Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Oct 13;77(Pt 11):1109–1115. doi: 10.1107/S2056989021010227

Isostructural rubidium and caesium 4-(3,5-di­nitro­pyrazol-4-yl)-3,5-di­nitro­pyrazolates: crystal engineering with polynitro energetic species

Kostiantyn V Domasevitch a,*, Vira V Ponomarova a
PMCID: PMC8587976  PMID: 34868646

In the structures of the title salts, two independent cations (Rb, Cs) are situated on a crystallographic twofold axis and on a center of inversion, respectively. Mutual inter­molecular hydrogen bonding between the conjugate 3,5-dinito­pyrazole NH-donor and 3,5-di­nitro­pyrazolate N-acceptor sites of the anions governs the self-assembly of the translation-related anions in a predictable fashion. The anionic chains are further linked by multiple ion–dipole inter­actions involving the 12-coordinate cations bonded to two pyrazole N-atoms and all of the eight nitro O-atoms. The resulting ionic networks follow the CsCl topological archetype, with either metal or organic ions residing in an environment of eight counter-ions. Weak lone pair–π-hole inter­actions are also relevant to the packing.

Keywords: crystal structure, rubidium, caesium, nitro­pyrazoles, energetic materials, hydrogen bonding

Abstract

In the structures of the title salts, poly[[μ4-4-(3,5-di­nitro­pyrazol-4-yl)-3,5-di­nitro­pyrazol-1-ido]rubidium], [Rb(C6HN8O8)] n , (1), and its isostructural caesium analogue [Cs(C6HN8O8) n , (2), two independent cations M1 and M2 (M = Rb, Cs) are situated on a crystallographic twofold axis and on a center of inversion, respectively. Mutual inter­molecular hydrogen bonding between the conjugate 3,5-dinito­pyrazole NH-donor and 3,5-di­nitro­pyrazole N-acceptor sites of the anions [N⋯N = 2.785 (2) Å for (1) and 2.832 (3) Å for (2)] governs the self-assembly of the translation-related anions in a predictable fashion. Such one-component modular construction of the organic subtopology supports the utility of the crystal-engineering approach towards designing the structures of polynitro energetic materials. The anionic chains are further linked by multiple ion–dipole inter­actions involving the 12-coordinate cations bonded to two pyrazole N-atoms [Rb—N = 3.1285 (16), 3.2261 (16) Å; Cs—N = 3.369 (2), 3.401 (2) Å] and all of the eight nitro O-atoms [Rb—O = 2.8543 (15)–3.6985 (16) Å; Cs—O = 3.071 (2)–3.811 (2) Å]. The resulting ionic networks follow the CsCl topological archetype, with either metal or organic ions residing in an environment of eight counter-ions. Weak lone pair–π-hole inter­actions [pyrazole-N atoms to NO2 groups; N⋯N = 2.990 (3)–3.198 (3) Å] are also relevant to the packing. The Hirshfeld surfaces and percentage two-dimensional fingerprint plots for (1) and (2) are described.

Chemical context

Many issues of crystal engineering, in regard to control over bonding patterns, supra­molecular topologies, mol­ecular packing, and crystal morphologies are highly relevant to the area of energetic materials. In particular, non-covalent contacts involving common explosophore nitro groups (Bauzá et al., 2017) establish pathways to transmit inter­molecular inter­actions and they are often responsible for higher densities of the solids (Zhang et al., 2000). The layered architectures of the energetic solids provide better buffering against external mechanical stimuli, which is essential for developing insens­itive materials (Zhang et al., 2008). At the same time, incorp­oration of specific coordination geometries for the assembly of metal–organic solids offers potential for the synthesis of new perchlorate-free flame colorants and pyrotechnics (Glück et al., 2017). However, successful applications of the crystal-engineering methodology toward designing the structures of polynitro compounds are relatively rare, so far (Domasevitch et al., 2020). This is predetermined by a lack of reliable supra­molecular synthons comprising the nitro groups, which are only weak acceptors of conventional hydrogen bonds (Robinson et al., 2000) and are only weak donors with respect to the metal ions. A more severe limitation is associated with the need for direct bonding between the nitro-rich functionalities only, since the incorporation of any low-energetic component or solvent mol­ecules is an inevitable penalty to the performance. Such dilution of the energetic moieties in the crystals is relevant, for example, to a series of hydrogen-bonded solids prepared by Aakeröy et al. (2015) with acidic ethyl­enedinitramine and common bitopic pyridine-N bases. graphic file with name e-77-01109-scheme1.jpg

Recently, we have reported a new strategy for the construction of energetic salts, which offers higher degree of control over the structure. Double functionality of the well-performing material 3,3′,5,5′-tetra­nitro-4,4′-bi­pyrazole [H2(TNBP)] (Domasevitch et al., 2019) grants synthetic access either to singly or doubly anionic species [{H(TNBP)} and {TNBP}2−, respectively]. The former combine conjugate di­nitro­pyrazole donor and di­nitro­pyrazolate acceptor sites for sustaining particularly strong N—H⋯N bonding. In fact, such bonding of two explosophores dominated the self-assembly in a very predictable fashion and it was traced in all of the previously examined salts with a range of nitro­gen-rich cations (Gospodinov et al., 2020). That the resulting networks are ionic may find further applications to the synthesis of inorganic nitro-rich salts, based upon Li+, Rb+, Cs+, Sr2+, Ba2+ and other s- and p-block cations, which are a new generation of ‘green’ pyrotechnic formulations (Steinhauser & Klapötke, 2008).

Following the above findings, we now describe the synthesis and structure of rubidium and caesium 4-(3,5-di­nitro­pyrazol-4-yl)-3,5-di­nitro­pyrazolates M{H(TNBP)} [M = Rb (1) and Cs (2)], incorporating the peculiar half-deprotonated bi­pyrazole tectons. These materials may give an insight into the development of flame colorants in pyrotechnics: rubidium and caesium compounds exhibit, respectively, purple and orange colors when burned.

Structural commentary

The title compounds are isostructural, crystallizing in space group C2/c. The mol­ecular structure of the rubidium salt (1) is shown in Fig. 1, with the unique part comprising one organic anion {H(TNBP)} (or C6HN8O8 ) and two cations situated on a crystallographic twofold axis [Rb1] or on a center of inversion [Rb2]. The easy formation of such salts is con­ditioned by the appreciable acidity of polynitro­pyrazoles, c.f. pK a = 3.14 for 3,5-di­nitro­pyrazole versus 14.63 for the parent pyrazole (Janssen et al., 1973), while for the crystallization of singly charged hydrogen bipyrazolate derivatives, the weakly polarizing, large Rb+ and Cs+ cations are important.

Figure 1.

Figure 1

The mol­ecular structure and the atom-labeling scheme for (1) [the atom labeling for (2) is identical, with Cs1 and Cs2 instead of Rb1 and Rb2], with displacement ellipsoids drawn at the 50% probability level and the N—H⋯N hydrogen bond shown as a dashed line. [Symmetry code: (i) x, y + 1, z.]

Both unique metal ions exhibit exceptionally high coord­in­ation numbers of twelve, which are completed with ten O atoms [Rb—O = 2.8543 (15)–3.6985 (16) Å; Cs—O 3.071 (2)–3.811 (2) Å] and two N atoms of the pyrazole rings [Rb—N = 3.1285 (16) and 3.2261 (16) Å; Cs—N = 3.369 (2) and 3.401 (2) Å] (Tables 1 and 2). Most of these separations slightly exceed the sum of the corresponding ionic radii [which are M—O = 3.13 and 3.28 Å; M—N = 3.18 and 3.34 Å for 12-coordinate Rb and Cs ions, respectively (Shannon, 1976)], indicating the weakness of these relatively distal ion–dipole inter­actions. This may be best related to the bonding in the ionic salts with polynitro anions lacking conventional donor sites. For example, in caesium picrate, the cations display a comparable 12-fold coordination and a wide spread of Cs—O separations of 3.028 (3)–3.847 (2) Å (Schouten et al., 1990). The coordination polyhedra of the two unique cations are very similar and represent essentially distorted icosa­hedra (Fig. 2). These are completed with a twofold axis [for M1] or inversion [for M2] related pairs of chelating nitro­pyrazole-N,O groups, pseudo-chelating NO2 groups and two singly coordinated NO2 groups. Both kinds of cations reside in a closest environment of eight {H(TNBP)} anions, which maintain supra­molecular boxes with a small inter­nal cavity for the cation (Fig. 3). It is notable that all of the eight O atoms present and the two pyrazole N atoms coordinate to the metal ions.

Table 1. Selected bond lengths (Å) for (1) .

Rb1—O1i 2.8543 (15) Rb2—O5iii 2.9616 (17)
Rb1—O5 2.9673 (16) Rb2—O7 2.9690 (15)
Rb1—N3 3.1285 (16) Rb2—O3i 3.0743 (17)
Rb1—O8ii 3.3074 (16) Rb2—N2i 3.2261 (16)
Rb1—O3iii 3.424 (2) Rb2—O6iii 3.2275 (16)
Rb1—O4iii 3.4942 (16) Rb2—O2ii 3.6985 (16)

Symmetry codes: (i) x, y+1, z; (ii) -x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z; (iii) -x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}.

Table 2. Selected bond lengths (Å) for (2) .

Cs1—O1i 3.071 (2) Cs2—O7 3.109 (2)
Cs1—O5 3.177 (2) Cs2—O5ii 3.159 (2)
Cs1—O3ii 3.351 (3) Cs2—O3i 3.297 (2)
Cs1—N3 3.369 (2) Cs2—O6ii 3.396 (2)
Cs1—O4ii 3.464 (2) Cs2—N2i 3.401 (2)
Cs1—O8iii 3.514 (2) Cs2—O2iv 3.811 (2)

Symmetry codes: (i) x, y+1, z; (ii) -x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (iii) -x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z; (iv) x-{\script{1\over 2}}, y+{\script{1\over 2}}, z.

Figure 2.

Figure 2

Twelvefold coordination environments adopted by the Rb1 and Rb2 ions in (1), in the form of distorted icosa­hedra. The coordination of the two Cs ions in (2) is almost identical. [Symmetry codes: (i) x, y + 1, z; (ii) −x +  Inline graphic , y +  Inline graphic , −z +  Inline graphic ; (iii) −x +  Inline graphic , −y +  Inline graphic , −z; (iv) x −  Inline graphic , y +  Inline graphic , z; (v) −x + 1, y + 1, −z +  Inline graphic ; (vi) −x + 1, y, −z +  Inline graphic ; (vii) x +  Inline graphic , y +  Inline graphic , z; (viii) x +  Inline graphic , −y +  Inline graphic , z +  Inline graphic ; (ix) −x, −y + 1, −z; (x) x −  Inline graphic , −y +  Inline graphic , z −  Inline graphic ; (xi) −x, −y, −z.]

Figure 3.

Figure 3

The Rb2 ion resides inside a supra­molecular prism (represented here as a gray box) adopted by eight anions, which complete the coordination environment. The vertices of the prism are built through the mid-points of the central C—C bonds of the mol­ecules. The environments of Rb1 and the respective Cs ions in the structure of (2) are similar. [Symmetry codes: (i) x, y + 1, z; (ii) −x +  Inline graphic , y +  Inline graphic , −z +  Inline graphic ; (iv) x −  Inline graphic , y +  Inline graphic , z; (ix) −x, −y + 1, −z.]

The main geometrical parameters of the organic anions are very similar to those of the parent [H2(TNBP)] (Domasevitch et al., 2019). In the case of (1), the protolytic inequivalency of two pyrazole halves is reflected by the ring C—N distances, which are almost the same for anionic ring A (atoms C4/C5/C6/N3/N4) [N3—C4 = 1.343 (2) and N4—C6 1.348 (2) Å] and are slightly differentiated for the neutral ring B (C1/C2/C3/N1/N2) [N1—C1 1.348 (2) and N2—C3 1.331 (2) Å] (Fig. 1). In addition, the deprotonation causes slight elongation of the N—N bond, which is 1.336 (2) Å for ring B and 1.347 (2) Å for ring A. Even more sensitive parameters are the bond angles at the N atoms, which are perceptibly different for the former fragment [N2—N1—C1 = 110.67 (15); C3—N2—N1 = 104.29 (15)°], being much closer for the latter [106.38 (15) and 107.59 (15)°]. In the case of (2), the corresponding geometries are nearly identical for rings A and B [C—N = 1.340 (3)–1.346 (3) Å; N2—N1—C1 = 109.8 (2); N3—N4—C6 = 109.6 (2)° and N1—N2—C3 = 104.9 (2); N4—N3—C4 = 105.1 (2)°]. This situation agrees with the disorder of the H atoms between two positions [at the N1 or N4 carrier atoms] within the N—H⋯N hydrogen bond in (2) as discussed below.

In both structures, the {H(TNBP)} anions display twisted conformations, with the dihedral angles between the rings being 42.99 (8) and 44.86 (10)° for (1) and (2), respectively. These angles, however, are unusually small. For example, typical parameters for the structurally similar 3,3′,5,5′-tetra­methyl-4,4′-bi­pyrazole unit are 65–90° (Ponomarova et al., 2013). The flattening of the {H(TNBP)} anion suggests certain attractivity in steric inter­actions of the NO2 groups, which generates a set of short intra­molecular O⋯N contacts, the shortest being O2⋯N7 at 2.786 (3) Å observed for (2). Indeed, the nitro/nitro stackings are energetically favorable, as a special kind of lone pair–π-hole bond (Bauzá et al., 2017).

Supra­molecular features

The ionic structures of the title compounds may be regarded as three-dimensional networks, which are related to the structure of CsCl. The metal ions themselves constitute a distorted primitive cubic framework with the cells representing elongated prisms [the MM edges are 5.2560 (3), 6.5962 (3), 8.8395 (8) and 5.4775 (4), 6.3932 (5), 9.1482 (12) Å for (1) and (2), respectively]. Every such cell is populated with the organic anion and, conversely, every cation resides inside the distorted prismatic box of eight anions (Figs. 3 and 4).

Figure 4.

Figure 4

Fragment of the crystal structure of (1), showing the polar hydrogen-bonded anionic chains propagating along the b-axis direction, in the environment of the Rb cations. Blue lines indicate a pseudo-primitive cubic net arrangement of the cations, with every cell populated by a single anion (c.f. the structure of CsCl). [Symmetry codes: (i) x, y + 1, z; (vi) −x + 1, y, −z +  Inline graphic ; (xiv) x, y − 1, z.]

Beyond Coulombic attraction, the principal supra­molecular inter­action is strong and directional N—H⋯N hydrogen bonding between the pyrazole and pyrazolate halves of translation-related anions [N1⋯N4xiv = 2.785 (2) and 2.832 (3) Å; H⋯Nxiv = 1.93 and 1.99 Å; N1H⋯N4xiv = 166 and 163° for (1) and (2), respectively; symmetry code: (xiv) x, y − 1, z], arranging the latter into linear polar chains propagating along the b-axis direction (Fig. 4). Such bonding involving the conjugate acid (pyrazole-NH) and base (pyrazolate-N) sites is a very rare, if not the only, example of a highly reliable supra­molecular synthon for crystal engineering with energetic polynitro derivatives. In fact, the conjugate inter­actions are relevant for many organic species, e.g. carboxyl­ates (Speakman, 1972) and oximes (Domasevitch et al., 1998), being often the most crucial bonding for the crystal patterns. With the aid of such a synthon, the assembly of the organic subtopology of lower dimensionality is possible in a very rational and predictable fashion and the title structures exactly follow the motifs of previously examined NH3OH+ and 3,3′,5,5′-tetra­methyl-4,4′-bipyrazolium {H(TNBP)} salts (Gospodinov et al., 2020).

The above hydrogen-bonded chains associate to yield layers lying parallel to the ac plane and the latter are separated by the layers of metal cations (Fig. 5). There are two kinds of weaker inter­actions, which facilitate close packing of the chains. The first of these is identified by close N3⋯N6ii and N2⋯N7xii contacts [the shortest of 2.990 (3) Å] originating in situation of the pyrazole N atoms almost exactly above the NO2 N atoms (Table 3). This peculiar lone pair–π-hole inter­action occurs instead of the more common NO2/NO2 bonding (Bauzá et al., 2017), which is also relevant for the structure of [H2(TNBP)] itself (Domasevitch et al., 2019). One can note that extensive ion-dipole inter­actions M⋯O2N in (1) and (2) mitigate against mutual inter­actions of nitro groups, which are totally eliminated from the suite of supra­molecular bonds. The second type of inter­chain inter­action is stacking between pairs of inversion-related pyrazole and pyrazolate rings (Fig. 6), with the O7 and N5 atoms situated nearly above the centroids of the rings A iii and B xiii, respectively [symmetry codes: (iii) −x +  Inline graphic , −y +  Inline graphic , −z; (xiii) −x +  Inline graphic , −y −  Inline graphic , −z.] (Table 4). As a result of the inversion symmetry of the stacks, the alignment of two polar hydrogen-bonded chains in (1) is anti­parallel, while the above lone pair–π-hole inter­actions support coherent alignment of the contributing chains (Fig. 6). This results in pairing of the chains possessing identical polarities (Fig. 5). In the structure of (2), the polarity of the chains is eliminated because of the disorder of the H atoms in the N—H⋯N/N⋯H—N bonds.

Figure 5.

Figure 5

Structure of (1) viewed in projection on the ac plane (down the direction of the anionic chains) showing the organic layers, which are separated by layers of the cations. The chains of opposite polarity are identified by blue and red colors. [Symmetry codes: (iv) x −  Inline graphic , y +  Inline graphic , z; (v) −x + 1, y + 1, −z +  Inline graphic .]

Table 3. Geometry of lone pair–π-hole inter­actions (Å, °) in (1) and (2).

N⋯plane is a distance of an N-donor to the mean plane of a nitro group and φ is an angle of the N⋯N axis to the plane of the nitro group.

Compound N-Donor Group N⋯N N⋯plane φ
(1) N2 (C4N7O5O6)xii 2.997 (3) 2.980 (2) 83.9 (2)
  N3 (C3N6O3O4)ii 3.198 (3) 3.093 (2) 75.3 (2)
(2) N2 (C4N7O5O6)xii 2.990 (3) 2.976 (3) 84.5 (2)
  N3 (C3N6O3O4)ii 3.186 (3) 3.083 (3) 75.4 (2)

Symmetry codes: (ii) −x + {1\over 2}, y + {1\over 2}, −z + {1\over 2}; (xii) −x + {1\over 2}, y − {1\over 2}, −z + {1\over 2}.

Figure 6.

Figure 6

A suite of non-covalent inter­actions of the {H(TNBP)} anions, with two kinds of lone pair–π-hole bonds (marked in red) and two kinds of nitro/pyrazole stacks (marked in blue) complementing the conventional hydrogen bonding. [Symmetry codes: (ii) −x +  Inline graphic , y +  Inline graphic , −z +  Inline graphic ; (v) −x + 1, y + 1, −z +  Inline graphic ; (vi) −x + 1, y, −z +  Inline graphic ; (xiii) −x +  Inline graphic , −y −  Inline graphic , −z; (xiv) x, y − 1, z.]

Table 4. Geometry of stacking inter­actions involving nitro and pyrazole groups (Å, °) in (1) and (2).

Atom⋯Cg is the shortest distance from the nitro group atom to the centroid of the ring; Atom⋯plane is the deviation of the given atom from the mean plane of the ring and φ is the angle of the atom⋯Cg axis to the plane of the ring.

Compound Atom Ring Atom⋯Cg Atom⋯plane φ
(1) O7 (C4C5C6N3N4)iii 3.265 (3) 3.262 (2) 87.5 (2)
  N5 (C1C2C3N1N2)xiii 3.541 (3) 3.526 (3) 84.7 (2)
(2) O7 (C4C5C6N3N4)iii 3.240 (3) 3.232 (3) 86.0 (3)
  N5 (C1C2C3N1N2)xiii 3.448 (3) 3.389 (3) 79.4 (3)

Symmetry codes: (iii) −x + {1\over 2}, −y + {1\over 2}, −z; (xiii) −x + {1\over 2}, −y − {1\over 2}, −z.

Hirshfeld analysis

The supra­molecular inter­actions in the title structures were also assessed by Hirshfeld surface analysis (Spackman & Byrom, 1997; McKinnon et al., 2004; Hirshfeld, 1977; Spackman & McKinnon, 2002) performed with CrystalExplorer17 (Turner et al., 2017). The contributions of different kinds of inter­atomic contacts to the Hirshfeld surfaces of the individual anions are listed in Table 5 and the fingerprint plots for (1) are shown in Fig. 7. The most significant contributors are O⋯O contacts (37.4%), while the fraction of O,N⋯Rb (15.4%) is relatively modest due to the larger lengths of the ion–dipole inter­actions. The shortest O⋯O separation on the plot of ∼2.8 Å corresponds to the contact O1⋯O8xiii = 2.741 (2) Å [2.732 (3) Å in (2); symmetry code (xiii) −x +  Inline graphic , −y −  Inline graphic , −z]. We note that slight contraction of the O⋯M fraction in the case of M = Rb [13.6% for (1) and 13.0% for (2)] coincides with a larger contribution of less favorable O⋯O contacts [37.4% for (1) and 35.5% for (2)]. This may be an additional factor destabilizing the structure: the crystals of (1) eventually decompose under the mother solution, unlike the stable Cs analogue. The lone pair–π-hole pyrazole-NO2 inter­actions generate 5.3% (1) and 6.3% (2) of the contacts of the Hirshfeld surfaces, with the shortest N⋯N = 2.9 Å. The nature of the O⋯N/N⋯O and N⋯C/C⋯N contacts [in total 23.3% (1) and 22.8% (2)] is similar, since they correspond to the stacking of pyrazole and NO2 groups with shortest O⋯N and N⋯C distances of 3.2 and 3.3 Å, respectively. However, there are no pairs of the features that are characteristic for the mutual O⋯N/N⋯O inter­actions of NO2 groups themselves (Domasevitch et al., 2020). The contributions of the O⋯H/H⋯O and N⋯H/H⋯N contacts are comparable and perceptible [5.4 and 6.9% for (1) and 5.2 and 6.6% for (2)], but only the latter correspond to hydrogen bonding, as is reflected in the plots. These bonds are responsible for a pair of very sharp features pointing to the lower left, with a shortest contact of 1.9 Å, whereas O⋯H/H⋯O contacts are identified only with a diffuse collection of points between the above features and with a shortest contact of 2.8 Å.

Table 5. Contributions of the different kinds of the contacts (%) to the Hirshfeld surfaces of individual anions in (1) a and (2).

M = Rb (1) and Cs (2)

Contact (1) (2)
O⋯M 13.0 13.6
N⋯M 2.4 2.2
O⋯O 37.4 35.5
N⋯N 5.3 6.3
C⋯C 1.0 0.7
O⋯N/N⋯O 15.8 16.2
O⋯C/C⋯O 3.8 5.4
N⋯C/C⋯N 7.5 6.6
N⋯H/H⋯N 6.9 6.6
O⋯H/H⋯O 5.4 5.2
C⋯H/H⋯C 1.5 1.7

Note: (a) For the two-dimensional plots for (1), see Fig. 7.

Figure 7.

Figure 7

Two-dimensional fingerprint plots for the individual anions in (1), and delineated into the principal contributions of O,N⋯Rb, O⋯O, N⋯N, O⋯N/N⋯O, O⋯C/C⋯O, N⋯C/C⋯C, N⋯H/H⋯N and O⋯H/H⋯O contacts. Other contacts are C⋯H/H⋯C (1.5%) and C⋯C (1.0%).

Synthesis and crystallization

3,3′,5,5′-Tetra­nitro-4,4′-bi­pyrazole [H2(TNBP)] was synthesized in 92% yield by nitration of 4,4′-bi­pyrazole in mixed acids and then crystallized from water as a monohydrate (Domasevitch et al., 2019).

To prepare the Rb salt (1), 0.332 g (1.0 mmol) of H2(TNBP)·H2O was added to a solution of 0.116 g (0.5 mmol) of Rb2CO3 in 8 ml of water and the mixture was heated at 353–363 K until total dissolution was observed. The solution was cooled to room temperature and left for a few hours for crystallization. Pale-yellow crystals of Rb{H(TNBP)} were isolated in a yield of 0.325 g (82%) and dried in air. The compound is unstable when stored under the reaction solution as the initially formed crystals dissolve in a period of 10–15 d and colorless H2(TNBP)·H2O deposits. In a similar way, the reaction of 0.332 g (1.0 mmol) of H2(TNBP)·H2O and 0.163 g (0.5 mmol) of Cs2CO3 in 8 ml of water gives 0.415 g (93%) of pale-yellow Cs{H(TNBP)} (2). Unlike (1), this material is stable under the mother solution. Similar reactions with Na2CO3 and K2CO3 did not afford any hydrogen bipyrazolates and led to soluble M 2{TNBP} (M = Na, K) and precipitation of the excess amount of H2(TNBP)·H2O.

Analysis (%) calculated for (1), C6HN8O8Rb: C 18.08, H 0.25, N 28.12; found: C 17.93, H 0.44, N 28.49. IR (KBr, cm−1): 590 w, 708 w, 838 m, 854 s, 996 m, 1024 m, 1308 s, 1352 vs, 1398 vs, 1432 m, 1490 vs, 1500 m, 1556 vs, 1636 w, 3448 br.

Analysis (%) calculated for (2), C6HCsN8O8: C 16.15, H 0.23, N 25.13; found: C 16.01, H 0.38, N 28.11. IR (KBr, cm−1): 516 w, 586 m, 708 m, 838 s, 852 s, 994 s, 1022 m, 1170 w, 1306 s, 1324 s, 1350 vs, 1396 vs, 1432 s, 1488 vs, 1512 vs, 1544 vs, 1634 m, 3024 br, 3442 br.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6. The hydrogen atoms were located and then refined as riding with N—H = 0.87 Å and U iso(H) = 1.5U eq(N). For (2), the H atom is equally disordered over two positions corresponding to the N1 and N4 carrier atoms.

Table 6. Experimental details.

  (1) (2)
Crystal data
Chemical formula [Rb(C6HN8O8)] [Cs(C6HN8O8)]
M r 398.62 446.06
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 213 213
a, b, c (Å) 19.4400 (15), 8.6070 (4), 16.0977 (10) 19.944 (2), 8.6307 (7), 16.2083 (17)
β (°) 115.264 (7) 113.766 (8)
V3) 2435.8 (3) 2553.4 (5)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 4.13 2.97
Crystal size (mm) 0.20 × 0.16 × 0.14 0.20 × 0.16 × 0.14
 
Data collection
Diffractometer Stoe IPDS Stoe IPDS
Absorption correction Numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] Numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]
T min, T max 0.672, 0.789 0.677, 0.772
No. of measured, independent and observed [I > 2σ(I)] reflections 9925, 2890, 2186 9014, 2990, 2686
R int 0.033 0.042
(sin θ/λ)max−1) 0.658 0.656
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.026, 0.055, 0.89 0.027, 0.060, 1.21
No. of reflections 2890 2990
No. of parameters 210 211
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.39 0.67, −0.77

Computer programs: IPDS Software (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL2018/1 (Sheldrick, 2015), DIAMOND (Brandenburg, 1999) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, 1, 2. DOI: 10.1107/S2056989021010227/hb7988sup1.cif

e-77-01109-sup1.cif (607.1KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989021010227/hb79881sup2.hkl

e-77-01109-1sup2.hkl (231.5KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989021010227/hb79882sup3.hkl

e-77-01109-2sup3.hkl (239.4KB, hkl)

CCDC references: 2113578, 2113577

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]rubidium] (1) . Crystal data

[Rb(C6HN8O8)] F(000) = 1552
Mr = 398.62 Dx = 2.174 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 19.4400 (15) Å Cell parameters from 8000 reflections
b = 8.6070 (4) Å θ = 2.3–27.9°
c = 16.0977 (10) Å µ = 4.13 mm1
β = 115.264 (7)° T = 213 K
V = 2435.8 (3) Å3 Prism, yellow
Z = 8 0.20 × 0.16 × 0.14 mm

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]rubidium] (1) . Data collection

Stoe IPDS diffractometer 2186 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.033
φ oscillation scans θmax = 27.9°, θmin = 2.3°
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] h = −25→25
Tmin = 0.672, Tmax = 0.789 k = −10→11
9925 measured reflections l = −20→20
2890 independent reflections

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]rubidium] (1) . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055 H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0326P)2] where P = (Fo2 + 2Fc2)/3
2890 reflections (Δ/σ)max < 0.001
210 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.39 e Å3

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]rubidium] (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]rubidium] (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Rb1 0.500000 0.39279 (3) 0.250000 0.02840 (9)
Rb2 0.000000 0.500000 0.000000 0.03230 (9)
O1 0.38330 (9) −0.38304 (18) 0.16106 (14) 0.0422 (5)
O2 0.38489 (9) −0.14611 (18) 0.11639 (13) 0.0344 (4)
O3 0.03697 (9) −0.16032 (19) 0.06215 (16) 0.0490 (5)
O4 0.10681 (9) 0.03244 (17) 0.13792 (13) 0.0347 (4)
O5 0.45319 (8) 0.09854 (18) 0.30718 (12) 0.0329 (4)
O6 0.37797 (9) −0.09294 (16) 0.29580 (11) 0.0301 (4)
O7 0.13123 (9) 0.34370 (17) −0.01293 (13) 0.0344 (4)
O8 0.12218 (8) 0.09417 (17) −0.03095 (11) 0.0280 (3)
N1 0.23222 (9) −0.36612 (17) 0.10737 (13) 0.0199 (4)
H1 0.247444 −0.461154 0.107308 0.030*
N2 0.16218 (9) −0.32601 (19) 0.09532 (13) 0.0210 (4)
N3 0.33470 (9) 0.27100 (18) 0.19547 (13) 0.0207 (4)
N4 0.26946 (9) 0.31935 (17) 0.12643 (13) 0.0200 (4)
N5 0.35387 (9) −0.25662 (18) 0.13349 (12) 0.0212 (4)
N6 0.09790 (10) −0.0935 (2) 0.10011 (14) 0.0266 (4)
N7 0.39083 (9) 0.03467 (19) 0.27152 (13) 0.0218 (4)
N8 0.15509 (9) 0.21089 (19) 0.01062 (13) 0.0206 (4)
C1 0.27606 (10) −0.2391 (2) 0.11965 (14) 0.0175 (4)
C2 0.23545 (10) −0.1061 (2) 0.11814 (14) 0.0161 (4)
C3 0.16475 (10) −0.1719 (2) 0.10251 (15) 0.0181 (4)
C4 0.32927 (10) 0.1159 (2) 0.19966 (14) 0.0177 (4)
C5 0.26131 (10) 0.0553 (2) 0.13416 (14) 0.0158 (4)
C6 0.22651 (10) 0.1926 (2) 0.08941 (14) 0.0167 (4)

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]rubidium] (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rb1 0.01707 (13) 0.01962 (14) 0.0442 (2) 0.000 0.00897 (13) 0.000
Rb2 0.02226 (15) 0.03355 (17) 0.0307 (2) 0.00090 (12) 0.00132 (12) −0.01165 (14)
O1 0.0311 (8) 0.0188 (8) 0.0702 (14) 0.0128 (6) 0.0153 (9) 0.0038 (8)
O2 0.0284 (8) 0.0279 (8) 0.0533 (12) −0.0005 (6) 0.0234 (8) 0.0034 (8)
O3 0.0212 (8) 0.0283 (9) 0.0941 (17) −0.0011 (7) 0.0214 (9) 0.0036 (9)
O4 0.0411 (9) 0.0214 (8) 0.0519 (12) 0.0071 (7) 0.0299 (9) −0.0003 (7)
O5 0.0206 (7) 0.0336 (8) 0.0327 (10) −0.0044 (6) 0.0001 (7) 0.0048 (7)
O6 0.0375 (8) 0.0155 (7) 0.0272 (10) −0.0001 (6) 0.0040 (7) 0.0046 (6)
O7 0.0313 (8) 0.0190 (7) 0.0470 (12) 0.0121 (6) 0.0111 (8) 0.0127 (7)
O8 0.0225 (7) 0.0231 (8) 0.0305 (10) −0.0046 (6) 0.0037 (6) 0.0008 (7)
N1 0.0231 (8) 0.0089 (7) 0.0267 (11) 0.0004 (6) 0.0098 (7) −0.0010 (7)
N2 0.0222 (8) 0.0127 (8) 0.0283 (11) −0.0004 (6) 0.0109 (7) 0.0020 (7)
N3 0.0220 (8) 0.0141 (8) 0.0230 (10) −0.0016 (6) 0.0067 (7) −0.0010 (7)
N4 0.0213 (8) 0.0103 (7) 0.0277 (11) −0.0001 (6) 0.0098 (7) 0.0009 (7)
N5 0.0211 (8) 0.0164 (8) 0.0230 (10) 0.0031 (6) 0.0064 (7) −0.0051 (7)
N6 0.0256 (9) 0.0174 (9) 0.0423 (13) 0.0030 (7) 0.0198 (8) 0.0077 (8)
N7 0.0241 (9) 0.0176 (9) 0.0196 (10) 0.0010 (6) 0.0053 (7) −0.0014 (7)
N8 0.0187 (8) 0.0180 (8) 0.0263 (11) 0.0031 (6) 0.0108 (7) 0.0057 (7)
C1 0.0203 (9) 0.0115 (9) 0.0193 (12) 0.0001 (7) 0.0070 (8) 0.0000 (7)
C2 0.0187 (9) 0.0104 (8) 0.0188 (11) 0.0010 (7) 0.0075 (8) 0.0008 (8)
C3 0.0203 (9) 0.0122 (9) 0.0223 (12) 0.0008 (7) 0.0095 (8) 0.0019 (8)
C4 0.0206 (9) 0.0119 (8) 0.0192 (11) 0.0007 (7) 0.0070 (8) −0.0003 (7)
C5 0.0177 (9) 0.0109 (8) 0.0202 (12) 0.0014 (7) 0.0094 (8) 0.0003 (7)
C6 0.0185 (9) 0.0126 (8) 0.0198 (11) 0.0016 (7) 0.0089 (8) 0.0011 (7)

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]rubidium] (1) . Geometric parameters (Å, º)

Rb1—O1i 2.8543 (15) O1—N5 1.221 (2)
Rb1—O1ii 2.8543 (15) O2—N5 1.219 (2)
Rb1—O5 2.9673 (16) O3—N6 1.220 (2)
Rb1—O5iii 2.9673 (16) O4—N6 1.219 (2)
Rb1—N3 3.1285 (16) O5—N7 1.228 (2)
Rb1—N3iii 3.1285 (16) O6—N7 1.227 (2)
Rb1—O8iv 3.3074 (16) O7—N8 1.231 (2)
Rb1—O8v 3.3074 (16) O8—N8 1.225 (2)
Rb1—O3vi 3.424 (2) N1—N2 1.336 (2)
Rb1—O3vii 3.424 (2) N1—C1 1.348 (2)
Rb1—O4vi 3.4942 (16) N1—H1 0.8700
Rb1—O4vii 3.4942 (16) N2—C3 1.331 (2)
Rb2—O5viii 2.9616 (17) N3—C4 1.343 (2)
Rb2—O5vii 2.9616 (17) N3—N4 1.347 (2)
Rb2—O7ix 2.9690 (15) N4—C6 1.348 (2)
Rb2—O7 2.9690 (15) N5—C1 1.440 (2)
Rb2—O3x 3.0743 (17) N6—C3 1.450 (2)
Rb2—O3ii 3.0743 (17) N7—C4 1.441 (2)
Rb2—N2x 3.2261 (16) N8—C6 1.435 (3)
Rb2—N2ii 3.2261 (16) C1—C2 1.384 (3)
Rb2—O6viii 3.2275 (16) C2—C3 1.406 (3)
Rb2—O6vii 3.2275 (16) C2—C5 1.462 (2)
Rb2—O2v 3.6985 (16) C4—C5 1.393 (3)
Rb2—O2xi 3.6985 (16) C5—C6 1.399 (3)
O1i—Rb1—O1ii 94.94 (7) O5vii—Rb2—O6viii 139.46 (4)
O1i—Rb1—O5 134.80 (5) O7ix—Rb2—O6viii 71.28 (5)
O1ii—Rb1—O5 116.69 (4) O7—Rb2—O6viii 108.72 (5)
O1i—Rb1—O5iii 116.69 (4) O3x—Rb2—O6viii 86.34 (5)
O1ii—Rb1—O5iii 134.80 (5) O3ii—Rb2—O6viii 93.66 (5)
O5—Rb1—O5iii 62.80 (7) N2x—Rb2—O6viii 59.09 (4)
O1i—Rb1—N3 150.29 (5) N2ii—Rb2—O6viii 120.91 (4)
O1ii—Rb1—N3 65.44 (5) O5viii—Rb2—O6vii 139.46 (4)
O5—Rb1—N3 52.18 (4) O5vii—Rb2—O6vii 40.54 (4)
O5iii—Rb1—N3 92.36 (4) O7ix—Rb2—O6vii 108.72 (5)
O1i—Rb1—N3iii 65.44 (5) O7—Rb2—O6vii 71.28 (5)
O1ii—Rb1—N3iii 150.29 (5) O3x—Rb2—O6vii 93.66 (5)
O5—Rb1—N3iii 92.36 (4) O3ii—Rb2—O6vii 86.34 (5)
O5iii—Rb1—N3iii 52.18 (4) N2x—Rb2—O6vii 120.91 (4)
N3—Rb1—N3iii 140.85 (6) N2ii—Rb2—O6vii 59.09 (4)
O1i—Rb1—O8iv 52.19 (5) O6viii—Rb2—O6vii 180.00 (7)
O1ii—Rb1—O8iv 124.56 (5) O5viii—Rb2—O2v 63.14 (4)
O5—Rb1—O8iv 82.76 (4) O5vii—Rb2—O2v 116.86 (4)
O5iii—Rb1—O8iv 100.60 (4) O7ix—Rb2—O2v 127.24 (4)
N3—Rb1—O8iv 119.65 (4) O7—Rb2—O2v 52.75 (4)
N3iii—Rb1—O8iv 61.84 (4) O3x—Rb2—O2v 105.45 (5)
O1i—Rb1—O8v 124.56 (5) O3ii—Rb2—O2v 74.55 (5)
O1ii—Rb1—O8v 52.19 (5) N2x—Rb2—O2v 126.63 (4)
O5—Rb1—O8v 100.60 (4) N2ii—Rb2—O2v 53.37 (4)
O5iii—Rb1—O8v 82.76 (4) O6viii—Rb2—O2v 74.96 (4)
N3—Rb1—O8v 61.84 (4) O6vii—Rb2—O2v 105.04 (4)
N3iii—Rb1—O8v 119.65 (4) O5viii—Rb2—O2xi 116.86 (4)
O8iv—Rb1—O8v 176.11 (5) O5vii—Rb2—O2xi 63.14 (4)
O1i—Rb1—O3vi 96.42 (5) O7ix—Rb2—O2xi 52.76 (4)
O1ii—Rb1—O3vi 93.94 (5) O7—Rb2—O2xi 127.25 (4)
O5—Rb1—O3vi 111.58 (4) O3x—Rb2—O2xi 74.55 (5)
O5iii—Rb1—O3vi 53.44 (4) O3ii—Rb2—O2xi 105.45 (5)
N3—Rb1—O3vi 106.56 (4) N2x—Rb2—O2xi 53.37 (4)
N3iii—Rb1—O3vi 68.00 (4) N2ii—Rb2—O2xi 126.63 (4)
O8iv—Rb1—O3vi 128.33 (4) O6viii—Rb2—O2xi 105.04 (4)
O8v—Rb1—O3vi 52.33 (4) O6vii—Rb2—O2xi 74.96 (4)
O1i—Rb1—O3vii 93.94 (5) O2v—Rb2—O2xi 180.00 (3)
O1ii—Rb1—O3vii 96.42 (5) N5—O1—Rb1xii 158.96 (13)
O5—Rb1—O3vii 53.44 (4) N6—O3—Rb2xii 130.77 (13)
O5iii—Rb1—O3vii 111.58 (4) N6—O3—Rb1xiii 91.12 (15)
N3—Rb1—O3vii 68.00 (4) Rb2xii—O3—Rb1xiii 107.84 (5)
N3iii—Rb1—O3vii 106.56 (4) N6—O4—Rb1xiii 87.86 (12)
O8iv—Rb1—O3vii 52.33 (4) N7—O5—Rb2xiv 99.33 (12)
O8v—Rb1—O3vii 128.33 (4) N7—O5—Rb1 127.55 (12)
O3vi—Rb1—O3vii 164.66 (6) Rb2xiv—O5—Rb1 124.88 (5)
O1i—Rb1—O4vi 60.41 (5) N7—O6—Rb2xiv 86.64 (11)
O1ii—Rb1—O4vi 91.65 (5) N8—O7—Rb2 128.40 (13)
O5—Rb1—O4vi 141.47 (4) N8—O8—Rb1v 121.64 (12)
O5iii—Rb1—O4vi 78.75 (4) N2—N1—C1 110.67 (15)
N3—Rb1—O4vi 137.39 (5) N2—N1—H1 124.7
N3iii—Rb1—O4vi 59.64 (4) C1—N1—H1 124.7
O8iv—Rb1—O4vi 102.96 (4) C3—N2—N1 104.29 (15)
O8v—Rb1—O4vi 75.66 (4) C3—N2—Rb2xii 119.80 (12)
O3vi—Rb1—O4vi 36.38 (4) N1—N2—Rb2xii 132.66 (12)
O3vii—Rb1—O4vi 153.75 (4) C4—N3—N4 106.38 (15)
O1i—Rb1—O4vii 91.65 (5) C4—N3—Rb1 114.35 (12)
O1ii—Rb1—O4vii 60.41 (5) N4—N3—Rb1 128.37 (12)
O5—Rb1—O4vii 78.75 (4) N3—N4—C6 107.59 (15)
O5iii—Rb1—O4vii 141.47 (4) O2—N5—O1 125.25 (17)
N3—Rb1—O4vii 59.64 (4) O2—N5—C1 118.13 (15)
N3iii—Rb1—O4vii 137.39 (5) O1—N5—C1 116.61 (16)
O8iv—Rb1—O4vii 75.66 (4) O4—N6—O3 124.73 (18)
O8v—Rb1—O4vii 102.96 (4) O4—N6—C3 117.74 (17)
O3vi—Rb1—O4vii 153.75 (4) O3—N6—C3 117.50 (18)
O3vii—Rb1—O4vii 36.38 (4) O4—N6—Rb1xiii 72.68 (11)
O4vi—Rb1—O4vii 139.76 (5) O3—N6—Rb1xiii 69.40 (14)
O5viii—Rb2—O5vii 180.00 (8) C3—N6—Rb1xiii 132.87 (13)
O5viii—Rb2—O7ix 108.32 (4) O6—N7—O5 123.15 (18)
O5vii—Rb2—O7ix 71.68 (4) O6—N7—C4 118.54 (16)
O5viii—Rb2—O7 71.68 (4) O5—N7—C4 118.29 (16)
O5vii—Rb2—O7 108.32 (4) O6—N7—Rb2xiv 72.15 (11)
O7ix—Rb2—O7 180.0 O5—N7—Rb2xiv 59.69 (11)
O5viii—Rb2—O3x 57.45 (5) C4—N7—Rb2xiv 146.67 (12)
O5vii—Rb2—O3x 122.55 (5) O8—N8—O7 123.57 (18)
O7ix—Rb2—O3x 111.42 (4) O8—N8—C6 118.40 (15)
O7—Rb2—O3x 68.58 (4) O7—N8—C6 118.00 (17)
O5viii—Rb2—O3ii 122.55 (5) N1—C1—C2 110.36 (16)
O5vii—Rb2—O3ii 57.45 (5) N1—C1—N5 119.62 (15)
O7ix—Rb2—O3ii 68.58 (4) C2—C1—N5 130.01 (16)
O7—Rb2—O3ii 111.42 (4) C1—C2—C3 100.20 (16)
O3x—Rb2—O3ii 180.00 (10) C1—C2—C5 129.17 (17)
O5viii—Rb2—N2x 64.39 (4) C3—C2—C5 130.53 (17)
O5vii—Rb2—N2x 115.61 (4) N2—C3—C2 114.47 (16)
O7ix—Rb2—N2x 63.20 (4) N2—C3—N6 117.47 (16)
O7—Rb2—N2x 116.80 (4) C2—C3—N6 127.90 (17)
O3x—Rb2—N2x 50.09 (4) N3—C4—C5 113.82 (17)
O3ii—Rb2—N2x 129.91 (4) N3—C4—N7 117.80 (17)
O5viii—Rb2—N2ii 115.61 (4) C5—C4—N7 128.31 (17)
O5vii—Rb2—N2ii 64.39 (4) C4—C5—C6 99.63 (15)
O7ix—Rb2—N2ii 116.80 (4) C4—C5—C2 129.27 (17)
O7—Rb2—N2ii 63.20 (4) C6—C5—C2 131.10 (17)
O3x—Rb2—N2ii 129.91 (4) N4—C6—C5 112.57 (17)
O3ii—Rb2—N2ii 50.09 (4) N4—C6—N8 119.01 (16)
N2x—Rb2—N2ii 180.0 C5—C6—N8 128.38 (16)
O5viii—Rb2—O6viii 40.54 (4)
C1—N1—N2—C3 −1.3 (2) C1—C2—C3—N2 0.0 (2)
C1—N1—N2—Rb2xii 157.43 (14) C5—C2—C3—N2 −176.6 (2)
C4—N3—N4—C6 −1.0 (2) C1—C2—C3—N6 175.2 (2)
Rb1—N3—N4—C6 140.39 (14) C5—C2—C3—N6 −1.4 (4)
Rb1xii—O1—N5—O2 26.7 (6) O4—N6—C3—N2 154.3 (2)
Rb1xii—O1—N5—C1 −153.8 (4) O3—N6—C3—N2 −24.1 (3)
Rb1xiii—O4—N6—O3 48.3 (2) Rb1xiii—N6—C3—N2 62.6 (3)
Rb1xiii—O4—N6—C3 −129.88 (17) O4—N6—C3—C2 −20.8 (3)
Rb2xii—O3—N6—O4 −164.56 (17) O3—N6—C3—C2 160.8 (2)
Rb1xiii—O3—N6—O4 −49.6 (2) Rb1xiii—N6—C3—C2 −112.5 (2)
Rb2xii—O3—N6—C3 13.7 (3) N4—N3—C4—C5 0.3 (2)
Rb1xiii—O3—N6—C3 128.59 (17) Rb1—N3—C4—C5 −147.15 (14)
Rb2xii—O3—N6—Rb1xiii −114.92 (19) N4—N3—C4—N7 −177.06 (17)
Rb2xiv—O6—N7—O5 32.5 (2) Rb1—N3—C4—N7 35.5 (2)
Rb2xiv—O6—N7—C4 −145.49 (16) O6—N7—C4—N3 156.77 (19)
Rb2xiv—O5—N7—O6 −36.3 (2) O5—N7—C4—N3 −21.3 (3)
Rb1—O5—N7—O6 174.67 (14) Rb2xiv—N7—C4—N3 55.7 (3)
Rb2xiv—O5—N7—C4 141.67 (15) O6—N7—C4—C5 −20.2 (3)
Rb1—O5—N7—C4 −7.3 (3) O5—N7—C4—C5 161.7 (2)
Rb1—O5—N7—Rb2xiv −149.01 (17) Rb2xiv—N7—C4—C5 −121.3 (2)
Rb1v—O8—N8—O7 22.7 (3) N3—C4—C5—C6 0.4 (2)
Rb1v—O8—N8—C6 −155.32 (13) N7—C4—C5—C6 177.5 (2)
Rb2—O7—N8—O8 72.4 (3) N3—C4—C5—C2 −179.85 (19)
Rb2—O7—N8—C6 −109.63 (17) N7—C4—C5—C2 −2.8 (4)
N2—N1—C1—C2 1.4 (2) C1—C2—C5—C4 −41.0 (4)
N2—N1—C1—N5 −179.72 (17) C3—C2—C5—C4 134.7 (2)
O2—N5—C1—N1 157.8 (2) C1—C2—C5—C6 138.7 (2)
O1—N5—C1—N1 −21.7 (3) C3—C2—C5—C6 −45.6 (4)
O2—N5—C1—C2 −23.6 (3) N3—N4—C6—C5 1.3 (2)
O1—N5—C1—C2 156.9 (2) N3—N4—C6—N8 −176.64 (16)
N1—C1—C2—C3 −0.8 (2) C4—C5—C6—N4 −1.0 (2)
N5—C1—C2—C3 −179.5 (2) C2—C5—C6—N4 179.2 (2)
N1—C1—C2—C5 175.8 (2) C4—C5—C6—N8 176.7 (2)
N5—C1—C2—C5 −2.9 (4) C2—C5—C6—N8 −3.1 (4)
N1—N2—C3—C2 0.8 (2) O8—N8—C6—N4 168.87 (18)
Rb2xii—N2—C3—C2 −161.31 (14) O7—N8—C6—N4 −9.2 (3)
N1—N2—C3—N6 −174.94 (18) O8—N8—C6—C5 −8.7 (3)
Rb2xii—N2—C3—N6 23.0 (2) O7—N8—C6—C5 173.2 (2)

Symmetry codes: (i) −x+1, y+1, −z+1/2; (ii) x, y+1, z; (iii) −x+1, y, −z+1/2; (iv) x+1/2, −y+1/2, z+1/2; (v) −x+1/2, −y+1/2, −z; (vi) x+1/2, y+1/2, z; (vii) −x+1/2, y+1/2, −z+1/2; (viii) x−1/2, −y+1/2, z−1/2; (ix) −x, −y+1, −z; (x) −x, −y, −z; (xi) x−1/2, y+1/2, z; (xii) x, y−1, z; (xiii) x−1/2, y−1/2, z; (xiv) −x+1/2, y−1/2, −z+1/2.

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]rubidium] (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···N4xii 0.87 1.93 2.785 (2) 166

Symmetry code: (xii) x, y−1, z.

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]caesium] (2) . Crystal data

[Cs(C6HN8O8)] F(000) = 1696
Mr = 446.06 Dx = 2.321 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 19.944 (2) Å Cell parameters from 8000 reflections
b = 8.6307 (7) Å θ = 2.2–27.8°
c = 16.2083 (17) Å µ = 2.97 mm1
β = 113.766 (8)° T = 213 K
V = 2553.4 (5) Å3 Prism, yellow
Z = 8 0.20 × 0.16 × 0.14 mm

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]caesium] (2) . Data collection

Stoe IPDS diffractometer 2686 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.042
φ oscillation scans θmax = 27.8°, θmin = 2.2°
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)] h = −20→26
Tmin = 0.677, Tmax = 0.772 k = −11→11
9014 measured reflections l = −21→21
2990 independent reflections

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]caesium] (2) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0214P)2 + 3.932P] where P = (Fo2 + 2Fc2)/3
S = 1.21 (Δ/σ)max < 0.001
2990 reflections Δρmax = 0.67 e Å3
211 parameters Δρmin = −0.77 e Å3
0 restraints Extinction correction: SHELXL2018/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00151 (14)

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]caesium] (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]caesium] (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cs1 0.500000 0.42703 (3) 0.250000 0.03031 (9)
Cs2 0.000000 0.500000 0.000000 0.04080 (10)
O1 0.36906 (14) −0.3754 (3) 0.1294 (2) 0.0536 (7)
O2 0.38087 (12) −0.1274 (2) 0.12176 (15) 0.0369 (5)
O3 0.04269 (12) −0.1420 (3) 0.07349 (18) 0.0460 (6)
O4 0.11168 (14) 0.0488 (2) 0.14521 (17) 0.0391 (5)
O5 0.44367 (12) 0.1085 (2) 0.29706 (15) 0.0379 (5)
O6 0.36857 (13) −0.0765 (2) 0.29226 (14) 0.0351 (5)
O7 0.13940 (12) 0.3610 (2) −0.01257 (15) 0.0391 (5)
O8 0.12142 (13) 0.1123 (2) −0.02282 (14) 0.0370 (5)
N1 0.22944 (13) −0.3511 (2) 0.10259 (15) 0.0260 (5)
H1A 0.243307 −0.445633 0.099377 0.039* 0.5
N2 0.16260 (13) −0.3095 (2) 0.09520 (15) 0.0267 (5)
N3 0.32972 (13) 0.2858 (2) 0.19322 (15) 0.0266 (5)
N4 0.26741 (13) 0.3309 (2) 0.12597 (15) 0.0252 (5)
H1B 0.256042 0.426103 0.108253 0.038* 0.5
N5 0.34581 (13) −0.2427 (2) 0.12310 (15) 0.0260 (5)
N6 0.10201 (14) −0.0772 (3) 0.10736 (17) 0.0304 (5)
N7 0.38266 (14) 0.0482 (3) 0.26693 (15) 0.0268 (5)
N8 0.15723 (13) 0.2273 (2) 0.01333 (15) 0.0253 (5)
C1 0.27188 (15) −0.2249 (3) 0.11572 (17) 0.0228 (5)
C2 0.23398 (15) −0.0903 (3) 0.11868 (16) 0.0216 (5)
C3 0.16581 (15) −0.1553 (3) 0.10518 (17) 0.0236 (5)
C4 0.32386 (15) 0.1316 (3) 0.19768 (17) 0.0230 (5)
C5 0.25873 (14) 0.0703 (3) 0.13417 (16) 0.0208 (5)
C6 0.22504 (15) 0.2064 (3) 0.08996 (17) 0.0230 (5)

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]caesium] (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cs1 0.02186 (13) 0.02958 (13) 0.03945 (15) 0.000 0.01232 (10) 0.000
Cs2 0.02484 (14) 0.04935 (19) 0.03776 (16) −0.00107 (11) 0.00175 (11) −0.01535 (12)
O1 0.0407 (13) 0.0213 (10) 0.095 (2) 0.0120 (10) 0.0230 (14) −0.0019 (12)
O2 0.0366 (12) 0.0257 (10) 0.0524 (13) 0.0006 (9) 0.0220 (10) 0.0023 (9)
O3 0.0277 (11) 0.0353 (11) 0.0727 (16) −0.0002 (10) 0.0177 (11) 0.0033 (11)
O4 0.0456 (13) 0.0234 (10) 0.0604 (14) 0.0040 (9) 0.0339 (12) −0.0020 (9)
O5 0.0276 (11) 0.0354 (11) 0.0418 (12) −0.0014 (8) 0.0047 (9) 0.0046 (9)
O6 0.0440 (13) 0.0198 (9) 0.0305 (10) −0.0020 (8) 0.0035 (9) 0.0055 (8)
O7 0.0395 (12) 0.0224 (9) 0.0488 (12) 0.0106 (9) 0.0107 (10) 0.0125 (9)
O8 0.0369 (12) 0.0276 (10) 0.0369 (11) −0.0045 (9) 0.0048 (9) 0.0035 (8)
N1 0.0305 (11) 0.0154 (9) 0.0310 (11) 0.0029 (9) 0.0113 (9) 0.0008 (9)
N2 0.0312 (12) 0.0172 (10) 0.0313 (11) −0.0004 (9) 0.0121 (10) 0.0011 (9)
N3 0.0305 (12) 0.0187 (10) 0.0282 (11) −0.0016 (9) 0.0095 (9) −0.0018 (9)
N4 0.0311 (12) 0.0127 (9) 0.0306 (11) 0.0031 (8) 0.0111 (9) 0.0014 (8)
N5 0.0272 (12) 0.0207 (10) 0.0283 (11) 0.0053 (9) 0.0094 (9) −0.0017 (8)
N6 0.0314 (13) 0.0229 (11) 0.0427 (14) 0.0025 (10) 0.0208 (11) 0.0070 (10)
N7 0.0299 (12) 0.0211 (10) 0.0254 (11) 0.0028 (9) 0.0069 (9) −0.0004 (8)
N8 0.0268 (12) 0.0206 (10) 0.0296 (11) 0.0045 (9) 0.0123 (9) 0.0048 (9)
C1 0.0282 (13) 0.0143 (10) 0.0232 (12) 0.0035 (9) 0.0076 (10) 0.0018 (9)
C2 0.0288 (13) 0.0131 (10) 0.0214 (11) 0.0013 (10) 0.0085 (10) 0.0011 (8)
C3 0.0284 (13) 0.0163 (11) 0.0279 (12) 0.0015 (10) 0.0134 (11) 0.0023 (9)
C4 0.0274 (13) 0.0171 (11) 0.0227 (11) 0.0022 (10) 0.0082 (10) 0.0010 (9)
C5 0.0267 (13) 0.0130 (10) 0.0232 (11) 0.0020 (9) 0.0105 (10) 0.0021 (9)
C6 0.0265 (13) 0.0162 (11) 0.0260 (12) 0.0052 (9) 0.0101 (10) 0.0026 (9)

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]caesium] (2) . Geometric parameters (Å, º)

Cs1—O1i 3.071 (2) O2—N5 1.222 (3)
Cs1—O1ii 3.071 (2) O3—N6 1.221 (3)
Cs1—O5iii 3.177 (2) O4—N6 1.225 (3)
Cs1—O5 3.177 (2) O5—N7 1.229 (3)
Cs1—O3iv 3.351 (3) O6—N7 1.224 (3)
Cs1—O3v 3.351 (3) O7—N8 1.230 (3)
Cs1—N3 3.369 (2) O8—N8 1.225 (3)
Cs1—N3iii 3.369 (2) N1—N2 1.338 (3)
Cs1—O4iv 3.464 (2) N1—C1 1.342 (3)
Cs1—O4v 3.464 (2) N1—H1A 0.8700
Cs1—O8vi 3.514 (2) N2—C3 1.340 (3)
Cs1—O8vii 3.514 (2) N3—N4 1.339 (3)
Cs2—O7viii 3.109 (2) N3—C4 1.340 (3)
Cs2—O7 3.109 (2) N4—C6 1.346 (3)
Cs2—O5ix 3.159 (2) N4—H1B 0.8700
Cs2—O5v 3.159 (2) N5—C1 1.439 (4)
Cs2—O3x 3.297 (2) N6—C3 1.453 (3)
Cs2—O3ii 3.297 (2) N7—C4 1.447 (3)
Cs2—O6ix 3.396 (2) N8—C6 1.432 (3)
Cs2—O6v 3.396 (2) C1—C2 1.398 (3)
Cs2—N2x 3.401 (2) C2—C3 1.404 (4)
Cs2—N2ii 3.401 (2) C2—C5 1.458 (3)
Cs2—O2xi 3.811 (2) C4—C5 1.396 (4)
Cs2—O2vi 3.811 (2) C5—C6 1.399 (3)
O1—N5 1.224 (3)
O1i—Cs1—O1ii 112.57 (9) O5ix—Cs2—N2x 60.69 (6)
O1i—Cs1—O5iii 109.94 (6) O5v—Cs2—N2x 119.31 (6)
O1ii—Cs1—O5iii 128.30 (6) O3x—Cs2—N2x 47.39 (5)
O1i—Cs1—O5 128.30 (6) O3ii—Cs2—N2x 132.61 (5)
O1ii—Cs1—O5 109.94 (6) O6ix—Cs2—N2x 55.26 (5)
O5iii—Cs1—O5 60.14 (9) O6v—Cs2—N2x 124.74 (5)
O1i—Cs1—O3iv 101.47 (7) O7viii—Cs2—N2ii 119.87 (6)
O1ii—Cs1—O3iv 89.92 (7) O7—Cs2—N2ii 60.13 (6)
O5iii—Cs1—O3iv 53.49 (6) O5ix—Cs2—N2ii 119.31 (6)
O5—Cs1—O3iv 106.69 (6) O5v—Cs2—N2ii 60.69 (6)
O1i—Cs1—O3v 89.92 (7) O3x—Cs2—N2ii 132.61 (5)
O1ii—Cs1—O3v 101.47 (7) O3ii—Cs2—N2ii 47.39 (5)
O5iii—Cs1—O3v 106.69 (6) O6ix—Cs2—N2ii 124.74 (5)
O5—Cs1—O3v 53.49 (6) O6v—Cs2—N2ii 55.26 (5)
O3iv—Cs1—O3v 159.51 (8) N2x—Cs2—N2ii 180.0
O1i—Cs1—N3 151.61 (7) O7viii—Cs2—O2xi 46.92 (5)
O1ii—Cs1—N3 61.45 (6) O7—Cs2—O2xi 133.09 (5)
O5iii—Cs1—N3 92.08 (6) O5ix—Cs2—O2xi 114.79 (5)
O5—Cs1—N3 48.49 (5) O5v—Cs2—O2xi 65.21 (5)
O3iv—Cs1—N3 106.11 (6) O3x—Cs2—O2xi 78.04 (6)
O3v—Cs1—N3 66.04 (6) O3ii—Cs2—O2xi 101.96 (6)
O1i—Cs1—N3iii 61.45 (6) O6ix—Cs2—O2xi 100.16 (5)
O1ii—Cs1—N3iii 151.61 (7) O6v—Cs2—O2xi 79.84 (5)
O5iii—Cs1—N3iii 48.49 (5) N2x—Cs2—O2xi 54.28 (5)
O5—Cs1—N3iii 92.08 (6) N2ii—Cs2—O2xi 125.72 (5)
O3iv—Cs1—N3iii 66.03 (6) O7viii—Cs2—O2vi 133.08 (5)
O3v—Cs1—N3iii 106.11 (6) O7—Cs2—O2vi 46.91 (5)
N3—Cs1—N3iii 137.57 (8) O5ix—Cs2—O2vi 65.21 (5)
O1i—Cs1—O4iv 66.05 (7) O5v—Cs2—O2vi 114.79 (5)
O1ii—Cs1—O4iv 93.97 (7) O3x—Cs2—O2vi 101.96 (6)
O5iii—Cs1—O4iv 77.60 (6) O3ii—Cs2—O2vi 78.04 (6)
O5—Cs1—O4iv 137.70 (5) O6ix—Cs2—O2vi 79.84 (5)
O3iv—Cs1—O4iv 36.92 (6) O6v—Cs2—O2vi 100.16 (5)
O3v—Cs1—O4iv 155.15 (6) N2x—Cs2—O2vi 125.72 (5)
N3—Cs1—O4iv 138.81 (6) N2ii—Cs2—O2vi 54.28 (5)
N3iii—Cs1—O4iv 57.79 (6) O2xi—Cs2—O2vi 180.00 (6)
O1i—Cs1—O4v 93.97 (7) N5—O1—Cs1xii 140.2 (2)
O1ii—Cs1—O4v 66.05 (7) N6—O3—Cs2xii 130.86 (18)
O5iii—Cs1—O4v 137.70 (6) N6—O3—Cs1xiii 93.91 (18)
O5—Cs1—O4v 77.60 (6) Cs2xii—O3—Cs1xiii 110.96 (7)
O3iv—Cs1—O4v 155.15 (6) N6—O4—Cs1xiii 88.50 (16)
O3v—Cs1—O4v 36.92 (6) N7—O5—Cs2xiv 99.67 (16)
N3—Cs1—O4v 57.79 (6) N7—O5—Cs1 131.31 (16)
N3iii—Cs1—O4v 138.81 (6) Cs2xiv—O5—Cs1 119.65 (7)
O4iv—Cs1—O4v 144.69 (7) N7—O6—Cs2xiv 88.38 (14)
O1i—Cs1—O8vi 140.41 (6) N8—O7—Cs2 118.85 (17)
O1ii—Cs1—O8vi 48.43 (6) N8—O8—Cs1vi 127.02 (16)
O5iii—Cs1—O8vi 79.97 (5) N2—N1—C1 109.8 (2)
O5—Cs1—O8vi 90.40 (5) N2—N1—H1A 125.1
O3iv—Cs1—O8vi 52.64 (6) C1—N1—H1A 125.1
O3v—Cs1—O8vi 124.92 (6) N1—N2—C3 104.9 (2)
N3—Cs1—O8vi 59.05 (6) N1—N2—Cs2xii 130.12 (15)
N3iii—Cs1—O8vi 116.39 (6) C3—N2—Cs2xii 121.71 (17)
O4iv—Cs1—O8vi 79.82 (6) N4—N3—C4 105.1 (2)
O4v—Cs1—O8vi 103.61 (6) N4—N3—Cs1 128.32 (16)
O1i—Cs1—O8vii 48.43 (6) C4—N3—Cs1 116.41 (17)
O1ii—Cs1—O8vii 140.41 (6) N3—N4—C6 109.6 (2)
O5iii—Cs1—O8vii 90.40 (5) N3—N4—H1B 125.2
O5—Cs1—O8vii 79.97 (5) C6—N4—H1B 125.2
O3iv—Cs1—O8vii 124.92 (6) O2—N5—O1 124.3 (3)
O3v—Cs1—O8vii 52.64 (6) O2—N5—C1 119.1 (2)
N3—Cs1—O8vii 116.39 (6) O1—N5—C1 116.6 (2)
N3iii—Cs1—O8vii 59.05 (6) O3—N6—O4 124.1 (3)
O4iv—Cs1—O8vii 103.61 (6) O3—N6—C3 118.4 (2)
O4v—Cs1—O8vii 79.82 (6) O4—N6—C3 117.5 (2)
O8vi—Cs1—O8vii 168.92 (7) O3—N6—Cs1xiii 66.57 (17)
O7viii—Cs2—O7 180.0 O4—N6—Cs1xiii 71.87 (15)
O7viii—Cs2—O5ix 103.32 (6) C3—N6—Cs1xiii 137.60 (16)
O7—Cs2—O5ix 76.68 (6) O6—N7—O5 124.3 (2)
O7viii—Cs2—O5v 76.68 (6) O6—N7—C4 118.3 (2)
O7—Cs2—O5v 103.32 (6) O5—N7—C4 117.4 (2)
O5ix—Cs2—O5v 180.00 (11) O6—N7—Cs2xiv 71.61 (14)
O7viii—Cs2—O3x 106.12 (6) O5—N7—Cs2xiv 60.53 (14)
O7—Cs2—O3x 73.88 (6) C4—N7—Cs2xiv 149.11 (16)
O5ix—Cs2—O3x 54.16 (6) O8—N8—O7 124.3 (2)
O5v—Cs2—O3x 125.84 (6) O8—N8—C6 118.5 (2)
O7viii—Cs2—O3ii 73.88 (6) O7—N8—C6 117.1 (2)
O7—Cs2—O3ii 106.12 (6) N1—C1—C2 111.4 (2)
O5ix—Cs2—O3ii 125.84 (6) N1—C1—N5 119.1 (2)
O5v—Cs2—O3ii 54.16 (6) C2—C1—N5 129.5 (2)
O3x—Cs2—O3ii 180.00 (10) C1—C2—C3 99.5 (2)
O7viii—Cs2—O6ix 68.69 (6) C1—C2—C5 130.2 (3)
O7—Cs2—O6ix 111.31 (6) C3—C2—C5 130.2 (2)
O5ix—Cs2—O6ix 38.43 (5) N2—C3—C2 114.3 (2)
O5v—Cs2—O6ix 141.57 (5) N2—C3—N6 117.7 (2)
O3x—Cs2—O6ix 80.81 (5) C2—C3—N6 127.8 (2)
O3ii—Cs2—O6ix 99.19 (5) N3—C4—C5 114.3 (2)
O7viii—Cs2—O6v 111.31 (6) N3—C4—N7 118.3 (2)
O7—Cs2—O6v 68.69 (6) C5—C4—N7 127.3 (2)
O5ix—Cs2—O6v 141.57 (5) C4—C5—C6 99.9 (2)
O5v—Cs2—O6v 38.43 (5) C4—C5—C2 129.6 (2)
O3x—Cs2—O6v 99.19 (5) C6—C5—C2 130.6 (2)
O3ii—Cs2—O6v 80.81 (5) N4—C6—C5 111.1 (2)
O6ix—Cs2—O6v 180.00 (9) N4—C6—N8 119.0 (2)
O7viii—Cs2—N2x 60.13 (6) C5—C6—N8 129.8 (2)
O7—Cs2—N2x 119.87 (6)
C1—N1—N2—C3 −0.7 (3) C1—C2—C3—N2 −0.1 (3)
C1—N1—N2—Cs2xii 158.78 (16) C5—C2—C3—N2 −178.3 (2)
C4—N3—N4—C6 −0.6 (3) C1—C2—C3—N6 175.2 (2)
Cs1—N3—N4—C6 142.57 (18) C5—C2—C3—N6 −3.1 (4)
Cs1xii—O1—N5—O2 53.4 (5) O3—N6—C3—N2 −22.2 (4)
Cs1xii—O1—N5—C1 −127.5 (3) O4—N6—C3—N2 156.2 (2)
Cs2xii—O3—N6—O4 −167.5 (2) Cs1xiii—N6—C3—N2 63.3 (3)
Cs1xiii—O3—N6—O4 −45.3 (3) O3—N6—C3—C2 162.7 (3)
Cs2xii—O3—N6—C3 10.7 (4) O4—N6—C3—C2 −18.9 (4)
Cs1xiii—O3—N6—C3 132.9 (2) Cs1xiii—N6—C3—C2 −111.8 (3)
Cs2xii—O3—N6—Cs1xiii −122.2 (2) N4—N3—C4—C5 0.4 (3)
Cs1xiii—O4—N6—O3 43.4 (3) Cs1—N3—C4—C5 −147.90 (19)
Cs1xiii—O4—N6—C3 −134.9 (2) N4—N3—C4—N7 −178.0 (2)
Cs2xiv—O6—N7—O5 31.4 (3) Cs1—N3—C4—N7 33.7 (3)
Cs2xiv—O6—N7—C4 −148.0 (2) O6—N7—C4—N3 155.1 (3)
Cs2xiv—O5—N7—O6 −34.6 (3) O5—N7—C4—N3 −24.4 (4)
Cs1—O5—N7—O6 −179.42 (19) Cs2xiv—N7—C4—N3 53.4 (4)
Cs2xiv—O5—N7—C4 144.81 (19) O6—N7—C4—C5 −23.1 (4)
Cs1—O5—N7—C4 0.0 (4) O5—N7—C4—C5 157.4 (3)
Cs1—O5—N7—Cs2xiv −144.8 (2) Cs2xiv—N7—C4—C5 −124.8 (3)
Cs1vi—O8—N8—O7 26.7 (4) N3—C4—C5—C6 −0.1 (3)
Cs1vi—O8—N8—C6 −152.15 (18) N7—C4—C5—C6 178.2 (3)
Cs2—O7—N8—O8 66.2 (3) N3—C4—C5—C2 179.4 (3)
Cs2—O7—N8—C6 −114.9 (2) N7—C4—C5—C2 −2.3 (5)
N2—N1—C1—C2 0.7 (3) C1—C2—C5—C4 −43.6 (4)
N2—N1—C1—N5 −178.4 (2) C3—C2—C5—C4 134.1 (3)
O2—N5—C1—N1 169.4 (2) C1—C2—C5—C6 135.7 (3)
O1—N5—C1—N1 −9.8 (4) C3—C2—C5—C6 −46.5 (4)
O2—N5—C1—C2 −9.5 (4) N3—N4—C6—C5 0.5 (3)
O1—N5—C1—C2 171.4 (3) N3—N4—C6—N8 −176.5 (2)
N1—C1—C2—C3 −0.4 (3) C4—C5—C6—N4 −0.3 (3)
N5—C1—C2—C3 178.5 (2) C2—C5—C6—N4 −179.8 (3)
N1—C1—C2—C5 177.9 (2) C4—C5—C6—N8 176.4 (3)
N5—C1—C2—C5 −3.2 (5) C2—C5—C6—N8 −3.1 (5)
N1—N2—C3—C2 0.5 (3) O8—N8—C6—N4 175.1 (2)
Cs2xii—N2—C3—C2 −161.16 (16) O7—N8—C6—N4 −3.9 (4)
N1—N2—C3—N6 −175.3 (2) O8—N8—C6—C5 −1.4 (4)
Cs2xii—N2—C3—N6 23.1 (3) O7—N8—C6—C5 179.6 (3)

Symmetry codes: (i) −x+1, y+1, −z+1/2; (ii) x, y+1, z; (iii) −x+1, y, −z+1/2; (iv) x+1/2, y+1/2, z; (v) −x+1/2, y+1/2, −z+1/2; (vi) −x+1/2, −y+1/2, −z; (vii) x+1/2, −y+1/2, z+1/2; (viii) −x, −y+1, −z; (ix) x−1/2, −y+1/2, z−1/2; (x) −x, −y, −z; (xi) x−1/2, y+1/2, z; (xii) x, y−1, z; (xiii) x−1/2, y−1/2, z; (xiv) −x+1/2, y−1/2, −z+1/2.

Poly[[µ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]caesium] (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N4xii 0.87 1.99 2.832 (3) 162
N4—H1B···N1ii 0.87 1.99 2.832 (3) 163

Symmetry codes: (ii) x, y+1, z; (xii) x, y−1, z.

Funding Statement

This work was funded by Ministry of Education and Science of Ukraine grant 19BF037-05.

References

  1. Aakeröy, C. B., Wijethunga, T. K. & Desper, J. (2015). Chem. Eur. J. 21, 11029–11037. [DOI] [PubMed]
  2. Bauzá, A., Sharko, A. V., Senchyk, G. A., Rusanov, E. B., Frontera, A. & Domasevitch, K. V. (2017). CrystEngComm, 19, 1933–1937.
  3. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Domasevitch, K. V., Gospodinov, I., Krautscheid, H., Klapötke, T. M. & Stierstorfer, J. (2019). New J. Chem. 43, 1305–1312.
  5. Domasevitch, K. V., Ponomareva, V. V., Rusanov, E. B., Gelbrich, T., Sieler, J. & Skopenko, V. V. (1998). Inorg. Chim. Acta, 268, 93–101.
  6. Domasevitch, K. V., Senchyk, G. A. & Krautscheid, H. (2020). Acta Cryst. C76, 598–604. [DOI] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Glück, J., Klapötke, T. M., Rusan, M., Sabatini, J. J. & Stierstorfer, J. (2017). Angew. Chem. Int. Ed. 56, 16507–16509. [DOI] [PubMed]
  9. Gospodinov, I., Domasevitch, K. V., Unger, C. C., Klapötke, T. M. & Stierstorfer, J. (2020). Cryst. Growth Des. 20, 755–764.
  10. Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.
  11. Janssen, J. W. A. M., Kruse, C. C., Koeners, H. J. & Habraken, C. (1973). J. Heterocycl. Chem. 10, 1055–1058.
  12. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  13. Ponomarova, V. V., Komarchuk, V. V., Boldog, I., Krautscheid, H. & Domasevitch, K. V. (2013). CrystEngComm, 15, 8280–8287.
  14. Robinson, J. M. A., Philp, D., Harris, K. D. M. & Kariuki, B. M. (2000). New J. Chem. 24, 799–806.
  15. Schouten, A., Kanters, J. A. & Poonia, N. S. (1990). Acta Cryst. C46, 61–64.
  16. Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Spackman, M. A. & Byrom, P. G. A. (1997). Chem. Phys. Lett. 267, 215–220.
  20. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.
  21. Speakman, J. C. (1972). Structure and Bonding. Vol. 12, pp. 141–199. Berlin, Heidelberg: Springer.
  22. Steinhauser, G. & Klapötke, T. M. (2008). Angew. Chem. Int. Ed. 47, 3330–3347. [DOI] [PubMed]
  23. Stoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.
  24. Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.
  25. Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.
  26. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://crystalexplorer.scb.uwa.edu.au/
  27. Zhang, C., Wang, X. & Huang, H. (2008). J. Am. Chem. Soc. 130, 8359–8365. [DOI] [PubMed]
  28. Zhang, M.-X., Eaton, P. E. & Gilardi, R. (2000). Angew. Chem. Int. Ed. 39, 401–404. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, 1, 2. DOI: 10.1107/S2056989021010227/hb7988sup1.cif

e-77-01109-sup1.cif (607.1KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989021010227/hb79881sup2.hkl

e-77-01109-1sup2.hkl (231.5KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989021010227/hb79882sup3.hkl

e-77-01109-2sup3.hkl (239.4KB, hkl)

CCDC references: 2113578, 2113577

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES