Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Oct 21;77(Pt 11):1140–1143. doi: 10.1107/S2056989021010902

Crystal structure of [{[Ni(C10H24N4)][Ni(CN)4]}·2H2O] n , a one-dimensional coordination polymer formed from the [Ni(cyclam)]2+ cation and the [Ni(CN)4]2– anion

Liudmyla V Tsymbal a, Irina L Andriichuk a, Sergiu Shova b, Yaroslaw D Lampeka a,*
PMCID: PMC8587981  PMID: 34868652

The title coordination polymer consists of parallel linear chains built up of macrocyclic cations possessing a slightly tetra­gonally distorted NiN6 octa­hedral coordination geometry formed by four N atoms of the aza­macrocyclic ligand in the equatorial plane and two trans N atoms of the cyanide groups of the bridging tetra­cyano­nickelate anion in the axial positions. In the crystal, two independent [1 Inline graphic 0] polymeric chains are cross-linked by N—H⋯Ow (w = water) and Ow—H⋯Nc (c = cyanide) hydrogen bonds into a three-dimensional network.

Keywords: crystal structure, coordination polymer, cyclam, nickel, hydrogen bonds

Abstract

The asymmetric unit of the title compound, catena-poly[[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N 1,N 4,N 8,N 11)nickel(II)]-μ-cyanido-κ2 N:C-[bis­(cyanido-κC)nickel(II)]-μ-cyanido-κ2 C:N] dihydrate], {[Ni2(CN)4(C10H24N4)]·2H2O] n or [{[Ni(C10H24N4)][Ni(CN)4]}·2H2O] n , consists of a pair of crystallographically non-equivalent macrocyclic cations and anions. The nickel(II) ions (all with site symmetry Inline graphic ) are coordinated by the four secondary N atoms of the macrocyclic ligands, which adopt the most energetically stable trans-III conformation, and the mutually trans N atoms of the tetra­cyano­nickelate anion in a slightly tetra­gonally distorted NiN6 octa­hedral coordination geometry. The [Ni(CN)4)]2– anion exhibits a bridging function, resulting in the formation of parallel polymeric chains running along the [1 Inline graphic 0] direction. The water mol­ecules of crystallization play a pivotal role in the three-dimensional supra­molecular organization of the crystal. Acting as acceptors, they form N—H⋯Ow (w = water) hydrogen bonds with the secondary amino groups of the macrocycles, forming layers oriented parallel to the (001) plane. At the same time, as donors, they inter­act with the non-coordinated cyano groups of the anion via Ow—H⋯Nc (c = cyanide) hydrogen bonds, giving two-dimensional layers oriented parallel to the (100) plane and thus generating a three-dimensional network.

Chemical context

Transition-metal complexes of tetra­aza­macrocyclic ligands, in particular of 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam, L), have been intensively studied for decades. This is explained by their unique properties, in particular, exceptionally high thermodynamic stability, kinetic inertness and the ability to stabilize uncommon oxidation states of coordinated metals (Melson, 1979; Yatsimirskii & Lampeka, 1985). Because of their conformational rigidity during chemical transformation (preservation of two vacant or labile trans axial positions in the coordination sphere of the metal ion), these complexes are also promising secondary building units for the construction of metal–organic frameworks (MOFs) (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018), which possess great potential for applications in different areas including gas storage, separation, catalysis, sensing, etc (MacGillivray & Lukehart, 2014; Kaskel, 2016).

Cyano­metallate anions refer to a type of bridging ligands for the creation of MOFs of different topologies possessing promising magnetic and electronic properties (Ohkoshi et al., 2019). Among such linkers, the tetra­cyano­nickelate(II) dianion has attracted less attention compared to hexa- and octa­cyano­metallates and only one work describing the structure of the coordination polymer formed by the metal(cyclam) complex and this anion, i.e., {Cu(L)[Ni(CN)4]} n , has been published to date (Černák et al., 2010). Inter­estingly, despite the diamagnetic nature of the bridging fragment, this complex displays a weak anti­ferromagnetic exchange coupling between the paramagnetic copper(II) centres. graphic file with name e-77-01140-scheme1.jpg

We report herein the synthesis and crystal structure of the coordination polymer built up of the nickel(II) complex of L and the tetra­cyano­nickelate(II) dianion, namely, catena-[bis­(μ2-cyano-κ2C,N)-di­cyano-(1,4,8,11-tetra­aza­cyclo­tetra­dec­ane-κ4N1,N4,N8,N11)-dinickel(II) dihydrate], [{[Ni(L)][Ni(CN)4]}·2H2O] n , (I).

Structural commentary

The mol­ecular structure of I is shown in Fig. 1. It represents a one-dimensional coordination polymer built up from two crystallographically independent centrosymmetric tetra­gonal macrocyclic [Ni(L)]2+ cations and tetra­cyano­nickelate anions [Ni(CN)4]2–. The coordination of the trans cyanide groups of the anions in the axial positions of the coordination sphere of the metal ions in cations results in the formation of two structurally non-equivalent parallel polymeric chains (Ni1/Ni3 and Ni2/Ni4) running along the [1 Inline graphic 0] direction.

Figure 1.

Figure 1

The extended asymmetric unit in I showing the coordination environment of the Ni atoms and the atom-labelling scheme (displacement ellipsoids are drawn at the 40% probability level). C-bound H atoms are omitted for clarity. Dotted lines represent hydrogen-bonding inter­actions. Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x, −y + 2, −z; (iii) x − 1, y + 1, z; (iv) −x + 1, −y, −z + 1; (v) −x, −y + 1, −z + 1.

The location of the metal ions on inversion centres enforces strict planarity of the Ni(N4) and Ni(C4) coordination moieties. The macrocyclic ligand in the complex cations adopts the most common and energetically favorable trans-III (R,R,S,S) conformation (Bosnich et al., 1965) with almost equal Ni—N bond lengths (Table 1). The five-membered chelate rings are present in gauche (bite angles ca 85.5°) and the six-membered in chair (bite angles ca 94.5°) conformations (Table 1). The geometric parameters observed are characteristic of high-spin d 8 nickel(II) complexes with macrocyclic 14-membered tetra­amine ligands (Lampeka & Tsymbal, 2004; Tsymbal et al., 2021). The axial Ni—N(CN) bond lengths are somewhat longer than the Ni—N(amine) ones, resulting in a slight tetra­gonal distortion of the trans-NiN4N2 coordination polyhedron.

Table 1. Selected bond lengths (Å).

Ni1—N5 2.100 (4) Ni2—N4 2.079 (4)
Ni1—N2 2.070 (4) Ni3—C11 1.874 (6)
Ni1—N1 2.082 (4) Ni3—C12 1.857 (6)
Ni2—N3 2.069 (4) Ni4—C13 1.866 (6)
Ni2—N7 2.095 (4) Ni4—C14 1.863 (6)

The Ni—C—N angles in the anion deviate only slightly (less than 4°) from linearity. In I, each tetra­cyano­nickelate unit uses two trans cyanide groups for coordination to two macrocyclic moieties in a bent fashion [Ni—N—C = 166.1 (4)°], giving rise to a linear polymeric chain, whereas the two remaining trans CN groups are monodentate. The adjacent Ni⋯Ni distance in the chain is 5.0558 (5) Å, and the shortest inter­chain Ni⋯Ni distance is 6.6159 (5) Å.

Supra­molecular features

The crystals of I are composed of linear polymeric chains of [Ni(L)]2+ cations bridged by the [Ni(CN)4]2− anions, which propagate along the [1 Inline graphic 0] direction. There are no direct contacts between the chains and the water mol­ecules of crystallization play a key role in assembling them into a three-dimensional supra­molecular network. In particular, serving as the acceptor for N—H⋯O hydrogen bonds arising from the secondary amino groups of different macrocyclic ligands in the crystallographically equivalent chains (O1W for Ni1/Ni3, O2W for Ni2/Ni4), the water mol­ecules link them in two-dimensional layers oriented parallel to the (001) plane (Table 2, Fig. 2 a). At the same time, acting as the donors in O—H⋯N hydrogen-bonding inter­actions with the nitro­gen atoms of the non-coordinating cyanide groups of the anions belonging to crystallographically non-equivalent polymeric chains, they form two-dimensional layers oriented parallel to the (100) plane (Table 2, Fig. 2 b) thus realizing a three-dimensional system of hydrogen bonds in the crystal.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1W i 0.98 2.28 3.115 (6) 143
N2—H2⋯O1W ii 0.98 2.10 3.020 (6) 156
N3—H3⋯O2W i 0.98 2.15 3.083 (7) 159
N4—H4⋯O2W iii 0.98 2.26 3.080 (6) 140
O1W—H1WA⋯N8 0.85 2.03 2.872 (7) 173
O1W—H1WB⋯N6iv 0.85 2.27 3.112 (7) 171
O2W—H2WA⋯N6 0.85 2.03 2.853 (6) 164
O2W—H2WB⋯N8i 0.85 2.30 3.149 (7) 175

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z-1; (iii) x, y-1, z; (iv) -x, -y+2, -z+1.

Figure 2.

Figure 2

View of the sheets of polymeric chains formed due to the hydrogen-bond acceptor (a) and donor (b) properties of the water mol­ecules of crystallization. The macrocyclic ligands in the crystallographically non-equivalent nickel ions are shown in violet (Ni1/Ni3) and green (Ni2/Ni4) colors.

Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, last update February 2021; Groom et al., 2016) indicated that several one-dimensional coordination polymers formed by di­aza­cyclam nickel(II) cations (di­aza­cyclam = 1,3,5,8,10,12-hexa­aza­cyclo­tetra­deca­ne) and the tetra­cyano­nickelate anion have been characterized structurally. They include compounds with monomacrocylic (refcode MIMJIB; Kou et al., 2002) and macrotricyclic [NADVOE (Zhou et al., 2004), YUBHEK, YUBHIO and YUBHOU (Jiang et al., 2015)] tetra­dentate ligands. The structures of the polymeric chains in these compounds are very similar. In particular, because of comparable Ni—N(CN) bond lengths and Ni—N—C bond angles, the inter­chain Ni⋯Ni distances fall in the range 5.07–5.15 Å and are slightly longer than that observed in I. Surprisingly, a similar value for this parameter (5.056 Å) is also observed in the complex of the [Cu(L)]2+ cation with [Ni(CN)4]2− (XABGEO; Černák et al., 2010), despite the substanti­ally longer Cu—N(CN) distance (2.532 Å). This feature is explained by the considerable bending of the Cu—N—C (133.0°) angle as compared the nickel analogues.

Synthesis and crystallization

All reagents and solvents used in this work were analytical grade and were used without further purification. The macrocyclic nickel(II) complex Ni(L)(ClO4)2 was prepared according to procedures described previously (Barefield et al., 1976).

[{[Ni( L )][Ni(CN)4]}·2H2O] n , (I): A solution of 121 mg (0.50 mmol) of K2[Ni(CN)4] in 15 ml of water was added under stirring to a solution of 290 mg (0.50 mmol) Ni(L)(ClO4)2 in 10 ml of di­methyl­formamide. Filtration and slow evaporation of the resulting solution gave after several days a light-yellow crystalline precipitate, which was washed with DMF, methanol and dried in air. Yield 160 mg (35%). Analysis calculated for C14H28N8Ni2O2: C, 36.72; H, 6.16; N, 24.47%. Found: C, 36.62; H, 6.26; N, 24.19%. Single crystals suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis. Safety note: perchlorate salts of metal complexes are potentially explosive and should be handled with care.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.97 Å, N—H = 0.98 Å and water O—H = 0.85 Å, with U iso(H) values of 1.2 or 1.5Ueq of the parent atoms.

Table 3. Experimental details.

Crystal data
Chemical formula [Ni2(CN)4(C10H24N4)]·2H2O
M r 457.86
Crystal system, space group Triclinic, P\overline{1}
Temperature (K) 180
a, b, c (Å) 7.7325 (6), 8.8809 (7), 15.7780 (12)
α, β, γ (°) 88.673 (6), 85.682 (7), 74.623 (7)
V3) 1041.74 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.83
Crystal size (mm) 0.30 × 0.20 × 0.06
 
Data collection
Diffractometer Rigaku Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.852, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7144, 3673, 2417
R int 0.036
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.059, 0.159, 1.07
No. of reflections 3673
No. of parameters 247
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.31, −0.42

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010902/hb7992sup1.cif

e-77-01140-sup1.cif (272.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010902/hb7992Isup2.hkl

e-77-01140-Isup2.hkl (201.6KB, hkl)

CCDC reference: 2114932

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Ni2(CN)4(C10H24N4)]·2H2O Z = 2
Mr = 457.86 F(000) = 480
Triclinic, P1 Dx = 1.460 Mg m3
a = 7.7325 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.8809 (7) Å Cell parameters from 2303 reflections
c = 15.7780 (12) Å θ = 2.7–28.8°
α = 88.673 (6)° µ = 1.83 mm1
β = 85.682 (7)° T = 180 K
γ = 74.623 (7)° Block, colourless
V = 1041.74 (15) Å3 0.30 × 0.20 × 0.06 mm

Data collection

Rigaku Xcalibur, Eos diffractometer 3673 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 2417 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
Detector resolution: 8.0797 pixels mm-1 θmax = 25.0°, θmin = 2.4°
ω scans h = −9→9
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) k = −9→10
Tmin = 0.852, Tmax = 1.000 l = −17→18
7144 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059 H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.064P)2 + 1.1599P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3673 reflections Δρmax = 1.31 e Å3
247 parameters Δρmin = −0.42 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni4 0.000000 0.500000 0.500000 0.0201 (3)
Ni3 0.000000 1.000000 0.000000 0.0195 (3)
Ni1 0.500000 0.500000 0.000000 0.0172 (3)
Ni2 0.500000 0.000000 0.500000 0.0177 (3)
C13 0.1682 (7) 0.3061 (6) 0.4882 (3) 0.0190 (11)
N5 0.2721 (5) 0.6907 (5) 0.0165 (3) 0.0232 (10)
C8 0.3761 (7) −0.2867 (6) 0.4659 (4) 0.0312 (14)
H8A 0.496131 −0.353457 0.472014 0.037*
H8B 0.316556 −0.338924 0.428528 0.037*
N8 −0.0359 (7) 0.4416 (6) 0.6889 (3) 0.0424 (14)
N3 0.3772 (6) −0.0524 (5) 0.6138 (3) 0.0259 (11)
H3 0.254063 0.015213 0.617490 0.031*
N6 −0.0089 (7) 1.0667 (7) 0.1866 (3) 0.0459 (14)
N2 0.4008 (6) 0.4404 (5) −0.1091 (3) 0.0247 (11)
H2 0.278118 0.507374 −0.111458 0.030*
C11 0.1664 (7) 0.8059 (7) 0.0125 (3) 0.0205 (12)
O2W 0.0288 (6) 0.9077 (5) 0.3461 (2) 0.0374 (10)
H2WA 0.036923 0.959680 0.300850 0.056*
H2WB 0.032480 0.814393 0.333553 0.056*
C14 −0.0241 (7) 0.4667 (6) 0.6168 (4) 0.0273 (13)
C10 0.5288 (8) 0.0021 (7) 0.3194 (4) 0.0322 (14)
H10A 0.601399 −0.007329 0.265908 0.039*
H10B 0.415596 0.079153 0.312246 0.039*
N1 0.3727 (5) 0.3666 (5) 0.0802 (3) 0.0224 (10)
H1 0.247298 0.427127 0.090795 0.027*
C3 0.3903 (7) 0.2784 (7) −0.1143 (4) 0.0336 (14)
H3A 0.510949 0.209177 −0.117835 0.040*
H3B 0.334252 0.265566 −0.165612 0.040*
N7 0.2769 (5) 0.1898 (5) 0.4838 (3) 0.0231 (10)
C4 0.5107 (7) 0.4876 (7) −0.1807 (3) 0.0289 (14)
H4A 0.448916 0.495059 −0.232483 0.035*
H4B 0.625088 0.409578 −0.189027 0.035*
C12 −0.0032 (7) 1.0368 (6) 0.1155 (4) 0.0273 (13)
O1W 0.0212 (6) 0.5830 (5) 0.8426 (3) 0.0383 (11)
H1WA −0.004667 0.541681 0.798936 0.057*
H1WB 0.027685 0.675211 0.830710 0.057*
C1 0.3698 (7) 0.2153 (6) 0.0457 (4) 0.0300 (14)
H1A 0.303586 0.163745 0.086184 0.036*
H1B 0.491913 0.149679 0.037738 0.036*
N4 0.3896 (5) −0.1378 (5) 0.4269 (3) 0.0225 (10)
H4 0.267023 −0.077143 0.417091 0.027*
C2 0.2837 (7) 0.2331 (7) −0.0382 (4) 0.0373 (15)
H2A 0.169263 0.311348 −0.031187 0.045*
H2B 0.258498 0.135002 −0.050764 0.045*
C6 0.3638 (7) −0.2135 (7) 0.6248 (4) 0.0336 (15)
H6A 0.295970 −0.222107 0.678108 0.040*
H6B 0.483387 −0.283061 0.627483 0.040*
C5 0.5424 (7) 0.6439 (7) −0.1614 (3) 0.0295 (14)
H5A 0.619798 0.672475 −0.206694 0.035*
H5B 0.428831 0.723764 −0.157782 0.035*
C9 0.4941 (7) −0.1553 (7) 0.3439 (3) 0.0323 (14)
H9A 0.427445 −0.187587 0.301267 0.039*
H9B 0.607290 −0.234112 0.347689 0.039*
C7 0.2724 (7) −0.2638 (7) 0.5524 (4) 0.0364 (16)
H7A 0.244558 −0.361196 0.568747 0.044*
H7B 0.159067 −0.186226 0.546429 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni4 0.0180 (5) 0.0115 (5) 0.0275 (6) 0.0020 (4) −0.0016 (4) −0.0006 (4)
Ni3 0.0170 (5) 0.0117 (5) 0.0265 (6) 0.0015 (4) −0.0005 (4) −0.0005 (4)
Ni1 0.0152 (5) 0.0111 (5) 0.0234 (6) −0.0001 (4) −0.0012 (4) −0.0006 (4)
Ni2 0.0177 (5) 0.0099 (5) 0.0228 (6) 0.0010 (4) −0.0005 (4) −0.0019 (4)
C13 0.017 (3) 0.020 (3) 0.020 (3) −0.006 (2) 0.002 (2) −0.001 (2)
N5 0.015 (2) 0.012 (3) 0.037 (3) 0.005 (2) −0.0038 (19) −0.002 (2)
C8 0.024 (3) 0.020 (3) 0.051 (4) −0.007 (3) −0.007 (3) −0.009 (3)
N8 0.058 (4) 0.029 (3) 0.037 (3) −0.005 (3) −0.004 (3) −0.001 (3)
N3 0.022 (2) 0.025 (3) 0.029 (3) −0.002 (2) −0.0016 (19) 0.002 (2)
N6 0.055 (4) 0.045 (4) 0.037 (4) −0.012 (3) 0.000 (3) −0.002 (3)
N2 0.020 (2) 0.023 (3) 0.028 (3) −0.001 (2) −0.0050 (18) −0.003 (2)
C11 0.024 (3) 0.019 (3) 0.020 (3) −0.007 (2) −0.006 (2) −0.001 (2)
O2W 0.041 (2) 0.030 (3) 0.039 (3) −0.004 (2) −0.0061 (19) 0.005 (2)
C14 0.020 (3) 0.014 (3) 0.044 (4) 0.004 (2) −0.005 (2) −0.002 (3)
C10 0.035 (3) 0.029 (4) 0.029 (3) −0.001 (3) −0.002 (2) −0.005 (3)
N1 0.022 (2) 0.018 (3) 0.026 (3) −0.0045 (19) 0.0040 (18) 0.000 (2)
C3 0.032 (3) 0.025 (4) 0.046 (4) −0.008 (3) −0.008 (3) −0.011 (3)
N7 0.017 (2) 0.014 (3) 0.034 (3) 0.002 (2) −0.0014 (18) 0.003 (2)
C4 0.028 (3) 0.034 (4) 0.023 (3) −0.006 (3) −0.001 (2) −0.003 (3)
C12 0.027 (3) 0.015 (3) 0.039 (4) −0.005 (2) 0.003 (2) 0.005 (3)
O1W 0.038 (2) 0.033 (3) 0.042 (3) −0.003 (2) −0.0109 (19) −0.006 (2)
C1 0.019 (3) 0.012 (3) 0.057 (4) −0.004 (2) 0.008 (2) 0.007 (3)
N4 0.021 (2) 0.013 (2) 0.034 (3) −0.0037 (19) −0.0065 (18) −0.006 (2)
C2 0.025 (3) 0.026 (4) 0.064 (4) −0.011 (3) −0.003 (3) −0.010 (3)
C6 0.027 (3) 0.027 (4) 0.045 (4) −0.006 (3) 0.003 (3) 0.010 (3)
C5 0.024 (3) 0.030 (4) 0.028 (3) 0.002 (3) 0.003 (2) 0.009 (3)
C9 0.038 (3) 0.030 (4) 0.026 (3) −0.002 (3) −0.004 (2) −0.012 (3)
C7 0.018 (3) 0.027 (4) 0.064 (5) −0.008 (3) −0.002 (3) 0.010 (3)

Geometric parameters (Å, º)

Ni1—N5 2.100 (4) N2—C4 1.482 (7)
Ni1—N5i 2.100 (4) O2W—H2WA 0.8491
Ni1—N2i 2.070 (4) O2W—H2WB 0.8493
Ni1—N2 2.070 (4) C10—H10A 0.9700
Ni1—N1i 2.082 (4) C10—H10B 0.9700
Ni1—N1 2.082 (4) C10—C9 1.528 (8)
Ni2—N3ii 2.069 (4) N1—H1 0.9800
Ni2—N3 2.069 (4) N1—C1 1.468 (7)
Ni2—N7 2.095 (4) N1—C5i 1.474 (6)
Ni2—N7ii 2.095 (4) C3—H3A 0.9700
Ni2—N4 2.079 (4) C3—H3B 0.9700
Ni2—N4ii 2.079 (4) C3—C2 1.512 (8)
Ni3—C11 1.874 (6) C4—H4A 0.9700
Ni3—C11iii 1.874 (6) C4—H4B 0.9700
Ni3—C12iii 1.857 (6) C4—C5 1.514 (8)
Ni3—C12 1.857 (6) O1W—H1WA 0.8499
Ni4—C13iv 1.866 (6) O1W—H1WB 0.8492
Ni4—C13 1.866 (6) C1—H1A 0.9700
Ni4—C14iv 1.863 (6) C1—H1B 0.9700
Ni4—C14 1.863 (6) C1—C2 1.511 (8)
C13—N7 1.145 (7) N4—H4 0.9800
N5—C11 1.132 (7) N4—C9 1.475 (7)
C8—H8A 0.9700 C2—H2A 0.9700
C8—H8B 0.9700 C2—H2B 0.9700
C8—N4 1.470 (6) C6—H6A 0.9700
C8—C7 1.521 (8) C6—H6B 0.9700
N8—C14 1.156 (7) C6—C7 1.521 (8)
N3—H3 0.9800 C5—H5A 0.9700
N3—C10ii 1.466 (7) C5—H5B 0.9700
N3—C6 1.468 (7) C9—H9A 0.9700
N6—C12 1.154 (7) C9—H9B 0.9700
N2—H2 0.9800 C7—H7A 0.9700
N2—C3 1.467 (7) C7—H7B 0.9700
C13iv—Ni4—C13 180.0 N3ii—C10—C9 109.3 (4)
C14iv—Ni4—C13iv 89.7 (2) H10A—C10—H10B 108.3
C14—Ni4—C13iv 90.3 (2) C9—C10—H10A 109.8
C14iv—Ni4—C13 90.3 (2) C9—C10—H10B 109.8
C14—Ni4—C13 89.7 (2) Ni1—N1—H1 107.1
C14iv—Ni4—C14 180.0 C1—N1—Ni1 115.1 (3)
C11—Ni3—C11iii 180.0 C1—N1—H1 107.1
C12—Ni3—C11 90.1 (2) C1—N1—C5i 114.3 (4)
C12iii—Ni3—C11iii 90.1 (2) C5i—N1—Ni1 105.7 (3)
C12—Ni3—C11iii 89.9 (2) C5i—N1—H1 107.1
C12iii—Ni3—C11 89.9 (2) N2—C3—H3A 109.2
C12iii—Ni3—C12 180.0 N2—C3—H3B 109.2
N5i—Ni1—N5 180.0 N2—C3—C2 111.9 (5)
N2—Ni1—N5 89.31 (17) H3A—C3—H3B 107.9
N2—Ni1—N5i 90.69 (17) C2—C3—H3A 109.2
N2i—Ni1—N5i 89.31 (17) C2—C3—H3B 109.2
N2i—Ni1—N5 90.69 (17) C13—N7—Ni2 166.1 (4)
N2i—Ni1—N2 180.00 (11) N2—C4—H4A 109.8
N2—Ni1—N1i 85.61 (17) N2—C4—H4B 109.8
N2i—Ni1—N1 85.61 (17) N2—C4—C5 109.6 (5)
N2i—Ni1—N1i 94.39 (17) H4A—C4—H4B 108.2
N2—Ni1—N1 94.39 (17) C5—C4—H4A 109.8
N1i—Ni1—N5 90.34 (17) C5—C4—H4B 109.8
N1—Ni1—N5 89.66 (17) N6—C12—Ni3 176.9 (5)
N1i—Ni1—N5i 89.66 (17) H1WA—O1W—H1WB 109.4
N1—Ni1—N5i 90.34 (17) N1—C1—H1A 109.2
N1i—Ni1—N1 180.0 N1—C1—H1B 109.2
N3ii—Ni2—N3 180.0 N1—C1—C2 111.9 (4)
N3ii—Ni2—N7ii 89.44 (17) H1A—C1—H1B 107.9
N3—Ni2—N7ii 90.56 (17) C2—C1—H1A 109.2
N3ii—Ni2—N7 90.56 (17) C2—C1—H1B 109.2
N3—Ni2—N7 89.44 (17) Ni2—N4—H4 107.0
N3ii—Ni2—N4 85.36 (17) C8—N4—Ni2 115.6 (3)
N3—Ni2—N4ii 85.36 (17) C8—N4—H4 107.0
N3—Ni2—N4 94.64 (17) C8—N4—C9 113.8 (4)
N3ii—Ni2—N4ii 94.64 (17) C9—N4—Ni2 105.9 (3)
N7ii—Ni2—N7 180.0 C9—N4—H4 107.0
N4ii—Ni2—N7ii 89.87 (17) C3—C2—H2A 108.1
N4ii—Ni2—N7 90.13 (17) C3—C2—H2B 108.1
N4—Ni2—N7ii 90.13 (17) C1—C2—C3 116.7 (4)
N4—Ni2—N7 89.87 (17) C1—C2—H2A 108.1
N4ii—Ni2—N4 180.0 C1—C2—H2B 108.1
N7—C13—Ni4 176.4 (5) H2A—C2—H2B 107.3
C11—N5—Ni1 166.1 (4) N3—C6—H6A 109.2
H8A—C8—H8B 107.9 N3—C6—H6B 109.2
N4—C8—H8A 109.2 N3—C6—C7 111.9 (4)
N4—C8—H8B 109.2 H6A—C6—H6B 107.9
N4—C8—C7 112.1 (5) C7—C6—H6A 109.2
C7—C8—H8A 109.2 C7—C6—H6B 109.2
C7—C8—H8B 109.2 N1i—C5—C4 109.3 (4)
Ni2—N3—H3 106.9 N1i—C5—H5A 109.8
C10ii—N3—Ni2 105.8 (3) N1i—C5—H5B 109.8
C10ii—N3—H3 106.9 C4—C5—H5A 109.8
C10ii—N3—C6 113.3 (4) C4—C5—H5B 109.8
C6—N3—Ni2 116.6 (4) H5A—C5—H5B 108.3
C6—N3—H3 106.9 C10—C9—H9A 110.1
Ni1—N2—H2 107.0 C10—C9—H9B 110.1
C3—N2—Ni1 116.2 (3) N4—C9—C10 108.2 (5)
C3—N2—H2 107.0 N4—C9—H9A 110.1
C3—N2—C4 113.7 (4) N4—C9—H9B 110.1
C4—N2—Ni1 105.5 (3) H9A—C9—H9B 108.4
C4—N2—H2 107.0 C8—C7—C6 117.0 (4)
N5—C11—Ni3 176.5 (5) C8—C7—H7A 108.1
H2WA—O2W—H2WB 109.4 C8—C7—H7B 108.1
N8—C14—Ni4 178.0 (5) C6—C7—H7A 108.1
N3ii—C10—H10A 109.8 C6—C7—H7B 108.1
N3ii—C10—H10B 109.8 H7A—C7—H7B 107.3
Ni1—N2—C3—C2 54.8 (5) N2—C4—C5—N1i 56.3 (6)
Ni1—N2—C4—C5 −40.9 (5) C10ii—N3—C6—C7 −177.7 (5)
Ni1—N1—C1—C2 −56.5 (5) N1—C1—C2—C3 71.8 (7)
Ni2—N3—C6—C7 −54.5 (5) C3—N2—C4—C5 −169.4 (4)
Ni2—N4—C9—C10 −40.9 (5) C4—N2—C3—C2 177.5 (4)
C8—N4—C9—C10 −169.0 (4) N4—C8—C7—C6 −70.7 (6)
N3ii—C10—C9—N4 57.3 (6) C5i—N1—C1—C2 −179.1 (4)
N3—C6—C7—C8 69.7 (6) C7—C8—N4—Ni2 55.4 (5)
N2—C3—C2—C1 −70.5 (7) C7—C8—N4—C9 178.2 (4)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y, −z+1; (iii) −x, −y+2, −z; (iv) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1Wiv 0.98 2.28 3.115 (6) 143
N2—H2···O1Wv 0.98 2.10 3.020 (6) 156
N3—H3···O2Wiv 0.98 2.15 3.083 (7) 159
N4—H4···O2Wvi 0.98 2.26 3.080 (6) 140
O1W—H1WA···N8 0.85 2.03 2.872 (7) 173
O1W—H1WB···N6vii 0.85 2.27 3.112 (7) 171
O2W—H2WA···N6 0.85 2.03 2.853 (6) 164
O2W—H2WB···N8iv 0.85 2.30 3.149 (7) 175

Symmetry codes: (iv) −x, −y+1, −z+1; (v) x, y, z−1; (vi) x, y−1, z; (vii) −x, −y+2, −z+1.

References

  1. Barefield, E. K., Wagner, F., Herlinger, A. W. & Dahl, A. R. (1976). Inorg. Synth. 16, 220–224.
  2. Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108.
  3. Černák, J., Kuchár, J., Stolárová, M., Kajňaková, M., Vavra, M., Potočňák, I., Falvello, L. R. & Tomás, M. (2010). Transition Met. Chem. 35, 737–744.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Jiang, X., Tao, B., Yu, X., Wang, Y. & Xia, H. (2015). RSC Adv. 5, 19034–19040.
  6. Kaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization, and Applications, 2 volumes. Weinheim: Wiley-VCH.
  7. Kou, H.-Z., Si, S.-F., Gao, S., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P., Fan, Y.-G. & Wang, G.-L. (2002). Eur. J. Inorg. Chem. pp. 699–702.
  8. Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.
  9. MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials. Hoboken: John Wiley and Sons.
  10. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  11. Melson, G. A. (1979). Editor. Coordination Chemistry of Macrocyclic Compounds. New York: Plenum Press.
  12. Ohkoshi, S., Namai, A. & Tokoro, H. (2019). Coord. Chem. Rev. 380, 572–583.
  13. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.
  17. Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.
  18. Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. [DOI] [PubMed]
  19. Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355–2370.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  21. Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. (In Russian)
  22. Zhou, H.-B., Dong, W., Zhu, L.-N., Yu, L.-H., Wang, Q.-L., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Cheng, P. (2004). J. Mol. Struct. 703, 103–106.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010902/hb7992sup1.cif

e-77-01140-sup1.cif (272.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010902/hb7992Isup2.hkl

e-77-01140-Isup2.hkl (201.6KB, hkl)

CCDC reference: 2114932

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES