Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Oct 29;77(Pt 11):1170–1174. doi: 10.1107/S2056989021010690

Crystal structure, Hirshfeld surface and frontier mol­ecular orbital analysis of 9-(3-bromo-4-hy­droxy-5-meth­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,5,6,7,9-hexa­hydro-1H-xanthene-1,8(2H)-dione

N Suresh Babu a,*, V Sughanya b, D Praveenkumar c, M L Sundararajan d
PMCID: PMC8587974  PMID: 34868657

In the xanthene moiety of the title compound, the central ring adopts a flattened-boat conformation whereas the cyclo­hexenone rings adopt envelope conformations. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an Inline graphic (20) ring motif.

Keywords: crystal structure, dimedone, xanthene, xanthenedione, pyran ring

Abstract

In the fused ring system of the title compound, C24H27BrO5, the mean plane and maximum deviations of the central pyran ring are 0.0384 (2) and 0.0733 (2) Å, respectively. The cyclo­hexenone rings both adopt envelope conformations with the tetra-substituted C atoms as flap atoms, whereas the central pyran ring adopts a flattened boat conformation. The central pyran and phenyl substituent rings are almost perpendicular to each other, making a dihedral angle of 89.71 (2)°. In the crystal, pairs of mol­ecules are linked via O—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(20) ring motif. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (50.6%), O⋯H/H⋯O (22.9%) and C⋯H/H⋯C (11.1%) contacts. Quantum chemical calculations for the frontier mol­ecular orbitals were undertaken to determine the chemical reactivity of the title compound.

Chemical context

Xanthene is known as the parent compound of naturally occurring substances with various biological properties including anti­bacterial (Dimmock et al., 1988), anti­viral (Naidu et al., 2012), anti­tumor (Al-Omran et al., 2014) and anti-inflammatory activities (Dimmock et al., 1988; Cottam et al., 1996). It is present in organic compounds that are widely used as synthetic dyes (Hilderbrand et al., 2007), in fluorescent materials used for visualization of biomolecules (Knight et al., 1989), and in laser technologies (Pohlers et al., 1997). Ehretianone, a quinonoid xanthene, was reported to possess anti-snake venom activity (Selvanayagam et al., 1996; Poupelin et al., 1978). Xanthenes whose structures resemble those of 1,4-di­hydro­pyridines can function as calcium channel blockers (Reddy et al., 2010; Rathore et al., 2009). graphic file with name e-77-01170-scheme1.jpg

Structural commentary

The title compound (I) (Fig. 1) crystallizes in the triclinic space group P Inline graphic with Z = 2. The central pyran ring B (O1/C1/C8–C10/C17) is almost planar with a mean deviation from the mean plane of 0.0384 (2) Å and a maximum deviation of 0.0733 (3) Å for C9. Atoms C9 and O1 are displaced out of the mean plane in the the same direction so the ring may also be described as having a highly flattened boat conformation. Both cyclo­hexenone rings, A (C10–C13/C16/C17) and C (C1–C3/C6–C8), adopt envelope conformations with atoms C13 and C3 as the flaps being situated out of the plane of the ring with deviations of 0.3281 (2) and 0.325 (2) Å, respectively. Rings A, B and C show total puckering amplitudes Q(T) of 0.4645 (2), 0.1070 (2) and 0.4607 (16) Å, respectively. The puckering parameters (Cremer & Pople, 1975) are φ = 179.52 (8)° and θ = 57.55 (2)° for A, φ = 178.99 (2)° and θ = 68.92 (2)° for B, φ = 304.73 (12)° and θ = 125.47 (2)° for C. The planar phenyl substituent and the central pyran ring form a dihedral angle of 89.71 (2)°. In the pyran ring, C1—C8 and C10—C17 are double bonds, as indicated by the bond lengths [C1—C8 = 1.344 (3) Å and C10—C17 = 1.336 (3) Å]. The angles and bond lengths (Allen et al., 1987; Li et al., 2019) are within normal ranges. The observed carbonyl bond lengths [C11—O3 = 1.216 (3) and C7—O2 = 1.227 (2) Å] are also normal.

Figure 1.

Figure 1

A view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features and Hirshfeld surface analysis

In the crystal, mol­ecules are linked by pairs of O4—H4⋯O2 hydrogen bonds (Table 1), forming inversion dimers with an Inline graphic (20) ring motif, parallel to the (001) plane (Fig. 2). The mol­ecules are further linked by C6—H6B⋯O2, C16—H16A⋯Br1 and O4—H4⋯O5 hydrogen bonds, forming ribbons (Fig. 3). Overall, the O—H⋯O and C—H⋯O inter­actions yield a three-dimensional supra­molecular network.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯O2i 0.97 2.60 3.377 (3) 137
C16—H16A⋯Br1ii 0.97 2.94 3.736 (2) 140
O4—H4⋯O2iii 0.82 2.04 2.768 (2) 148
O4—H4⋯O5 0.82 2.28 2.701 (2) 113

Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z+2.

Figure 2.

Figure 2

A view of the structure of (I) showing the O—H⋯O hydrogen bonds, forming a centrosymmetric dimer with an Inline graphic (20) ring motif.

Figure 3.

Figure 3

Packing view for (I), showing the formation of O—H⋯O hydrogen bonds between mol­ecules in the unit cell.

To qu­antify the inter­molecular contacts in the crystal, Hirshfeld surfaces (Spackman & Jayatilaka, 2009) and two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 (Turner et al., 2017). The Hirshfeld surfaces mapped over d norm in the range −0.5451 to 1.6834 a.u. (Fig. 4) show the inter­molecular contacts as red-coloured spots, which indicate the closer contacts of C—H⋯O and O—H⋯O hydrogen bonds. The bright-red spots indicate their roles as donors and/or acceptors in hydrogen bonding; they also appear as red and blue regions corresponding to negative and positive potentials on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008) shown in Fig. 5. Here the red regions indicate negative electrostatic potential (hydrogen-bond acceptors), while the blue regions indicate positive electrostatic potential (hydrogen-bond donors). The 2D fingerprint plots are illustrated in Fig. 6. The H⋯H contacts comprise 50.6% of the total inter­actions. Besides these contacts, O⋯H/H⋯O (22.9%), C⋯H/H⋯C (11.1%) and Br⋯H/H⋯Br (11.6%) inter­actions make a significant contribution to the total Hirshfeld surface. The percentage contributions of the Br⋯O/O⋯Br, O⋯O and C⋯C contacts are 1.8, 0.7 and 0.1%, respectively.

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of (I) plotted over d norm in the range −0.5451 to 1.6834 a.u. The two O—H⋯O hydrogen bonds forming the dimer are depicted as dashed lines.

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of (I) plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. The hydrogen-bond donors and acceptors are viewed as blue and red regions, respectively, around atoms, corresponding to positive and negative potentials.

Figure 6.

Figure 6

The percentage contributions of close contacts of (I). The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

Frontier mol­ecular orbital analysis

The chemical reactivity of the title compound was studied by frontier mol­ecular orbital analysis. For the calculation, the starting structural geometry was taken from the refined experimental structure obtained from X-ray diffraction data. The energy levels for the compound were computed using the DFT-B3LYP/6-311G++(d,p) level of theory as implemented in Gaussian09W (Frisch et al., 2013). The calculated frontier mol­ecular orbitals, HOMO, HOMO−1, LUMO and LUMO+1, are shown in Fig. 7. The energies of HOMO, HOMO−1, LUMO and LUMO+1 were calculated to be −5.8915, −6.2499, −1.9353 and −1.0419 eV, respectively, and the energies required to excite one electron from HOMO to LUMO and from HOMO−1 to LUMO+1 are 3.9562 and 5.2080 eV, respectively. The chemical potential, chemical hardness, chemical softness and electrophilicity index of the title mol­ecule are listed in Table 2. Parr et al. (1999) have proposed the electrophilicity index as a qu­anti­tative measure of the energy lowering due to the maximal electron flow between donor and acceptor orbitals. The electrophilicity index value of 3.8711 eV shows the global electrophilic nature of the mol­ecule. Based on the wide band gap and its chemical hardness value of 1.9781 eV, the title mol­ecule seems to be hard.

Figure 7.

Figure 7

The frontier mol­ecular orbitals of (I).

Table 2. The global reactivity descriptors (eV) of the title compound.

Frontier mol­ecular orbitals Energy
E HOMO −5.8915
E LUMO −1.9353
E HOMO−1 −6.2499
E LUMO+1 −1.0419
(E HOMOE LUMO) gap 3.9562
(E HOMO−1E LUMO+1) gap 5.2080
Chemical potential (μ) 3.9134
Chemical hardness (η) 1.9781
Chemical softness (S) 0.5055
Electrophilicity index (ω) 3.8711

Database survey

A search of the Cambridge Structural Database (CSD, Version 5.42, update May 2021; Groom et al., 2016) for the xanthene-1,8(2H)-dione unit resulted in 30 hits. They include the following analogues: 2,4-di­nitro­phenyl (LERZEP; Sureshbabu & Sughanya, 2013), 4-hy­droxy-3,5-di­meth­oxy­phenyl (YAVTAS; Sughanya & Sureshbabu, 2012a ), 2,4-di­fluoro­phenyl (VITWEC; Fun et al., 2011), pyridine-2-yl (YIDRIP; Purushothaman & Thiruvenkatam, 2018). In the title compound, the dihedral angle between the phenyl and pyran rings is 89.71 (2)°, similar to the values observed for LERZEP, the 2,4-di­nitro­phenyl analogue, YAVTAS, the 4-hy­droxy-3,5-di­meth­oxy­phenyl analogue, and VITWEC, the 2,4-di­fluoro­phenyl analogue, for which the dihedral angles are 85.88 (2), 86.32 (2) and 87.55 (4)°, respectively.

Synthesis and crystallization

Compound (I) was prepared in two stages (Vanag & Stankevich, 1960). A mixture of 5,5-dimethyl cyclo­hexane-1,3-dione (1.12 g, 8 mmol), 3-bromo-4-hy­droxy-5-meth­oxy­benzaldehyde (0.92 g, 4 mmol) and 20 ml of ethanol were heated to 343 K for about 10 minutes. The reaction mixture was allowed to cool to 298–301 K and the resulting inter­mediate compound, 2,2′-[(3-bromo-4-hy­droxy-5-meth­oxy­phen­yl)methyl­ene]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-en-1-one) was filtered and dried (m.p. 491 K, 3.4 mmol, yield: 85%) (Sughanya & Sureshbabu, 2012b ). In the second stage, about 0.50 g (1.04 mmol) of this inter­mediate were dissolved in 20 ml of ethanol. The content was refluxed together with 5 drops of concentrated hydro­chloric acid for 20 minutes with the reaction being monitored by TLC. After completion of the reaction, the reaction mixture was poured into 100 ml of ice-cold water and stirred well. The solid separated was filtered and dried. Yellow single crystals suitable for X-ray diffraction were obtained from 90% ethanol (m.p. 495 K, 0.455 g, 0.96 mmol, yield 92%). IR (KBr): cm−1 3360, 2953, 2865, 1667, 1622, 1584, 1497, 1278, 1234, 1046, 1003. 1H NMR (500 MHz, CDCl3): 1.04 (s, 6H), 1.12 (s, 6H), 2.24 (dd, J = 6 Hz, 4H), 2.47 (dd, J = 6 Hz, 4H), 3.91 (s, 3H), 4.65 (s, 1H), 5.88 (s, 1H), 6.76 (s, 1H), 7.02 (s,1H). 13C NMR (125 MHz, CDCl3): 27.36, 29.21,31.30, 32.23, 40.84, 50.75, 56.32, 107.63, 111.92, 115.26, 123.25, 137.24, 146.56, 162.40, 196.56. ESI–MS: m/z: 475.06 [M + H].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were fixed geometrically and treated as riding atoms, with C—H = 0.93–0.97 Å and U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl).

Table 3. Experimental details.

Crystal data
Chemical formula C24H27BrO5
M r 475.36
Crystal system, space group Triclinic, P\overline{1}
Temperature (K) 296
a, b, c (Å) 9.851 (3), 10.763 (3), 12.313 (3)
α, β, γ (°) 82.38 (1), 66.900 (9), 73.484 (10)
V3) 1150.9 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.82
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016)
T min, T max 0.550, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 47600, 4052, 3694
R int 0.029
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.072, 1.08
No. of reflections 4052
No. of parameters 276
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.50

Computer programs: APEX3, SAINT-Plus and XPREP (Bruker, 2016), SHELXT2018 (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021010690/zn2010sup1.cif

e-77-01170-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010690/zn2010Isup3.hkl

e-77-01170-Isup3.hkl (322.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010690/zn2010Isup3.cml

CCDC reference: 2064558

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Sudhadevi Antharjanam and the SAIF, IIT Madras, for the data collection.

supplementary crystallographic information

Crystal data

C24H27BrO5 F(000) = 492
Mr = 475.36 Dx = 1.372 Mg m3
Triclinic, P1 Melting point: 495 K
a = 9.851 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.763 (3) Å Cell parameters from 9325 reflections
c = 12.313 (3) Å θ = 2.6–30.0°
α = 82.38 (1)° µ = 1.82 mm1
β = 66.900 (9)° T = 296 K
γ = 73.484 (10)° BLOCK, yellow
V = 1150.9 (5) Å3 0.30 × 0.25 × 0.20 mm
Z = 2

Data collection

Bruker Kappa APEX3 CMOS diffractometer 4052 independent reflections
Radiation source: fine-focus sealed tube 3694 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
ω and φ scan θmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Bruker, 2016) h = −11→11
Tmin = 0.550, Tmax = 0.746 k = −12→12
47600 measured reflections l = −14→14

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0296P)2 + 0.6561P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
4052 reflections Δρmax = 0.32 e Å3
276 parameters Δρmin = −0.50 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.49132 (3) 0.69406 (2) 0.62363 (2) 0.05292 (10)
C1 0.5946 (2) 0.11911 (17) 0.64639 (15) 0.0319 (4)
C2 0.4569 (2) 0.0735 (2) 0.66746 (17) 0.0412 (5)
H2A 0.484623 −0.020439 0.666673 0.049*
H2B 0.420396 0.105743 0.603872 0.049*
C3 0.3280 (2) 0.1192 (2) 0.78588 (18) 0.0423 (5)
C4 0.2057 (3) 0.0452 (3) 0.8150 (2) 0.0676 (7)
H4A 0.250419 −0.046032 0.819885 0.101*
H4B 0.125530 0.073181 0.889224 0.101*
H4C 0.164507 0.062167 0.754031 0.101*
C5 0.2564 (3) 0.2644 (2) 0.7781 (3) 0.0617 (7)
H5A 0.332860 0.310996 0.759881 0.092*
H5B 0.215134 0.281231 0.717207 0.092*
H5C 0.176157 0.292245 0.852400 0.092*
C6 0.3982 (3) 0.0887 (2) 0.88067 (18) 0.0516 (6)
H6A 0.320679 0.124356 0.954643 0.062*
H6B 0.427417 −0.004661 0.891856 0.062*
C7 0.5345 (2) 0.13965 (17) 0.85383 (16) 0.0366 (4)
C8 0.6339 (2) 0.15206 (16) 0.72946 (15) 0.0313 (4)
C9 0.7704 (2) 0.20575 (17) 0.70112 (16) 0.0322 (4)
C10 0.8672 (2) 0.19047 (17) 0.57072 (16) 0.0322 (4)
C11 1.0196 (2) 0.2146 (2) 0.52605 (19) 0.0439 (5)
C12 1.1113 (2) 0.2068 (2) 0.3948 (2) 0.0495 (5)
H12A 1.180310 0.121046 0.378089 0.059*
H12B 1.172975 0.268803 0.372815 0.059*
C13 1.0158 (2) 0.2333 (2) 0.31752 (18) 0.0428 (5)
C14 0.9298 (3) 0.3771 (2) 0.3217 (2) 0.0617 (7)
H14A 1.001793 0.429336 0.291989 0.093*
H14B 0.869236 0.392418 0.273983 0.093*
H14C 0.864478 0.399531 0.401812 0.093*
C15 1.1185 (3) 0.1973 (3) 0.1891 (2) 0.0627 (7)
H15A 1.189481 0.250422 0.158058 0.094*
H15B 1.173617 0.107698 0.186491 0.094*
H15C 1.056780 0.211083 0.142489 0.094*
C16 0.9043 (2) 0.14713 (19) 0.36435 (16) 0.0378 (4)
H16A 0.831875 0.172240 0.325133 0.045*
H16B 0.960435 0.057845 0.345098 0.045*
C17 0.8192 (2) 0.15590 (17) 0.49441 (15) 0.0313 (4)
C18 0.7174 (2) 0.34791 (17) 0.73598 (16) 0.0318 (4)
C19 0.7345 (2) 0.38397 (18) 0.83369 (16) 0.0342 (4)
H19 0.786711 0.322584 0.873846 0.041*
C20 0.6744 (2) 0.51052 (18) 0.87108 (16) 0.0346 (4)
C21 0.7625 (3) 0.4676 (3) 1.0299 (2) 0.0604 (7)
H21A 0.759056 0.510392 1.094887 0.091*
H21B 0.716974 0.395977 1.059224 0.091*
H21C 0.866680 0.436440 0.977932 0.091*
C22 0.5972 (2) 0.60496 (17) 0.81104 (16) 0.0341 (4)
C23 0.5878 (2) 0.56797 (18) 0.71128 (16) 0.0334 (4)
C24 0.6451 (2) 0.44079 (18) 0.67421 (16) 0.0345 (4)
H24 0.634765 0.418239 0.608017 0.041*
O1 0.68252 (15) 0.12340 (13) 0.52771 (10) 0.0355 (3)
O2 0.56680 (19) 0.16747 (15) 0.93260 (12) 0.0493 (4)
O3 1.0717 (2) 0.2361 (2) 0.59419 (16) 0.0743 (6)
O4 0.53332 (19) 0.72988 (13) 0.84657 (13) 0.0476 (4)
H4 0.531593 0.735147 0.912952 0.071*
O5 0.68156 (19) 0.55546 (14) 0.96789 (13) 0.0489 (4)
H9 0.829 (2) 0.156 (2) 0.7488 (18) 0.035 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.06708 (17) 0.03847 (13) 0.05825 (15) 0.00106 (10) −0.03853 (12) −0.00177 (9)
C1 0.0423 (10) 0.0251 (9) 0.0255 (9) −0.0070 (8) −0.0102 (8) −0.0021 (7)
C2 0.0519 (12) 0.0401 (11) 0.0348 (10) −0.0190 (9) −0.0126 (9) −0.0071 (8)
C3 0.0471 (12) 0.0427 (11) 0.0369 (10) −0.0158 (9) −0.0104 (9) −0.0078 (9)
C4 0.0628 (16) 0.0841 (19) 0.0579 (15) −0.0401 (15) −0.0067 (13) −0.0113 (14)
C5 0.0558 (14) 0.0518 (14) 0.0809 (18) −0.0008 (11) −0.0323 (13) −0.0200 (13)
C6 0.0582 (14) 0.0608 (14) 0.0293 (10) −0.0206 (11) −0.0070 (10) 0.0027 (10)
C7 0.0520 (12) 0.0273 (9) 0.0273 (9) −0.0037 (8) −0.0157 (9) −0.0007 (7)
C8 0.0428 (10) 0.0230 (8) 0.0262 (9) −0.0039 (7) −0.0138 (8) −0.0010 (7)
C9 0.0409 (10) 0.0287 (9) 0.0294 (9) −0.0032 (8) −0.0191 (8) −0.0027 (7)
C10 0.0371 (10) 0.0267 (9) 0.0319 (9) −0.0021 (7) −0.0153 (8) −0.0036 (7)
C11 0.0407 (11) 0.0464 (12) 0.0470 (12) −0.0073 (9) −0.0206 (10) −0.0034 (9)
C12 0.0385 (11) 0.0577 (14) 0.0491 (12) −0.0127 (10) −0.0115 (10) −0.0049 (10)
C13 0.0417 (11) 0.0446 (11) 0.0349 (10) −0.0099 (9) −0.0080 (9) 0.0006 (9)
C14 0.0723 (17) 0.0451 (13) 0.0584 (15) −0.0140 (12) −0.0192 (13) 0.0114 (11)
C15 0.0563 (14) 0.0825 (18) 0.0388 (12) −0.0235 (13) −0.0026 (11) −0.0026 (12)
C16 0.0416 (11) 0.0396 (10) 0.0286 (9) −0.0056 (8) −0.0115 (8) −0.0050 (8)
C17 0.0345 (10) 0.0265 (9) 0.0300 (9) −0.0038 (7) −0.0116 (8) −0.0017 (7)
C18 0.0361 (10) 0.0308 (9) 0.0305 (9) −0.0077 (8) −0.0138 (8) −0.0049 (7)
C19 0.0412 (10) 0.0338 (10) 0.0328 (9) −0.0091 (8) −0.0194 (8) −0.0009 (8)
C20 0.0432 (11) 0.0373 (10) 0.0287 (9) −0.0155 (8) −0.0140 (8) −0.0050 (8)
C21 0.0862 (18) 0.0673 (16) 0.0484 (13) −0.0213 (14) −0.0426 (13) −0.0100 (11)
C22 0.0376 (10) 0.0295 (9) 0.0347 (10) −0.0097 (8) −0.0104 (8) −0.0060 (8)
C23 0.0361 (10) 0.0318 (9) 0.0346 (10) −0.0061 (8) −0.0175 (8) −0.0001 (8)
C24 0.0415 (10) 0.0345 (10) 0.0317 (9) −0.0076 (8) −0.0178 (8) −0.0062 (8)
O1 0.0420 (7) 0.0434 (7) 0.0240 (6) −0.0152 (6) −0.0112 (5) −0.0044 (5)
O2 0.0715 (10) 0.0505 (9) 0.0272 (7) −0.0142 (8) −0.0204 (7) −0.0024 (6)
O3 0.0588 (11) 0.1243 (17) 0.0587 (11) −0.0374 (11) −0.0297 (9) −0.0097 (11)
O4 0.0675 (10) 0.0325 (7) 0.0435 (8) −0.0032 (7) −0.0248 (8) −0.0116 (6)
O5 0.0739 (10) 0.0411 (8) 0.0421 (8) −0.0138 (7) −0.0303 (8) −0.0103 (6)

Geometric parameters (Å, º)

Br1—C23 1.8954 (19) C12—H12A 0.9700
C1—C8 1.344 (3) C12—H12B 0.9700
C1—O1 1.378 (2) C13—C16 1.530 (3)
C1—C2 1.489 (3) C13—C14 1.535 (3)
C2—C3 1.537 (3) C13—C15 1.536 (3)
C2—H2A 0.9700 C14—H14A 0.9600
C2—H2B 0.9700 C14—H14B 0.9600
C3—C5 1.529 (3) C14—H14C 0.9600
C3—C4 1.530 (3) C15—H15A 0.9600
C3—C6 1.534 (3) C15—H15B 0.9600
C4—H4A 0.9600 C15—H15C 0.9600
C4—H4B 0.9600 C16—C17 1.489 (3)
C4—H4C 0.9600 C16—H16A 0.9700
C5—H5A 0.9600 C16—H16B 0.9700
C5—H5B 0.9600 C17—O1 1.378 (2)
C5—H5C 0.9600 C18—C24 1.380 (3)
C6—C7 1.494 (3) C18—C19 1.395 (2)
C6—H6A 0.9700 C19—C20 1.383 (3)
C6—H6B 0.9700 C19—H19 0.9300
C7—O2 1.227 (2) C20—O5 1.378 (2)
C7—C8 1.471 (3) C20—C22 1.400 (3)
C8—C9 1.511 (3) C21—O5 1.403 (3)
C9—C10 1.515 (3) C21—H21A 0.9600
C9—C18 1.530 (2) C21—H21B 0.9600
C9—H9 0.98 (2) C21—H21C 0.9600
C10—C17 1.336 (3) C22—O4 1.362 (2)
C10—C11 1.470 (3) C22—C23 1.384 (3)
C11—O3 1.216 (3) C23—C24 1.387 (3)
C11—C12 1.510 (3) C24—H24 0.9300
C12—C13 1.533 (3) O4—H4 0.8200
C8—C1—O1 122.25 (17) H12A—C12—H12B 107.6
C8—C1—C2 126.24 (17) C16—C13—C12 107.75 (17)
O1—C1—C2 111.51 (15) C16—C13—C14 110.89 (18)
C1—C2—C3 112.21 (16) C12—C13—C14 110.14 (19)
C1—C2—H2A 109.2 C16—C13—C15 108.20 (18)
C3—C2—H2A 109.2 C12—C13—C15 110.44 (19)
C1—C2—H2B 109.2 C14—C13—C15 109.39 (19)
C3—C2—H2B 109.2 C13—C14—H14A 109.5
H2A—C2—H2B 107.9 C13—C14—H14B 109.5
C5—C3—C4 109.3 (2) H14A—C14—H14B 109.5
C5—C3—C6 111.04 (18) C13—C14—H14C 109.5
C4—C3—C6 109.72 (19) H14A—C14—H14C 109.5
C5—C3—C2 109.94 (19) H14B—C14—H14C 109.5
C4—C3—C2 109.43 (17) C13—C15—H15A 109.5
C6—C3—C2 107.36 (18) C13—C15—H15B 109.5
C3—C4—H4A 109.5 H15A—C15—H15B 109.5
C3—C4—H4B 109.5 C13—C15—H15C 109.5
H4A—C4—H4B 109.5 H15A—C15—H15C 109.5
C3—C4—H4C 109.5 H15B—C15—H15C 109.5
H4A—C4—H4C 109.5 C17—C16—C13 112.68 (16)
H4B—C4—H4C 109.5 C17—C16—H16A 109.1
C3—C5—H5A 109.5 C13—C16—H16A 109.1
C3—C5—H5B 109.5 C17—C16—H16B 109.1
H5A—C5—H5B 109.5 C13—C16—H16B 109.1
C3—C5—H5C 109.5 H16A—C16—H16B 107.8
H5A—C5—H5C 109.5 C10—C17—O1 123.42 (16)
H5B—C5—H5C 109.5 C10—C17—C16 125.17 (18)
C7—C6—C3 115.04 (17) O1—C17—C16 111.41 (15)
C7—C6—H6A 108.5 C24—C18—C19 119.37 (17)
C3—C6—H6A 108.5 C24—C18—C9 119.97 (16)
C7—C6—H6B 108.5 C19—C18—C9 120.58 (16)
C3—C6—H6B 108.5 C20—C19—C18 120.33 (17)
H6A—C6—H6B 107.5 C20—C19—H19 119.8
O2—C7—C8 119.91 (19) C18—C19—H19 119.8
O2—C7—C6 121.64 (18) O5—C20—C19 124.98 (18)
C8—C7—C6 118.42 (17) O5—C20—C22 114.18 (16)
C1—C8—C7 117.75 (18) C19—C20—C22 120.84 (17)
C1—C8—C9 123.31 (16) O5—C21—H21A 109.5
C7—C8—C9 118.90 (16) O5—C21—H21B 109.5
C8—C9—C10 109.09 (15) H21A—C21—H21B 109.5
C8—C9—C18 110.02 (15) O5—C21—H21C 109.5
C10—C9—C18 111.38 (15) H21A—C21—H21C 109.5
C8—C9—H9 107.8 (12) H21B—C21—H21C 109.5
C10—C9—H9 110.4 (11) O4—C22—C23 119.68 (17)
C18—C9—H9 108.0 (12) O4—C22—C20 122.66 (17)
C17—C10—C11 118.59 (17) C23—C22—C20 117.67 (16)
C17—C10—C9 122.45 (17) C22—C23—C24 121.99 (17)
C11—C10—C9 118.96 (16) C22—C23—Br1 119.16 (14)
O3—C11—C10 120.3 (2) C24—C23—Br1 118.84 (14)
O3—C11—C12 121.2 (2) C18—C24—C23 119.71 (16)
C10—C11—C12 118.47 (18) C18—C24—H24 120.1
C11—C12—C13 114.73 (18) C23—C24—H24 120.1
C11—C12—H12A 108.6 C1—O1—C17 118.39 (14)
C13—C12—H12A 108.6 C22—O4—H4 109.5
C11—C12—H12B 108.6 C20—O5—C21 117.51 (16)
C13—C12—H12B 108.6
C8—C1—C2—C3 24.0 (3) C12—C13—C16—C17 49.6 (2)
O1—C1—C2—C3 −156.46 (16) C14—C13—C16—C17 −71.0 (2)
C1—C2—C3—C5 72.5 (2) C15—C13—C16—C17 169.04 (18)
C1—C2—C3—C4 −167.4 (2) C11—C10—C17—O1 175.94 (16)
C1—C2—C3—C6 −48.4 (2) C9—C10—C17—O1 −4.1 (3)
C5—C3—C6—C7 −67.4 (2) C11—C10—C17—C16 −4.0 (3)
C4—C3—C6—C7 171.63 (19) C9—C10—C17—C16 175.98 (17)
C2—C3—C6—C7 52.8 (2) C13—C16—C17—C10 −24.5 (3)
C3—C6—C7—O2 151.79 (19) C13—C16—C17—O1 155.55 (16)
C3—C6—C7—C8 −30.3 (3) C8—C9—C18—C24 −68.8 (2)
O1—C1—C8—C7 −177.95 (16) C10—C9—C18—C24 52.3 (2)
C2—C1—C8—C7 1.5 (3) C8—C9—C18—C19 107.97 (19)
O1—C1—C8—C9 4.6 (3) C10—C9—C18—C19 −130.94 (18)
C2—C1—C8—C9 −175.96 (17) C24—C18—C19—C20 2.5 (3)
O2—C7—C8—C1 179.28 (17) C9—C18—C19—C20 −174.21 (17)
C6—C7—C8—C1 1.3 (3) C18—C19—C20—O5 178.32 (18)
O2—C7—C8—C9 −3.1 (3) C18—C19—C20—C22 −0.9 (3)
C6—C7—C8—C9 178.92 (17) O5—C20—C22—O4 −0.8 (3)
C1—C8—C9—C10 −10.9 (2) C19—C20—C22—O4 178.46 (18)
C7—C8—C9—C10 171.59 (15) O5—C20—C22—C23 178.72 (17)
C1—C8—C9—C18 111.52 (19) C19—C20—C22—C23 −2.0 (3)
C7—C8—C9—C18 −65.9 (2) O4—C22—C23—C24 −177.13 (18)
C8—C9—C10—C17 10.7 (2) C20—C22—C23—C24 3.3 (3)
C18—C9—C10—C17 −111.0 (2) O4—C22—C23—Br1 2.0 (3)
C8—C9—C10—C11 −169.39 (16) C20—C22—C23—Br1 −177.59 (14)
C18—C9—C10—C11 69.0 (2) C19—C18—C24—C23 −1.3 (3)
C17—C10—C11—O3 −174.2 (2) C9—C18—C24—C23 175.50 (17)
C9—C10—C11—O3 5.9 (3) C22—C23—C24—C18 −1.7 (3)
C17—C10—C11—C12 3.5 (3) Br1—C23—C24—C18 179.19 (14)
C9—C10—C11—C12 −176.41 (18) C8—C1—O1—C17 3.6 (2)
O3—C11—C12—C13 −156.7 (2) C2—C1—O1—C17 −175.94 (15)
C10—C11—C12—C13 25.6 (3) C10—C17—O1—C1 −3.8 (3)
C11—C12—C13—C16 −50.9 (2) C16—C17—O1—C1 176.09 (15)
C11—C12—C13—C14 70.2 (2) C19—C20—O5—C21 3.2 (3)
C11—C12—C13—C15 −168.9 (2) C22—C20—O5—C21 −177.50 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6B···O2i 0.97 2.60 3.377 (3) 137
C16—H16A···Br1ii 0.97 2.94 3.736 (2) 140
O4—H4···O2iii 0.82 2.04 2.768 (2) 148
O4—H4···O5 0.82 2.28 2.701 (2) 113

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z+2.

The frontier molecular orbital energies of the title compound

Orbitals a.u eV
V130 -0.00040 -0.01088
V129 -0.00433 -0.11782
V128 -0.00548 -0.14911
V127 -0.00823 -0.22394
V126 -0.01615 -0.43945
V125 -0.03829 -1.04190
V124 -0.07112 1.93524
O123 -0.21651 -5.89145
O122 -0.22968 -6.24982
O121 -0.24696 -6.72002
O120 -0.25386 -6.90778
O119 -0.25681 -6.98805
O118 -0.28020 -7.62452
O117 -0.28631 -7.79078
O116 -0.29688 -8.07840
O115 -0.33387 -9.08493
O114 -0.33908 -9.22670

* O- Occupied orbital V- Vacant orbital a.u-atomic unit eV-Electron Volt

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Al-Omran, F., Mohareb, R. M. & El-Khair, A. A. (2014). Med. Chem. Res. 23, 1623–1633.
  3. Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  4. Cottam, H. B., Shih, H., Tehrani, L. R., Wasson, D. B. & Carson, D. A. (1996). J. Med. Chem. 39, 2–9. [DOI] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Dimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111–117.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2013). Gaussian09W, Gaussian Inc., Wallingford CT, USA.
  9. Fun, H.-K., Loh, W.-S., Rajesh, K., Vijayakumar, V. & Sarveswari, S. (2011). Acta Cryst. E67, o1876–o1877. [DOI] [PMC free article] [PubMed]
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383–4385. [DOI] [PMC free article] [PubMed]
  12. Dimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111–117.
  13. Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683–687. [DOI] [PMC free article] [PubMed]
  14. Li, J., Hu, S., Zhu, H., Zhang, X., Xu, T. & He, J. (2019). Z. Kristallogr. 234, 79–80.
  15. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  16. Naidu, K. R. M., Krishna, B. S., Kumar, M. A., Arulselvan, P., Khalivulla, S. I. & Lasekan, O. (2012). Molecules, 17, 7543–7555. [DOI] [PMC free article] [PubMed]
  17. Parr, R., Szentpály, L. V., v, & Liu, S. (1999). J. Am. Chem. Soc. 121, 1922–1924.
  18. Pohlers, G., Scaiano, J. C. & Sinta, R. (1997). Chem. Mater. 9, 3222–3230.
  19. Poupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67–71.
  20. Purushothaman, G. & Thiruvenkatam, V. (2018). Acta Cryst. C74, 830–838. [DOI] [PubMed]
  21. Rathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375–381. [DOI] [PubMed]
  22. Reddy, P. B., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o658–o659. [DOI] [PMC free article] [PubMed]
  23. Selvanayagam, Z. E., Gnanavendhan, S. G., Balakrishna, K., Rao, R. B., Sivaraman, J., Subramanian, K., Puri, R. & Puri, R. K. (1996). J. Nat. Prod. 59, 664–667. [DOI] [PubMed]
  24. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  25. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  26. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  27. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  28. Sughanya, V. & Sureshbabu, N. (2012a). Acta Cryst. E68, o1060. [DOI] [PMC free article] [PubMed]
  29. Sughanya, V. & Sureshbabu, N. (2012b). Acta Cryst. E68, o2875–o2876. [DOI] [PMC free article] [PubMed]
  30. Sureshbabu, N. & Sughanya, V. (2013). Acta Cryst. E69, o281. [DOI] [PMC free article] [PubMed]
  31. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  32. Vanag, G. Y. & Stankevich, E. L. (1960). Zh. Obshch. Khim. 30, 3287–3290.
  33. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021010690/zn2010sup1.cif

e-77-01170-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010690/zn2010Isup3.hkl

e-77-01170-Isup3.hkl (322.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010690/zn2010Isup3.cml

CCDC reference: 2064558

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES