dissolution of metals, commonly known as direct synthesis (Kokozay et al., 2018; Plyuta et al., 2020; Sirenko et al., 2020; Li et al., 2021), copper can be introduced in a zerovalent state. Copper powder can be oxidized in solution in the presence of proton-donating agents, such as pyrazoles, to form polynuclear complexes, where two copper atoms are connected by a bidentate-bridging deprotonated pyrazole (Vynohradov et al., 2020b ; Davydenko et al., 2013). Many examples of copper coordination compounds have been synthesized and described in which two copper atoms are connected by halogen bridges, for example, through chlorine anions, deprotonated ligand mol­ecules and also hydroxyl groups (Vincent et al., 2018; Wei et al., 2012; Mezei et al., 2004). Copper(II) pyrazolate complexes have attracted considerable inter­est for their inter­esting magnetic properties (Malinkin et al., 2012; Spodine et al., 1999) and abilities to bind DNA (Vafaza­deh et al., 2015; Kulkarni et al., 2011). Finally, the anti­oxidant (Kupcewicz et al., 2013) and anti­cancer (Santini et al., 2014) activities of these compounds should be noted. Relatively few unsymmetrical pyrazole-containing ligands with different chelating arms in the 3- and 5-positions and their coordination compounds have been investigated so far (Konrad et al., 2001; Dubs et al., 2006; Krämer et al., 2002; Röder et al., 2002; Penkova et al., 2010). Considering the above, we understand the importance of accumulating a theoretical information base on such coordination compounds, and therefore in this article we report the synthesis, crystal structure and Hirshfeld surface analysis of a new binuclear copper(II) complex with unsymmetrical pyrazole ethyl 5-methyl-1H-pyrazole-3-carboxyl­ate – [Cu22-Cl)2(CH3-Pz-COOCH2CH3)2Cl2(CH3CN)2]. graphic file with name e-77-01153-scheme1.jpg

Structural commentary

The title compound (Fig. 1) is a binuclear cyclic copper(II) pyrazole-containing complex which crystallized in the monoclinic P21/c space group. The asymmetric unit consists of one copper ion, one ethyl 5-methyl-1H-pyrazole-3-carboxyl­ate ligand, one coord­inated aceto­nitrile mol­ecule and two chlorine ions. One of these chlorine ions bridges two metal centers, thus connecting two symmetry-generated fragments. The structure of this complex can be described as a dimer of formula [CuCl2(C7H10N2O2)(CH3CN)]2 in which the CH3-Pz-COOCH2CH3 ligand is coordinated in a bidentate way and remains protonated. The copper atom has a distorted octa­hedral coordination environment formed by three chlorine atoms, one nitro­gen atom of the aceto­nitrile mol­ecule and two atoms of the unsymmetrical pyrazole ligand – the pyridine-like N1 atom and atom O 1 of the ester substituent in position 3 of the pyrazole ring. The bidentate coordination of the pyrazole ligand leads to the formation of a five-membered chelate ring. The atoms in the ring deviate only slightly from planarity [the Cu1 atom is out of the Cu1/N1/C4/C5/O1 plane by 0.0222 (8) Å; N1 by −0.0406 (14) Å; C4 by 0.0326 (15) Å; C5 by 0.0031 (18) Å and O1 by −0.0172 (14) Å]. Both the copper atoms and the bridging chlorine atoms lie in the same plane without deviations from planarity. The inter­metallic distance in the dimer unit is 3.8002 (7) Å while the chlorine–chlorine separation in the four-membered bimetallic cycle is 3.5894 (15) Å.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Irrelevant hydrogen atoms were omitted for clarity.

An overlay of the asymmetric units of the structures of the title compound (red) and a similar complex with methyl 5-methyl-1H-pyrazole-3-carboxyl­ate (green) is presented in Fig. 2. The structures were compared using OLEX2 software (Dolomanov et al., 2009). It was found that the structure of the complex does not change regardless of the organic radical R in the COOR ester group, whether –CH3 or –CH2—CH3. The crystal structures of these compounds are also similar. In addition, the inter­metallic distance in the above structures differs approximately by 0.1 Å and the chlorine–chlorine separation in the four-membered bimetallic ring differs by 0.05 Å [Cu⋯Cu = 3.7047 (7) Å and Cl⋯Cl = 3.5364 (11) Å for the methyl analogue]. The mol­ecular structure is stabilized by intra­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds (Table 1).

Figure 2.

Figure 2

Overlay diagram of the asymmetric units of the structures of the title compound (red) and of a similar complex with methyl 5-methyl-1H-pyrazole-3-carboxyl­ate (green) which shows the similarity of the structure regardless of the organic radical R in the COOR ester group of the substituent on the pyrazole ring.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1i 0.80 (2) 2.72 (2) 3.281 (2) 129 (2)
N2—H2⋯Cl2i 0.80 (2) 2.59 (2) 3.273 (2) 145 (1)
C7—H7A⋯Cl2ii 0.96 2.79 3.662 (4) 151

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}.

Supra­molecular features

The crystal packing of the title compound (Fig. 3) consists of discrete binuclear mol­ecules with a {Cu22-Cl)2} core, which form a planar bimetallic ring. The four-membered Cu1/Cl1/Cu1i/Cl1i planes of the bimetallic rings are situated perpendicular to the b axis, while the chelate ring planes are located approximately parallel. No inter­molecular hydrogen bonds were identified in the crystal structure. The minimum separation between the Cl atoms of neighbouring mol­ecules inside one unit cell is 4.4013 (13) Å for Cl1i and Cl1ii [symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) x, y, −1 + z] while the minimum distance between two copper atoms is 7.6498 (3) Å for Cu1 and Cu1ii.

Figure 3.

Figure 3

Crystal packing of the title compound viewed along (a) the a- and (b) the b-axis directions. Selected hydrogen atoms were omitted for clarity.

Hirshfeld surface analysis

The Hirshfeld surface analysis and the associated two-dimensional fingerprint plots were performed using Crystal Explorer 17.5 (Turner et al., 2018), with a standard resolution of the three-dimensional d norm surfaces plotted over a fixed colour scale of −0.1996 (red) to 1.1926 (blue) a.u. The pale-red spots in Fig. 4 represent short contacts and negative d norm values on the surface corresponding to the inter­actions described above. The Hirshfeld surfaces mapped over d norm are shown for the H⋯H, H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯C/C⋯H and H⋯N/N⋯H contacts, the overall two-dimensional fingerprint plot and the decomposed two-dimensional fingerprint plots are given in Fig. 5. Twelve short inter­atomic contacts in the range 2.34–2.8 Å are indicated by the faint red spots. Two pairs of inter­molecular C—H⋯O contacts between the O1 atom of the ester substituent and the hydrogen atom of the methyl group of the coordinated aceto­nitrile were the shortest. Also, four inter­molecular C—H⋯Cl contacts with a length of 2.685 Å, which are present between the terminal chlorine atoms and the hydrogen atoms of the ethyl group (hydrogen atom near C7) of the ester substituent are also short. Finally, four inter­molecular C—H⋯Cl contacts with a length of 2.8 Å are observed between the terminal chlorine atoms and the hydrogen atoms of the –CH3 group of the aceto­nitrile mol­ecule. For the title compound, the most significant contributions to the overall crystal packing are from H⋯H (40%), H⋯Cl/Cl⋯H (24.3%), H⋯O/O⋯H (11.8%), H⋯C/C⋯H (9.2%) and H⋯N/N⋯H (8.3%) contacts. The small contribution of the other weak inter­molecular C⋯C (2.9%), C⋯O/O⋯C (2.1%), C⋯N/N⋯C (0.8%), C⋯Cl/Cl⋯C (0.3%), O⋯N/N⋯O (0.3%) and Cl⋯Cl (0.1%) contacts has a negligible effect on the packing. In addition, qu­anti­tative physical properties of the Hirshfeld surface for the title compound were obtained, such as mol­ecular volume (657.89 Å3), surface area (571.56 Å2), globularity (0.640), as well as asphericity (0.147).

Figure 4.

Figure 4

Two projections of Hirshfeld surfaces mapped over dnorm showing the inter­molecular inter­actions within the mol­ecule.

Figure 5.

Figure 5

The overall two-dimensional fingerprint plot and those delineated into specified inter­actions. Hirshfeld surface representations with the function d norm plotted onto the surface for the different inter­actions.

Database survey

Six similar structures are registered in the Cambridge Structural Database (Version 2021.1; Groom et al., 2016): two reports of complexes with methyl 5-methyl-1H-pyrazole-3-carboxyl­ate [UMUXEI (Rheingold, 2021) and ZEQGUZ (Shakirova et al., 2012)], two reports of the free ligand ethyl 5-methyl-1H-pyrazole-3-carboxyl­ate [FAQSAR01 (Mague et al., 2018) and FAQSAR02 (Kusakiewicz-Dawid et al., 2019)] and two structure reports of the same ligand with a different name and cell parameters (Elguero et al., 1999) [3-eth­oxy­carbonyl-5-methyl­pyrazole (FAQSAR) and 4-bromo-3-eth­oxy­carbonyl-5-methyl­pyrazole (FAQTAS)].

Synthesis and crystallization

[Cu22-Cl)2(CH3-Pz-COOCH2CH3)2Cl2(CH3CN)2] was synthesized at room temperature by the oxidative dissolution method by the addition of a copper powder (1.56 mmol, 0.1 g) and copper(II) chloride dihydrate (3.1 mmol, 0.53 g) mixture to an aceto­nitrile (9 ml) solution of ethyl 5-methyl-1H-pyrazole-3-carboxyl­ate (4.67 mmol, 0.72 g). The mixture was stirred without heating for three h with free air access until dissolution of the copper powder and a green precipitate of the product was obtained. The precipitate was filtered off and re-dissolved in aceto­nitrile. Green crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent. The IR spectra of the starting pyrazole ligand and the obtained green crystals of the title coordination compound are given in the supporting information.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically (C—H = 0.93–0.97) and refined as riding with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl). N-bound H atoms were refined with U iso(H) = 1.2U eq(N).

Table 2. Experimental details.

Crystal data
Chemical formula [Cu2Cl4(C5H10N2O2)2(C2H3N)2]
M r 659.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.3934 (4), 15.9822 (5), 7.6498 (3)
β (°) 106.226 (4)
V3) 1337.48 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.03
Crystal size (mm) 0.45 × 0.2 × 0.1
 
Data collection
Diffractometer Rigaku Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.839, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9132, 3062, 2380
R int 0.029
(sin θ/λ)max−1) 0.666
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.083, 1.04
No. of reflections 3062
No. of parameters 158
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.34

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXLT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010653/zq2267sup1.cif

e-77-01153-sup1.cif (326.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010653/zq2267Isup2.hkl

e-77-01153-Isup2.hkl (244.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010653/zq2267Isup3.cdx

IR spectrum of the title compound. DOI: 10.1107/S2056989021010653/zq2267sup4.txt

e-77-01153-sup4.txt (42.6KB, txt)

IR spectrum of the free ligand. DOI: 10.1107/S2056989021010653/zq2267sup5.txt

e-77-01153-sup5.txt (42.6KB, txt)

CCDC reference: 2115608

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Cu2Cl4(C5H10N2O2)2(C2H3N)2] F(000) = 668
Mr = 659.33 Dx = 1.637 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.3934 (4) Å Cell parameters from 3607 reflections
b = 15.9822 (5) Å θ = 2.3–27.2°
c = 7.6498 (3) Å µ = 2.03 mm1
β = 106.226 (4)° T = 293 K
V = 1337.48 (9) Å3 Block, green
Z = 2 0.45 × 0.2 × 0.1 mm

Data collection

Rigaku Xcalibur, Eos diffractometer 3062 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 2380 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 16.1593 pixels mm-1 θmax = 28.3°, θmin = 1.9°
ω scans h = −14→14
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) k = −18→21
Tmin = 0.839, Tmax = 1.000 l = −9→9
9132 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.250P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3062 reflections Δρmax = 0.30 e Å3
158 parameters Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.32946 (3) 0.47882 (2) 0.91290 (4) 0.03655 (12)
Cl1 0.45100 (6) 0.48716 (4) 1.20189 (9) 0.04438 (18)
Cl2 0.23810 (6) 0.60138 (4) 0.93837 (10) 0.04752 (19)
O1 0.14691 (18) 0.38325 (11) 0.9411 (3) 0.0501 (5)
O2 0.12145 (16) 0.24499 (11) 0.9610 (3) 0.0471 (5)
N1 0.37558 (18) 0.35720 (12) 0.9058 (3) 0.0359 (5)
N2 0.4841 (2) 0.32429 (13) 0.9131 (3) 0.0406 (6)
H2 0.541 (2) 0.3509 (10) 0.9021 (5) 0.049*
N3 0.2412 (2) 0.47671 (13) 0.6418 (3) 0.0452 (6)
C1 0.4879 (2) 0.24100 (15) 0.9412 (4) 0.0414 (7)
C2 0.6021 (3) 0.19159 (18) 0.9591 (5) 0.0628 (10)
H2A 0.624715 0.194792 0.847440 0.094*
H2B 0.588090 0.134232 0.984660 0.094*
H2C 0.666779 0.214025 1.056683 0.094*
C3 0.3747 (2) 0.21906 (15) 0.9510 (4) 0.0417 (6)
H3 0.347635 0.165569 0.967998 0.050*
C4 0.3075 (2) 0.29279 (15) 0.9307 (3) 0.0356 (6)
C5 0.1848 (2) 0.31277 (16) 0.9433 (4) 0.0375 (6)
C6 0.0021 (2) 0.2595 (2) 0.9877 (4) 0.0567 (8)
H6A −0.049565 0.289751 0.884815 0.068*
H6B 0.009748 0.292321 1.096964 0.068*
C7 −0.0522 (3) 0.1761 (2) 1.0052 (5) 0.0624 (9)
H7A −0.071569 0.147755 0.890001 0.094*
H7B −0.125387 0.183416 1.042309 0.094*
H7C 0.005383 0.143312 1.094653 0.094*
C8 0.1955 (3) 0.48097 (15) 0.4916 (4) 0.0417 (6)
C9 0.1373 (4) 0.4863 (2) 0.2988 (4) 0.0710 (10)
H9A 0.150266 0.435166 0.241128 0.107*
H9B 0.171560 0.532163 0.248413 0.107*
H9C 0.051142 0.495250 0.278268 0.107*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0379 (2) 0.03067 (19) 0.0376 (2) 0.00332 (12) 0.00486 (14) −0.00063 (12)
Cl1 0.0504 (4) 0.0426 (4) 0.0359 (4) 0.0007 (3) 0.0049 (3) 0.0039 (3)
Cl2 0.0448 (4) 0.0378 (4) 0.0559 (5) 0.0095 (3) 0.0074 (3) −0.0022 (3)
O1 0.0491 (12) 0.0414 (11) 0.0637 (14) 0.0052 (9) 0.0224 (10) −0.0034 (9)
O2 0.0351 (10) 0.0452 (11) 0.0642 (14) −0.0029 (8) 0.0190 (9) 0.0025 (9)
N1 0.0305 (11) 0.0312 (11) 0.0449 (14) −0.0011 (9) 0.0088 (10) −0.0021 (9)
N2 0.0329 (12) 0.0353 (12) 0.0544 (16) −0.0048 (9) 0.0133 (11) −0.0057 (10)
N3 0.0471 (14) 0.0425 (13) 0.0431 (15) 0.0053 (10) 0.0077 (12) −0.0029 (10)
C1 0.0382 (15) 0.0301 (13) 0.0526 (18) 0.0006 (11) 0.0074 (13) −0.0075 (11)
C2 0.0442 (17) 0.0463 (17) 0.094 (3) 0.0062 (13) 0.0121 (18) −0.0150 (16)
C3 0.0399 (15) 0.0311 (13) 0.0517 (18) −0.0041 (11) 0.0085 (13) −0.0003 (11)
C4 0.0338 (13) 0.0329 (13) 0.0382 (16) −0.0032 (10) 0.0069 (11) −0.0037 (10)
C5 0.0370 (14) 0.0385 (15) 0.0368 (16) −0.0040 (11) 0.0101 (12) −0.0034 (11)
C6 0.0422 (17) 0.073 (2) 0.059 (2) 0.0066 (14) 0.0209 (16) 0.0057 (16)
C7 0.0416 (17) 0.084 (2) 0.062 (2) −0.0189 (15) 0.0156 (16) −0.0033 (17)
C8 0.0464 (16) 0.0391 (15) 0.0406 (18) 0.0057 (11) 0.0136 (13) −0.0044 (11)
C9 0.090 (3) 0.083 (2) 0.038 (2) 0.0103 (19) 0.0133 (19) −0.0022 (16)

Geometric parameters (Å, º)

Cu1—Cl1i 2.9242 (8) C2—H2A 0.9600
Cu1—Cl1 2.2609 (7) C2—H2B 0.9600
Cu1—Cl2 2.2521 (7) C2—H2C 0.9600
Cu1—O1 2.637 (2) C3—H3 0.9300
Cu1—N1 2.0182 (19) C3—C4 1.390 (3)
Cu1—N3 2.036 (2) C4—C5 1.462 (4)
O1—C5 1.205 (3) C6—H6A 0.9700
O2—C5 1.330 (3) C6—H6B 0.9700
O2—C6 1.449 (3) C6—C7 1.492 (4)
N1—N2 1.330 (3) C7—H7A 0.9600
N1—C4 1.335 (3) C7—H7B 0.9600
N2—H2 0.80 (3) C7—H7C 0.9600
N2—C1 1.347 (3) C8—C9 1.441 (4)
N3—C8 1.123 (4) C9—H9A 0.9600
C1—C2 1.495 (4) C9—H9B 0.9600
C1—C3 1.360 (4) C9—H9C 0.9600
Cl1—Cu1—Cl1i 86.62 (3) H2A—C2—H2C 109.5
Cl1—Cu1—O1 103.64 (5) H2B—C2—H2C 109.5
Cl2—Cu1—Cl1 92.05 (3) C1—C3—H3 127.0
Cl2—Cu1—Cl1i 108.61 (3) C1—C3—C4 106.1 (2)
Cl2—Cu1—O1 95.89 (5) C4—C3—H3 127.0
O1—Cu1—Cl1i 153.19 (4) N1—C4—C3 110.2 (2)
N1—Cu1—Cl1 89.44 (6) N1—C4—C5 116.5 (2)
N1—Cu1—Cl1i 85.41 (6) C3—C4—C5 133.2 (2)
N1—Cu1—Cl2 165.96 (7) O1—C5—O2 124.1 (2)
N1—Cu1—O1 70.22 (7) O1—C5—C4 123.3 (2)
N1—Cu1—N3 90.84 (8) O2—C5—C4 112.6 (2)
N3—Cu1—Cl1 171.83 (7) O2—C6—H6A 110.2
N3—Cu1—Cl1i 85.27 (7) O2—C6—H6B 110.2
N3—Cu1—Cl2 89.66 (6) O2—C6—C7 107.4 (2)
N3—Cu1—O1 84.12 (8) H6A—C6—H6B 108.5
C5—O1—Cu1 104.76 (17) C7—C6—H6A 110.2
C5—O2—C6 116.2 (2) C7—C6—H6B 110.2
N2—N1—Cu1 128.73 (16) C6—C7—H7A 109.5
N2—N1—C4 105.05 (19) C6—C7—H7B 109.5
C4—N1—Cu1 124.95 (17) C6—C7—H7C 109.5
N1—N2—H2 123.6 H7A—C7—H7B 109.5
N1—N2—C1 112.7 (2) H7A—C7—H7C 109.5
C1—N2—H2 123.6 H7B—C7—H7C 109.5
C8—N3—Cu1 175.2 (2) N3—C8—C9 179.8 (4)
N2—C1—C2 121.7 (2) C8—C9—H9A 109.5
N2—C1—C3 105.9 (2) C8—C9—H9B 109.5
C3—C1—C2 132.4 (2) C8—C9—H9C 109.5
C1—C2—H2A 109.5 H9A—C9—H9B 109.5
C1—C2—H2B 109.5 H9A—C9—H9C 109.5
C1—C2—H2C 109.5 H9B—C9—H9C 109.5
H2A—C2—H2B 109.5
Cu1—O1—C5—O2 178.2 (2) N2—C1—C3—C4 −1.0 (3)
Cu1—O1—C5—C4 −0.4 (3) C1—C3—C4—N1 1.1 (3)
Cu1—N1—N2—C1 167.66 (19) C1—C3—C4—C5 −174.1 (3)
Cu1—N1—C4—C3 −168.89 (18) C2—C1—C3—C4 177.7 (3)
Cu1—N1—C4—C5 7.2 (3) C3—C4—C5—O1 171.4 (3)
N1—N2—C1—C2 −178.3 (3) C3—C4—C5—O2 −7.4 (4)
N1—N2—C1—C3 0.5 (3) C4—N1—N2—C1 0.2 (3)
N1—C4—C5—O1 −3.7 (4) C5—O2—C6—C7 −179.7 (2)
N1—C4—C5—O2 177.6 (2) C6—O2—C5—O1 −3.1 (4)
N2—N1—C4—C3 −0.8 (3) C6—O2—C5—C4 175.7 (2)
N2—N1—C4—C5 175.3 (2)

Symmetry code: (i) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···Cl1i 0.80 (2) 2.72 (2) 3.281 (2) 129 (2)
N2—H2···Cl2i 0.80 (2) 2.59 (2) 3.273 (2) 145 (1)
C7—H7A···Cl2ii 0.96 2.79 3.662 (4) 151

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, y−1/2, −z+3/2.

Funding Statement

This work was funded by Ministry of Education and Science of Ukraine grant 21BNN-06.

References

  1. Chandrasekhar, V., Nagarajan, L., Clérac, R., Ghosh, S., Senapati, T. & Verma, S. (2008). Inorg. Chem. 47, 5347–5354. [DOI] [PubMed]
  2. Contaldi, S., Di Nicola, C., Garau, F., Karabach, Y. Y., Martins, L. M. D. R. S., Monari, M., Pandolfo, L., Pettinari, C. & Pombeiro, A. J. L. (2009). Dalton Trans. pp. 4928–4941. [DOI] [PubMed]
  3. Davydenko, Y. M., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2013). Z. Anorg. Allg. Chem. 639, 1472–1476.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Dubs, C., Yamamoto, T., Inagaki, A. & Akita, M. (2006). Organometallics, 25, 1344–1358.
  6. Elguero, J., Infantes, L., Foces-Foces, C. M., Claramunt, R., López, C. & Jagerovic, N. (1999). Heterocycles, 50, 227–242.
  7. Galassi, R., Burini, A. & Mohamed, A. A. (2012). Eur. J. Inorg. Chem. 2012, 3257–3261.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. He, H. (2011). Acta Cryst. E67, m140.
  10. Kokozay, V. N., Vassilyeva, O. Yu. & Makhankova, V. G. (2018). Direct Synthesis of Metal Complexes, edited by B. I. Kharisov, pp. 183–237. Amsterdam: Elsevier.
  11. Konrad, M., Wuthe, S., Meyer, F. & Kaifer, E. (2001). Eur. J. Inorg. Chem. pp. 2233–2240.
  12. Krämer, R., Fritsky, I. O., Pritzkow, H. & Kovbasyuk, L. A. (2002). J. Chem. Soc. Dalton Trans. pp. 1307–1314..
  13. Kulkarni, N. V., Kamath, A., Budagumpi, S. & Revankar, V. K. (2011). J. Mol. Struct. 1006, 580–588.
  14. Kupcewicz, B., Sobiesiak, K., Malinowska, K., Koprowska, K., Czyz, M., Keppler, B. & Budzisz, E. (2013). Med. Chem. Res. 22, 2395–2402. [DOI] [PMC free article] [PubMed]
  15. Kusakiewicz-Dawid, A., Porada, M., Dziuk, B. & Siodłak, D. (2019). Molecules, 24, 2632. [DOI] [PMC free article] [PubMed]
  16. Li, X. & Binnemans, K. (2021). Chem. Rev. 121, 4506–4530. [DOI] [PMC free article] [PubMed]
  17. Liu, X.-M., Kilner, C. A., Thornton-Pett, M. & Halcrow, M. A. (2001). Acta Cryst. C57, 1253–1255. [DOI] [PubMed]
  18. Mague, J. & Ramli, Y. (2018). CSD Communication (CCDC 1872098). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc20v287
  19. Małecka, M. & Chęcińska, L. (2003). Acta Cryst. C59, m115–m117. [DOI] [PubMed]
  20. Malinkin, S. O., Moroz, Y. S., Penkova, L. V., Bon, V. V., Gumienna-Kontecka, E., Pavlenko, V. A., Pekhnyo, V. I., Meyer, F. & Fritsky, I. O. (2012). Polyhedron, 37, 77–84.
  21. Mezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279–3288.
  22. Mighell, A., Santoro, A., Prince, E. & Reimann, C. (1975). Acta Cryst. B31, 2479–2482.
  23. Penkova, L., Demeshko, S., Pavlenko, V. A., Dechert, S., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chim. Acta, 363, 3036–3040.
  24. Plyuta, N., Vassilyeva, O. Yu., Kokozay, V. N., Omelchenko, I. & Petrusenko, S. (2020). Acta Cryst. E76, 423–426. [DOI] [PMC free article] [PubMed]
  25. Rheingold, A. L. (2021). CSD Communication (CCDC 869805). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.ccy637g.
  26. Rigaku OD (2021). CrysAlis PRO.Rigaku Inc., Tokyo, Japan.
  27. Röder, J. C., Meyer, F., Winter, R. F. & Kaifer, E. (2002). J. Organomet. Chem. 641, 113–120.
  28. Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F. & Marzano, C. (2014). Chem. Rev. 114, 815–862. [DOI] [PubMed]
  29. Shakirova, O. G., Lavrenova, L. G., Kuratieva, N. V., Naumov, D. Y., Bogomyakov, A. S., Sheludyakova, L. A., Mikhailovskaya, T. F. & Vasilevsky, S. F. (2012). Russ. J. Coord. Chem. 38, 552–559.
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Sirenko, V. Y., Kucheriv, O. I., Rotaru, A., Fritsky, I. O. & Gural’skiy, I. A. (2020). Eur. J. Inorg. Chem. pp. 4523–4531.
  33. Spodine, E., Atria, A. M., Valenzuela, J., Jalocha, J., Manzur, J., García, A. M., Garland, M. T., Peña, O. & Saillard, J.-Y. J. (1999). J. Chem. Soc. Dalton Trans. pp. 3029–3034.
  34. Surmann, S. A. & Mezei, G. (2016). Acta Cryst. E72, 1517–1520. [DOI] [PMC free article] [PubMed]
  35. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2018). CrystalExplorer 17.5. [DOI] [PMC free article] [PubMed]
  36. Vafazadeh, R. C., Willis, A., Mehdi Heidari, M. & Hasanzade, N. (2015). Acta Chim. Slov. 2015, 62, 122–129. [DOI] [PubMed]
  37. Vincent, C. J., Giles, I. D. & Deschamps, J. R. (2018). Acta Cryst. E74, 357–362. [DOI] [PMC free article] [PubMed]
  38. Vynohradov, O. S., Pavlenko, V. A., Fritsky, I. O., Gural’skiy, I. A. & Shova, S. (2020a). Russ. J. Inorg. Chem. 65, 1481–1488.
  39. Vynohradov, O. S., Pavlenko, V. A., Naumova, D. D., Partsevska, S. V., Shova, S. & Safarmamadov, S. M. (2020b). Acta Cryst. E76, 1641–1644. [DOI] [PMC free article] [PubMed]
  40. Wei, W. & Xu, Y. (2012). Acta Cryst. E68, m557. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010653/zq2267sup1.cif

e-77-01153-sup1.cif (326.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010653/zq2267Isup2.hkl

e-77-01153-Isup2.hkl (244.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010653/zq2267Isup3.cdx

IR spectrum of the title compound. DOI: 10.1107/S2056989021010653/zq2267sup4.txt

e-77-01153-sup4.txt (42.6KB, txt)

IR spectrum of the free ligand. DOI: 10.1107/S2056989021010653/zq2267sup5.txt

e-77-01153-sup5.txt (42.6KB, txt)

CCDC reference: 2115608

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES