Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Oct 8;77(Pt 11):1078–1081. doi: 10.1107/S2056989021010094

Crystal structure of methyl 1,3-benzoxazole-2-carboxyl­ate

Alexandre Poirot a, Nathalie Saffon-Merceron b, Nadine Leygue a, Eric Benoist a, Suzanne Fery-Forgues a,*
PMCID: PMC8587983  PMID: 34868639

The herringbone structure of methyl 1,3-benzoxazole-2-carboxyl­ate is characterized by strong C—H⋯N and weak C—H⋯O hydrogen bonds, and further stabilized by C—O⋯π and π–π inter­actions.

Keywords: crystal structure, benzoxazole, herringbone arrangement, γ packing type, π–π inter­actions, strong C—H⋯N hydrogen bonds

Abstract

The title compound, C9H7NO3, crystallizes in the monoclinic (P21) space group. In the crystal, the almost planar mol­ecules display a flattened herringbone arrangement. Stacking mol­ecules are slipped in the lengthwise and widthwise directions and are linked by π–π inter­actions [d(CgCg = 3.6640 (11) Å]. The structure is characterized by strong C—H⋯N and weak C—H⋯O hydrogen bonds, and further stabilized by C–O⋯π inter­actions.

Chemical context

Benzoxazoles are common in natural products and represent an important class of key structural motifs, often incorporated as building blocks in ligands to target a variety of receptors and enzymes in medicinal chemistry studies (Demmer & Bunch, 2015; Kamal et al., 2020). They are also a scaffold of prime importance for fluorescent probes and materials (Carayon & Fery-Forgues, 2017; Fery-Forgues & Vanucci-Bacqué, 2021). Methyl-1,3-benzoxazole-2-carboxyl­ate (1) belongs to this family and much attention has been paid to its preparation. graphic file with name e-77-01078-scheme1.jpg

This compound was first prepared by a multi-step synthesis starting from 2,3-dioxo-1,4-benzoxazine (Dickoré et al., 1970) and 2-cyano­benzoxazole (Möller, 1970), but it can be obtained much more simply from condensation of 2-amino­phenol with methyl 2,2,2-tri­meth­oxy­acetate (Musser, Hudec et al., 1984; Koshelev et al., 2019). It has been synthesized in high yields by direct carboxyl­ation of benzoxazole using carbon dioxide (CO2) as a naturally abundant and renewable C1 source, with (Zhang et al., 2010; Inomata et al., 2012) or without any metal catalyst (Vechorkin et al., 2010; Fenner & Ackermann, 2016). Recently, it has been produced by oxidative cyclization of glycine catalysed by copper (Liu et al., 2021) or induced by irradiation with visible light (Zhu et al., 2021). The mol­ecule is commercially available. It has been used to complex europium, resulting in a very efficient electroluminescent layer for applications in the field of organic light-emitting diodes (OLEDs) (Koshelev et al., 2019). Used as a synthetic inter­mediate, methyl-1,3-benzoxazole-2-carboxyl­ate has led to various pharmacologically active agents with anti-allergic (Musser, Brown et al., 1984), anti-microbial (Vodela et al., 2013) and neuro-anti-inflammatory (Shang et al., 2020) activity, to name just a few.

Structural commentary

The title compound (Fig. 1) crystallizes in the monoclinic space group P21 and exhibits the expected bond lengths and angles for a benzoxazole. The N1—C1 bond, which corresponds to a double bond, is significantly shorter [1.293 (2) Å] than the other bonds (>1.36 Å) of the oxazole cycle. The mol­ecule is almost planar [N1—C1—C2—O3 = −6.7 (2)°]. The heterocyclic and carbonyl oxygen atoms O1 aand O2, respectively, are located on the same side with respect to the long axis of the mol­ecule.

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features

In the crystal structure, mol­ecules are displayed according to the γ packing type, i.e. a flattened herringbone featuring stacks of parallel, translationally related mol­ecules (Desiraju et al., 1989; Campbell et al., 2017) (Fig. 2). Neighboring mol­ecules situated in almost perpendicular planes (84.4°) are linked through C—H⋯N inter­actions between the heterocyclic nitro­gen atom N1 and H9 of an adjacent mol­ecule and weak C—H⋯O hydrogen bonds between O2 and one hydrogen atom of the methyl group (Table 1, Fig. 2). Strong C—O⋯π inter­actions are also important for the stabilization of the structure (Table 2, Fig. 3). Stacking mol­ecules are slipped in the lengthwise and widthwise directions and linked by π– π inter­actions [centroid–centroid distance = 3.6640 (11) Å] (Table 3).

Figure 2.

Figure 2

C—H⋯N and C—H⋯O hydrogen bonds (blue dotted lines).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N1i 0.95 2.53 3.377 (2) 149
C3—H3C⋯O2ii 0.98 2.65 3.389 (2) 133

Symmetry codes: (i) x-1, y, z; (ii) -x+1, y+{\script{1\over 2}}, -z+1.

Table 2. C—O⋯π inter­actions (Å, °).

Cg1 is the centroid of the O1/C1/N1/C5/C4 ring and Cg3 is the centroid of the O1/C1/C5–C9 ring.

X I J IJ XJ XIJ
C2 O2 Cg1ii 3.2088 (14) 3.5487 (18) 96.39 (10)
C2 O2 Cg3ii 3.5912 (14) 3.7321 (17) 87.29 (10)

Symmetry code: (ii) x, −1 + y, z.

Figure 3.

Figure 3

π–π and C—O⋯π inter­actions (green dotted lines). Orange balls represent the ring centroids Cg.

Table 3. π–π inter­action (Å, °).

Cg1 is the centroid of the O1/C1/N1/C5/C4 ring and Cg2 is the centroid of the C4–C9 ring. CgICgJ is the distance between ring centroids. α is the dihedral angle between the planes of the rings I and J. CgI perp and CgJ perp are the perpendicular distances of CgI from ring J and of CgJ from ring I, respectively. CgI Offset and CgJ Offset are the distances between CgI and the perpendicular projection of CgJ on ring I, and between CgJ and the perpendicular projection of CgI on ring J, respectively.

I J CgICgJ α CgI perp CgJ perp CgI Offset CgJ Offset
1 2ii 3.6640 (11) 0.19 (9) 3.3115 (7) 3.3065 (8) 1.579 1.568

Symmetry code: (ii) x, −1 + y, z.

Database survey

Benzoxazole-based mol­ecules have given an umpteen number of crystal structures. A search of the Cambridge Structural Database (CSD, version of November 2020; Groom et al., 2016) found only twelve benzoxazoles substituted by a carbonyl group on the 2-position. In almost half of the cases, the benzoxazole derivative is used as a ligand to complex an Ni, Co or Cu atom (CAYSIG and CAYSOM; Iasco et al., 2012; LAJNAN; Zhang et al., 2010), or incorporated in a macromolecule (NESPUY; Lim et al., 2012; LUYJUL; Osowska & Miljanić, 2010), resulting in a geometry quite far from that of a small entity. Among the remaining examples, the benzoxazolylcarbonyl moiety may be linked to an aromatic group. When the latter is a phenyl group, the mol­ecule is almost planar (ROFZUJ; Boominathan et al., 2014). With another benzoxazole heterocycle, the dihedral angle is only around 8° (AGESUD; Boga et al., 2018). In contrast, this angle almost reaches 71° with a benzoic acid that is involved in many inter­molecular inter­actions (DEJGEE; Ling et al., 1999), and when the benzoxazole and phenyl derivative moieties are attached via a flexible linker (KONTEP; Deng et al., 2019). Finally, the benzoxazolylcarbonyl moiety may be linked to an aliphatic moiety, which may be rather bulky like a bornane-1,2-sultam moiety (BAKRIQ; Piątek et al., 2011), or smaller like a morpholine moiety (JAXMED; Xing et al., 2017). In both cases, the network is structured by an interaction between the carbonyl oxygen of one molecule and the hydrogen atom borne by the C7 carbon of a neighbouring molecule. Finally, the framework closest to that of the title compound is an isopropyl 4-acetyl-5-hy­droxy-1,3-benzoxazole-2-carboxyl­ate (MIMZUG; Tangellamudi et al., 2018). In this mol­ecule, the hydroxyl and the acetyl substituents form intra­molecular hydrogen bonds while the carbonyl oxygen of one mol­ecule inter­acts with the isopropyl group of the neigbouring one to form some kind of dimer. In general, planar mol­ecules tend to assemble in layers (AGESUD; Boga et al., 2018; MIMZUG; Tangellamudi et al., 2018) and even in ribbons (JAXMED; Xing et al., 2017).

Synthesis and crystallization

The title compound was synthesized according to a variant of the procedure described by Jacobs et al. (2017) (Fig. 4). To a mixture of 5-amino­phenol (1.09 g, 0.01 mol) and tri­ethyl­amine (2.02 g, 0.02 mol) in anhydrous tetra­hydro­furan (40 mL) at 263 K was added slowly methyl oxalyl chloride (1.34 g, 0.011 mol). The mixture was stirred at room temperature for 3 h and then cooled onto an ice–water bath. Tri­phenyl­phosphine (5.64 g, 0.0215 mol), diisopropyl azodi­carboxyl­ate (2.25 g, 0.011 mol) and tetra­hydro­furan (50 mL) were then added. The solution was allowed to stir at room temperature for 16 h and concentrated in vacuo. The crude product was purified by column chromatography (SiO2, petroleum ether/di­chloro­methane 70/30 v/v until 60/40 v/v) to give a white solid (1.2 g) in 83% yield. 1H NMR (300 MHz, CDCl3): δ = 7.90 (ddd, J = 7.9, 1.5, 0.8 Hz, 1H), 7.67 (ddd, J = 8.1, 1.2, 0.8 Hz, 1H), 7.57–7.44 (m, 2H), 4.10 (s, 3H). 13C NMR (75 MHz, CDCl3): δ = 156.9, 152.5, 150.9, 140.5, 128.2, 125.8, 122.2, 111.7, 53.7.

Figure 4.

Figure 4

Synthesis route to methyl-1,3-benzoxazole-2-carboxyl­ate.

Single crystals of the title compound, suitable for X-ray analysis, were grown by slow evaporation of a di­chloro­methane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were fixed geometrically and treated as riding atoms with C—H = 0.95 Å (aromatic) or 0.98 Å (CH3), with U iso(H) = 1.2U eq(C) or 1.5U eq(CH3).

Table 4. Experimental details.

Crystal data
Chemical formula C9H7NO3
M r 177.16
Crystal system, space group Monoclinic, P21
Temperature (K) 193
a, b, c (Å) 6.8165 (3), 4.4676 (2), 13.2879 (6)
β (°) 95.1319 (16)
V3) 403.04 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.40 × 0.30 × 0.10
 
Data collection
Diffractometer Bruker D8-Venture Photon III detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.698, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9084, 1954, 1860
R int 0.022
(sin θ/λ)max−1) 0.667
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.030, 0.077, 1.10
No. of reflections 1954
No. of parameters 119
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.16

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2020), PLATON (Spek 2020) and publCIF (Westrip 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010094/dj2033sup1.cif

e-77-01078-sup1.cif (280.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010094/dj2033Isup3.hkl

e-77-01078-Isup3.hkl (156.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010094/dj2033Isup4.cml

CCDC reference: 2112709

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C9H7NO3 F(000) = 184
Mr = 177.16 Dx = 1.460 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 6.8165 (3) Å Cell parameters from 6695 reflections
b = 4.4676 (2) Å θ = 3.3–28.2°
c = 13.2879 (6) Å µ = 0.11 mm1
β = 95.1319 (16)° T = 193 K
V = 403.04 (3) Å3 Plate, colourless
Z = 2 0.40 × 0.30 × 0.10 mm

Data collection

Bruker D8-Venture Photon III detector diffractometer 1860 reflections with I > 2σ(I)
Radiation source: Fine-focus sealed tube Rint = 0.022
Phi and ω scans θmax = 28.3°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −8→9
Tmin = 0.698, Tmax = 0.746 k = −5→5
9084 measured reflections l = −17→17
1954 independent reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.0403P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
1954 reflections Δρmax = 0.20 e Å3
119 parameters Δρmin = −0.16 e Å3
1 restraint

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.25255 (16) 0.3885 (3) 0.69933 (9) 0.0329 (3)
O2 0.43981 (19) −0.0004 (3) 0.57993 (9) 0.0382 (3)
O3 0.73220 (17) 0.2017 (3) 0.63833 (9) 0.0341 (3)
N1 0.54541 (19) 0.5493 (3) 0.77177 (10) 0.0277 (3)
C1 0.4528 (2) 0.3789 (4) 0.70473 (12) 0.0296 (3)
C2 0.5378 (2) 0.1703 (4) 0.63294 (12) 0.0297 (3)
C3 0.8319 (3) 0.0125 (4) 0.57015 (13) 0.0381 (4)
H3A 0.794777 −0.196824 0.579791 0.057*
H3B 0.974729 0.034297 0.584461 0.057*
H3C 0.793506 0.072127 0.500188 0.057*
C4 0.2149 (2) 0.5919 (4) 0.77264 (12) 0.0291 (3)
C5 0.3947 (2) 0.6919 (4) 0.81779 (11) 0.0273 (3)
C6 0.4014 (2) 0.9009 (4) 0.89607 (13) 0.0347 (4)
H6 0.522730 0.971603 0.928121 0.042*
C7 0.2220 (3) 0.9998 (4) 0.92465 (14) 0.0401 (4)
H7 0.220300 1.141802 0.977785 0.048*
C8 0.0429 (3) 0.8959 (5) 0.87719 (15) 0.0406 (4)
H8 −0.076652 0.971435 0.898830 0.049*
C9 0.0342 (2) 0.6878 (5) 0.80018 (14) 0.0370 (4)
H9 −0.087048 0.615698 0.768384 0.044*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0259 (5) 0.0362 (6) 0.0359 (6) −0.0064 (5) −0.0013 (4) 0.0001 (5)
O2 0.0406 (6) 0.0349 (6) 0.0380 (6) −0.0087 (5) −0.0024 (5) −0.0035 (5)
O3 0.0315 (6) 0.0342 (6) 0.0364 (6) −0.0025 (5) 0.0009 (4) −0.0061 (5)
N1 0.0241 (6) 0.0274 (6) 0.0312 (6) −0.0017 (5) 0.0008 (4) 0.0002 (5)
C1 0.0288 (7) 0.0286 (7) 0.0311 (7) −0.0048 (6) 0.0007 (6) 0.0048 (6)
C2 0.0329 (8) 0.0264 (7) 0.0292 (7) −0.0042 (6) −0.0006 (6) 0.0039 (6)
C3 0.0384 (9) 0.0380 (10) 0.0381 (8) 0.0030 (8) 0.0047 (7) −0.0042 (8)
C4 0.0259 (7) 0.0305 (8) 0.0308 (7) −0.0049 (6) 0.0010 (5) 0.0063 (6)
C5 0.0233 (7) 0.0278 (7) 0.0306 (7) −0.0019 (6) 0.0013 (5) 0.0057 (6)
C6 0.0311 (8) 0.0357 (8) 0.0366 (8) −0.0030 (7) −0.0006 (6) −0.0014 (7)
C7 0.0438 (10) 0.0370 (9) 0.0407 (9) 0.0020 (8) 0.0096 (7) −0.0015 (8)
C8 0.0302 (8) 0.0431 (10) 0.0505 (10) 0.0040 (8) 0.0146 (7) 0.0107 (9)
C9 0.0220 (7) 0.0429 (9) 0.0461 (9) −0.0035 (7) 0.0032 (6) 0.0104 (8)

Geometric parameters (Å, º)

O1—C1 1.3610 (19) C4—C9 1.384 (2)
O1—C4 1.373 (2) C4—C5 1.390 (2)
O2—C2 1.200 (2) C5—C6 1.395 (2)
O3—C2 1.3281 (19) C6—C7 1.385 (3)
O3—C3 1.452 (2) C6—H6 0.9500
N1—C1 1.293 (2) C7—C8 1.402 (3)
N1—C5 1.395 (2) C7—H7 0.9500
C1—C2 1.488 (2) C8—C9 1.380 (3)
C3—H3A 0.9800 C8—H8 0.9500
C3—H3B 0.9800 C9—H9 0.9500
C3—H3C 0.9800
C1—O1—C4 103.51 (12) C9—C4—C5 123.92 (17)
C2—O3—C3 115.17 (14) C4—C5—N1 108.64 (15)
C1—N1—C5 103.74 (13) C4—C5—C6 120.36 (15)
N1—C1—O1 116.33 (15) N1—C5—C6 131.00 (14)
N1—C1—C2 128.06 (14) C7—C6—C5 116.58 (16)
O1—C1—C2 115.61 (13) C7—C6—H6 121.7
O2—C2—O3 126.82 (17) C5—C6—H6 121.7
O2—C2—C1 123.11 (16) C6—C7—C8 121.71 (18)
O3—C2—C1 110.07 (14) C6—C7—H7 119.1
O3—C3—H3A 109.5 C8—C7—H7 119.1
O3—C3—H3B 109.5 C9—C8—C7 122.32 (17)
H3A—C3—H3B 109.5 C9—C8—H8 118.8
O3—C3—H3C 109.5 C7—C8—H8 118.8
H3A—C3—H3C 109.5 C8—C9—C4 115.10 (16)
H3B—C3—H3C 109.5 C8—C9—H9 122.4
O1—C4—C9 128.30 (15) C4—C9—H9 122.4
O1—C4—C5 107.78 (14)
C5—N1—C1—O1 0.05 (19) C9—C4—C5—N1 179.93 (15)
C5—N1—C1—C2 −179.34 (15) O1—C4—C5—C6 −179.61 (14)
C4—O1—C1—N1 0.03 (18) C9—C4—C5—C6 0.2 (2)
C4—O1—C1—C2 179.50 (13) C1—N1—C5—C4 −0.11 (17)
C3—O3—C2—O2 1.7 (2) C1—N1—C5—C6 179.60 (17)
C3—O3—C2—C1 −178.99 (13) C4—C5—C6—C7 −0.2 (2)
N1—C1—C2—O2 172.61 (18) N1—C5—C6—C7 −179.92 (16)
O1—C1—C2—O2 −6.8 (2) C5—C6—C7—C8 −0.1 (3)
N1—C1—C2—O3 −6.7 (2) C6—C7—C8—C9 0.6 (3)
O1—C1—C2—O3 173.92 (14) C7—C8—C9—C4 −0.6 (3)
C1—O1—C4—C9 −179.89 (17) O1—C4—C9—C8 180.00 (16)
C1—O1—C4—C5 −0.10 (16) C5—C4—C9—C8 0.2 (3)
O1—C4—C5—N1 0.14 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···N1i 0.95 2.53 3.377 (2) 149
C3—H3C···O2ii 0.98 2.65 3.389 (2) 133

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1.

References

  1. Boga, C., Bordoni, S., Casarin, L., Micheletti, G. & Monari, M. (2018). Molecules, 23, 171. [DOI] [PMC free article] [PubMed]
  2. Boominathan, S. S. K., Hu, W.-P., Senadi, G. C., Vandavasi, J. K. & Wang, J.-J. (2014). Chem. Commun. 50, 6726–6728. [DOI] [PubMed]
  3. Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Campbell, J. E., Yang, J. & Day, G. M. (2017). J. Mater. Chem. C. 5, 7574–7584.
  5. Carayon, C. & Fery-Forgues, S. (2017). Photochem. Photobiol. Sci. 16, 1020–1035. [DOI] [PubMed]
  6. Demmer, C. S. & Bunch, L. (2015). Eur. J. Med. Chem. 97, 778–785. [DOI] [PubMed]
  7. Deng, S., Chen, H., Ma, X., Zhou, Y., Yang, K., Lan, Y. & Song, Q. (2019). Chem. Sci. 10, 6828–6833. [DOI] [PMC free article] [PubMed]
  8. Desiraju, G. R. & Gavezzotti, A. (1989). Acta Cryst. B45, 473–482.
  9. Dickoré, K., Sasse, K. & Bode, K.-D. (1970). Justus Liebigs Ann. Chem. 733, 70–87.
  10. Fenner, S. & Ackermann, L. (2016). Green Chem. 18, 3804–3807.
  11. Fery-Forgues, S. & Vanucci-Bacqué, C. (2021). Top. Curr. Chem. (Z.), 379, 32. [DOI] [PubMed]
  12. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  13. Iasco, O., Novitchi, G., Jeanneau, E., Tommasino, J. B., Roques, N. & Luneau, D. (2012). Inorg. Chem. 51, 2588–2596. [DOI] [PubMed]
  14. Inomata, H., Ogata, K., Fukuzawa, S. & Hou, Z. (2012). Org. Lett. 14, 3986–3989. [DOI] [PubMed]
  15. Jacobs, L., de Kock, C., Taylor, D., Pelly, S. C. & Blackie, M. A. L. (2018). Bioorg. Med. Chem. 26, 5730–5741. [DOI] [PubMed]
  16. Kamal, U., Javed, N. M. & Arun, K. (2020). Asia. J. Pharm. Clin. Res. pp. 28–41.
  17. Koshelev, D. S., Chikineva, T. Y., Kozhevnikova (Khudoleeva), V. Y., Medvedko, A. V., Vashchenko, A. A., Goloveshkin, A. S., Tsymbarenko, D. M., Averin, A. A., Meschkov, A., Schepers, U., Vatsadze, S. Z. & Utochnikova, V. V. (2019). Dyes Pigments, 170, 107604.
  18. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  19. Lim, J., Osowska, K., Armitage, J. A., Martin, B. R. & Miljanić, O. S. (2012). CrystEngComm, 14, 6152–6162.
  20. Ling, K.-Q., Cai, H., Ye, J.-H. & Xu, J.-H. (1999). Tetrahedron, 55, 1707–1716.
  21. Liu, S., Zhu, Z.-Q., Hu, Z.-Y., Tang, J. & Yuan, E. (2021). Org. Biomol. Chem. 19, 1616–1619. [DOI] [PubMed]
  22. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  23. Möller, H. (1971). Justus Liebigs Ann. Chem. 749, 1–11.
  24. Musser, J. H., Brown, R. E., Loev, B., Bailey, K., Jones, H., Kahen, R., Huang, F., Khandwala, A., Leibowitz, M. & Sonnino-Goldman, P. (1984). J. Med. Chem. 27, 121–125. [DOI] [PubMed]
  25. Musser, J. H., Hudec, T. T. & Bailey, K. (1984). Synth. Commun. 14, 947–953.
  26. Osowska, K. & Miljanić, O. S. (2010). Chem. Commun. 46, 4276–4278. [DOI] [PubMed]
  27. Piątek, A. M., Sadowska, A., Chapuis, C. & Jurczak, J. (2011). Helv. Chim. Acta, 94, 2141–2167.
  28. Shang, Y., Hao, Q., Jiang, K., He, M. & Wang, J. (2020). Bioorg. Med. Chem. Lett. 30, 127118. [DOI] [PubMed]
  29. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  30. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  32. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  33. Tangellamudi, N. D., Shinde, S. B., Pooladanda, V., Godugu, C. & Balasubramanian, S. (2018). Bioorg. Med. Chem. Lett. 28, 3639–3647. [DOI] [PubMed]
  34. Vechorkin, O., Hirt, N. & Hu, X. (2010). Org. Lett. 12, 3567–3569. [DOI] [PubMed]
  35. Vodela, S., Mekala, R. V. R., Danda, R. R. & Kodhati, V. (2013). Chin. Chem. Lett. 24, 625–628.
  36. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  37. Xing, Q.,Lv, H., Xia, C.,& Li. F. (2017). Chem. Commun. 53, 6914–6917. [DOI] [PubMed]
  38. Zhang, L., Cheng, J., Ohishi, T. & Hou, Z. (2010). Angew. Chem. Int. Ed. 49, 8670–8673. [DOI] [PubMed]
  39. Zhu, Z.-Q., Liu, S., Hu, Z.-Y., Xie, Z.-B., Tang, J. & Le, Z.-G. (2021). Adv. Synth. Catal. 363, 2568–2572.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010094/dj2033sup1.cif

e-77-01078-sup1.cif (280.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010094/dj2033Isup3.hkl

e-77-01078-Isup3.hkl (156.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989021010094/dj2033Isup4.cml

CCDC reference: 2112709

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES