Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Oct 5;77(Pt 11):1067–1071. doi: 10.1107/S2056989021010070

Synthesis, crystal structure and Hirshfeld surface analysis of (4-methyl­phen­yl)[1-(penta­fluoro­phen­yl)-5-(tri­fluoro­meth­yl)-1H-1,2,3-triazol-4-yl]methanone

Nazariy T Pokhodylo a,*, Yurii Slyvka b, Evgeny Goreshnik c, Roman Lytvyn a
PMCID: PMC8587975  PMID: 34868637

The title compound was obtained via the reaction of 1-azido-2,3,4,5,6-penta­fluoro­benzene with 4,4,4-tri­fluoro-1-(p-tol­yl)butane-1,3-dione using tri­ethyl­amine as a base catalyst and solvent. In the crystal, the mol­ecules are linked by C—H⋯F and C—H⋯O hydrogen bonds as well as by aromatic π–π stacking inter­actions into a three-dimensional network.

Keywords: crystal structure; 1,2,3-triazole; Hirshfeld surface analysis

Abstract

The title compound, C17H7F8N3O, was obtained via the reaction of 1-azido-2,3,4,5,6-penta­fluoro­benzene with 4,4,4-tri­fluoro-1-(p-tol­yl)butane-1,3-dione using tri­ethyl­amine as a base catalyst and solvent. The dihedral angles between the penta­fluoro­phenyl (A), triazole (B) and p-tolyl (C) rings are A/B = 62.3 (2), B/C = 43.9 (3) and A/C = 19.1 (3)°. In the crystal, the mol­ecules are linked by C—H⋯F and C—H⋯O hydrogen bonds as well as by aromatic π–π stacking inter­actions into a three-dimensional network. To further analyse the inter­molecular inter­actions, a Hirshfeld surface analysis was performed.

Chemical context

Compounds with perfluoro­aromatic motifs are of inter­est for the design of fluorescence materials, including their application in optoelectronic devices (Funabiki et al., 2021; Feng et al., 2021; Moseev et al., 2019; Kandhadi et al., 2018; Lukeš et al., 2016; Wang et al., 2013; Matsui et al., 2008). For instance, the perfluoro­biphenyl moiety was used as an electron acceptor for new donor–acceptor compounds with thermally activated delayed fluorescence (TADF) applied for the fabrication of TADF-based OLEDs (Danyliv et al., 2021; Hladka et al., 2018). On the other hand, 1,2,3-triazoles, as a result of their electron-accepting properties, are widely used in the design of organic phosphors (Gavlik et al., 2017; Fernández-Hernández et al., 2013; Tomkute-Luksiene et al., 2013; Ichikawa et al., 2011). Recently, a series of 3,6-bis­(4-triazol­yl)pyridazines equipped with terminal phenyl substituents with varying degrees of fluorination were synthesized and proposed to be used as electron-transporting/hole-blocking materials in organic electronics (Birkenfelder et al., 2017). In view of this, we decided to combine these two fragments in order to construct new mol­ecular scaffolds of compounds that have the potential for use in optoelectronic devices.

Despite the prospects of using 1-(perfluoro­phen­yl)-1H-1,2,3-triazole in the creation of phosphor materials, the paths of their synthesis are poorly studied. It is known that azides are convenient precursors of 1,2,3-triazoles. A literature survey showed limited data on the reaction of perfluoro­phenyl­azide in the synthesis of 1,2,3-triazoles. The reactions of such azides with acetyl­enes, which occur as a 1,3-dipolar cyclo­addition, are primarily studied. For example, perfluoro­phenyl­azide was studied in the copper-catalysed azide–alkyne cyclo­addition (CuAAC) click reaction with propargyl alcohol (Lavoie et al., 2017), 5-chloro­pent-1-yne and 6-chloro­hex-1-yne (Berry et al., 2014), trimeth­yl[(perfluoro­phen­yl)ethyn­yl]silane (Lu et al., 2012), iodo­ethynylarenes (Maugeri et al., 2016), 4-ethynyl­phospholo[3,2-b:4,5-b′]di­thio­phene 4-oxide (He, Zhang et al., 2013), [4-(iodo­ethyn­yl)phen­yl]di­phenyl­phosphine oxide (Maugeri et al., 2017), 2-ethynyl­pyridine (Liu et al., 2011), bis-alkynes (Milo et al., 2015) and 2,8-diethynyl-5-phenyl-4H-phosphepino[4,3-b:5,6-b′]di­thio­phene-4,6(5H)-di­one (He, Borau-Garcia et al., 2013). The CuAAC reaction of perfluoro­phenyl­azide was used for the synthesis and bioactivity of phthalimide analogues as potential drugs to treat schistosomiasis (Singh et al., 2020) and for identification of sialoside analogues for siglec-based cell targeting (Rillahan et al., 2012). Moreover, the 1,3-dipolar cyclo­addition of perfluorinated aryl azides with enamines and strained dipolar­ophiles has been studied (Xie et al., 2015). Additionally, non-catalytic Huisgen (3 + 2) cyclo­addition of per­fluoro­phenyl­azide with ethyl propiolate and a one-pot tandem Sonogashira cross-coupling/CuAAC reaction were studied (Kloss et al.. 2011). Conversely, for the synthesis of fully substituted 1,2,3-triazoles, Dimroth-type reactions are the most convenient. However, there is only one example of base-promoted cyclization of perfluoro­phenyl­azide with methyl­ene active ketones (Dimroth-type reaction) in the triazole synthesis. Thus, by the reaction of perfluoro­phenyl­azide with acetyl­acetone in CHCl3 under Et3N and DBU catalysis, 1,2,3-triazoles were formed in 57% yield (Shafran et al., 2019). It should be noted that the classical conditions of the Dimroth reaction are MeONa/MeOH (Krivopalov et al., 2005). Such conditions are suitable for the rapid formation of polyheterocyclic 1,2,3-triazole derivatives via a domino reaction (Pokhodylo & Shyyka, 2017p; Pokhodylo et al., 2014), but for reagents with labile functional groups (Pokhodylo et al., 2018, 2020) or to avoid concurrent Regitz diazo­transfer reaction (Pokhodylo & Obushak, 2019), mild bases such as K2CO3 (Pokhodylo et al., 2017) or organic bases (Et3N, DBU, pyrrolidine) are more suitable (Blastik et al., 2018; Ramachary et al., 2008; Danence et al., 2011). Furthermore, it has been shown that mild bases Et3N could be used for regioselective introduction of strongly electron-withdrawing groups such as tri­fluoro­iodo­methyl (CF3) in the 1,2,3-triazole ring in the reaction with asymmetric 1,3-diketones (Rozin et al., 2012).

Taking into account the above facts, in this work, the title compound, (I), was obtained and its crystal structure determined. graphic file with name e-77-01067-scheme1.jpg

Structural commentary

The title compound crystallizes in the non-centrosymmetric space group P212121, with one mol­ecule in the asymmetric unit. As shown in Fig. 1, it is constructed from three aromatic rings (C10–C15 4-methyl­phenyl, C1–C6 penta­fluoro­phenyl and C7/C8/N1/N2/N3 triazole rings). The penta­fluoro­phenyl ring and the heterocyclic ring are twisted relative to each other by 62.3 (2)° because of the significant steric hindrance of the trifluoromethyl group attached to C7. This dihedral angle is significantly smaller than the angle of 87.1° between the 4-nitro­phenyl and triazole rings in the structure of 1-[5-methyl-1-(4-nitro­phen­yl)-1H-1,2,3-triazol-4-yl]ethanone (VI) (Vinutha et al., 2013) but considerably larger than the analogous angle between aromatic rings in the structures of 3-(4-fluoro­phen­yl)-1-[1-(4-fluoro­phen­yl)-5-methyl-1H-1,2,3-tri­az­ol-4-yl]prop-2-en-1-one (39.6°; El-Hiti et al., 2018), (4-meth­yl­phen­yl)(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)methanone (44.5°; Li et al., 2014), 1-[1-(4-chloro­phen­yl)-5-methyl-1H-1,2,3-triazol-4-yl]ethanone (45.6°) and 1-[1-(4-bromo­phen­yl)-5-methyl-1H-1,2,3-triazol-4-yl]ethanone (47.1°) (Zeghada et al., 2011). The carbonyl group of the title compound is not in the plane of the adjacent aromatic rings: the C7—C8—C9—O1 and C15—C10—C9—O1 torsion angles are −25.4 (9) and −16.8 (9)°, respectively]. The 4-methyl­phenyl and triazole rings are twisted relative to each other by 43.9 (2)° and the 4-methyl­phenyl and penta­fluoro­phenyl rings by 19.1 (3)°.

Figure 1.

Figure 1

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features

As shown in Fig. 2 and listed in Table 1, the crystal structure of (I) features several weak inter­molecular inter­actions. The hydrogen atoms of the 4-methyl­phenyl ring are involved in C—H⋯F hydrogen bonding with the tri­fluoro­methyl substituents of adjacent mol­ecules, while a hydrogen atom of the methyl group forms a C—H⋯O hydrogen bond with the carbonyl O atom of another adjacent mol­ecule. The 4-methyl­phenyl and penta­fluoro­phenyl rings of adjacent mol­ecules are also involved into face-to-face π–π stacking inter­action with a centroid–centroid separation of 3.783 (6) Å, while at the same time the triazole rings are involved into edge-to-face aromatic inter­actions at 3.218 (6) Å. The mol­ecules are linked by the above-mentioned inter­molecular inter­actions into a three-dimensional network (Fig. 3).

Figure 2.

Figure 2

The hydrogen bonding of mol­ecules in (I). Hydrogen bonds are shown as dashed lines. The symmetry codes are as in Table 1.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯F3i 0.95 2.49 3.155 (5) 127
C15—H15⋯F3ii 0.95 2.61 3.463 (6) 149
C16—H16A⋯F2iii 0.98 2.57 3.054 (6) 111
C16—H16A⋯O1iii 0.98 2.54 3.505 (6) 167

Symmetry codes: (i) x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1; (ii) -x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}; (iii) -x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}.

Figure 3.

Figure 3

A view along the b-axis direction of the crystal packing of (I).

Hirshfeld surface analysis

Hirshfeld surface analysis was used to analyse the various inter­molecular inter­actions in (I), through mapping the normalized contact distance (d norm) using CrystalExplorer (Turner et al., 2017; Spackman & Jayatilaka, 2009). The most prominent inter­actions (bifurcated inter­actions of atom H16A of the methyl group with the carbonyl group O atom and the fluorine atom of the tri­fluoro­methyl substituent of neighbouring mol­ecules, as well as the F⋯F inter­action between neighbouring penta­fluoro­phenyl rings) can be seen in the Hirshfeld surface plot as red areas (Fig. 4). Fingerprint plots were produced to show the inter­molecular surface bond distances with the regions highlighted for F⋯H/H⋯F and F⋯F contacts inter­actions (Fig. 4). The contribution to the surface area for such contacts are 36.6% and 13.6%, respectively. The contribution to the surface area for O⋯H/H⋯O and H⋯H contacts are 4.6% and 5.7%, respectively.

Figure 4.

Figure 4

(a) Hirshfeld surface for (I) mapped with d norm over the range −0.12 to 1.53 a.u. showing C—H⋯O and C—H⋯F hydrogen-bonded contacts as well as F⋯F contacts. Fingerprint plots resolved into (b) F⋯H/H⋯F and (c) F⋯F contacts. Neighbouring mol­ecules associated with close contacts are also shown.

Database survey

The most closely related compounds, containing a similar 1-aryl-1H-1,2,3-triazole-4-carbonyl skeleton to the title compound but with different substituents on the carbonyl group are: 2,2′-(quinoxaline-2,3-diyldisulfanedi­yl)bis­{1-[5-methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazol-4-yl]ethan-1-one} (II) [Cambridge Structural Database (Version 2021.1; Groom et al., 2016) refcode ETUVEX; Mohamed et al., 2021], 4-(4-acetyl-5-methyl-1H-1,2,3-triazol-1-yl)benzo­nitrile (III) (SILBOH; Zukerman-Schpector et al., 2018), 1-[5-methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazol-4-yl]ethan-1-one (IV) (LEMSUU; El-Hiti et al., 2017), 3-(4-fluoro­phen­yl)-1-[1-(4-fluoro­phen­yl)-5-methyl-1H-1,2,3-triaz­ol-4-yl]prop-2-en-1-one (V) (MESTAI; El-Hiti et al., 2018), 1-[5-methyl-1-(4-nitro­phen­yl)-1H-1,2,3-triazol-4-yl]ethanone (VI) (QIRQOZ; Vinutha et al., 2013), 2-bromo-1-[1-(4-bromo­phen­yl)-5-methyl-1H-1,2,3-triazol-4-yl]ethanone (VII) (XODSAM; Bunev et al., 2014), (4-methyl­phen­yl)(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)methanone (VIII) (COCYAW; Li et al., 2014), (2E)-3-(4-fluoro­phen­yl)-1-[5-methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazol-4-yl]prop-2-en-1-one (IX) (IDITUM; Abdel-Wahab et al., 2013), 1-[1-(4-chloro­phen­yl)-5-methyl-1H-1,2,3-triazol-4-yl]ethanone (X) (ISOBUO; Zeghada et al., 2011) and 1-[1-(4-bromo­phen­yl)-5-methyl-1H-1,2,3-triazol-4-yl]ethanone (XI) (ISOCAV; Zeghada et al., 2011).

Compounds (V), (IX), (X) and (XI) crystallize in the triclinic crystal system in space group P Inline graphic . Compounds (II), (III) and (IV), (VIII) crystallize in the monoclinic crystal system with space groups P21/n and P21/c, respectively, while compound (VII) is found in the monoclinic crystal system, space group Pn. Compound (VI) crystallizes in the ortho­rhom­bic crystal system in non-centrosymmetric space group Pca21. Structures (V), (VI) and (VII) contain two crystallographically independent mol­ecules. The aryl and triazole rings in (VI) are twisted relative to each other by 87.1 and 38.2° in the two crystallographically independent mol­ecules. In compounds (III), (IV) and (IX), the analogous angles between the aromatic rings are 54.7, 50.1 and 51.8°, respectively.

Synthesis and crystallization

A number of experimental conditions described previously were investigated for the synthesis of the title compound (Shafran et al., 2019; Pokhodylo et al., 2017; Blastik et al., 2018; Rozin et al., 2012). However, it was possible to obtain the target product only in the case of the protocol proposed by Rozin et al. (2012). The synthesis scheme is shown in Fig. 5.

Figure 5.

Figure 5

Synthesis scheme for (I)

(4-Methyl­phen­yl)[1-(penta­fluoro­phen­yl)-5-(tri­fluoro­meth­yl)-1 H -1,2,3-triazol-4-yl]methanone: A mixture of the corres­ponding 4,4,4-tri­fluoro-1-(p-tol­yl)butane-1,3-dione 230 mg (1.00 mmol), 1-azido-2,3,4,5,6-penta­fluoro­benzene 209 mg (1.00 mmol), and tri­ethyl­amine (0.43 ml, 3.00 mmol) was heated at 343–353 K for 3 h. Volatiles were evaporated in vacuo and the residue was purified by column chromatography on silica gel using di­chloro­methane as an eluent. Colourless crystals were grown by slow evaporation of a di­chloro­methane solution, yield 21%; m.p. 391–394 K; 1H NMR (500 MHz, DMSO-d 6) δ 8.02 (d, J = 7.9 Hz, 2H, HAr-2,6), 7.44 (d, J = 7.8 Hz, 2H, HAr-3,5), 2.43 (s, 3H); 13C NMR (126 MHz, DMSO-d 6) δ 183.74 (CO), 145.73 (CTol-4), 145.57 (CTriazole-4), 143.61 (m), 141.68 (m), 138.84 (m), 136.79 (m), 132.61 (CTol-1), 130.67 (q, J = 41.7 Hz, CTriazole-5), 130.63 (2 × CTol-2,6), 129.49 (2 × CTol-3,5), 118.36 (q, 1 J C–F = 270.9 Hz, CF3), 109.59 (m), 21.37 (CH3); 19F NMR (376 MHz, DMSO-d 6) δ −58.46 (CF3), −146.39 (d, J = 21.5 Hz, 2 × F-2,6), −146.53 (t, J = 23.4 Hz, F-4), −159.61 (t, J = 23.3 Hz, 2 × F-3,5); MS, m/z = 422 (M + + 1). Calculated for C17H7F8N3O, (%): C, 48.47; H, 1.68; N, 9.98. Found (%): C, 48.55; H, 1.67; N, 9.91.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically with C—H = 0.95–0.98 Å and refined as riding atoms. The constraint U iso(H) = 1.2U eq(carrier) or 1.5U eq(C-methyl carrier) was applied in all cases.

Table 2. Experimental details.

Crystal data
Chemical formula C17H7F8N3O
M r 421.26
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 6.7605 (6), 15.065 (1), 16.0849 (9)
V3) 1638.2 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.55
Crystal size (mm) 0.43 × 0.12 × 0.08
 
Data collection
Diffractometer New Gemini, Dual, Cu at home/near, Atlas
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.320, 0.678
No. of measured, independent and observed [I > 2σ(I)] reflections 15249, 3187, 2311
R int 0.088
(sin θ/λ)max−1) 0.618
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.047, 0.109, 1.03
No. of reflections 3187
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.18
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.2 (3)

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021010070/hb7985sup1.cif

e-77-01067-sup1.cif (521.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010070/hb7985Isup2.hkl

e-77-01067-Isup2.hkl (254.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010070/hb7985Isup4.cml

NMR spectra. DOI: 10.1107/S2056989021010070/hb7985sup3.pdf

e-77-01067-sup3.pdf (724.8KB, pdf)

CCDC reference: 2112438

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C17H7F8N3O Dx = 1.708 Mg m3
Mr = 421.26 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121 Cell parameters from 2646 reflections
a = 6.7605 (6) Å θ = 4.0–72.2°
b = 15.065 (1) Å µ = 1.55 mm1
c = 16.0849 (9) Å T = 150 K
V = 1638.2 (2) Å3 Irregular, colourless
Z = 4 0.43 × 0.12 × 0.08 mm
F(000) = 840

Data collection

New Gemini, Dual, Cu at home/near, Atlas diffractometer 2311 reflections with I > 2σ(I)
Detector resolution: 10.6426 pixels mm-1 Rint = 0.088
ω scans θmax = 72.3°, θmin = 4.0°
Absorption correction: analytical (CrysalisPro; Rigaku OD, 2021) h = −7→8
Tmin = 0.320, Tmax = 0.678 k = −18→18
15249 measured reflections l = −19→19
3187 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.031P)2 + 0.1487P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.18 e Å3
3187 reflections Δρmin = −0.18 e Å3
264 parameters Absolute structure: Refined as an inversion twin.
0 restraints Absolute structure parameter: 0.2 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.0932 (5) 0.4231 (2) 0.51007 (19) 0.0563 (9)
F2 0.2755 (6) 0.52826 (18) 0.4634 (2) 0.0575 (10)
F3 0.1757 (5) 0.42585 (19) 0.38129 (17) 0.0456 (8)
F4 0.5987 (6) 0.50612 (18) 0.33789 (17) 0.0565 (9)
F5 0.6160 (6) 0.5157 (2) 0.16979 (18) 0.0609 (10)
F6 0.5614 (6) 0.3674 (3) 0.07762 (16) 0.0612 (10)
F7 0.4985 (6) 0.2089 (2) 0.15264 (18) 0.0566 (9)
F8 0.4847 (5) 0.19857 (17) 0.32018 (16) 0.0456 (8)
O1 0.3633 (7) 0.4664 (2) 0.6435 (2) 0.0496 (10)
N1 0.5368 (7) 0.3474 (2) 0.4207 (2) 0.0351 (10)
N2 0.6809 (7) 0.2985 (3) 0.4582 (2) 0.0418 (11)
N3 0.6565 (8) 0.3072 (3) 0.5387 (2) 0.0410 (10)
C1 0.5367 (8) 0.3525 (3) 0.3316 (3) 0.0339 (11)
C2 0.5726 (8) 0.4330 (3) 0.2930 (3) 0.0396 (12)
C3 0.5793 (9) 0.4382 (4) 0.2066 (3) 0.0451 (13)
C4 0.5531 (9) 0.3623 (4) 0.1611 (3) 0.0430 (13)
C5 0.5215 (9) 0.2822 (3) 0.1983 (3) 0.0405 (12)
C6 0.5130 (8) 0.2771 (3) 0.2847 (3) 0.0357 (11)
C7 0.4210 (8) 0.3878 (3) 0.4781 (3) 0.0319 (11)
C8 0.4981 (8) 0.3615 (3) 0.5531 (3) 0.0337 (11)
C9 0.4375 (9) 0.3934 (3) 0.6379 (3) 0.0385 (13)
C10 0.4732 (8) 0.3363 (3) 0.7117 (3) 0.0345 (11)
C11 0.5049 (8) 0.2451 (3) 0.7063 (3) 0.0340 (10)
H11 0.509418 0.217046 0.653465 0.041*
C12 0.5297 (8) 0.1955 (3) 0.7776 (3) 0.0360 (11)
H12 0.549256 0.133197 0.773331 0.043*
C13 0.5267 (8) 0.2352 (3) 0.8560 (3) 0.0374 (12)
C14 0.4964 (10) 0.3264 (3) 0.8609 (3) 0.0454 (14)
H14 0.494442 0.354584 0.913774 0.054*
C15 0.4693 (9) 0.3765 (3) 0.7897 (3) 0.0438 (14)
H15 0.447771 0.438645 0.794080 0.053*
C16 0.5547 (10) 0.1808 (3) 0.9339 (3) 0.0493 (16)
H16A 0.562191 0.117776 0.919256 0.074*
H16B 0.442677 0.190607 0.971434 0.074*
H16C 0.677506 0.198827 0.961531 0.074*
C17 0.2417 (9) 0.4415 (3) 0.4588 (3) 0.0405 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.045 (2) 0.0728 (19) 0.0511 (16) 0.0166 (18) 0.0065 (16) 0.0039 (15)
F2 0.077 (3) 0.0330 (13) 0.0620 (18) 0.0102 (16) −0.0228 (18) −0.0058 (14)
F3 0.049 (2) 0.0459 (15) 0.0416 (14) 0.0086 (15) −0.0134 (14) −0.0077 (12)
F4 0.084 (3) 0.0395 (15) 0.0464 (15) −0.0048 (17) 0.0019 (16) 0.0027 (13)
F5 0.073 (3) 0.0606 (18) 0.0492 (16) −0.001 (2) 0.0050 (17) 0.0228 (15)
F6 0.061 (3) 0.094 (2) 0.0285 (13) 0.005 (2) −0.0016 (15) 0.0040 (14)
F7 0.058 (2) 0.0650 (18) 0.0470 (15) −0.001 (2) −0.0009 (17) −0.0199 (14)
F8 0.050 (2) 0.0372 (13) 0.0497 (15) −0.0019 (16) 0.0064 (15) −0.0027 (11)
O1 0.072 (3) 0.0354 (17) 0.0412 (18) 0.0107 (19) 0.0010 (19) 0.0006 (14)
N1 0.040 (3) 0.0344 (18) 0.0312 (17) 0.005 (2) −0.0025 (19) 0.0008 (15)
N2 0.042 (3) 0.049 (2) 0.0345 (19) 0.008 (2) 0.0005 (19) 0.0094 (19)
N3 0.042 (3) 0.050 (2) 0.0316 (19) 0.004 (2) 0.0010 (19) 0.0040 (17)
C1 0.031 (3) 0.041 (2) 0.030 (2) 0.004 (2) −0.002 (2) 0.0003 (18)
C2 0.042 (3) 0.038 (2) 0.039 (2) 0.004 (3) −0.001 (2) 0.000 (2)
C3 0.046 (3) 0.053 (3) 0.037 (2) 0.001 (3) 0.003 (2) 0.016 (2)
C4 0.037 (4) 0.067 (3) 0.026 (2) 0.008 (3) 0.002 (2) 0.002 (2)
C5 0.030 (3) 0.053 (3) 0.038 (2) 0.002 (3) −0.003 (2) −0.008 (2)
C6 0.026 (3) 0.039 (2) 0.041 (2) 0.002 (2) 0.002 (2) 0.0021 (19)
C7 0.037 (3) 0.0276 (19) 0.031 (2) −0.002 (2) 0.000 (2) 0.0012 (17)
C8 0.032 (3) 0.034 (2) 0.035 (2) −0.002 (2) 0.000 (2) 0.0018 (17)
C9 0.046 (4) 0.037 (2) 0.032 (2) 0.002 (2) −0.003 (2) 0.0021 (19)
C10 0.036 (3) 0.039 (2) 0.0285 (19) 0.001 (2) 0.000 (2) 0.0009 (17)
C11 0.030 (3) 0.039 (2) 0.033 (2) 0.002 (2) 0.000 (2) −0.0025 (17)
C12 0.034 (3) 0.038 (2) 0.036 (2) 0.003 (2) 0.001 (2) 0.0006 (18)
C13 0.035 (3) 0.045 (2) 0.032 (2) 0.009 (2) −0.004 (2) 0.0030 (18)
C14 0.058 (4) 0.047 (3) 0.031 (2) 0.011 (3) −0.001 (3) −0.0058 (19)
C15 0.049 (4) 0.045 (3) 0.037 (2) 0.012 (3) −0.007 (3) −0.005 (2)
C16 0.061 (5) 0.052 (3) 0.036 (2) 0.014 (3) −0.001 (3) 0.005 (2)
C17 0.050 (4) 0.038 (2) 0.034 (2) 0.007 (3) −0.006 (2) −0.004 (2)

Geometric parameters (Å, º)

F1—C17 1.328 (7) C5—C6 1.393 (6)
F2—C17 1.329 (6) C7—C8 1.373 (6)
F3—C17 1.345 (6) C7—C17 1.490 (8)
F4—C2 1.328 (6) C8—C9 1.502 (6)
F5—C3 1.332 (6) C9—C10 1.485 (6)
F6—C4 1.346 (5) C10—C11 1.393 (6)
F7—C5 1.336 (6) C10—C15 1.394 (6)
F8—C6 1.328 (5) C11—H11 0.9500
O1—C9 1.213 (6) C11—C12 1.380 (6)
N1—N2 1.362 (6) C12—H12 0.9500
N1—C1 1.435 (5) C12—C13 1.395 (6)
N1—C7 1.355 (6) C13—C14 1.392 (7)
N2—N3 1.313 (6) C13—C16 1.508 (6)
N3—C8 1.368 (7) C14—H14 0.9500
C1—C2 1.384 (7) C14—C15 1.384 (7)
C1—C6 1.373 (7) C15—H15 0.9500
C2—C3 1.393 (7) C16—H16A 0.9800
C3—C4 1.369 (8) C16—H16B 0.9800
C4—C5 1.363 (8) C16—H16C 0.9800
N2—N1—C1 118.1 (4) C10—C9—C8 119.7 (4)
C7—N1—N2 110.8 (4) C11—C10—C9 123.1 (4)
C7—N1—C1 131.0 (4) C11—C10—C15 119.1 (4)
N3—N2—N1 107.1 (4) C15—C10—C9 117.7 (4)
N2—N3—C8 109.0 (4) C10—C11—H11 119.9
C2—C1—N1 119.6 (4) C12—C11—C10 120.1 (4)
C6—C1—N1 120.4 (4) C12—C11—H11 119.9
C6—C1—C2 119.9 (4) C11—C12—H12 119.4
F4—C2—C1 120.4 (4) C11—C12—C13 121.1 (4)
F4—C2—C3 119.4 (5) C13—C12—H12 119.4
C1—C2—C3 120.1 (5) C12—C13—C16 121.0 (4)
F5—C3—C2 119.9 (5) C14—C13—C12 118.5 (4)
F5—C3—C4 121.2 (4) C14—C13—C16 120.5 (4)
C4—C3—C2 118.9 (5) C13—C14—H14 119.6
F6—C4—C3 118.7 (5) C15—C14—C13 120.7 (4)
F6—C4—C5 119.7 (5) C15—C14—H14 119.6
C5—C4—C3 121.6 (4) C10—C15—H15 119.8
F7—C5—C4 120.6 (4) C14—C15—C10 120.4 (4)
F7—C5—C6 119.8 (5) C14—C15—H15 119.8
C4—C5—C6 119.6 (5) C13—C16—H16A 109.5
F8—C6—C1 121.1 (4) C13—C16—H16B 109.5
F8—C6—C5 119.0 (4) C13—C16—H16C 109.5
C1—C6—C5 119.9 (4) H16A—C16—H16B 109.5
N1—C7—C8 104.5 (4) H16A—C16—H16C 109.5
N1—C7—C17 124.9 (4) H16B—C16—H16C 109.5
C8—C7—C17 130.4 (4) F1—C17—F2 107.5 (4)
N3—C8—C7 108.7 (4) F1—C17—F3 106.8 (5)
N3—C8—C9 123.9 (4) F1—C17—C7 111.9 (4)
C7—C8—C9 127.0 (5) F2—C17—F3 106.3 (4)
O1—C9—C8 118.0 (4) F2—C17—C7 112.5 (5)
O1—C9—C10 122.2 (4) F3—C17—C7 111.6 (4)
F4—C2—C3—F5 1.5 (9) C2—C1—C6—F8 177.8 (5)
F4—C2—C3—C4 179.7 (5) C2—C1—C6—C5 −1.2 (9)
F5—C3—C4—F6 −1.2 (9) C2—C3—C4—F6 −179.4 (5)
F5—C3—C4—C5 178.0 (6) C2—C3—C4—C5 −0.3 (10)
F6—C4—C5—F7 −0.1 (9) C3—C4—C5—F7 −179.3 (6)
F6—C4—C5—C6 180.0 (5) C3—C4—C5—C6 0.9 (10)
F7—C5—C6—F8 0.9 (9) C4—C5—C6—F8 −179.2 (5)
F7—C5—C6—C1 −180.0 (5) C4—C5—C6—C1 −0.1 (9)
O1—C9—C10—C11 161.5 (6) C6—C1—C2—F4 −179.0 (5)
O1—C9—C10—C15 −16.8 (9) C6—C1—C2—C3 1.8 (9)
N1—N2—N3—C8 −0.2 (6) C7—N1—N2—N3 0.4 (6)
N1—C1—C2—F4 −2.9 (9) C7—N1—C1—C2 61.7 (8)
N1—C1—C2—C3 177.9 (5) C7—N1—C1—C6 −122.2 (6)
N1—C1—C6—F8 1.8 (9) C7—C8—C9—O1 −25.4 (9)
N1—C1—C6—C5 −177.3 (5) C7—C8—C9—C10 155.8 (5)
N1—C7—C8—N3 0.3 (5) C8—C7—C17—F1 −37.5 (7)
N1—C7—C8—C9 174.0 (5) C8—C7—C17—F2 83.6 (7)
N1—C7—C17—F1 136.6 (5) C8—C7—C17—F3 −157.0 (5)
N1—C7—C17—F2 −102.3 (5) C8—C9—C10—C11 −19.9 (9)
N1—C7—C17—F3 17.1 (7) C8—C9—C10—C15 161.9 (5)
N2—N1—C1—C2 −114.2 (6) C9—C10—C11—C12 −177.5 (5)
N2—N1—C1—C6 61.9 (7) C9—C10—C15—C14 178.3 (6)
N2—N1—C7—C8 −0.4 (5) C10—C11—C12—C13 −0.9 (9)
N2—N1—C7—C17 −175.8 (4) C11—C10—C15—C14 0.0 (9)
N2—N3—C8—C7 −0.1 (6) C11—C12—C13—C14 0.5 (9)
N2—N3—C8—C9 −174.1 (5) C11—C12—C13—C16 −179.7 (6)
N3—C8—C9—O1 147.4 (5) C12—C13—C14—C15 0.2 (10)
N3—C8—C9—C10 −31.3 (8) C13—C14—C15—C10 −0.5 (10)
C1—N1—N2—N3 177.1 (4) C15—C10—C11—C12 0.7 (9)
C1—N1—C7—C8 −176.5 (5) C16—C13—C14—C15 −179.5 (6)
C1—N1—C7—C17 8.1 (8) C17—C7—C8—N3 175.3 (5)
C1—C2—C3—F5 −179.3 (5) C17—C7—C8—C9 −11.0 (9)
C1—C2—C3—C4 −1.1 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C11—H11···F3i 0.95 2.49 3.155 (5) 127
C15—H15···F3ii 0.95 2.61 3.463 (6) 149
C16—H16A···F2iii 0.98 2.57 3.054 (6) 111
C16—H16A···O1iii 0.98 2.54 3.505 (6) 167

Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) −x+1/2, −y+1, z+1/2; (iii) −x+1, y−1/2, −z+3/2.

Funding Statement

This work was funded by Ministry of Education and Science of Ukraine.

References

  1. Abdel-Wahab, B. F., Mohamed, H. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o638. [DOI] [PMC free article] [PubMed]
  2. Berry, M. T., Castrejon, D. & Hein, J. E. (2014). Org. Lett. 16, 3676–3679. [DOI] [PubMed]
  3. Birkenfelder, I., Gurke, J., Grubert, L., Hecht, S. & Schmidt, B. M. (2017). Chem. Asian J. 12, 3156–3161. [DOI] [PubMed]
  4. Blastik, Z. E., Klepetářová, B. & Beier, P. (2018). ChemistrySelect, 3, 7045–7048.
  5. Bunev, A. S., Troshina, M. A., Ostapenko, G. I., Pavlova, A. P. & Khrustalev, V. N. (2014). Acta Cryst. E70, o818. [DOI] [PMC free article] [PubMed]
  6. Danence, L. J. T., Gao, Y., Li, M., Huang, Y. & Wang, J. (2011). Chem. Eur. J. 17, 3584–3587. [DOI] [PubMed]
  7. Danyliv, I., Danyliv, Y., Lytvyn, R., Bezvikonnyi, O., Volyniuk, D., Simokaitiene, J., Ivaniuk, K., Tsiko, U., Tomkeviciene, A., Dabulienė, A., Skuodis, E., Stakhira, P. & Grazulevicius, J. V. (2021). Dyes Pigments, 193, 109493.
  8. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  9. El-Hiti, G. A., Abdel-Wahab, B. F., Alotaibi, M. H., Hegazy, A. S. & Kariuki, B. M. (2017). IUCrData, 2, x171782.
  10. El-Hiti, G. A., Abdel-Wahab, B. F., Alotaibi, M. H., Hegazy, A. S. & Kariuki, B. M. (2018). IUCrData, 3, x171841.
  11. Feng, Z., Chong, Y., Tang, S., Ruan, H., Fang, Y., Zhao, Y., Jiang, J. & Wang, X. (2021). Chin. J. Chem. 39, 1297–1302.
  12. Fernández-Hernández, J. M., Beltrán, J. I., Lemaur, V., Gálvez-López, M. D., Chien, C. H., Polo, F., Orselli, E., Fröhlich, R., Cornil, J. & De Cola, L. (2013). Inorg. Chem. 52, 1812–1824. [DOI] [PubMed]
  13. Funabiki, K., Yamada, K., Matsueda, H., Arisawa, Y., Agou, T., Kubota, Y., Inuzuka, T. & Wasada, H. (2021). Eur. J. Org. Chem. pp. 1344–1350.
  14. Gavlik, K. D., Sukhorukova, E. S., Shafran, Y. M., Slepukhin, P. A., Benassi, E. & Belskaya, N. P. (2017). Dyes Pigments, 136, 229–242.
  15. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  16. He, X., Borau-Garcia, J., Woo, A. Y., Trudel, S. & Baumgartner, T. (2013). J. Am. Chem. Soc. 135, 1137–1147. [DOI] [PubMed]
  17. He, X., Zhang, P., Lin, J. B., Huynh, H. V., Navarro Muñoz, S. E., Ling, C. C. & Baumgartner, T. (2013). Org. Lett. 15, 5322–5325. [DOI] [PubMed]
  18. Hladka, I., Volyniuk, D., Bezvikonnyi, O., Kinzhybalo, V., Bednarchuk, T. J., Danyliv, Y., Lytvyn, R., Lazauskas, A. & Grazulevicius, J. V. (2018). J. Mater. Chem. C. 6, 13179–13189.
  19. Ichikawa, M., Mochizuki, S., Jeon, H. G., Hayashi, S., Yokoyama, N. & Taniguchi, Y. (2011). J. Mater. Chem. 21, 11791–11799.
  20. Kandhadi, J., Yan, W. C., Cheng, F., Wang, H. & Liu, H. Y. (2018). New J. Chem. 42, 9987–9999.
  21. Kloss, F., Köhn, U., Jahn, B. O., Hager, M. D., Görls, H. & Schubert, U. S. (2011). Chem. Asian J. 6, 2816–2824. [DOI] [PubMed]
  22. Krivopalov, V. P. & Shkurko, O. P. (2005). Russ. Chem. Rev. 74, 339–379.
  23. Lavoie, K. D., Frauhiger, B. E., White, P. S. & Templeton, J. L. (2017). J. Mol. Catal. A Chem. 426, 474–489.
  24. Li, W., Du, Z., Huang, J., Jia, Q., Zhang, K. & Wang, J. (2014). Green Chem. 16, 3003–3006.
  25. Liu, S., Müller, P., Takase, M. K. & Swager, T. M. (2011). Inorg. Chem. 50, 7598–7609. [DOI] [PubMed]
  26. Lu, B. Y., Li, Z. M., Zhu, Y. Y., Zhao, X. & Li, Z. T. (2012). Tetrahedron, 68, 8857–8862.
  27. Lukeš, V., Michalík, M., Poliak, P., Cagardová, D., Végh, D., Bortňák, D., Fronc, M. & Kožíšek, J. (2016). Synth. Met. 219, 83–92.
  28. Matsui, M., Suzuki, M., Nunome, I., Kubota, Y., Funabiki, K., Shiro, M., Matsumoto, S. & Shiozaki, H. (2008). Tetrahedron, 64, 8830–8836.
  29. Maugeri, L., Asencio-Hernández, J., Lébl, T., Cordes, D. B., Slawin, A. M., Delsuc, M. A. & Philp, D. (2016). Chem. Sci. 7, 6422–6428. [DOI] [PMC free article] [PubMed]
  30. Maugeri, L., Lébl, T., Cordes, D. B., Slawin, A. M. & Philp, D. (2017). J. Org. Chem. 82, 1986–1995. [DOI] [PubMed]
  31. Milo, A., Neel, A. J., Toste, F. D. & Sigman, M. S. (2015). Science, 347, 737–743. [DOI] [PMC free article] [PubMed]
  32. Mohamed, H. A., Alotaibi, H. A., Kariuki, B. M. & El-Hiti, G. A. (2021). CSD Communication (CCDC 1861196). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc20gqlt.
  33. Moseev, T. D., Varaksin, M. V., Gorlov, D. A., Nikiforov, E. A., Kopchuk, D. S., Starnovskaya, E. S., Khasanov, A. F., Zyryanov, G. V., Charushin, V. N. & Chupakhin, O. N. (2019). J. Fluor. Chem. 224, 89–99.
  34. Pokhodylo, N. T. & Obushak, M. D. (2019). Russ. J. Org. Chem. 55, 1241–1243.
  35. Pokhodylo, N. T. & Shyyka, O. Y. (2017). Synth. Commun. 47, 1096–1101.
  36. Pokhodylo, N. T., Shyyka, O. Y., Goreshnik, E. A. & Obushak, M. D. (2020). ChemistrySelect, 5, 260–264.
  37. Pokhodylo, N. T., Shyyka, O. Y., Matiychuk, V. S., Obushak, M. D. & Pavlyuk, V. V. (2017). ChemistrySelect, 2, 5871–5876.
  38. Pokhodylo, N. T., Shyyka, O. Y. & Obushak, M. D. (2014). Synth. Commun. 44, 1002–1006.
  39. Pokhodylo, N. T., Shyyka, O. Y. & Obushak, M. D. (2018). Chem. Heterocycl. Compd, 54, 773–779.
  40. Ramachary, D. B., Ramakumar, K. & Narayana, V. V. (2008). Chem. Eur. J. 14, 9143–9147. [DOI] [PubMed]
  41. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.
  42. Rillahan, C. D., Schwartz, E., McBride, R., Fokin, V. V. & Paulson, J. C. (2012). Angew. Chem. Int. Ed. 51, 11014–11018. [DOI] [PMC free article] [PubMed]
  43. Rozin, Y. A., Leban, J., Dehaen, W., Nenajdenko, V. G., Muzalevskiy, V. M., Eltsov, O. S. & Bakulev, V. A. (2012). Tetrahedron, 68, 614–618.
  44. Shafran, Y. M., Beryozkina, T. V., Efimov, I. V. & Bakulev, V. A. (2019). Chem. Heterocycl. Compd, 55, 704–715.
  45. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  46. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  47. Singh, S., El-Sakkary, N., Skinner, D. E., Sharma, P. P., Ottilie, S., Antonova-Koch, Y., Kumar, P., Winzeler, E., Caffrey, C. R. & Rathi, B. (2020). Pharmaceuticals, 13, 25. https://doi.org/10.3390/ph13020025. [DOI] [PMC free article] [PubMed]
  48. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  49. Tomkute-Luksiene, D., Keruckas, J., Malinauskas, T., Simokaitiene, J., Getautis, V., Grazulevicius, J. V., Volyniuk, D., Cherpak, V., Stakhira, P., Yashchuk, V., Kosach, V., Luka, G. & Sidaravicius, J. (2013). Dyes Pigments, 96, 278–286.
  50. Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. http://hirshfeldsurface.net
  51. Vinutha, N., Madan Kumar, S., Nithinchandra, Balakrishna, K., Lokanath, N. K. & Revannasiddaiah, D. (2013). Acta Cryst. E69, o1724. [DOI] [PMC free article] [PubMed]
  52. Wang, C., Li, G. & Zhang, Q. (2013). Tetrahedron Lett. 54, 2633–2636.
  53. Xie, S., Lopez, S. A., Ramström, O., Yan, M. & Houk, K. N. (2015). J. Am. Chem. Soc. 137, 2958–2966. [DOI] [PMC free article] [PubMed]
  54. Zeghada, S., Bentabed-Ababsa, G., Derdour, A., Abdelmounim, S., Domingo, L. R., Sáez, J. A., Roisnel, T., Nassar, E. & Mongin, F. (2011). Org. Biomol. Chem. 9, 4295–4305. [DOI] [PubMed]
  55. Zukerman-Schpector, J., Dias, C. da S., Schwab, R. S., Jotani, M. M. & Tiekink, E. R. T. (2018). Acta Cryst. E74, 1195–1200. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021010070/hb7985sup1.cif

e-77-01067-sup1.cif (521.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010070/hb7985Isup2.hkl

e-77-01067-Isup2.hkl (254.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010070/hb7985Isup4.cml

NMR spectra. DOI: 10.1107/S2056989021010070/hb7985sup3.pdf

e-77-01067-sup3.pdf (724.8KB, pdf)

CCDC reference: 2112438

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES