In the xanthene moiety of the title compound, the central ring adopts a flattened-boat conformation whereas the cyclohexenone rings adopt envelope conformations. In the crystal, molecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers with an
(20) ring motif.
Keywords: crystal structure, dimedone, xanthene, xanthenedione, pyran ring
Abstract
In the fused ring system of the title compound, C24H27BrO5, the mean plane and maximum deviations of the central pyran ring are 0.0384 (2) and 0.0733 (2) Å, respectively. The cyclohexenone rings both adopt envelope conformations with the tetra-substituted C atoms as flap atoms, whereas the central pyran ring adopts a flattened boat conformation. The central pyran and phenyl substituent rings are almost perpendicular to each other, making a dihedral angle of 89.71 (2)°. In the crystal, pairs of molecules are linked via O—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(20) ring motif. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (50.6%), O⋯H/H⋯O (22.9%) and C⋯H/H⋯C (11.1%) contacts. Quantum chemical calculations for the frontier molecular orbitals were undertaken to determine the chemical reactivity of the title compound.
Chemical context
Xanthene is known as the parent compound of naturally occurring substances with various biological properties including antibacterial (Dimmock et al., 1988 ▸), antiviral (Naidu et al., 2012 ▸), antitumor (Al-Omran et al., 2014 ▸) and anti-inflammatory activities (Dimmock et al., 1988 ▸; Cottam et al., 1996 ▸). It is present in organic compounds that are widely used as synthetic dyes (Hilderbrand et al., 2007 ▸), in fluorescent materials used for visualization of biomolecules (Knight et al., 1989 ▸), and in laser technologies (Pohlers et al., 1997 ▸). Ehretianone, a quinonoid xanthene, was reported to possess anti-snake venom activity (Selvanayagam et al., 1996 ▸; Poupelin et al., 1978 ▸). Xanthenes whose structures resemble those of 1,4-dihydropyridines can function as calcium channel blockers (Reddy et al., 2010 ▸; Rathore et al., 2009 ▸).
Structural commentary
The title compound (I) (Fig. 1 ▸) crystallizes in the triclinic space group P
with Z = 2. The central pyran ring B (O1/C1/C8–C10/C17) is almost planar with a mean deviation from the mean plane of 0.0384 (2) Å and a maximum deviation of 0.0733 (3) Å for C9. Atoms C9 and O1 are displaced out of the mean plane in the the same direction so the ring may also be described as having a highly flattened boat conformation. Both cyclohexenone rings, A (C10–C13/C16/C17) and C (C1–C3/C6–C8), adopt envelope conformations with atoms C13 and C3 as the flaps being situated out of the plane of the ring with deviations of 0.3281 (2) and 0.325 (2) Å, respectively. Rings A, B and C show total puckering amplitudes Q(T) of 0.4645 (2), 0.1070 (2) and 0.4607 (16) Å, respectively. The puckering parameters (Cremer & Pople, 1975 ▸) are φ = 179.52 (8)° and θ = 57.55 (2)° for A, φ = 178.99 (2)° and θ = 68.92 (2)° for B, φ = 304.73 (12)° and θ = 125.47 (2)° for C. The planar phenyl substituent and the central pyran ring form a dihedral angle of 89.71 (2)°. In the pyran ring, C1—C8 and C10—C17 are double bonds, as indicated by the bond lengths [C1—C8 = 1.344 (3) Å and C10—C17 = 1.336 (3) Å]. The angles and bond lengths (Allen et al., 1987 ▸; Li et al., 2019 ▸) are within normal ranges. The observed carbonyl bond lengths [C11—O3 = 1.216 (3) and C7—O2 = 1.227 (2) Å] are also normal.
Figure 1.
A view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Supramolecular features and Hirshfeld surface analysis
In the crystal, molecules are linked by pairs of O4—H4⋯O2 hydrogen bonds (Table 1 ▸), forming inversion dimers with an
(20) ring motif, parallel to the (001) plane (Fig. 2 ▸). The molecules are further linked by C6—H6B⋯O2, C16—H16A⋯Br1 and O4—H4⋯O5 hydrogen bonds, forming ribbons (Fig. 3 ▸). Overall, the O—H⋯O and C—H⋯O interactions yield a three-dimensional supramolecular network.
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C6—H6B⋯O2i | 0.97 | 2.60 | 3.377 (3) | 137 |
C16—H16A⋯Br1ii | 0.97 | 2.94 | 3.736 (2) | 140 |
O4—H4⋯O2iii | 0.82 | 2.04 | 2.768 (2) | 148 |
O4—H4⋯O5 | 0.82 | 2.28 | 2.701 (2) | 113 |
Symmetry codes: (i) -x+1, -y, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z+2.
Figure 2.
A view of the structure of (I) showing the O—H⋯O hydrogen bonds, forming a centrosymmetric dimer with an
(20) ring motif.
Figure 3.
Packing view for (I), showing the formation of O—H⋯O hydrogen bonds between molecules in the unit cell.
To quantify the intermolecular contacts in the crystal, Hirshfeld surfaces (Spackman & Jayatilaka, 2009 ▸) and two-dimensional fingerprint plots were generated using Crystal Explorer 17.5 (Turner et al., 2017 ▸). The Hirshfeld surfaces mapped over d norm in the range −0.5451 to 1.6834 a.u. (Fig. 4 ▸) show the intermolecular contacts as red-coloured spots, which indicate the closer contacts of C—H⋯O and O—H⋯O hydrogen bonds. The bright-red spots indicate their roles as donors and/or acceptors in hydrogen bonding; they also appear as red and blue regions corresponding to negative and positive potentials on the Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008 ▸) shown in Fig. 5 ▸. Here the red regions indicate negative electrostatic potential (hydrogen-bond acceptors), while the blue regions indicate positive electrostatic potential (hydrogen-bond donors). The 2D fingerprint plots are illustrated in Fig. 6 ▸. The H⋯H contacts comprise 50.6% of the total interactions. Besides these contacts, O⋯H/H⋯O (22.9%), C⋯H/H⋯C (11.1%) and Br⋯H/H⋯Br (11.6%) interactions make a significant contribution to the total Hirshfeld surface. The percentage contributions of the Br⋯O/O⋯Br, O⋯O and C⋯C contacts are 1.8, 0.7 and 0.1%, respectively.
Figure 4.
View of the three-dimensional Hirshfeld surface of (I) plotted over d norm in the range −0.5451 to 1.6834 a.u. The two O—H⋯O hydrogen bonds forming the dimer are depicted as dashed lines.
Figure 5.
View of the three-dimensional Hirshfeld surface of (I) plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. The hydrogen-bond donors and acceptors are viewed as blue and red regions, respectively, around atoms, corresponding to positive and negative potentials.
Figure 6.
The percentage contributions of close contacts of (I). The d i and d e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.
Frontier molecular orbital analysis
The chemical reactivity of the title compound was studied by frontier molecular orbital analysis. For the calculation, the starting structural geometry was taken from the refined experimental structure obtained from X-ray diffraction data. The energy levels for the compound were computed using the DFT-B3LYP/6-311G++(d,p) level of theory as implemented in Gaussian09W (Frisch et al., 2013 ▸). The calculated frontier molecular orbitals, HOMO, HOMO−1, LUMO and LUMO+1, are shown in Fig. 7 ▸. The energies of HOMO, HOMO−1, LUMO and LUMO+1 were calculated to be −5.8915, −6.2499, −1.9353 and −1.0419 eV, respectively, and the energies required to excite one electron from HOMO to LUMO and from HOMO−1 to LUMO+1 are 3.9562 and 5.2080 eV, respectively. The chemical potential, chemical hardness, chemical softness and electrophilicity index of the title molecule are listed in Table 2 ▸. Parr et al. (1999 ▸) have proposed the electrophilicity index as a quantitative measure of the energy lowering due to the maximal electron flow between donor and acceptor orbitals. The electrophilicity index value of 3.8711 eV shows the global electrophilic nature of the molecule. Based on the wide band gap and its chemical hardness value of 1.9781 eV, the title molecule seems to be hard.
Figure 7.
The frontier molecular orbitals of (I).
Table 2. The global reactivity descriptors (eV) of the title compound.
Frontier molecular orbitals | Energy |
---|---|
E HOMO | −5.8915 |
E LUMO | −1.9353 |
E HOMO−1 | −6.2499 |
E LUMO+1 | −1.0419 |
(E HOMO − E LUMO) gap | 3.9562 |
(E HOMO−1 − E LUMO+1) gap | 5.2080 |
Chemical potential (μ) | 3.9134 |
Chemical hardness (η) | 1.9781 |
Chemical softness (S) | 0.5055 |
Electrophilicity index (ω) | 3.8711 |
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, update May 2021; Groom et al., 2016 ▸) for the xanthene-1,8(2H)-dione unit resulted in 30 hits. They include the following analogues: 2,4-dinitrophenyl (LERZEP; Sureshbabu & Sughanya, 2013 ▸), 4-hydroxy-3,5-dimethoxyphenyl (YAVTAS; Sughanya & Sureshbabu, 2012a ▸), 2,4-difluorophenyl (VITWEC; Fun et al., 2011 ▸), pyridine-2-yl (YIDRIP; Purushothaman & Thiruvenkatam, 2018 ▸). In the title compound, the dihedral angle between the phenyl and pyran rings is 89.71 (2)°, similar to the values observed for LERZEP, the 2,4-dinitrophenyl analogue, YAVTAS, the 4-hydroxy-3,5-dimethoxyphenyl analogue, and VITWEC, the 2,4-difluorophenyl analogue, for which the dihedral angles are 85.88 (2), 86.32 (2) and 87.55 (4)°, respectively.
Synthesis and crystallization
Compound (I) was prepared in two stages (Vanag & Stankevich, 1960 ▸). A mixture of 5,5-dimethyl cyclohexane-1,3-dione (1.12 g, 8 mmol), 3-bromo-4-hydroxy-5-methoxybenzaldehyde (0.92 g, 4 mmol) and 20 ml of ethanol were heated to 343 K for about 10 minutes. The reaction mixture was allowed to cool to 298–301 K and the resulting intermediate compound, 2,2′-[(3-bromo-4-hydroxy-5-methoxyphenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-en-1-one) was filtered and dried (m.p. 491 K, 3.4 mmol, yield: 85%) (Sughanya & Sureshbabu, 2012b ▸). In the second stage, about 0.50 g (1.04 mmol) of this intermediate were dissolved in 20 ml of ethanol. The content was refluxed together with 5 drops of concentrated hydrochloric acid for 20 minutes with the reaction being monitored by TLC. After completion of the reaction, the reaction mixture was poured into 100 ml of ice-cold water and stirred well. The solid separated was filtered and dried. Yellow single crystals suitable for X-ray diffraction were obtained from 90% ethanol (m.p. 495 K, 0.455 g, 0.96 mmol, yield 92%). IR (KBr): cm−1 3360, 2953, 2865, 1667, 1622, 1584, 1497, 1278, 1234, 1046, 1003. 1H NMR (500 MHz, CDCl3): 1.04 (s, 6H), 1.12 (s, 6H), 2.24 (dd, J = 6 Hz, 4H), 2.47 (dd, J = 6 Hz, 4H), 3.91 (s, 3H), 4.65 (s, 1H), 5.88 (s, 1H), 6.76 (s, 1H), 7.02 (s,1H). 13C NMR (125 MHz, CDCl3): 27.36, 29.21,31.30, 32.23, 40.84, 50.75, 56.32, 107.63, 111.92, 115.26, 123.25, 137.24, 146.56, 162.40, 196.56. ESI–MS: m/z: 475.06 [M + H].
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. Hydrogen atoms were fixed geometrically and treated as riding atoms, with C—H = 0.93–0.97 Å and U iso(H) = 1.2U eq(C) or 1.5U eq(C-methyl).
Table 3. Experimental details.
Crystal data | |
Chemical formula | C24H27BrO5 |
M r | 475.36 |
Crystal system, space group | Triclinic, P\overline{1} |
Temperature (K) | 296 |
a, b, c (Å) | 9.851 (3), 10.763 (3), 12.313 (3) |
α, β, γ (°) | 82.38 (1), 66.900 (9), 73.484 (10) |
V (Å3) | 1150.9 (5) |
Z | 2 |
Radiation type | Mo Kα |
μ (mm−1) | 1.82 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEX3 CMOS |
Absorption correction | Multi-scan (SADABS; Bruker, 2016 ▸) |
T min, T max | 0.550, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 47600, 4052, 3694 |
R int | 0.029 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.027, 0.072, 1.08 |
No. of reflections | 4052 |
No. of parameters | 276 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.50 |
Supplementary Material
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021010690/zn2010sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010690/zn2010Isup3.hkl
Supporting information file. DOI: 10.1107/S2056989021010690/zn2010Isup3.cml
CCDC reference: 2064558
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank Dr Sudhadevi Antharjanam and the SAIF, IIT Madras, for the data collection.
supplementary crystallographic information
Crystal data
C24H27BrO5 | F(000) = 492 |
Mr = 475.36 | Dx = 1.372 Mg m−3 |
Triclinic, P1 | Melting point: 495 K |
a = 9.851 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.763 (3) Å | Cell parameters from 9325 reflections |
c = 12.313 (3) Å | θ = 2.6–30.0° |
α = 82.38 (1)° | µ = 1.82 mm−1 |
β = 66.900 (9)° | T = 296 K |
γ = 73.484 (10)° | BLOCK, yellow |
V = 1150.9 (5) Å3 | 0.30 × 0.25 × 0.20 mm |
Z = 2 |
Data collection
Bruker Kappa APEX3 CMOS diffractometer | 4052 independent reflections |
Radiation source: fine-focus sealed tube | 3694 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω and φ scan | θmax = 25.0°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −11→11 |
Tmin = 0.550, Tmax = 0.746 | k = −12→12 |
47600 measured reflections | l = −14→14 |
Refinement
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0296P)2 + 0.6561P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
4052 reflections | Δρmax = 0.32 e Å−3 |
276 parameters | Δρmin = −0.50 e Å−3 |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Br1 | 0.49132 (3) | 0.69406 (2) | 0.62363 (2) | 0.05292 (10) | |
C1 | 0.5946 (2) | 0.11911 (17) | 0.64639 (15) | 0.0319 (4) | |
C2 | 0.4569 (2) | 0.0735 (2) | 0.66746 (17) | 0.0412 (5) | |
H2A | 0.484623 | −0.020439 | 0.666673 | 0.049* | |
H2B | 0.420396 | 0.105743 | 0.603872 | 0.049* | |
C3 | 0.3280 (2) | 0.1192 (2) | 0.78588 (18) | 0.0423 (5) | |
C4 | 0.2057 (3) | 0.0452 (3) | 0.8150 (2) | 0.0676 (7) | |
H4A | 0.250419 | −0.046032 | 0.819885 | 0.101* | |
H4B | 0.125530 | 0.073181 | 0.889224 | 0.101* | |
H4C | 0.164507 | 0.062167 | 0.754031 | 0.101* | |
C5 | 0.2564 (3) | 0.2644 (2) | 0.7781 (3) | 0.0617 (7) | |
H5A | 0.332860 | 0.310996 | 0.759881 | 0.092* | |
H5B | 0.215134 | 0.281231 | 0.717207 | 0.092* | |
H5C | 0.176157 | 0.292245 | 0.852400 | 0.092* | |
C6 | 0.3982 (3) | 0.0887 (2) | 0.88067 (18) | 0.0516 (6) | |
H6A | 0.320679 | 0.124356 | 0.954643 | 0.062* | |
H6B | 0.427417 | −0.004661 | 0.891856 | 0.062* | |
C7 | 0.5345 (2) | 0.13965 (17) | 0.85383 (16) | 0.0366 (4) | |
C8 | 0.6339 (2) | 0.15206 (16) | 0.72946 (15) | 0.0313 (4) | |
C9 | 0.7704 (2) | 0.20575 (17) | 0.70112 (16) | 0.0322 (4) | |
C10 | 0.8672 (2) | 0.19047 (17) | 0.57072 (16) | 0.0322 (4) | |
C11 | 1.0196 (2) | 0.2146 (2) | 0.52605 (19) | 0.0439 (5) | |
C12 | 1.1113 (2) | 0.2068 (2) | 0.3948 (2) | 0.0495 (5) | |
H12A | 1.180310 | 0.121046 | 0.378089 | 0.059* | |
H12B | 1.172975 | 0.268803 | 0.372815 | 0.059* | |
C13 | 1.0158 (2) | 0.2333 (2) | 0.31752 (18) | 0.0428 (5) | |
C14 | 0.9298 (3) | 0.3771 (2) | 0.3217 (2) | 0.0617 (7) | |
H14A | 1.001793 | 0.429336 | 0.291989 | 0.093* | |
H14B | 0.869236 | 0.392418 | 0.273983 | 0.093* | |
H14C | 0.864478 | 0.399531 | 0.401812 | 0.093* | |
C15 | 1.1185 (3) | 0.1973 (3) | 0.1891 (2) | 0.0627 (7) | |
H15A | 1.189481 | 0.250422 | 0.158058 | 0.094* | |
H15B | 1.173617 | 0.107698 | 0.186491 | 0.094* | |
H15C | 1.056780 | 0.211083 | 0.142489 | 0.094* | |
C16 | 0.9043 (2) | 0.14713 (19) | 0.36435 (16) | 0.0378 (4) | |
H16A | 0.831875 | 0.172240 | 0.325133 | 0.045* | |
H16B | 0.960435 | 0.057845 | 0.345098 | 0.045* | |
C17 | 0.8192 (2) | 0.15590 (17) | 0.49441 (15) | 0.0313 (4) | |
C18 | 0.7174 (2) | 0.34791 (17) | 0.73598 (16) | 0.0318 (4) | |
C19 | 0.7345 (2) | 0.38397 (18) | 0.83369 (16) | 0.0342 (4) | |
H19 | 0.786711 | 0.322584 | 0.873846 | 0.041* | |
C20 | 0.6744 (2) | 0.51052 (18) | 0.87108 (16) | 0.0346 (4) | |
C21 | 0.7625 (3) | 0.4676 (3) | 1.0299 (2) | 0.0604 (7) | |
H21A | 0.759056 | 0.510392 | 1.094887 | 0.091* | |
H21B | 0.716974 | 0.395977 | 1.059224 | 0.091* | |
H21C | 0.866680 | 0.436440 | 0.977932 | 0.091* | |
C22 | 0.5972 (2) | 0.60496 (17) | 0.81104 (16) | 0.0341 (4) | |
C23 | 0.5878 (2) | 0.56797 (18) | 0.71128 (16) | 0.0334 (4) | |
C24 | 0.6451 (2) | 0.44079 (18) | 0.67421 (16) | 0.0345 (4) | |
H24 | 0.634765 | 0.418239 | 0.608017 | 0.041* | |
O1 | 0.68252 (15) | 0.12340 (13) | 0.52771 (10) | 0.0355 (3) | |
O2 | 0.56680 (19) | 0.16747 (15) | 0.93260 (12) | 0.0493 (4) | |
O3 | 1.0717 (2) | 0.2361 (2) | 0.59419 (16) | 0.0743 (6) | |
O4 | 0.53332 (19) | 0.72988 (13) | 0.84657 (13) | 0.0476 (4) | |
H4 | 0.531593 | 0.735147 | 0.912952 | 0.071* | |
O5 | 0.68156 (19) | 0.55546 (14) | 0.96789 (13) | 0.0489 (4) | |
H9 | 0.829 (2) | 0.156 (2) | 0.7488 (18) | 0.035 (5)* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.06708 (17) | 0.03847 (13) | 0.05825 (15) | 0.00106 (10) | −0.03853 (12) | −0.00177 (9) |
C1 | 0.0423 (10) | 0.0251 (9) | 0.0255 (9) | −0.0070 (8) | −0.0102 (8) | −0.0021 (7) |
C2 | 0.0519 (12) | 0.0401 (11) | 0.0348 (10) | −0.0190 (9) | −0.0126 (9) | −0.0071 (8) |
C3 | 0.0471 (12) | 0.0427 (11) | 0.0369 (10) | −0.0158 (9) | −0.0104 (9) | −0.0078 (9) |
C4 | 0.0628 (16) | 0.0841 (19) | 0.0579 (15) | −0.0401 (15) | −0.0067 (13) | −0.0113 (14) |
C5 | 0.0558 (14) | 0.0518 (14) | 0.0809 (18) | −0.0008 (11) | −0.0323 (13) | −0.0200 (13) |
C6 | 0.0582 (14) | 0.0608 (14) | 0.0293 (10) | −0.0206 (11) | −0.0070 (10) | 0.0027 (10) |
C7 | 0.0520 (12) | 0.0273 (9) | 0.0273 (9) | −0.0037 (8) | −0.0157 (9) | −0.0007 (7) |
C8 | 0.0428 (10) | 0.0230 (8) | 0.0262 (9) | −0.0039 (7) | −0.0138 (8) | −0.0010 (7) |
C9 | 0.0409 (10) | 0.0287 (9) | 0.0294 (9) | −0.0032 (8) | −0.0191 (8) | −0.0027 (7) |
C10 | 0.0371 (10) | 0.0267 (9) | 0.0319 (9) | −0.0021 (7) | −0.0153 (8) | −0.0036 (7) |
C11 | 0.0407 (11) | 0.0464 (12) | 0.0470 (12) | −0.0073 (9) | −0.0206 (10) | −0.0034 (9) |
C12 | 0.0385 (11) | 0.0577 (14) | 0.0491 (12) | −0.0127 (10) | −0.0115 (10) | −0.0049 (10) |
C13 | 0.0417 (11) | 0.0446 (11) | 0.0349 (10) | −0.0099 (9) | −0.0080 (9) | 0.0006 (9) |
C14 | 0.0723 (17) | 0.0451 (13) | 0.0584 (15) | −0.0140 (12) | −0.0192 (13) | 0.0114 (11) |
C15 | 0.0563 (14) | 0.0825 (18) | 0.0388 (12) | −0.0235 (13) | −0.0026 (11) | −0.0026 (12) |
C16 | 0.0416 (11) | 0.0396 (10) | 0.0286 (9) | −0.0056 (8) | −0.0115 (8) | −0.0050 (8) |
C17 | 0.0345 (10) | 0.0265 (9) | 0.0300 (9) | −0.0038 (7) | −0.0116 (8) | −0.0017 (7) |
C18 | 0.0361 (10) | 0.0308 (9) | 0.0305 (9) | −0.0077 (8) | −0.0138 (8) | −0.0049 (7) |
C19 | 0.0412 (10) | 0.0338 (10) | 0.0328 (9) | −0.0091 (8) | −0.0194 (8) | −0.0009 (8) |
C20 | 0.0432 (11) | 0.0373 (10) | 0.0287 (9) | −0.0155 (8) | −0.0140 (8) | −0.0050 (8) |
C21 | 0.0862 (18) | 0.0673 (16) | 0.0484 (13) | −0.0213 (14) | −0.0426 (13) | −0.0100 (11) |
C22 | 0.0376 (10) | 0.0295 (9) | 0.0347 (10) | −0.0097 (8) | −0.0104 (8) | −0.0060 (8) |
C23 | 0.0361 (10) | 0.0318 (9) | 0.0346 (10) | −0.0061 (8) | −0.0175 (8) | −0.0001 (8) |
C24 | 0.0415 (10) | 0.0345 (10) | 0.0317 (9) | −0.0076 (8) | −0.0178 (8) | −0.0062 (8) |
O1 | 0.0420 (7) | 0.0434 (7) | 0.0240 (6) | −0.0152 (6) | −0.0112 (5) | −0.0044 (5) |
O2 | 0.0715 (10) | 0.0505 (9) | 0.0272 (7) | −0.0142 (8) | −0.0204 (7) | −0.0024 (6) |
O3 | 0.0588 (11) | 0.1243 (17) | 0.0587 (11) | −0.0374 (11) | −0.0297 (9) | −0.0097 (11) |
O4 | 0.0675 (10) | 0.0325 (7) | 0.0435 (8) | −0.0032 (7) | −0.0248 (8) | −0.0116 (6) |
O5 | 0.0739 (10) | 0.0411 (8) | 0.0421 (8) | −0.0138 (7) | −0.0303 (8) | −0.0103 (6) |
Geometric parameters (Å, º)
Br1—C23 | 1.8954 (19) | C12—H12A | 0.9700 |
C1—C8 | 1.344 (3) | C12—H12B | 0.9700 |
C1—O1 | 1.378 (2) | C13—C16 | 1.530 (3) |
C1—C2 | 1.489 (3) | C13—C14 | 1.535 (3) |
C2—C3 | 1.537 (3) | C13—C15 | 1.536 (3) |
C2—H2A | 0.9700 | C14—H14A | 0.9600 |
C2—H2B | 0.9700 | C14—H14B | 0.9600 |
C3—C5 | 1.529 (3) | C14—H14C | 0.9600 |
C3—C4 | 1.530 (3) | C15—H15A | 0.9600 |
C3—C6 | 1.534 (3) | C15—H15B | 0.9600 |
C4—H4A | 0.9600 | C15—H15C | 0.9600 |
C4—H4B | 0.9600 | C16—C17 | 1.489 (3) |
C4—H4C | 0.9600 | C16—H16A | 0.9700 |
C5—H5A | 0.9600 | C16—H16B | 0.9700 |
C5—H5B | 0.9600 | C17—O1 | 1.378 (2) |
C5—H5C | 0.9600 | C18—C24 | 1.380 (3) |
C6—C7 | 1.494 (3) | C18—C19 | 1.395 (2) |
C6—H6A | 0.9700 | C19—C20 | 1.383 (3) |
C6—H6B | 0.9700 | C19—H19 | 0.9300 |
C7—O2 | 1.227 (2) | C20—O5 | 1.378 (2) |
C7—C8 | 1.471 (3) | C20—C22 | 1.400 (3) |
C8—C9 | 1.511 (3) | C21—O5 | 1.403 (3) |
C9—C10 | 1.515 (3) | C21—H21A | 0.9600 |
C9—C18 | 1.530 (2) | C21—H21B | 0.9600 |
C9—H9 | 0.98 (2) | C21—H21C | 0.9600 |
C10—C17 | 1.336 (3) | C22—O4 | 1.362 (2) |
C10—C11 | 1.470 (3) | C22—C23 | 1.384 (3) |
C11—O3 | 1.216 (3) | C23—C24 | 1.387 (3) |
C11—C12 | 1.510 (3) | C24—H24 | 0.9300 |
C12—C13 | 1.533 (3) | O4—H4 | 0.8200 |
C8—C1—O1 | 122.25 (17) | H12A—C12—H12B | 107.6 |
C8—C1—C2 | 126.24 (17) | C16—C13—C12 | 107.75 (17) |
O1—C1—C2 | 111.51 (15) | C16—C13—C14 | 110.89 (18) |
C1—C2—C3 | 112.21 (16) | C12—C13—C14 | 110.14 (19) |
C1—C2—H2A | 109.2 | C16—C13—C15 | 108.20 (18) |
C3—C2—H2A | 109.2 | C12—C13—C15 | 110.44 (19) |
C1—C2—H2B | 109.2 | C14—C13—C15 | 109.39 (19) |
C3—C2—H2B | 109.2 | C13—C14—H14A | 109.5 |
H2A—C2—H2B | 107.9 | C13—C14—H14B | 109.5 |
C5—C3—C4 | 109.3 (2) | H14A—C14—H14B | 109.5 |
C5—C3—C6 | 111.04 (18) | C13—C14—H14C | 109.5 |
C4—C3—C6 | 109.72 (19) | H14A—C14—H14C | 109.5 |
C5—C3—C2 | 109.94 (19) | H14B—C14—H14C | 109.5 |
C4—C3—C2 | 109.43 (17) | C13—C15—H15A | 109.5 |
C6—C3—C2 | 107.36 (18) | C13—C15—H15B | 109.5 |
C3—C4—H4A | 109.5 | H15A—C15—H15B | 109.5 |
C3—C4—H4B | 109.5 | C13—C15—H15C | 109.5 |
H4A—C4—H4B | 109.5 | H15A—C15—H15C | 109.5 |
C3—C4—H4C | 109.5 | H15B—C15—H15C | 109.5 |
H4A—C4—H4C | 109.5 | C17—C16—C13 | 112.68 (16) |
H4B—C4—H4C | 109.5 | C17—C16—H16A | 109.1 |
C3—C5—H5A | 109.5 | C13—C16—H16A | 109.1 |
C3—C5—H5B | 109.5 | C17—C16—H16B | 109.1 |
H5A—C5—H5B | 109.5 | C13—C16—H16B | 109.1 |
C3—C5—H5C | 109.5 | H16A—C16—H16B | 107.8 |
H5A—C5—H5C | 109.5 | C10—C17—O1 | 123.42 (16) |
H5B—C5—H5C | 109.5 | C10—C17—C16 | 125.17 (18) |
C7—C6—C3 | 115.04 (17) | O1—C17—C16 | 111.41 (15) |
C7—C6—H6A | 108.5 | C24—C18—C19 | 119.37 (17) |
C3—C6—H6A | 108.5 | C24—C18—C9 | 119.97 (16) |
C7—C6—H6B | 108.5 | C19—C18—C9 | 120.58 (16) |
C3—C6—H6B | 108.5 | C20—C19—C18 | 120.33 (17) |
H6A—C6—H6B | 107.5 | C20—C19—H19 | 119.8 |
O2—C7—C8 | 119.91 (19) | C18—C19—H19 | 119.8 |
O2—C7—C6 | 121.64 (18) | O5—C20—C19 | 124.98 (18) |
C8—C7—C6 | 118.42 (17) | O5—C20—C22 | 114.18 (16) |
C1—C8—C7 | 117.75 (18) | C19—C20—C22 | 120.84 (17) |
C1—C8—C9 | 123.31 (16) | O5—C21—H21A | 109.5 |
C7—C8—C9 | 118.90 (16) | O5—C21—H21B | 109.5 |
C8—C9—C10 | 109.09 (15) | H21A—C21—H21B | 109.5 |
C8—C9—C18 | 110.02 (15) | O5—C21—H21C | 109.5 |
C10—C9—C18 | 111.38 (15) | H21A—C21—H21C | 109.5 |
C8—C9—H9 | 107.8 (12) | H21B—C21—H21C | 109.5 |
C10—C9—H9 | 110.4 (11) | O4—C22—C23 | 119.68 (17) |
C18—C9—H9 | 108.0 (12) | O4—C22—C20 | 122.66 (17) |
C17—C10—C11 | 118.59 (17) | C23—C22—C20 | 117.67 (16) |
C17—C10—C9 | 122.45 (17) | C22—C23—C24 | 121.99 (17) |
C11—C10—C9 | 118.96 (16) | C22—C23—Br1 | 119.16 (14) |
O3—C11—C10 | 120.3 (2) | C24—C23—Br1 | 118.84 (14) |
O3—C11—C12 | 121.2 (2) | C18—C24—C23 | 119.71 (16) |
C10—C11—C12 | 118.47 (18) | C18—C24—H24 | 120.1 |
C11—C12—C13 | 114.73 (18) | C23—C24—H24 | 120.1 |
C11—C12—H12A | 108.6 | C1—O1—C17 | 118.39 (14) |
C13—C12—H12A | 108.6 | C22—O4—H4 | 109.5 |
C11—C12—H12B | 108.6 | C20—O5—C21 | 117.51 (16) |
C13—C12—H12B | 108.6 | ||
C8—C1—C2—C3 | 24.0 (3) | C12—C13—C16—C17 | 49.6 (2) |
O1—C1—C2—C3 | −156.46 (16) | C14—C13—C16—C17 | −71.0 (2) |
C1—C2—C3—C5 | 72.5 (2) | C15—C13—C16—C17 | 169.04 (18) |
C1—C2—C3—C4 | −167.4 (2) | C11—C10—C17—O1 | 175.94 (16) |
C1—C2—C3—C6 | −48.4 (2) | C9—C10—C17—O1 | −4.1 (3) |
C5—C3—C6—C7 | −67.4 (2) | C11—C10—C17—C16 | −4.0 (3) |
C4—C3—C6—C7 | 171.63 (19) | C9—C10—C17—C16 | 175.98 (17) |
C2—C3—C6—C7 | 52.8 (2) | C13—C16—C17—C10 | −24.5 (3) |
C3—C6—C7—O2 | 151.79 (19) | C13—C16—C17—O1 | 155.55 (16) |
C3—C6—C7—C8 | −30.3 (3) | C8—C9—C18—C24 | −68.8 (2) |
O1—C1—C8—C7 | −177.95 (16) | C10—C9—C18—C24 | 52.3 (2) |
C2—C1—C8—C7 | 1.5 (3) | C8—C9—C18—C19 | 107.97 (19) |
O1—C1—C8—C9 | 4.6 (3) | C10—C9—C18—C19 | −130.94 (18) |
C2—C1—C8—C9 | −175.96 (17) | C24—C18—C19—C20 | 2.5 (3) |
O2—C7—C8—C1 | 179.28 (17) | C9—C18—C19—C20 | −174.21 (17) |
C6—C7—C8—C1 | 1.3 (3) | C18—C19—C20—O5 | 178.32 (18) |
O2—C7—C8—C9 | −3.1 (3) | C18—C19—C20—C22 | −0.9 (3) |
C6—C7—C8—C9 | 178.92 (17) | O5—C20—C22—O4 | −0.8 (3) |
C1—C8—C9—C10 | −10.9 (2) | C19—C20—C22—O4 | 178.46 (18) |
C7—C8—C9—C10 | 171.59 (15) | O5—C20—C22—C23 | 178.72 (17) |
C1—C8—C9—C18 | 111.52 (19) | C19—C20—C22—C23 | −2.0 (3) |
C7—C8—C9—C18 | −65.9 (2) | O4—C22—C23—C24 | −177.13 (18) |
C8—C9—C10—C17 | 10.7 (2) | C20—C22—C23—C24 | 3.3 (3) |
C18—C9—C10—C17 | −111.0 (2) | O4—C22—C23—Br1 | 2.0 (3) |
C8—C9—C10—C11 | −169.39 (16) | C20—C22—C23—Br1 | −177.59 (14) |
C18—C9—C10—C11 | 69.0 (2) | C19—C18—C24—C23 | −1.3 (3) |
C17—C10—C11—O3 | −174.2 (2) | C9—C18—C24—C23 | 175.50 (17) |
C9—C10—C11—O3 | 5.9 (3) | C22—C23—C24—C18 | −1.7 (3) |
C17—C10—C11—C12 | 3.5 (3) | Br1—C23—C24—C18 | 179.19 (14) |
C9—C10—C11—C12 | −176.41 (18) | C8—C1—O1—C17 | 3.6 (2) |
O3—C11—C12—C13 | −156.7 (2) | C2—C1—O1—C17 | −175.94 (15) |
C10—C11—C12—C13 | 25.6 (3) | C10—C17—O1—C1 | −3.8 (3) |
C11—C12—C13—C16 | −50.9 (2) | C16—C17—O1—C1 | 176.09 (15) |
C11—C12—C13—C14 | 70.2 (2) | C19—C20—O5—C21 | 3.2 (3) |
C11—C12—C13—C15 | −168.9 (2) | C22—C20—O5—C21 | −177.50 (19) |
Hydrogen-bond geometry (Å, º)
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6B···O2i | 0.97 | 2.60 | 3.377 (3) | 137 |
C16—H16A···Br1ii | 0.97 | 2.94 | 3.736 (2) | 140 |
O4—H4···O2iii | 0.82 | 2.04 | 2.768 (2) | 148 |
O4—H4···O5 | 0.82 | 2.28 | 2.701 (2) | 113 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z+2.
The frontier molecular orbital energies of the title compound
Orbitals | a.u | eV |
V130 | -0.00040 | -0.01088 |
V129 | -0.00433 | -0.11782 |
V128 | -0.00548 | -0.14911 |
V127 | -0.00823 | -0.22394 |
V126 | -0.01615 | -0.43945 |
V125 | -0.03829 | -1.04190 |
V124 | -0.07112 | 1.93524 |
O123 | -0.21651 | -5.89145 |
O122 | -0.22968 | -6.24982 |
O121 | -0.24696 | -6.72002 |
O120 | -0.25386 | -6.90778 |
O119 | -0.25681 | -6.98805 |
O118 | -0.28020 | -7.62452 |
O117 | -0.28631 | -7.79078 |
O116 | -0.29688 | -8.07840 |
O115 | -0.33387 | -9.08493 |
O114 | -0.33908 | -9.22670 |
* O- Occupied orbital V- Vacant orbital a.u-atomic unit eV-Electron Volt
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Al-Omran, F., Mohareb, R. M. & El-Khair, A. A. (2014). Med. Chem. Res. 23, 1623–1633.
- Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Cottam, H. B., Shih, H., Tehrani, L. R., Wasson, D. B. & Carson, D. A. (1996). J. Med. Chem. 39, 2–9. [DOI] [PubMed]
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Dimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111–117.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2013). Gaussian09W, Gaussian Inc., Wallingford CT, USA.
- Fun, H.-K., Loh, W.-S., Rajesh, K., Vijayakumar, V. & Sarveswari, S. (2011). Acta Cryst. E67, o1876–o1877. [DOI] [PMC free article] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383–4385. [DOI] [PMC free article] [PubMed]
- Dimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111–117.
- Knight, C. G. & Stephens, T. (1989). Biochem. J. 258, 683–687. [DOI] [PMC free article] [PubMed]
- Li, J., Hu, S., Zhu, H., Zhang, X., Xu, T. & He, J. (2019). Z. Kristallogr. 234, 79–80.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
- Naidu, K. R. M., Krishna, B. S., Kumar, M. A., Arulselvan, P., Khalivulla, S. I. & Lasekan, O. (2012). Molecules, 17, 7543–7555. [DOI] [PMC free article] [PubMed]
- Parr, R., Szentpály, L. V., v, & Liu, S. (1999). J. Am. Chem. Soc. 121, 1922–1924.
- Pohlers, G., Scaiano, J. C. & Sinta, R. (1997). Chem. Mater. 9, 3222–3230.
- Poupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67–71.
- Purushothaman, G. & Thiruvenkatam, V. (2018). Acta Cryst. C74, 830–838. [DOI] [PubMed]
- Rathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375–381. [DOI] [PubMed]
- Reddy, P. B., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o658–o659. [DOI] [PMC free article] [PubMed]
- Selvanayagam, Z. E., Gnanavendhan, S. G., Balakrishna, K., Rao, R. B., Sivaraman, J., Subramanian, K., Puri, R. & Puri, R. K. (1996). J. Nat. Prod. 59, 664–667. [DOI] [PubMed]
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
- Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
- Sughanya, V. & Sureshbabu, N. (2012a). Acta Cryst. E68, o1060. [DOI] [PMC free article] [PubMed]
- Sughanya, V. & Sureshbabu, N. (2012b). Acta Cryst. E68, o2875–o2876. [DOI] [PMC free article] [PubMed]
- Sureshbabu, N. & Sughanya, V. (2013). Acta Cryst. E69, o281. [DOI] [PMC free article] [PubMed]
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
- Vanag, G. Y. & Stankevich, E. L. (1960). Zh. Obshch. Khim. 30, 3287–3290.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989021010690/zn2010sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010690/zn2010Isup3.hkl
Supporting information file. DOI: 10.1107/S2056989021010690/zn2010Isup3.cml
CCDC reference: 2064558
Additional supporting information: crystallographic information; 3D view; checkCIF report