Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Oct 29;77(Pt 11):1180–1184. doi: 10.1107/S2056989021011002

Syntheses and crystal structures of two copper(I)–halide π,σ-coordination compounds based on 2-[(prop-2-en-1-yl)sulfan­yl]pyridine

Yurii Slyvka a, Nazariy T Pokhodylo b,*, Evgeny Goreshnik c, Olexii Pavlyuk a, Marian Mys’kiv a
PMCID: PMC8587979  PMID: 34868659

Please provide a synopsis (of no more than two sentences) for inclusion in the Contents listing of the journal.

Keywords: copper(I), η 2-inter­action, pyridine-2-thiol, allyl derivative, crystal structure

Abstract

The title compounds, di-μ-chlorido-bis­({2-[(η-2,3)-(prop-2-en-1-yl)sulfan­yl]pyridine-κN}copper(I)), [Cu2Cl2(C8H9NS)2], and di-μ-bromido-bis­({2-[(η-2,3)-(prop-2-en-1-yl)sulfan­yl]pyridine-κN}copper(I)), [Cu2Br2(C8H9NS)2], were obtained by alternating-current electrochemical synthesis starting from an ethano­lic solution of 2-[(prop-2-en-1-yl)sulfan­yl]pyridine (Psup) and the copper(II) halide. The isostructural crystals are built up from centrosymmetric [Cu2 Hal 2(Psup)2] dimers, which are formed due to the π,σ-chelating behavior of the organic ligand. In the crystals, the dimers are linked by C—H⋯Hal hydrogen bonds as well as by aromatic π–π stacking inter­actions into a three-dimensional network.

Chemical context

Cu-containing complexes have been found very promising regarding their catalytic activities in organic syntheses, non-linear optical properties and fluorescent activity (Wang et al., 2005; Yoshikai & Nakamura, 2012; Slyvka et al., 2018a ; Fedorchuk et al., 2020). Copper complexes also exhibit considerable biochemical activities, ranging from anti­bacterial and anti-inflammatory properties to cytostatic and enzyme inhibitory (Iakovidis et al., 2011; Tisato et al., 2010). Some of these compounds have been tested in vitro as potential anti­cancer drugs and found to be effective against A549 adenocarcinoma cells that are resistant to the widely used anti­cancer drug cisplatin (Marzano et al., 2006). It is worth noting that copper is an essential trace element with vital roles in many metalloenzymes participating in intra­cellular processes under normal and pathological conditions (Iakovidis et al., 2011).

Over the last two decades, increased inter­est has also been devoted to the crystal engineering of copper(I)–olefin complexes with allyl derivatives of heterocyclic compounds (Goreshnik et al., 2011; Slyvka et al., 2013; Hordiichuk et al., 2019). The presence of a C=C olefin bond in a substituent attached to the heterocyclic ring may serve as a key feature for the selective coordination of transition-metal ions due to metal–olefin π-bonding (Rourke, 2006; Slyvka et al., 2013; Kowalska et al., 2021). Allyl derivatives of some heterocyclic compounds were found to be suitable for the preparation of π-coordination compounds with CuI salts that are unknown (or less stable) in the free state. For instance, the first examples of Cu(C6H5SO3), Cu(p-CH3C6H4SO3) or CuHSO4 π-complexes as well as the direct CuI⋯F(SiF6 2–) inter­action have been observed in copper(I) π-compounds with allyl derivatives of triazole and thia­diazole (Goreshnik et al., 2016; Ardan et al., 2017; Slyvka et al., 2018 b ; Fedorchuk et al., 2020). N-Allyl derivatives of pyridine were found to be suitable ligands for the crystal engineering of CuI coordination compounds with inorganic fragments of different complexibility and related to the pK a values of the initial pyridine bases (Goreshnik et al., 2003; Pavlyuk et al., 2005). Taking into account the fact that allyl­sulfanyl derivatives of pyridine have not been investigated for their coordination behavior regarding copper(I), in this work we present the synthesis and structural characterization of two novel copper(I) halide π-coordination compounds [Cu2Cl2(Psup)2] (I) & [Cu2Br2(Psup)2] (II) with 2-[(prop-2-en-1-yl)sulfan­yl]pyridine (Psup), C8H9NS. graphic file with name e-77-01180-scheme1.jpg

Structural commentary

The title compounds are isostructural and crystallize in the centrosymmetric space group P21/c with one Psup organic mol­ecule, one copper(I) ion and one halide ion in the asymmetric unit. As shown in Figs. 1 and 2, these structures are constructed from centrosymmetric [Cu2 Hal 2(Psup)2] [Hal = Cl (I) or Br (II)] dimers, which are formed due to the chelating behavior of the organic ligand. A close to trigonal–pyramidal coordination environment of the CuI cation includes the η 2 allylic C=C bond, the pyridine N atom and a Hal1 ion in the basal plane (Tables 1 and 2). The apical position of the CuI polyhedron is occupied by the Hal1i [symmetry code: (i) −x + 1, −y + 1, −z + 1) ion at 2.6186 (9) Å in I and at 2.7113 (6) Å in II. The corresponding four-coordinate geometry indices τ 4 (Yang et al., 2007) are 0.81 (I) and 0.83 (II). For comparison, in the structures of previously studied CuCl and CuBr π,σ-complexes with allyl­acetoneoxime, the Cu—Hal ap distances are slightly higher at 2.719 (5) and 2.778 (4) Å (Filinchuk et al., 1998).

Figure 1.

Figure 1

The mol­ecular structure of I with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) −x + 1, −y + 1, −z + 1.

Figure 2.

Figure 2

The mol­ecular structure of II with displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) −x + 1, −y + 1, −z + 1.

Table 1. Selected bond lengths (Å) for I .

Cu1—Cl1 2.2691 (9) Cu1—C8 2.037 (3)
Cu1—Cl1i 2.6186 (9) Cu1—C9 2.052 (3)
Cu1—N1 2.026 (2)    

Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2. Selected bond lengths (Å) for II .

Cu1—Br1 2.4097 (6) Cu1—C8 2.048 (4)
Cu1—Br1i 2.7113 (6) Cu1—C9 2.065 (4)
Cu1—N1 2.025 (3)    

Symmetry code: (i) -x+1, -y+1, -z+1.

Being π-connected to the metal center, the C8=C9 bond of the ligand is elongated due to back-donation from an occupied 3d metal orbital to a low-lying empty π*-orbital of the olefin to 1.364 (4) Å (I) and to 1.354 (6) Å (II) in comparison with an uncoordinated allylic C=C bond (Slyvka et al., 2021). The allyl­sulfanyl group in (I) and (II) has synclinal conformation relative to the S1—C7 bond and an anti­periplanar conformation relative to the C7—C8 bond [the corresponding torsion angles C2—S1—C7—C8 and S1—C7—C8—C9 are 68.1 (3) and −152.1 (3)°, respectively, in I and 68.3 (3) and −151.7 (3)°(II)].

Supra­molecular features

As shown in Fig. 3 and listed in Tables 3 and 4, the crystal structures of (I) and (II) features several weak inter­molecular inter­actions. The hydrogen atom H6 of the pyridine ring participates in an intra­molecular C—H⋯Hal bond with the Hal ion of the inorganic subunit. The other hydrogen atom H6 of the pyridine ring and the methyl­ene hydrogen atom H7B of the allyl­sulfanyl substituent are involved in inter­molecular C—H⋯Hal bonding, linking the dimeric moieties into a three-dimensional network. The pyridine rings of adjacent dimers are also involved in face-to-face π–π stacking inter­actions with a centroid–centroid separation of 3.680 (4) Å in I and 3.693 (4) Å in II. The unit-cell packing for (I) is shown in Fig. 4.

Figure 3.

Figure 3

Fragment of the extended structure of I with hydrogen bonds shown as dashed lines. Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x + 1, y, z; (iii) −x + 1, y +  Inline graphic , −z +  Inline graphic ; (iv) x, −y +  Inline graphic , −z +  Inline graphic . The packing for II is essentially identical.

Table 3. Hydrogen-bond geometry (Å, °) for I .

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl1ii 0.95 2.91 3.581 (3) 129
C6—H6⋯Cl1 0.95 2.80 3.447 (3) 126
C7—H7B⋯Cl1iii 0.99 2.89 3.676 (3) 137

Symmetry codes: (ii) x+1, y, z; (iii) -x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}.

Table 4. Hydrogen-bond geometry (Å, °) for II .

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Br1ii 0.95 3.02 3.696 (4) 129
C6—H6⋯Br1 0.95 2.94 3.576 (4) 126
C7—H7B⋯Br1iii 0.99 2.94 3.744 (4) 139

Symmetry codes: (ii) x+1, y, z; (iii) -x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}.

Figure 4.

Figure 4

A view along the a-axis direction of the crystal packing of I.

Database survey

The most closest related compounds to the title compounds, containing a similar {Cu2 Hal 2} dimer in which a π,σ-chelating ligand is bound to copper(I) are: di-μ-chloro­bis­[(1-allyl-3,5-di­methyl­pyrazole)­copper(I)] (III) [Cambridge Structural Database (Version 2021.1; Groom et al., 2016) refcode ALMPCU; Fukushima et al., 1976], bis­(μ 2-chloro)-bis­(η 2-allyl­acetoneoxime-N)dicopper(I) (IV) (GOKYAG; Filinchuk et al., 1998), bis­(μ 2-bromo)-bis­(η 2-allyl­acetoneoxime-N)dicopper(I) (V) (GOKYEK; Filinchuk et al., 1998), bis­[(μ 2-bromo)(η 2-2-(allyl­thio)­benzimidazole-N)copper(I)] (VI) (WUCRAN; Goreshnik et al., 2002) and bis­{(μ 2-iodo)[(η 2-all­yl)(2-pyrid­yl)di­methyl­silane]copper} (VII) (XAZGIP; Kamei et al., 2005).

Compounds (III) and (VII) crystallize in the triclinic crystal system in space group P Inline graphic . Compounds (IV), (V) and (VI) crystallize in the monoclinic crystal system in space group P21/c (settings P21/a, P21/c and P21/n, respectively). Structures (III), (IV), (V) and (VI) are built up from centrosymmetric [Cu2 Hal 2(Ligand)2] dimers. In the compounds bis­[(μ 2-chloro)­chloro­(η 2-1-allyl-2-amino­pyridinium)copper(I)] (XIII) (BEBFOE) and bis­[(μ 2-chloro)­bromo­(η 2-1-allyl-2-amino­pyridinium)copper(I)] (IX) (BEBGAR; Goreshnik et al., 2003), the 1-allyl-2-amino­pyridinium cation acts as a monodentate π-ligand, being attached to the centrosymmetic anionic {Cu2Hal4}2− part through the allylic C=C bond. An analogous monodentate 1-allyl­pyridinium cation in the structure of catena-[bis­(μ 3-chloro)­bis­(μ 2-chloro)­bis­(η 2-1-allyl­pyridinium)di­chloro­tetra­copper(I)] (X) (YAPQIQ; Pavlyuk et al., 2005) forces the realization of an infinite {Cu4Cl4} n inorganic chain.

Synthesis and crystallization

Crystals of the title compounds were obtained under conditions of alternating-current electrochemical synthesis (Slyvka et al., 2018a ) starting from an ethano­lic solution of 2-[(prop-2-en-1-yl)sulfan­yl]pyridine (Psup) and the copper(II) halide. For this, a solution of Psup (1.5 mmol, 0.227 g) in 2.0 ml of 96% ethanol was added to a solution of CuCl2·2H2O (1.6 mmol, 0.273 g) or CuBr2 (1.6 mmol, 0.357 g) in 3.0 ml of 96% ethanol. The mixture was carefully stirred and then was placed into a small 5.5 ml test tube. A copper wire was wrapped into a spiral of 1 cm diameter. A straight copper wire was placed inside the spiral. These copper electrodes were inserted in a cork and immersed in the aforementioned mixture. The mixture was subjected to alternating current reduction (frequency 50 Hz, voltage 0.45 V) and after 3–4 days, good-quality slightly yellowish crystals of the title compounds appeared on the copper wire electrodes. Compound I: yield 12%, m.p. 413 K; compound II: yield 8%, m.p. 407 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. All H atoms were positioned geometrically with C—H = 0.95–0.99 Å and refined as riding atoms. The constraint U iso(H) = 1.2U eq(C) was applied in all cases.

Table 5. Experimental details.

  I II
Crystal data
Chemical formula [Cu2Cl2(C8H9NS)2] [Cu2Br2(C8H9NS)2]
M r 500.42 589.34
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 150 150
a, b, c (Å) 9.2729 (16), 9.5740 (13), 11.037 (2) 9.5009 (6), 9.6022 (5), 11.0936 (8)
β (°) 108.52 (2) 107.257 (7)
V3) 929.1 (3) 966.50 (11)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.80 6.55
Crystal size (mm) 0.33 × 0.28 × 0.19 0.44 × 0.35 × 0.22
 
Data collection
Diffractometer Rigaku New Gemini, Dual, Atlas Rigaku New Gemini, Dual, Atlas
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2021) Analytical (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.546, 0.693 0.191, 0.368
No. of measured, independent and observed [I > 2σ(I)] reflections 8088, 2161, 1730 6837, 2162, 1854
R int 0.058 0.044
(sin θ/λ)max−1) 0.686 0.682
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.077, 1.08 0.034, 0.079, 1.08
No. of reflections 2161 2162
No. of parameters 109 109
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.64 0.82, −0.75

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II, publication_text. DOI: 10.1107/S2056989021011002/hb7993sup1.cif

e-77-01180-sup1.cif (500.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021011002/hb7993Isup2.hkl

e-77-01180-Isup2.hkl (173.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021011002/hb7993IIsup3.hkl

e-77-01180-IIsup3.hkl (173.5KB, hkl)

CCDC references: 2116969, 2116968

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Di-µ-chlorido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (I) . Crystal data

[Cu2Cl2(C8H9NS)2] F(000) = 504
Mr = 500.42 Dx = 1.789 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.2729 (16) Å Cell parameters from 3255 reflections
b = 9.5740 (13) Å θ = 3.8–28.9°
c = 11.037 (2) Å µ = 2.80 mm1
β = 108.52 (2)° T = 150 K
V = 929.1 (3) Å3 Irregular, yellowish
Z = 2 0.33 × 0.28 × 0.19 mm

Di-µ-chlorido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (I) . Data collection

New Gemini, Dual, Cu at home/near, Atlas diffractometer 1730 reflections with I > 2σ(I)
Detector resolution: 10.6426 pixels mm-1 Rint = 0.058
ω scans θmax = 29.2°, θmin = 2.9°
Absorption correction: analytical (CrysalisPro; Rigaku OD, 2021) h = −12→12
Tmin = 0.546, Tmax = 0.693 k = −12→11
8088 measured reflections l = −15→15
2161 independent reflections

Di-µ-chlorido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (I) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0228P)2 + 0.6316P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
2161 reflections Δρmax = 0.51 e Å3
109 parameters Δρmin = −0.64 e Å3
0 restraints

Di-µ-chlorido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (I) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Di-µ-chlorido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.57740 (4) 0.64590 (4) 0.46958 (4) 0.01225 (12)
Cl1 0.36070 (8) 0.54060 (8) 0.34752 (7) 0.01340 (18)
S1 0.91865 (9) 0.82046 (8) 0.47781 (8) 0.01693 (19)
N1 0.7401 (3) 0.5908 (2) 0.3922 (2) 0.0098 (5)
C2 0.8718 (3) 0.6558 (3) 0.4035 (3) 0.0113 (6)
C3 0.9837 (3) 0.5968 (3) 0.3594 (3) 0.0142 (7)
H3 1.075431 0.645998 0.368256 0.017*
C4 0.9603 (4) 0.4679 (3) 0.3036 (3) 0.0175 (7)
H4 1.036450 0.425281 0.275400 0.021*
C5 0.8239 (4) 0.4003 (3) 0.2888 (3) 0.0158 (7)
H5 0.803694 0.311139 0.249195 0.019*
C6 0.7184 (3) 0.4656 (3) 0.3331 (3) 0.0145 (7)
H6 0.624182 0.419633 0.321361 0.017*
C7 0.7410 (4) 0.8972 (3) 0.4778 (3) 0.0145 (7)
H7A 0.759319 0.996020 0.504812 0.017*
H7B 0.669754 0.896375 0.389294 0.017*
C8 0.6665 (4) 0.8249 (3) 0.5633 (3) 0.0137 (7)
H8 0.729407 0.776905 0.636305 0.016*
C9 0.5133 (4) 0.8248 (3) 0.5412 (3) 0.0198 (8)
H9A 0.447951 0.872113 0.468765 0.024*
H9B 0.471792 0.777530 0.598143 0.024*

Di-µ-chlorido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0103 (2) 0.0106 (2) 0.0177 (2) −0.00093 (15) 0.00702 (17) −0.00293 (16)
Cl1 0.0082 (4) 0.0164 (4) 0.0146 (4) −0.0007 (3) 0.0022 (3) 0.0002 (3)
S1 0.0130 (4) 0.0140 (4) 0.0249 (5) −0.0034 (3) 0.0076 (4) −0.0022 (3)
N1 0.0066 (12) 0.0092 (12) 0.0125 (13) 0.0009 (10) 0.0013 (11) 0.0005 (11)
C2 0.0131 (15) 0.0132 (15) 0.0063 (14) 0.0031 (13) 0.0013 (13) 0.0022 (12)
C3 0.0097 (15) 0.0187 (17) 0.0160 (16) 0.0024 (13) 0.0064 (13) 0.0057 (14)
C4 0.0147 (16) 0.0270 (19) 0.0129 (16) 0.0101 (14) 0.0073 (14) 0.0026 (15)
C5 0.0192 (17) 0.0145 (16) 0.0128 (16) 0.0050 (14) 0.0037 (14) −0.0029 (13)
C6 0.0117 (15) 0.0160 (16) 0.0162 (16) 0.0010 (13) 0.0049 (14) 0.0018 (13)
C7 0.0176 (17) 0.0091 (15) 0.0184 (16) −0.0004 (13) 0.0079 (14) −0.0004 (13)
C8 0.0182 (17) 0.0080 (15) 0.0154 (16) −0.0003 (13) 0.0059 (14) −0.0017 (13)
C9 0.0245 (19) 0.0091 (16) 0.031 (2) 0.0003 (14) 0.0164 (16) −0.0026 (14)

Di-µ-chlorido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (I) . Geometric parameters (Å, º)

Cu1—Cl1 2.2691 (9) C4—H4 0.9500
Cu1—Cl1i 2.6186 (9) C4—C5 1.383 (4)
Cu1—N1 2.026 (2) C5—H5 0.9500
Cu1—C8 2.037 (3) C5—C6 1.375 (4)
Cu1—C9 2.052 (3) C6—H6 0.9500
S1—C2 1.766 (3) C7—H7A 0.9900
S1—C7 1.804 (3) C7—H7B 0.9900
N1—C2 1.340 (4) C7—C8 1.503 (4)
N1—C6 1.349 (4) C8—H8 0.9500
C2—C3 1.397 (4) C8—C9 1.364 (4)
C3—H3 0.9500 C9—H9A 0.9500
C3—C4 1.366 (4) C9—H9B 0.9500
Cl1—Cu1—Cl1i 95.20 (3) C4—C5—H5 120.9
N1—Cu1—Cl1i 97.91 (7) C6—C5—C4 118.1 (3)
N1—Cu1—Cl1 105.77 (7) C6—C5—H5 120.9
N1—Cu1—C8 101.34 (11) N1—C6—C5 124.2 (3)
N1—Cu1—C9 136.50 (12) N1—C6—H6 117.9
C8—Cu1—Cl1i 103.19 (9) C5—C6—H6 117.9
C8—Cu1—Cl1 144.63 (9) S1—C7—H7A 108.7
C8—Cu1—C9 38.96 (12) S1—C7—H7B 108.7
C9—Cu1—Cl1i 106.96 (10) H7A—C7—H7B 107.6
C9—Cu1—Cl1 106.81 (10) C8—C7—S1 114.4 (2)
Cu1—Cl1—Cu1i 84.80 (3) C8—C7—H7A 108.7
C2—S1—C7 105.89 (15) C8—C7—H7B 108.7
C2—N1—Cu1 128.2 (2) Cu1—C8—H8 93.7
C2—N1—C6 116.7 (3) C7—C8—Cu1 105.2 (2)
C6—N1—Cu1 114.72 (19) C7—C8—H8 118.4
N1—C2—S1 122.7 (2) C9—C8—Cu1 71.15 (18)
N1—C2—C3 122.3 (3) C9—C8—C7 123.2 (3)
C3—C2—S1 115.0 (2) C9—C8—H8 118.4
C2—C3—H3 120.2 Cu1—C9—H9A 105.0
C4—C3—C2 119.5 (3) Cu1—C9—H9B 94.9
C4—C3—H3 120.2 C8—C9—Cu1 69.90 (18)
C3—C4—H4 120.5 C8—C9—H9A 120.0
C3—C4—C5 119.0 (3) C8—C9—H9B 120.0
C5—C4—H4 120.5 H9A—C9—H9B 120.0
Cu1—N1—C2—S1 −7.6 (4) C2—C3—C4—C5 1.8 (5)
Cu1—N1—C2—C3 171.1 (2) C3—C4—C5—C6 −1.0 (5)
Cu1—N1—C6—C5 −171.2 (2) C4—C5—C6—N1 −1.1 (5)
S1—C2—C3—C4 178.2 (2) C6—N1—C2—S1 179.9 (2)
S1—C7—C8—Cu1 −75.0 (2) C6—N1—C2—C3 −1.4 (4)
S1—C7—C8—C9 −152.1 (3) C7—S1—C2—N1 −19.4 (3)
N1—C2—C3—C4 −0.6 (5) C7—S1—C2—C3 161.8 (2)
C2—S1—C7—C8 68.1 (3) C7—C8—C9—Cu1 96.2 (3)
C2—N1—C6—C5 2.3 (4)

Symmetry code: (i) −x+1, −y+1, −z+1.

Di-µ-chlorido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···Cl1ii 0.95 2.91 3.581 (3) 129
C6—H6···Cl1 0.95 2.80 3.447 (3) 126
C7—H7B···Cl1iii 0.99 2.89 3.676 (3) 137

Symmetry codes: (ii) x+1, y, z; (iii) −x+1, y+1/2, −z+1/2.

Di-µ-bromido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (II) . Crystal data

[Cu2Br2(C8H9NS)2] F(000) = 576
Mr = 589.34 Dx = 2.025 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.5009 (6) Å Cell parameters from 3535 reflections
b = 9.6022 (5) Å θ = 3.1–29.0°
c = 11.0936 (8) Å µ = 6.55 mm1
β = 107.257 (7)° T = 150 K
V = 966.50 (11) Å3 Irregular, yellowish
Z = 2 0.44 × 0.35 × 0.22 mm

Di-µ-bromido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (II) . Data collection

New Gemini, Dual, Cu at home/near, Atlas diffractometer 1854 reflections with I > 2σ(I)
Detector resolution: 10.6426 pixels mm-1 Rint = 0.044
ω scans θmax = 29.0°, θmin = 2.9°
Absorption correction: analytical (CrysalisPro; Rigaku OD, 2021) h = −12→12
Tmin = 0.191, Tmax = 0.368 k = −10→12
6837 measured reflections l = −12→13
2162 independent reflections

Di-µ-bromido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (II) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0328P)2 + 1.3651P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
2162 reflections Δρmax = 0.82 e Å3
109 parameters Δρmin = −0.74 e Å3

Di-µ-bromido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Di-µ-bromido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.36045 (4) 0.54960 (3) 0.34080 (3) 0.01538 (12)
Cu1 0.58645 (5) 0.64663 (4) 0.47542 (4) 0.01478 (13)
S1 0.91726 (10) 0.82315 (9) 0.48313 (10) 0.0201 (2)
N1 0.7467 (3) 0.5936 (3) 0.3976 (3) 0.0135 (6)
C2 0.8735 (4) 0.6601 (3) 0.4079 (3) 0.0127 (7)
C3 0.9838 (4) 0.6033 (4) 0.3631 (3) 0.0176 (8)
H3 1.072777 0.652922 0.372109 0.021*
C4 0.9622 (4) 0.4747 (4) 0.3060 (4) 0.0191 (8)
H4 1.036808 0.433779 0.276414 0.023*
C5 0.8301 (4) 0.4056 (4) 0.2920 (3) 0.0186 (8)
H5 0.811443 0.317584 0.251361 0.022*
C6 0.7270 (4) 0.4681 (4) 0.3387 (4) 0.0168 (8)
H6 0.636629 0.420650 0.329185 0.020*
C7 0.7453 (4) 0.8986 (4) 0.4850 (4) 0.0171 (8)
H7A 0.762903 0.996856 0.512413 0.021*
H7B 0.677805 0.898701 0.397736 0.021*
C8 0.6700 (4) 0.8262 (4) 0.5692 (4) 0.0192 (8)
H8 0.729668 0.778274 0.641149 0.023*
C9 0.5222 (5) 0.8253 (4) 0.5484 (4) 0.0247 (9)
H9A 0.459626 0.872317 0.477213 0.030*
H9B 0.481069 0.777660 0.605052 0.030*

Di-µ-bromido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01321 (19) 0.0189 (2) 0.0130 (2) −0.00013 (14) 0.00236 (14) 0.00135 (13)
Cu1 0.0151 (2) 0.0135 (2) 0.0174 (3) −0.00122 (17) 0.00731 (19) −0.00381 (16)
S1 0.0185 (5) 0.0159 (5) 0.0268 (5) −0.0045 (4) 0.0081 (4) −0.0043 (4)
N1 0.0154 (15) 0.0150 (14) 0.0108 (15) 0.0022 (12) 0.0048 (12) −0.0002 (11)
C2 0.0152 (18) 0.0151 (17) 0.0073 (17) 0.0006 (14) 0.0024 (14) 0.0040 (13)
C3 0.0165 (19) 0.0237 (19) 0.0136 (19) −0.0004 (15) 0.0063 (15) 0.0019 (14)
C4 0.0192 (19) 0.023 (2) 0.016 (2) 0.0059 (16) 0.0066 (16) 0.0024 (15)
C5 0.021 (2) 0.0209 (19) 0.0142 (19) 0.0041 (15) 0.0054 (15) −0.0011 (14)
C6 0.0167 (19) 0.0165 (18) 0.018 (2) −0.0004 (15) 0.0058 (15) −0.0007 (14)
C7 0.022 (2) 0.0116 (17) 0.019 (2) −0.0006 (15) 0.0079 (16) −0.0002 (14)
C8 0.030 (2) 0.0103 (17) 0.019 (2) −0.0003 (15) 0.0101 (17) −0.0027 (14)
C9 0.033 (2) 0.0115 (18) 0.036 (2) −0.0004 (16) 0.020 (2) −0.0065 (15)

Di-µ-bromido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (II) . Geometric parameters (Å, º)

Cu1—Br1 2.4097 (6) C4—H4 0.9500
Cu1—Br1i 2.7113 (6) C4—C5 1.387 (5)
Cu1—N1 2.025 (3) C5—H5 0.9500
Cu1—C8 2.048 (4) C5—C6 1.374 (5)
Cu1—C9 2.065 (4) C6—H6 0.9500
S1—C2 1.765 (4) C7—H7A 0.9900
S1—C7 1.793 (4) C7—H7B 0.9900
N1—C2 1.338 (5) C7—C8 1.505 (5)
N1—C6 1.357 (5) C8—H8 0.9500
C2—C3 1.397 (5) C8—C9 1.354 (6)
C3—H3 0.9500 C9—H9A 0.9500
C3—C4 1.375 (5) C9—H9B 0.9500
Cu1—Br1—Cu1i 82.521 (18) C4—C5—H5 120.9
Br1—Cu1—Br1i 97.479 (19) C6—C5—C4 118.1 (4)
N1—Cu1—Br1i 98.64 (8) C6—C5—H5 120.9
N1—Cu1—Br1 106.43 (9) N1—C6—C5 123.9 (4)
N1—Cu1—C8 101.60 (14) N1—C6—H6 118.1
N1—Cu1—C9 136.30 (14) C5—C6—H6 118.1
C8—Cu1—Br1i 104.22 (11) S1—C7—H7A 108.5
C8—Cu1—Br1 141.26 (11) S1—C7—H7B 108.5
C8—Cu1—C9 38.43 (15) H7A—C7—H7B 107.5
C9—Cu1—Br1 104.57 (12) C8—C7—S1 115.0 (3)
C9—Cu1—Br1i 107.05 (12) C8—C7—H7A 108.5
C2—S1—C7 106.04 (17) C8—C7—H7B 108.5
C2—N1—Cu1 128.0 (2) Cu1—C8—H8 93.7
C2—N1—C6 117.2 (3) C7—C8—Cu1 104.9 (2)
C6—N1—Cu1 114.5 (2) C7—C8—H8 118.0
N1—C2—S1 122.9 (3) C9—C8—Cu1 71.5 (2)
N1—C2—C3 122.3 (3) C9—C8—C7 123.9 (4)
C3—C2—S1 114.7 (3) C9—C8—H8 118.0
C2—C3—H3 120.3 Cu1—C9—H9A 104.7
C4—C3—C2 119.3 (4) Cu1—C9—H9B 95.0
C4—C3—H3 120.3 C8—C9—Cu1 70.1 (2)
C3—C4—H4 120.4 C8—C9—H9A 120.0
C3—C4—C5 119.1 (4) C8—C9—H9B 120.0
C5—C4—H4 120.4 H9A—C9—H9B 120.0
Cu1—N1—C2—S1 −6.5 (4) C2—C3—C4—C5 1.2 (5)
Cu1—N1—C2—C3 171.5 (3) C3—C4—C5—C6 −1.3 (6)
Cu1—N1—C6—C5 −172.5 (3) C4—C5—C6—N1 0.1 (6)
S1—C2—C3—C4 178.3 (3) C6—N1—C2—S1 −179.3 (3)
S1—C7—C8—Cu1 −74.2 (3) C6—N1—C2—C3 −1.4 (5)
S1—C7—C8—C9 −151.7 (3) C7—S1—C2—N1 −20.3 (3)
N1—C2—C3—C4 0.2 (5) C7—S1—C2—C3 161.7 (3)
C2—S1—C7—C8 68.3 (3) C7—C8—C9—Cu1 95.9 (3)
C2—N1—C6—C5 1.3 (5)

Symmetry code: (i) −x+1, −y+1, −z+1.

Di-µ-bromido-bis({2-[(η-2,3)-(prop-2-en-1-yl)sulfanyl]pyridine-κN}copper(I)) (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···Br1ii 0.95 3.02 3.696 (4) 129
C6—H6···Br1 0.95 2.94 3.576 (4) 126
C7—H7B···Br1iii 0.99 2.94 3.744 (4) 139

Symmetry codes: (ii) x+1, y, z; (iii) −x+1, y+1/2, −z+1/2.

Funding Statement

This work was funded by Ministry of Education and Science of Ukraine grants 0120U101622 and 0120U102028; Javna Agencija za Raziskovalno Dejavnost RS grant P1–0045.

References

  1. Ardan, B., Kinzhybalo, V., Slyvka, Y., Shyyka, O., Luk‘yanov, M., Lis, T. & Mys‘kiv, M. (2017). Acta Cryst. C73, 36–46. [DOI] [PubMed]
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Fedorchuk, A. A., Slyvka, Yu. I., Goreshnik, E. A., Kityk, I. V., Czaja, P. & Mys’kiv, M. G. (2018). J. Mol. Struct. 1171, 644–649.
  4. Fedorchuk, A., Goreshnik, E., Slyvka, Yu. & Mys’kiv, M. (2020). Acta Chim. Slov. 67, 1148–1154. [PubMed]
  5. Filinchuk, Ya. E., Mys’kiv, M. G. & Davydov, V. N. (1998). Koord. Khim.(Russ.)(Coord. Chem.). 24, 771–775.
  6. Fukushima, K., Kobayashi, A., Miyamoto, T. & Sasaki, Y. (1976). Bull. Chem. Soc. Jpn, 49, 143–146.
  7. Goreshnik, E. A., Schollmeyer, D. & Myskiv, M. G. (2002). ZAAC, 628, 2118–2122.
  8. Goreshnik, E. A., Slyvka, Yu. I. & Mys’kiv, M. G. (2011). Inorg. Chim. Acta, 377, 177–180.
  9. Goreshnik, E. A., Veryasov, G., Morozov, D., Slyvka, Yu., Ardan, B. & Mys’kiv, M. G. (2016). J. Organomet. Chem. 810, 1–11.
  10. Goreshnik, E., Schollmeier, D. & Mys’kiv, M. (2003). Acta Cryst. C59, m478–m481. [DOI] [PubMed]
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Hordiichuk, O. R., Slyvka, Yu. I., Kinzhybalo, V. V., Goreshnik, E. A., Bednarchuk, T. J., Bednarchuk, O., Jedryka, J., Kityk, I. & Mys’kiv, M. G. (2019). Inorg. Chim. Acta, 495, 119012.
  13. Iakovidis, I., Delimaris, I. & Piperakis, S. M. (2011). Mol. Biol. Int. 2011, 1–13. [DOI] [PMC free article] [PubMed]
  14. Kamei, T., Fujita, K., Itami, K. & Yoshida, J. (2005). Org. Lett. 7, 4725–4728. [DOI] [PubMed]
  15. Kowalska, D. A., Kinzhybalo, V., Slyvka, Y. I. & Wołcyrz, M. (2021). Acta Cryst.. B77, 241–248. [DOI] [PubMed]
  16. Marzano, C., Pellei, M., Alidori, S., Brossa, A., Lobbia, G. G., Tisato, F. & Santini, C. (2006). J. Inorg. Biochem. 100, 299–304. [DOI] [PubMed]
  17. Pavlyuk, O. V., Goreshnik, E. A., Ciunik, Z. & Mys’kiv, M. G. (2005). ZAAC, 631, 793–797.
  18. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.
  19. Rourke, J. (2006). Appl. Organomet. Chem. 20, 811–811.
  20. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  21. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  22. Slyvka, Yu., Fedorchuk, A. A., Goreshnik, E., Lakshminarayana, G., Kityk, I. V., Czaja, P. & Mys’kiv, M. (2018b). Chem. Phys. Lett. 694, 112–119.
  23. Slyvka, Yu., Goreshnik, E., Pavlyuk, O. & Mys’kiv, M. (2013). Open Chem. 11, 1875–1901.
  24. Slyvka, Y., Kinzhybalo, V., Shyyka, O. & Mys’kiv, M. (2021). Acta Cryst. C77, 249–256. [DOI] [PubMed]
  25. Slyvka, Yu. I., Fedorchuk, A. A., Pokhodylo, N. T., Lis, T., Kityk, I. V. & Mys’kiv, M. G. (2018a). Polyhedron, 147, 86–93.
  26. Tisato, F., Marzano, C., Porchia, M., Pellei, M. & Santini, C. (2010). Med. Res. Rev. 30, 708–749. [DOI] [PubMed]
  27. Wang, X.-S., Zhao, H., Li, Y.-H., Xiong, R.-G. & You, X.-Z. (2005). Top. Catal. 35, 43–61.
  28. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]
  29. Yoshikai, N. & Nakamura, E. (2012). Chem. Rev. 112, 2339–2372. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, publication_text. DOI: 10.1107/S2056989021011002/hb7993sup1.cif

e-77-01180-sup1.cif (500.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021011002/hb7993Isup2.hkl

e-77-01180-Isup2.hkl (173.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021011002/hb7993IIsup3.hkl

e-77-01180-IIsup3.hkl (173.5KB, hkl)

CCDC references: 2116969, 2116968

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES