Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Oct 13;77(Pt 11):1095–1098. doi: 10.1107/S2056989021010392

Crystal structures of two alanyl­piperidine analogues

Kalina Mambourg a,*, Nikolay Tumanov a, Gilles Henon a, Steve Lanners a, Javier Garcia-Ladona b, Johan Wouters a
PMCID: PMC8587977  PMID: 34868643

The crystal structures of ethyl 1-[N-(4-methyl­phen­yl)-N-(methyl­sulfon­yl)alan­yl]piperidine-4-carboxyl­ate and 1-[N-(4-methyl­phen­yl)-N-(methyl­sulfon­yl)alan­yl]piperidine-4-carb­oxy­lic acid, two analogues studied as potentiators of Ubiquitin C-terminal hydro­lase-L1 (UCH-L1), have been determined. Despite being analogues, different crystal packings are observed. A polymorph risk assessment was carried out to study inter­actions in the second compound.

Keywords: crystal structure, UCH-L1 activator, alanyl­piperidine derivatives, polymorph risk assessment

Abstract

The structure of ethyl 1-[N-(4-methyl­phen­yl)-N-(methyl­sulfon­yl)alan­yl]piperidine-4-carboxyl­ate, C19H28N2O5S, I, a compound of inter­est as activator of Ubiquitin C-terminal Hydro­lase-L1 (UCH-L1), was determined by single-crystal X-ray diffraction (SCXRD) analysis. In order to find new activators, a derivative of compound I, namely, 1-[N-(4-methyl­phen­yl)-N-(methyl­sulfon­yl)alan­yl]piperidine-4-carb­oxy­lic acid, C17H24N2O5S, II, was studied. The synthesis and crystal structure are also reported. Despite being analogues, different crystal packings are observed. Compound II bears a carb­oxy­lic group, which favors a strong hydrogen bond. A polymorph risk assessment was carried out to study inter­actions in compound II.

Chemical context

Ubiquitin C-terminal Hydro­lase-L1 is a deubiquitinase that represents 2% of the neuronal soluble proteins in the brain and is involved in the neuropathogenesis of neurodegenerative diseases. Studies have shown that several mutations have an impact on the hydro­lase activity of UCH-L1 (Leroy et al., 1998; Maraganore et al., 1999) and that its down-regulation is associated with idiopathic Parkinson’s disease (Choi et al., 2004). Finding potentiators of UCH-L1 could be a therapeutic pathway for these diseases (Mitsui et al., 2010). Ethyl 1-[N-(methyl­sulfon­yl)-N-(p-tol­yl)-alan­yl]piperidine-4-carboxyl­ate was discovered through in silico drug screening as an activator of UCH-L1, with a hydro­lase activity up to 111% at 63 µM (Mitsui et al., 2010). We studied the only known activator in the literature, compound I. Derivatives of compound I were then investigated as potential activators and compound II was obtained after a saponification. Compound II bears a carb­oxy­lic acid group, which opens up the possibility for co-crystallization and salification in order to modulate the physicochemical properties, such as the solubility. We report the crystal structures of these two compounds as well as a survey of the inter­actions observed in compound II. graphic file with name e-77-01095-scheme1.jpg

Structural commentary

Both compounds crystallize as colorless plate-like crystals but in different space groups. Compound I crystallizes in the triclinic P Inline graphic space groups and compound II in the monoclinic P21/n space group. The asymmetric units are shown in Fig. 1. Both compounds crystallize as a racemic mixture and have one mol­ecule in the asymmetric unit in a similar conformation. The torsion angle N1—C1—C2—N2 is 156.2 (1) and −153.5 (1)° for I and II respectively. The only slight difference between the two compounds is the geometry of N2. In compound I, the distance between N2 and the plane formed by C2, C3 and C7 is 0.114 (2) Å whereas in compound II this distance is 0.014 (2) Å. A more planar arrangement of N2 in compound II is noticed, probably caused by the crystal packing. Single crystals represent the bulk samples as the powder patterns calculated from SCXRD data are similar to the experimental ones.

Figure 1.

Figure 1

The asymmetric units of compounds I and II, with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features

As compound I does not have any strong hydrogen-bond acceptors, only weak hydrogen bonds are observed in the crystal structure (see Table 1). The amide oxygen atom O1 participates in the formation of two intra­molecular hydrogen bonds [ Inline graphic (7) motifs; Etter et al., 1990]. The oxygen atom O4 is inter-connected with atom H12C of the sulfonyl methyl of an adjacent mol­ecule [d(H⋯O) 2.44 Å; Table 1], forming an Inline graphic (8) hydrogen bond motif along the a-axis direction (Fig. 2). As compound I bears a tolyl moiety, π–π inter­actions were expected but were not observed in this crystal packing.

Table 1. Hydrogen-bond geometry (Å, °) for compound I .

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O1 0.96 2.50 3.210 (2) 130
C12—H12C⋯O4i 0.96 2.44 3.376 (2) 164
C14—H14⋯O1 0.93 2.48 3.177 (2) 132

Symmetry code: (i) -x, -y, -z+1.

Figure 2.

Figure 2

Crystal packing of I with hydrogen bonds highlighted in green (a) showing one layer of mol­ecules, viewed down the a axis and (b) showing adjacent layers of mol­ecules.

Compound II bearing a carb­oxy­lic moiety instead of an ester has an impact on the hydrogen bonds and thus on the crystal packing. In compound II, a tubular arrangement (Fig. 3) can be observed, which is different from that of compound I. In compound II, a hydrogen-bonded ring with an Inline graphic (24) motif is formed by a strong hydrogen bond between H3 of the carb­oxy­lic acid group and O5 from an adjacent mol­ecule [d(H⋯O) 1.88 (3) Å; Table 2]. In addition, two intra­molecular [ Inline graphic (7) motifs] and one inter­molecular [ Inline graphic (10) motif] weak hydrogen bonds are detected. As in compound I, no π–π inter­actions are noticed in the crystal structure. A dimer synthon is observed in the crystal packing in both cases, but for compound I it is ensured by weak hydrogen bonds in contrast to compound II where the dimer is based on strong hydrogen bonds.

Figure 3.

Figure 3

Crystal packing of II showing the tubular arrangement viewed down the a axis. Hydrogen bonds are highlighted in green.

Table 2. Hydrogen-bond geometry (Å, °) for compound II .

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.90 (3) 1.88 (3) 2.7463 (15) 161 (2)
C17—H17A⋯O1 0.96 2.48 3.144 (2) 127
C4—H4B⋯O2i 0.97 2.52 3.471 (2) 167
C11—H11⋯O1 0.93 2.56 3.2558 (19) 132

Symmetry code: (i) -x+2, -y+1, -z+1.

Database survey

Searches of the Cambridge Structural Database (CSD, version 5.42, update September 2021; Groom et al. 2016) were carried out with the exact structures of compounds I and II and with substructures containing the significant fragments (alanyl­piperidine with and without the sulfonyl methyl and tolyl group). No comparable structures came out of this survey.

A polymorph risk assessment based on the hydrogen bonds in the CSD was carried out. This statistical analysis allows us to estimate which atoms are the donors and the acceptors for hydrogen bonds in the crystal structure (Chemburkar et al., 2000; Galek et al., 2007). This qu­anti­fies the probability of hydrogen-bond formation and thus the different probable polymorphs that can arise from a specific compound. The results are summarized in Table 3. A hydrogen-bonding inter­action between two carb­oxy­lic groups is predicted with the highest probability. We did not observe the carb­oxy­lic dimer but rather this group inter­acting with one oxygen of the sulfonyl methyl. The analysis also predicts other plausible hydrogen-bonded networks (Fig. 4), one that is statistically slightly more likely to be formed than the current one. This suggests that another potential polymorph could be obtained. Thus, we undertook a polymorph screening by several crystallization experiments of compound II. The recrystallization solvents that we tested were cyclo­hexane, toluene, ethyl acetate, chloro­form, di­chloro­methane, acetone, aceto­nitrile, 2-propanol, ethanol and methanol. They all lead to the same polymorph.

Table 3. Hydrogen-bond propensity calculation for compound II .

Donor Acceptor Propensity
O3 O2 0.36
O3 O4 0.30
O3 O5 0.30

Figure 4.

Figure 4

Hydrogen-bond propensity chart for compound II.

Synthesis and crystallization

Compound I: This was purchased from Evotech (Hamburg, Germany). The product was crystallized by slow evaporation from non-anhydrous ethyl acetate, which provided colorless plate-like crystals suitable for SCXRD. M.p. 442.2 K

Compound II: In a round-bottom flask, compound I (405.1 mg, 1.02 mmol, 1.0 eq) dissolved in 8 mL of THF was added to a solution of LiOH (81.9 mg, 3.40 mmol, 3.4 eq) dissolved in 5 mL of water. The mixture was stirred at room temperature for 8 h. The resulting mixture was washed with ether. The aqueous phase was then acidified with HCl 37% to a pH of 2 and extracted with di­chloro­methane. The combined organic phases were dried over anhydrous Na2SO4 and concentrated under vacuum to yield a white solid (351.0 mg, 93%). The product was crystallized by slow evaporation from methanol, which provided colorless plate-like crystals suitable for SCXRD. 1H NMR (DMSO): 12.32 (s, 1H, carb­oxy­lic acid), 7.39 (d, 2H, CHarom), 7.20 (d, 2H, CHarom), 5.20 (s, 1H, CHα), 4.03–3.15 (m, 4H, CHpip), 2.96 (s, 3H, CHSO2Me), 2.79 (m, 1H, CHpip), 2.31 (s, 3H, CHPheMe), 1.83–1.36 (m, 4H, CHpip), 1.03 (d, 3H, CHαMe) 13C NMR (DMSO): 169.1, 168.7, 138.2, 133.5, 132.0, 129.4, 53.3, 44.5, 41.3, 28.5, 20.7, 16.8. M.p. 496.2 K

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms, except one of the -OH group in II, were refined using a riding model, with C—H = 0.93 (aromatic), 0.96 (meth­yl) or 0.98 Å (tertiary carbon). Coordinates of the hydrogen atom of the -OH group were refined. The isotropic atomic displacement parameters of the H atoms were set at 1.5U eq of the parent atom for the methyl and alcohol groups, and at 1.2U eq otherwise.

Table 4. Experimental details.

  I II
Crystal data
Chemical formula C19H28N2O5S C17H24N2O5S
M r 396.49 368.44
Crystal system, space group Triclinic, P\overline{1} Monoclinic, P21/n
Temperature (K) 295 295
a, b, c (Å) 8.5368 (6), 9.6594 (6), 13.5173 (12) 12.1013 (2), 12.3092 (2), 12.4348 (3)
α, β, γ (°) 75.947 (6), 79.302 (6), 74.554 (5) 90, 100.546 (2), 90
V3) 1033.47 (14) 1820.97 (6)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.19 0.21
Crystal size (mm) 0.79 × 0.18 × 0.05 0.77 × 0.18 × 0.11
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Gemini Ultra R Oxford Diffraction Xcalibur, Gemini Ultra R
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2018), based on expressions derived by Clark & Reid (1995)] Analytical [CrysAlis PRO (Rigaku OD, 2018), based on expressions derived by Clark & Reid (1995)]
T min, T max 0.923, 0.991 0.882, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 13200, 6870, 4304 29518, 6284, 4779
R int 0.026 0.026
(sin θ/λ)max−1) 0.762 0.761
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.054, 0.158, 1.02 0.043, 0.126, 1.02
No. of reflections 6870 6284
No. of parameters 248 232
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.38 0.29, −0.29

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT2014 (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989021010392/vm2254sup1.cif

e-77-01095-sup1.cif (1.3MB, cif)

Supporting information file. DOI: 10.1107/S2056989021010392/vm2254Isup4.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010392/vm2254Isup6.hkl

e-77-01095-Isup6.hkl (545.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010392/vm2254IIsup5.mol

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021010392/vm2254IIsup7.hkl

e-77-01095-IIsup7.hkl (499.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010392/vm2254Isup6.cml

Supporting information file. DOI: 10.1107/S2056989021010392/vm2254IIsup7.cml

CCDC references: 2114340, 2114339

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was performed on XRD equipment from the PC2 platform at UNamur and PXRD equipment has been funded by FRS–FNRS. The authors thank Laurie Bodard for her help on the polymorph risk assessment.

supplementary crystallographic information

Ethyl 1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylate (I) . Crystal data

C19H28N2O5S Z = 2
Mr = 396.49 F(000) = 424
Triclinic, P1 Dx = 1.274 Mg m3
a = 8.5368 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.6594 (6) Å Cell parameters from 3246 reflections
c = 13.5173 (12) Å θ = 2.4–30.5°
α = 75.947 (6)° µ = 0.19 mm1
β = 79.302 (6)° T = 295 K
γ = 74.554 (5)° Plate, colorless
V = 1033.47 (14) Å3 0.79 × 0.18 × 0.05 mm

Ethyl 1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylate (I) . Data collection

Oxford Diffraction Xcalibur, Gemini Ultra R diffractometer 6870 independent reflections
Radiation source: fine-focus sealed X-ray tube 4304 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 10.3712 pixels mm-1 θmax = 32.8°, θmin = 2.2°
ω scans h = −12→10
Absorption correction: analytical [CrysAlisPro (Rigaku OD, 2018), based on expressions derived by Clark & Reid (1995)] k = −13→14
Tmin = 0.923, Tmax = 0.991 l = −20→19
13200 measured reflections

Ethyl 1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylate (I) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: dual
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: mixed
wR(F2) = 0.158 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.1206P] where P = (Fo2 + 2Fc2)/3
6870 reflections (Δ/σ)max < 0.001
248 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.37 e Å3

Ethyl 1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylate (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Ethyl 1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylate (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.21006 (5) 0.11226 (4) 0.49970 (3) 0.04597 (14)
O1 0.20546 (16) 0.42592 (12) 0.58010 (10) 0.0542 (3)
O2 0.2688 (3) −0.0438 (2) 1.00683 (16) 0.1150 (8)
O3 0.1551 (3) 0.16259 (18) 1.06193 (12) 0.0894 (5)
O4 0.21136 (17) 0.03480 (13) 0.42186 (11) 0.0618 (4)
O5 0.25664 (18) 0.02943 (13) 0.59697 (11) 0.0624 (4)
N1 0.33461 (16) 0.22121 (13) 0.45549 (10) 0.0404 (3)
N2 0.3882 (2) 0.31933 (16) 0.69243 (11) 0.0543 (4)
C1 0.4352 (2) 0.24222 (16) 0.52607 (12) 0.0407 (3)
H1 0.484975 0.145601 0.564865 0.049*
C2 0.3309 (2) 0.33501 (16) 0.60307 (13) 0.0435 (4)
C3 0.2942 (3) 0.4081 (2) 0.76676 (14) 0.0622 (5)
H3A 0.212739 0.487753 0.733487 0.075*
H3B 0.367076 0.450568 0.791143 0.075*
C4 0.2099 (3) 0.3155 (2) 0.85723 (15) 0.0598 (5)
H4A 0.126979 0.283509 0.834039 0.072*
H4B 0.155721 0.374364 0.908049 0.072*
C5 0.3330 (3) 0.1809 (2) 0.90679 (14) 0.0595 (5)
H5 0.409068 0.216659 0.934903 0.071*
C6 0.4334 (3) 0.0960 (2) 0.82547 (15) 0.0631 (5)
H6A 0.517049 0.016237 0.856466 0.076*
H6B 0.362540 0.054116 0.798864 0.076*
C7 0.5139 (3) 0.1963 (2) 0.73772 (15) 0.0617 (5)
H7A 0.590425 0.233317 0.763271 0.074*
H7B 0.574515 0.141684 0.685678 0.074*
C8 0.2494 (3) 0.0852 (2) 0.99538 (17) 0.0714 (6)
C9 0.0650 (4) 0.0879 (3) 1.1529 (2) 0.1069 (10)
H9A 0.004626 0.029494 1.132728 0.128*
H9B 0.140898 0.023064 1.198758 0.128*
C10 −0.0456 (5) 0.1958 (4) 1.2040 (2) 0.1357 (14)
H10A 0.012297 0.263307 1.213528 0.204*
H10B −0.091589 0.148539 1.269779 0.204*
H10C −0.131975 0.248210 1.163132 0.204*
C11 0.5719 (2) 0.31422 (19) 0.46630 (14) 0.0503 (4)
H11A 0.636931 0.256036 0.418334 0.075*
H11B 0.639730 0.321567 0.513158 0.075*
H11C 0.525388 0.410564 0.429625 0.075*
C12 0.0118 (2) 0.2217 (2) 0.5200 (2) 0.0700 (6)
H12A −0.017746 0.283965 0.455966 0.105*
H12B 0.008836 0.280954 0.568219 0.105*
H12C −0.064229 0.159986 0.546811 0.105*
C13 0.3206 (2) 0.31143 (16) 0.35381 (13) 0.0431 (4)
C14 0.2231 (2) 0.45197 (18) 0.33966 (14) 0.0543 (4)
H14 0.166814 0.491483 0.396039 0.065*
C15 0.2097 (3) 0.5336 (2) 0.24101 (16) 0.0641 (5)
H15 0.144679 0.628604 0.232086 0.077*
C16 0.2899 (3) 0.4784 (2) 0.15543 (15) 0.0617 (5)
C17 0.3898 (3) 0.3385 (2) 0.17173 (16) 0.0675 (6)
H17 0.447572 0.299605 0.115395 0.081*
C18 0.4060 (3) 0.25519 (19) 0.26953 (14) 0.0569 (5)
H18 0.474265 0.161520 0.278607 0.068*
C19 0.2674 (4) 0.5688 (3) 0.04839 (17) 0.0908 (8)
H19A 0.162225 0.569619 0.032294 0.136*
H19B 0.351973 0.526722 −0.000565 0.136*
H19C 0.273737 0.667492 0.045582 0.136*

Ethyl 1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylate (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0381 (2) 0.0362 (2) 0.0636 (3) −0.00995 (16) −0.00197 (19) −0.01207 (17)
O1 0.0444 (7) 0.0491 (6) 0.0645 (8) 0.0048 (5) −0.0079 (6) −0.0194 (5)
O2 0.157 (2) 0.0689 (11) 0.1072 (15) −0.0226 (12) 0.0015 (14) −0.0131 (10)
O3 0.1050 (15) 0.0800 (10) 0.0695 (10) −0.0174 (10) 0.0144 (9) −0.0133 (8)
O4 0.0598 (9) 0.0532 (7) 0.0829 (9) −0.0212 (6) −0.0043 (7) −0.0280 (6)
O5 0.0629 (9) 0.0520 (7) 0.0669 (8) −0.0211 (6) −0.0053 (7) 0.0039 (6)
N1 0.0352 (7) 0.0367 (6) 0.0492 (7) −0.0082 (5) −0.0054 (6) −0.0089 (5)
N2 0.0541 (10) 0.0534 (8) 0.0517 (8) 0.0017 (7) −0.0076 (7) −0.0191 (6)
C1 0.0333 (8) 0.0376 (7) 0.0507 (9) −0.0047 (6) −0.0051 (7) −0.0119 (6)
C2 0.0389 (9) 0.0382 (7) 0.0527 (9) −0.0075 (6) −0.0036 (7) −0.0114 (6)
C3 0.0761 (15) 0.0538 (10) 0.0557 (11) −0.0053 (10) −0.0049 (10) −0.0226 (8)
C4 0.0598 (13) 0.0600 (11) 0.0568 (11) −0.0007 (9) −0.0072 (9) −0.0214 (9)
C5 0.0600 (13) 0.0647 (11) 0.0542 (11) −0.0060 (9) −0.0145 (9) −0.0170 (8)
C6 0.0635 (14) 0.0587 (10) 0.0620 (12) 0.0094 (9) −0.0241 (10) −0.0167 (9)
C7 0.0490 (12) 0.0749 (12) 0.0598 (11) 0.0038 (9) −0.0152 (9) −0.0247 (9)
C8 0.0784 (17) 0.0663 (13) 0.0668 (13) −0.0071 (11) −0.0187 (12) −0.0122 (10)
C9 0.114 (3) 0.0948 (18) 0.0859 (19) −0.0194 (18) 0.0136 (18) 0.0053 (15)
C10 0.125 (3) 0.143 (3) 0.092 (2) −0.013 (2) 0.033 (2) 0.009 (2)
C11 0.0363 (9) 0.0539 (9) 0.0644 (11) −0.0139 (7) −0.0001 (8) −0.0200 (8)
C12 0.0332 (10) 0.0571 (11) 0.1202 (19) −0.0110 (8) 0.0035 (11) −0.0288 (11)
C13 0.0396 (9) 0.0410 (8) 0.0493 (9) −0.0094 (7) −0.0059 (7) −0.0105 (6)
C14 0.0528 (11) 0.0484 (9) 0.0554 (10) 0.0016 (8) −0.0105 (9) −0.0109 (8)
C15 0.0567 (13) 0.0568 (11) 0.0695 (13) 0.0007 (9) −0.0188 (10) −0.0030 (9)
C16 0.0607 (13) 0.0713 (12) 0.0540 (11) −0.0235 (10) −0.0112 (10) −0.0024 (9)
C17 0.0791 (16) 0.0693 (12) 0.0534 (11) −0.0223 (11) 0.0062 (10) −0.0168 (9)
C18 0.0627 (13) 0.0471 (9) 0.0573 (11) −0.0109 (8) 0.0035 (9) −0.0143 (8)
C19 0.092 (2) 0.1060 (19) 0.0624 (14) −0.0224 (16) −0.0167 (14) 0.0085 (13)

Ethyl 1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylate (I) . Geometric parameters (Å, º)

S1—O5 1.4285 (14) C7—H7A 0.9700
S1—O4 1.4286 (13) C7—H7B 0.9700
S1—N1 1.6278 (13) C9—C10 1.428 (4)
S1—C12 1.7526 (19) C9—H9A 0.9700
O1—C2 1.227 (2) C9—H9B 0.9700
O2—C8 1.188 (3) C10—H10A 0.9600
O3—C8 1.324 (3) C10—H10B 0.9600
O3—C9 1.462 (3) C10—H10C 0.9600
N1—C13 1.445 (2) C11—H11A 0.9600
N1—C1 1.476 (2) C11—H11B 0.9600
N2—C2 1.346 (2) C11—H11C 0.9600
N2—C3 1.464 (2) C12—H12A 0.9600
N2—C7 1.466 (2) C12—H12B 0.9600
C1—C11 1.519 (2) C12—H12C 0.9600
C1—C2 1.537 (2) C13—C14 1.380 (2)
C1—H1 0.9800 C13—C18 1.381 (2)
C3—C4 1.516 (3) C14—C15 1.382 (3)
C3—H3A 0.9700 C14—H14 0.9300
C3—H3B 0.9700 C15—C16 1.379 (3)
C4—C5 1.535 (3) C15—H15 0.9300
C4—H4A 0.9700 C16—C17 1.384 (3)
C4—H4B 0.9700 C16—C19 1.514 (3)
C5—C8 1.514 (3) C17—C18 1.381 (3)
C5—C6 1.526 (3) C17—H17 0.9300
C5—H5 0.9800 C18—H18 0.9300
C6—C7 1.521 (3) C19—H19A 0.9600
C6—H6A 0.9700 C19—H19B 0.9600
C6—H6B 0.9700 C19—H19C 0.9600
O5—S1—O4 118.43 (8) O2—C8—O3 123.4 (2)
O5—S1—N1 106.30 (8) O2—C8—C5 125.1 (2)
O4—S1—N1 108.16 (8) O3—C8—C5 111.50 (18)
O5—S1—C12 108.50 (11) C10—C9—O3 108.7 (2)
O4—S1—C12 107.33 (10) C10—C9—H9A 110.0
N1—S1—C12 107.71 (8) O3—C9—H9A 110.0
C8—O3—C9 119.1 (2) C10—C9—H9B 110.0
C13—N1—C1 122.65 (12) O3—C9—H9B 110.0
C13—N1—S1 117.57 (11) H9A—C9—H9B 108.3
C1—N1—S1 118.92 (10) C9—C10—H10A 109.5
C2—N2—C3 119.21 (16) C9—C10—H10B 109.5
C2—N2—C7 126.42 (15) H10A—C10—H10B 109.5
C3—N2—C7 112.45 (15) C9—C10—H10C 109.5
N1—C1—C11 110.73 (13) H10A—C10—H10C 109.5
N1—C1—C2 111.57 (13) H10B—C10—H10C 109.5
C11—C1—C2 109.61 (12) C1—C11—H11A 109.5
N1—C1—H1 108.3 C1—C11—H11B 109.5
C11—C1—H1 108.3 H11A—C11—H11B 109.5
C2—C1—H1 108.3 C1—C11—H11C 109.5
O1—C2—N2 121.94 (15) H11A—C11—H11C 109.5
O1—C2—C1 120.33 (15) H11B—C11—H11C 109.5
N2—C2—C1 117.58 (15) S1—C12—H12A 109.5
N2—C3—C4 110.73 (15) S1—C12—H12B 109.5
N2—C3—H3A 109.5 H12A—C12—H12B 109.5
C4—C3—H3A 109.5 S1—C12—H12C 109.5
N2—C3—H3B 109.5 H12A—C12—H12C 109.5
C4—C3—H3B 109.5 H12B—C12—H12C 109.5
H3A—C3—H3B 108.1 C14—C13—C18 119.67 (16)
C3—C4—C5 111.24 (18) C14—C13—N1 121.20 (15)
C3—C4—H4A 109.4 C18—C13—N1 119.13 (14)
C5—C4—H4A 109.4 C13—C14—C15 119.47 (17)
C3—C4—H4B 109.4 C13—C14—H14 120.3
C5—C4—H4B 109.4 C15—C14—H14 120.3
H4A—C4—H4B 108.0 C16—C15—C14 122.01 (18)
C8—C5—C6 112.44 (17) C16—C15—H15 119.0
C8—C5—C4 111.67 (19) C14—C15—H15 119.0
C6—C5—C4 110.22 (16) C15—C16—C17 117.39 (18)
C8—C5—H5 107.4 C15—C16—C19 120.6 (2)
C6—C5—H5 107.4 C17—C16—C19 122.0 (2)
C4—C5—H5 107.4 C18—C17—C16 121.65 (19)
C7—C6—C5 110.66 (16) C18—C17—H17 119.2
C7—C6—H6A 109.5 C16—C17—H17 119.2
C5—C6—H6A 109.5 C13—C18—C17 119.76 (17)
C7—C6—H6B 109.5 C13—C18—H18 120.1
C5—C6—H6B 109.5 C17—C18—H18 120.1
H6A—C6—H6B 108.1 C16—C19—H19A 109.5
N2—C7—C6 109.70 (17) C16—C19—H19B 109.5
N2—C7—H7A 109.7 H19A—C19—H19B 109.5
C6—C7—H7A 109.7 C16—C19—H19C 109.5
N2—C7—H7B 109.7 H19A—C19—H19C 109.5
C6—C7—H7B 109.7 H19B—C19—H19C 109.5
H7A—C7—H7B 108.2
O5—S1—N1—C13 176.09 (11) C2—N2—C7—C6 −103.4 (2)
O4—S1—N1—C13 47.92 (13) C3—N2—C7—C6 60.5 (2)
C12—S1—N1—C13 −67.78 (14) C5—C6—C7—N2 −57.7 (2)
O5—S1—N1—C1 −14.24 (14) C9—O3—C8—O2 −2.2 (4)
O4—S1—N1—C1 −142.40 (12) C9—O3—C8—C5 −179.8 (2)
C12—S1—N1—C1 101.89 (14) C6—C5—C8—O2 6.3 (4)
C13—N1—C1—C11 −25.36 (19) C4—C5—C8—O2 130.8 (3)
S1—N1—C1—C11 165.51 (11) C6—C5—C8—O3 −176.2 (2)
C13—N1—C1—C2 97.02 (16) C4—C5—C8—O3 −51.7 (3)
S1—N1—C1—C2 −72.11 (15) C8—O3—C9—C10 −171.3 (3)
C3—N2—C2—O1 3.0 (3) C1—N1—C13—C14 −76.6 (2)
C7—N2—C2—O1 165.98 (18) S1—N1—C13—C14 92.68 (17)
C3—N2—C2—C1 178.66 (15) C1—N1—C13—C18 103.66 (19)
C7—N2—C2—C1 −18.4 (3) S1—N1—C13—C18 −87.07 (18)
N1—C1—C2—O1 −28.1 (2) C18—C13—C14—C15 1.3 (3)
C11—C1—C2—O1 94.89 (19) N1—C13—C14—C15 −178.45 (17)
N1—C1—C2—N2 156.17 (14) C13—C14—C15—C16 0.7 (3)
C11—C1—C2—N2 −80.81 (18) C14—C15—C16—C17 −2.1 (3)
C2—N2—C3—C4 106.1 (2) C14—C15—C16—C19 177.7 (2)
C7—N2—C3—C4 −59.1 (2) C15—C16—C17—C18 1.7 (3)
N2—C3—C4—C5 54.5 (2) C19—C16—C17—C18 −178.1 (2)
C3—C4—C5—C8 −178.38 (17) C14—C13—C18—C17 −1.7 (3)
C3—C4—C5—C6 −52.6 (2) N1—C13—C18—C17 178.02 (17)
C8—C5—C6—C7 179.54 (18) C16—C17—C18—C13 0.2 (3)
C4—C5—C6—C7 54.2 (2)

Ethyl 1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylate (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12B···O1 0.96 2.50 3.210 (2) 130
C12—H12C···O4i 0.96 2.44 3.376 (2) 164
C14—H14···O1 0.93 2.48 3.177 (2) 132

Symmetry code: (i) −x, −y, −z+1.

1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylic acid (II) . Crystal data

C17H24N2O5S F(000) = 784
Mr = 368.44 Dx = 1.344 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 12.1013 (2) Å Cell parameters from 8359 reflections
b = 12.3092 (2) Å θ = 2.7–31.5°
c = 12.4348 (3) Å µ = 0.21 mm1
β = 100.546 (2)° T = 295 K
V = 1820.97 (6) Å3 Plate, colorless
Z = 4 0.77 × 0.18 × 0.11 mm

1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylic acid (II) . Data collection

Oxford Diffraction Xcalibur, Gemini Ultra R diffractometer 6284 independent reflections
Radiation source: fine-focus sealed X-ray tube 4779 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
Detector resolution: 10.3712 pixels mm-1 θmax = 32.7°, θmin = 2.2°
ω scans h = −18→18
Absorption correction: analytical [CrysAlisPro (Rigaku OD, 2018), based on expressions derived by Clark & Reid (1995)] k = −18→17
Tmin = 0.882, Tmax = 0.980 l = −17→18
29518 measured reflections

1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylic acid (II) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Secondary atom site location: dual
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: difference Fourier map
wR(F2) = 0.126 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.3685P] where P = (Fo2 + 2Fc2)/3
6284 reflections (Δ/σ)max = 0.001
232 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.29 e Å3

1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylic acid (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylic acid (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.58667 (2) 0.35673 (2) 0.60942 (2) 0.03513 (9)
O1 0.68078 (9) 0.19851 (8) 0.41698 (10) 0.0531 (3)
O2 1.04956 (12) 0.60661 (11) 0.37887 (13) 0.0780 (4)
O3 1.13713 (10) 0.46783 (11) 0.31848 (13) 0.0732 (4)
H3 1.195 (2) 0.509 (2) 0.352 (2) 0.110*
O4 0.50845 (8) 0.37442 (9) 0.68112 (8) 0.0479 (2)
O5 0.65804 (8) 0.44541 (8) 0.59029 (9) 0.0501 (2)
N1 0.51748 (8) 0.32221 (9) 0.48974 (8) 0.0344 (2)
N2 0.73982 (9) 0.33804 (10) 0.32395 (10) 0.0447 (3)
C1 0.56084 (10) 0.35539 (10) 0.39054 (10) 0.0359 (2)
H1 0.580679 0.432597 0.397240 0.043*
C17 0.67424 (14) 0.24889 (13) 0.66359 (13) 0.0555 (4)
H17A 0.726630 0.233560 0.616194 0.083*
H17B 0.629402 0.185582 0.669483 0.083*
H17C 0.714621 0.268508 0.734742 0.083*
C2 0.66661 (10) 0.29079 (11) 0.37903 (10) 0.0392 (3)
C3 0.83897 (11) 0.27729 (13) 0.30503 (13) 0.0488 (3)
H3A 0.832698 0.263103 0.227419 0.059*
H3B 0.842307 0.208002 0.342640 0.059*
C4 0.94599 (11) 0.34095 (12) 0.34608 (11) 0.0427 (3)
H4A 1.009763 0.302094 0.327725 0.051*
H4B 0.957054 0.347251 0.425085 0.051*
C5 0.94003 (11) 0.45455 (12) 0.29524 (11) 0.0438 (3)
H5 0.933185 0.446018 0.215935 0.053*
C6 0.83536 (12) 0.51356 (12) 0.31663 (13) 0.0510 (3)
H6A 0.841595 0.526101 0.394520 0.061*
H6B 0.829392 0.583548 0.280182 0.061*
C7 0.73079 (12) 0.44690 (14) 0.27497 (12) 0.0510 (4)
H7A 0.665534 0.483641 0.292748 0.061*
H7B 0.720557 0.440587 0.196007 0.061*
C8 1.04549 (13) 0.51874 (13) 0.33621 (12) 0.0489 (3)
C9 0.47176 (12) 0.34023 (14) 0.28791 (12) 0.0489 (3)
H9A 0.458064 0.264097 0.275037 0.073*
H9B 0.497692 0.371751 0.226417 0.073*
H9C 0.403409 0.375286 0.297628 0.073*
C10 0.42232 (10) 0.25039 (10) 0.48451 (10) 0.0364 (2)
C11 0.43049 (14) 0.14088 (12) 0.46161 (15) 0.0541 (4)
H11 0.498708 0.111490 0.451688 0.065*
C12 0.33581 (16) 0.07526 (14) 0.45357 (15) 0.0641 (4)
H12 0.341460 0.001934 0.437384 0.077*
C13 0.23387 (13) 0.11605 (14) 0.46894 (12) 0.0553 (4)
C14 0.22767 (12) 0.22528 (14) 0.49295 (13) 0.0519 (4)
H14 0.159834 0.254119 0.504670 0.062*
C15 0.32057 (10) 0.29283 (12) 0.49995 (11) 0.0423 (3)
H15 0.314406 0.366372 0.514958 0.051*
C16 0.13157 (17) 0.0435 (2) 0.45871 (17) 0.0843 (7)
H16A 0.085792 0.066468 0.509939 0.126*
H16B 0.155060 −0.030246 0.473939 0.126*
H16C 0.088916 0.048332 0.385744 0.126*

1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylic acid (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.03062 (14) 0.03481 (15) 0.03976 (16) −0.00400 (11) 0.00588 (11) −0.00067 (11)
O1 0.0514 (6) 0.0410 (5) 0.0722 (7) 0.0074 (4) 0.0248 (5) 0.0058 (5)
O2 0.0771 (9) 0.0640 (8) 0.0943 (10) −0.0098 (7) 0.0193 (7) −0.0239 (7)
O3 0.0402 (6) 0.0697 (8) 0.1097 (11) −0.0137 (5) 0.0139 (6) −0.0303 (7)
O4 0.0448 (5) 0.0571 (6) 0.0436 (5) −0.0033 (4) 0.0129 (4) −0.0075 (4)
O5 0.0436 (5) 0.0481 (5) 0.0563 (6) −0.0190 (4) 0.0033 (4) 0.0010 (4)
N1 0.0293 (4) 0.0375 (5) 0.0373 (5) −0.0058 (4) 0.0082 (4) −0.0016 (4)
N2 0.0353 (5) 0.0490 (6) 0.0530 (6) 0.0044 (5) 0.0171 (5) 0.0037 (5)
C1 0.0321 (5) 0.0382 (6) 0.0387 (6) −0.0001 (5) 0.0102 (4) 0.0020 (5)
C17 0.0548 (8) 0.0583 (9) 0.0515 (8) 0.0155 (7) 0.0051 (7) 0.0093 (7)
C2 0.0345 (6) 0.0428 (6) 0.0414 (6) 0.0005 (5) 0.0103 (5) −0.0025 (5)
C3 0.0366 (6) 0.0525 (8) 0.0609 (9) 0.0005 (6) 0.0184 (6) −0.0099 (7)
C4 0.0360 (6) 0.0486 (7) 0.0450 (7) 0.0029 (5) 0.0114 (5) −0.0049 (5)
C5 0.0388 (6) 0.0551 (8) 0.0387 (6) −0.0029 (6) 0.0107 (5) 0.0008 (6)
C6 0.0493 (8) 0.0481 (8) 0.0591 (8) 0.0065 (6) 0.0190 (7) 0.0149 (6)
C7 0.0397 (7) 0.0658 (9) 0.0499 (8) 0.0079 (6) 0.0147 (6) 0.0195 (7)
C8 0.0490 (8) 0.0517 (8) 0.0469 (7) −0.0062 (6) 0.0107 (6) −0.0010 (6)
C9 0.0407 (7) 0.0635 (9) 0.0411 (7) 0.0017 (6) 0.0039 (5) 0.0014 (6)
C10 0.0327 (5) 0.0359 (6) 0.0404 (6) −0.0076 (5) 0.0059 (5) 0.0002 (5)
C11 0.0499 (8) 0.0397 (7) 0.0735 (10) −0.0066 (6) 0.0131 (7) −0.0083 (7)
C12 0.0713 (11) 0.0434 (8) 0.0759 (11) −0.0228 (8) 0.0088 (9) −0.0078 (7)
C13 0.0513 (8) 0.0660 (9) 0.0443 (7) −0.0296 (7) −0.0026 (6) 0.0081 (7)
C14 0.0316 (6) 0.0692 (10) 0.0534 (8) −0.0112 (6) 0.0038 (5) 0.0085 (7)
C15 0.0320 (6) 0.0447 (7) 0.0500 (7) −0.0045 (5) 0.0066 (5) 0.0028 (5)
C16 0.0732 (12) 0.1026 (16) 0.0695 (11) −0.0573 (12) −0.0065 (9) 0.0100 (11)

1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylic acid (II) . Geometric parameters (Å, º)

S1—O4 1.4309 (10) C5—C8 1.508 (2)
S1—O5 1.4385 (10) C5—C6 1.5252 (19)
S1—N1 1.6249 (10) C5—H5 0.9800
S1—C17 1.7543 (15) C6—C7 1.517 (2)
O1—C2 1.2300 (16) C6—H6A 0.9700
O2—C8 1.2018 (19) C6—H6B 0.9700
O3—C8 1.3269 (19) C7—H7A 0.9700
O3—H3 0.90 (3) C7—H7B 0.9700
N1—C10 1.4438 (15) C9—H9A 0.9600
N1—C1 1.4834 (15) C9—H9B 0.9600
N2—C2 1.3470 (17) C9—H9C 0.9600
N2—C7 1.4677 (19) C10—C15 1.3829 (18)
N2—C3 1.4688 (17) C10—C11 1.3850 (19)
C1—C9 1.5238 (18) C11—C12 1.390 (2)
C1—C2 1.5356 (17) C11—H11 0.9300
C1—H1 0.9800 C12—C13 1.377 (3)
C17—H17A 0.9600 C12—H12 0.9300
C17—H17B 0.9600 C13—C14 1.382 (2)
C17—H17C 0.9600 C13—C16 1.513 (2)
C3—C4 1.5198 (19) C14—C15 1.3882 (18)
C3—H3A 0.9700 C14—H14 0.9300
C3—H3B 0.9700 C15—H15 0.9300
C4—C5 1.531 (2) C16—H16A 0.9600
C4—H4A 0.9700 C16—H16B 0.9600
C4—H4B 0.9700 C16—H16C 0.9600
O4—S1—O5 118.24 (6) C7—C6—C5 110.50 (13)
O4—S1—N1 108.76 (6) C7—C6—H6A 109.5
O5—S1—N1 105.74 (6) C5—C6—H6A 109.5
O4—S1—C17 107.33 (7) C7—C6—H6B 109.5
O5—S1—C17 107.40 (7) C5—C6—H6B 109.5
N1—S1—C17 109.13 (7) H6A—C6—H6B 108.1
C8—O3—H3 105.0 (16) N2—C7—C6 110.97 (12)
C10—N1—C1 122.13 (10) N2—C7—H7A 109.4
C10—N1—S1 118.32 (8) C6—C7—H7A 109.4
C1—N1—S1 119.22 (8) N2—C7—H7B 109.4
C2—N2—C7 126.82 (11) C6—C7—H7B 109.4
C2—N2—C3 119.62 (12) H7A—C7—H7B 108.0
C7—N2—C3 113.53 (11) O2—C8—O3 122.04 (15)
N1—C1—C9 111.04 (10) O2—C8—C5 125.76 (15)
N1—C1—C2 111.26 (10) O3—C8—C5 112.20 (13)
C9—C1—C2 109.42 (11) C1—C9—H9A 109.5
N1—C1—H1 108.3 C1—C9—H9B 109.5
C9—C1—H1 108.3 H9A—C9—H9B 109.5
C2—C1—H1 108.3 C1—C9—H9C 109.5
S1—C17—H17A 109.5 H9A—C9—H9C 109.5
S1—C17—H17B 109.5 H9B—C9—H9C 109.5
H17A—C17—H17B 109.5 C15—C10—C11 119.68 (12)
S1—C17—H17C 109.5 C15—C10—N1 119.04 (11)
H17A—C17—H17C 109.5 C11—C10—N1 121.26 (12)
H17B—C17—H17C 109.5 C10—C11—C12 119.43 (15)
O1—C2—N2 122.37 (12) C10—C11—H11 120.3
O1—C2—C1 120.17 (11) C12—C11—H11 120.3
N2—C2—C1 117.44 (11) C13—C12—C11 121.70 (16)
N2—C3—C4 110.77 (12) C13—C12—H12 119.1
N2—C3—H3A 109.5 C11—C12—H12 119.1
C4—C3—H3A 109.5 C12—C13—C14 118.04 (13)
N2—C3—H3B 109.5 C12—C13—C16 120.88 (18)
C4—C3—H3B 109.5 C14—C13—C16 121.08 (18)
H3A—C3—H3B 108.1 C13—C14—C15 121.38 (15)
C3—C4—C5 111.06 (12) C13—C14—H14 119.3
C3—C4—H4A 109.4 C15—C14—H14 119.3
C5—C4—H4A 109.4 C10—C15—C14 119.76 (14)
C3—C4—H4B 109.4 C10—C15—H15 120.1
C5—C4—H4B 109.4 C14—C15—H15 120.1
H4A—C4—H4B 108.0 C13—C16—H16A 109.5
C8—C5—C6 111.72 (13) C13—C16—H16B 109.5
C8—C5—C4 111.47 (12) H16A—C16—H16B 109.5
C6—C5—C4 109.92 (11) C13—C16—H16C 109.5
C8—C5—H5 107.9 H16A—C16—H16C 109.5
C6—C5—H5 107.9 H16B—C16—H16C 109.5
C4—C5—H5 107.9
O4—S1—N1—C10 −39.35 (11) C8—C5—C6—C7 −179.78 (12)
O5—S1—N1—C10 −167.31 (9) C4—C5—C6—C7 −55.49 (15)
C17—S1—N1—C10 77.45 (11) C2—N2—C7—C6 125.15 (15)
O4—S1—N1—C1 147.15 (9) C3—N2—C7—C6 −56.90 (16)
O5—S1—N1—C1 19.20 (11) C5—C6—C7—N2 56.02 (16)
C17—S1—N1—C1 −96.05 (11) C6—C5—C8—O2 −1.4 (2)
C10—N1—C1—C9 20.64 (16) C4—C5—C8—O2 −124.79 (17)
S1—N1—C1—C9 −166.13 (9) C6—C5—C8—O3 179.68 (13)
C10—N1—C1—C2 −101.50 (13) C4—C5—C8—O3 56.26 (17)
S1—N1—C1—C2 71.73 (12) C1—N1—C10—C15 −106.70 (14)
C7—N2—C2—O1 179.61 (14) S1—N1—C10—C15 80.01 (14)
C3—N2—C2—O1 1.8 (2) C1—N1—C10—C11 71.61 (17)
C7—N2—C2—C1 1.4 (2) S1—N1—C10—C11 −101.69 (14)
C3—N2—C2—C1 −176.43 (12) C15—C10—C11—C12 0.5 (2)
N1—C1—C2—O1 28.24 (17) N1—C10—C11—C12 −177.77 (14)
C9—C1—C2—O1 −94.83 (15) C10—C11—C12—C13 −0.7 (3)
N1—C1—C2—N2 −153.51 (11) C11—C12—C13—C14 0.0 (3)
C9—C1—C2—N2 83.42 (15) C11—C12—C13—C16 179.38 (17)
C2—N2—C3—C4 −125.84 (14) C12—C13—C14—C15 0.9 (2)
C7—N2—C3—C4 56.05 (17) C16—C13—C14—C15 −178.47 (15)
N2—C3—C4—C5 −54.68 (15) C11—C10—C15—C14 0.4 (2)
C3—C4—C5—C8 179.52 (11) N1—C10—C15—C14 178.68 (12)
C3—C4—C5—C6 55.07 (15) C13—C14—C15—C10 −1.1 (2)

1-[N-(4-methylphenyl)-N-(methylsulfonyl)alanyl]piperidine-4-carboxylic acid (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O5i 0.90 (3) 1.88 (3) 2.7463 (15) 161 (2)
C17—H17A···O1 0.96 2.48 3.144 (2) 127
C4—H4B···O2i 0.97 2.52 3.471 (2) 167
C11—H11···O1 0.93 2.56 3.2558 (19) 132

Symmetry code: (i) −x+2, −y+1, −z+1.

References

  1. Chemburkar, S. R., Bauer, J., Deming, K., Spiwek, H., Patel, K., Morris, J., Henry, R., Spanton, S., Dziki, W., Porter, W., Quick, J., Bauer, P., Donaubauer, J., Narayanan, B. A., Soldani, M., Riley, D. & McFarland, K. (2000). Org. Process Res. Dev. 4, 413–417.
  2. Choi, J., Levey, A. I., Weintraub, S. T., Rees, H. D., Gearing, M., Chin, L. S. & Li, L. (2004). J. Biol. Chem. 279, 13256–13264. [DOI] [PubMed]
  3. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Galek, P. T. A., Fábián, L., Motherwell, W. D. S., Allen, F. H. & Feeder, N. (2007). Acta Cryst. B63, 768–782. [DOI] [PubMed]
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Leroy, E., Boyer, R., Auburger, G., Leube, B., Ulm, G., Mezey, E., Harta, G., Brownstein, M. J., Jonnalagada, S., Chernova, T., Dehejia, A., Lavedan, S., Gasser, T., Steinbach, P. J., Wilkinson, K. D. & Polymeropoulos, M. H. (1998). Nature, 395, 451–452. [DOI] [PubMed]
  8. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  9. Maraganore, D. M., Farrer, M. J., Hardy, J. A., Lincoln, S. J., McDonnell, S. K. & Rocca, W. A. (1999). Neurology, 53, 1858–1858. [DOI] [PubMed]
  10. Mitsui, T., Hirayama, K., Aoki, S., Nishikawa, K., Uchida, K., Matsumoto, T., Kabuta, T. & Wada, K. (2010). Neurochem. Int. 56, 679–686. [DOI] [PubMed]
  11. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989021010392/vm2254sup1.cif

e-77-01095-sup1.cif (1.3MB, cif)

Supporting information file. DOI: 10.1107/S2056989021010392/vm2254Isup4.mol

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010392/vm2254Isup6.hkl

e-77-01095-Isup6.hkl (545.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010392/vm2254IIsup5.mol

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021010392/vm2254IIsup7.hkl

e-77-01095-IIsup7.hkl (499.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010392/vm2254Isup6.cml

Supporting information file. DOI: 10.1107/S2056989021010392/vm2254IIsup7.cml

CCDC references: 2114340, 2114339

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES