Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Oct 8;77(Pt 11):1082–1086. doi: 10.1107/S2056989021010033

Synthesis and crystal structure of di­aqua­bis­(hexa­methyl­enetramine-κN)bis­(thio­cyanato-κN)cobalt(II)–hexa­methyl­ene­tetra­mine–aceto­nitrile (1/2/2)

Christoph Krebs a,*, Magdalena Ceglarska b, Christian Näther a
PMCID: PMC8587985  PMID: 34868640

The crystal structure of the title compound consists of discrete neutral complexes in which the cobalt cations are octa­hedrally coordinated by two N-bonded thio­cyanate anions, two hexa­methyl­ene­tetra­amine ligands and two water mol­ecules with additional aceto­nitrile and hexa­methyl­ene­tetra­mine solvate mol­ecules, which are hydrogen bonded to the complexes.

Keywords: crystal structure, cobalt thio­cyanate, hexa­methyl­ene­tetra­mine, discrete complex, hydrogen bonding

Abstract

The crystal structure of the title solvated coordination compound, [Co(NCS)2(C6H12N4)2(H2O)2]·2C6H12N4·2C2H3N, consists of discrete complexes in which the Co2+ cations (site symmetry Inline graphic ) are sixfold coordinated by two N-bonded thio­cyanate anions, two water mol­ecules and two hexa­methyl­ene­tetra­mine (HMT) mol­ecules to generate distorted trans-CoN4O2 octa­hedra. The discrete complexes are each connected by two HMT solvate mol­ecules into chains via strong O—H⋯N hydrogen bonds. These chains are further linked by additional O—H⋯N and C—H⋯N and C—H⋯S hydrogen bonds into a three-dimensional network. Within this network, channels are formed that propagate along the c-axis direction and in which additional aceto­nitrile solvent mol­ecules are embedded, which are hydrogen bonded to the network. The CN stretching vibration of the thio­cyanate ion occurs at 2062 cm−1, which is in agreement with the presence of N-bonded anionic ligands. XRPD investigations prove the formation of the title compound as the major phase accompanied by a small amount of a second unknown phase.

Chemical context

For several years, we have been inter­ested in the synthesis of coordination compounds based on cobalt thio­cyanate and additional co-ligands that in most cases consist of N-donor ligands. As is the case for, e.g. cyanides and azides, even this anionic ligand is able to mediate reasonable magnetic exchange (Mekuimemba et al., 2018; Mousavi et al., 2020; Palion-Gazda et al., 2015). Therefore, we have focused especially on compounds in which the metal cations are linked by anionic ligands into coordination polymers. Most of the compounds with monocoordinating co-ligands consist of linear chains and show anti­ferromagnetic or ferromagnetic ordering or are single-chain magnets (Shi et al., 2006; Jin et al., 2007; Prananto et al., 2017; Mautner et al., 2018; Rams et al., 2020; Ceglarska et al., 2021; Werner et al., 2014, 2015), whereas in compounds with non-linear chains the magnetic exchange is completely suppressed (Böhme et al., 2020). In some cases, layered compounds are obtained, that are exclusively ferromagnets (Suckert et al., 2016; Wellm et al., 2020). All these compounds have in common that only monocoordinating co-ligands are used, which means that the thio­cyanate substructures are not additionally connected into structures of higher dimensionality. We have therefore tried to link the Co(NCS)2 chains or layers by bridging co-ligands.

In this context, we became inter­ested in urotropine, C6H12N4 (also called hexa­methyl­ene­tetra­mine or 1,3,5,7-tetra­aza­adamantane), as a co-ligand. On one hand, this ligand is magnetically silent and on the other hand it is able to form tetra­hedral networks and some examples have been reported in the literature (Czubacka et al., 2012; Li et al., 2012). It is noted that some compounds with this ligand and Co(NCS)2 have already been reported in the literature. In all cases, discrete complexes are formed in which the cobalt cations are octa­hedrally coordinated by two thio­cyanate anions and some water, methanol or urotropine ligands (see Database survey). Compounds with urotropine in which the cobalt cations are linked by bridging thio­cyanate anions have not been reported. graphic file with name e-77-01082-scheme1.jpg

In the course of this project, we reacted Co(NCS)2 with urotropine in aceto­nitrile, resulting in the formation of a light-yellow-colored crystalline phase, for which IR spectroscopic investigations revealed the CN stretching vibration to be 2062 cm−1. This indicates the presence of only N-bonded thio­cyanate anions (see Fig. S1 in the supporting information). To identify this compound, a single-crystal structure analysis was performed, which proves that a discrete complex has formed. Comparison of the X-ray powder pattern of this crystalline phase with that calculated from single-crystal data reveals that the title compound has formed as the major phase, but that there are still some reflections indicating the formation of an additional and unknown crystalline phase (Fig. S2).

Structural commentary

In the crystal structure of the title compound, [Co(NCS)2(H2O)2(C6H12N4)2]·(C6H12N4)2(C2H3N)2, the cobalt cations are each octa­hedrally coordinated by two N-bonded thio­cyanate anions, two urotropine mol­ecules and two water mol­ecules to form discrete complexes that are located on centers of inversion (Fig. 1). The Co1—O1 and the thio­cyanate Co1—N1 bond lengths are similar, whereas the Co1—N11 bond length to the neutral co-ligand is significantly longer (Table 1). The cis-angles around the Co centers deviate from ideal values, showing that the octa­hedra are slightly distorted [range of cis bond angles = 87.51 (4)–92.49 (4)°]. This is also apparent from the value of the octa­hedral angle variance of 2.540°2 and the mean octa­hedral quadratic elong­ation of 1.006 calculated by the method of Robinson et al. (1971).

Figure 1.

Figure 1

Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry operation for the generation of equivalent atoms: (A) −x + 1, −y + 1, −z + 1.

Table 1. Selected geometric parameters (Å, °).

Co1—N1 2.0744 (10) Co1—N11 2.3112 (9)
Co1—O1 2.0661 (8)    
       
C1—N1—Co1 161.53 (9)    

Supra­molecular features

The crystal structure of the title compound is dominated by a variety of inter­molecular O—H⋯N, C—H⋯N and C—H⋯S hydrogen bonds (Table 2). Each complex mol­ecule is connected to two adjacent non-coordinating urotropine solvate mol­ecules via O—H⋯N hydrogen bonds from one of the water H atoms. The O—H⋯N angle is close to linear and the N⋯H distance amounts to 1.85 (2) Å, which indicates a very strong inter­action (Fig. 2). The complex mol­ecules are linked by the urotropine solvate mol­ecules into chains (Fig. 3). The chains are further connected by an O—H⋯N hydrogen bond arising from the second water hydrogen atom into layers, and these layers are further linked into a three-dimensional network by a number of weak C—H⋯N and C—H⋯S hydrogen bonds. In this way, channels are formed along the crystallographic c-axis direction in which additional aceto­nitrile mol­ecules are located (Fig. 4). These mol­ecules are linked to the main network via C—H⋯N inter­actions (Table 2).

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N21 0.88 (2) 1.85 (2) 2.7298 (13) 171.8 (18)
O1—H1B⋯N22i 0.88 (2) 2.01 (2) 2.8759 (13) 167.7 (19)
C12—H12B⋯O1 0.97 2.60 3.0752 (14) 111
C13—H13A⋯S1i 0.97 2.95 3.8089 (12) 148
C13—H13B⋯N24ii 0.97 2.66 3.5045 (16) 146
C16—H16A⋯O1iii 0.97 2.52 3.0571 (14) 115
C16—H16B⋯N1 0.97 2.70 3.2713 (15) 118
C21—H21A⋯S1 0.97 3.00 3.9471 (12) 165
C23—H23B⋯S1iv 0.97 2.89 3.6683 (12) 138
C26—H26A⋯N31iii 0.97 2.56 3.4794 (17) 158
C32—H32A⋯S1v 0.96 3.02 3.9560 (15) 166
C32—H32B⋯N23vi 0.96 2.58 3.4685 (16) 154
C32—H32C⋯N14v 0.96 2.61 3.4750 (17) 149

Symmetry codes: (i) x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}; (ii) -x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z+2; (v) -x, -y+1, -z+1; (vi) x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}.

Figure 2.

Figure 2

View of a discrete complex that is connected to two hexa­methyl­enetramine solvent mol­ecules via O—H⋯N hydrogen bonds (dashed lines).

Figure 3.

Figure 3

Part of the crystal structure of the title compound showing the connection of discrete complexes by hexa­methyl­enetramine solvate mol­ecules via O—H⋯N hydrogen bonds (dashed lines).

Figure 4.

Figure 4

Crystal structure of the title compound viewed along the c-axis.

Database survey

Some crystal structures have already been deposited in the Cambridge Structure Database (CSD version 5.42, last update November 2020; Groom et al., 2016) that contain cobalt cations, thio­cyanate anions and urotropine mol­ecules. These include [Co(NCS)2(C6H12N4)(CH3OH)2(H2O)] (refcode: POFGAT; Shang et al., 2008), which consists of neutral complexes in which the cobalt cations are octa­hedrally coord­inated by the N atoms of two thio­cyanate anions, two methanol, one water and one urotropine ligand to generate a mer-CoN3O3 coordination polyhedron. [Co(NCS)2(H2O)4]·2C6H12N4 (XILXOG; Li et al., 2007) is a discrete complex with a cobalt cation coordinated octa­hedrally by two thio­cyanate anions and four water ligands (as a trans-CoN2O4 octa­hedron) with two additional urotropine solvent mol­ecules. The structure of [Co(NCS)2(C6H12N4)2(H2O)2][Co(NCS)2(H2O)4]·2H2O has been determined several times (MOTNIS; Liu et al., 2002; MOTNIS01; Zhang et al., 1999; MOTNIS02; Chakraborty et al., 2006; MOTNIS03; Lu et al., 2010) and contains two discrete octa­hedral cobalt complexes: one metal ion is coord­inated by two thio­cyanate anions, two water mol­ecules and two urotropine mol­ecules (trans-CoN4O2 octa­hedron) and the other by two thio­cyanate anions and four water mol­ecules (trans-CoO4N2 octa­hedron); two water mol­ecules of crystallization complete the structure.

Synthesis and crystallization

Synthesis

Co(NCS)2 and urotropine were purchased from Merck. All chemicals were used without further purification.

Light-yellow-colored single crystals suitable for single crystal X-ray analysis were obtained after heating 0.15 mmol Co(NCS)2 (26.3 mg) and 0.30 mmol urotropine (42.1 mg) in 0.5 ml MeCN up to 353 K and then storing the mixture at 333 K overnight.

Since it was not possible to obtain a crystalline powder of the title component from solution, a sample was taken from the single crystal batch, crushed and measured.

IR: ν = 2967 (w), 2958 (sh), 2930 (sh), 2920 (w), 2881 (w), 2309 (vw), 2281 (w), 2252 (vw), 2234 (vw), 2185 (vw), 2168 (vw), 2062 (s), 1952 (vw), 1684–1560 (vw), 1461 (m), 1417 (sh), 1378 (w), 1372 (w), 1363 (w), 1325 (vw), 1231 (s), 1049 (w), 994 (vs), 935 (w), 917 (m), 825 (m), 800 (m), 782 (m), 770 (m), 731 (sh), 690 (s), 662 (s), 506 (m) cm−1.

Experimental details

The data collection for the single-crystal structure analysis was performed using an XtaLAB Synergy, Dualflex, HyPix diffractometer from Rigaku with Cu Kα radiation.

The PXRD measurement was performed with Cu Kα1 radiation (λ = 1.540598 Å) using a Stoe transmission powder diffraction system (STADI P) equipped with a MYTHEN 1K detector and a Johansson-type Ge(111) monochromator.

The IR spectrum was measured using an ATI Mattson Genesis Series FTIR spectrometer, control software: WINFIRST, from ATI Mattson.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All non-hydrogen atoms were refined anisotropically. Water O atoms were freely refined. The C-bound H atoms were located in a difference map but positioned with idealized geometry (C—H = 0.96–0.97 Å, methyl H atoms allowed to rotate but not to tip) and were refined isotropically with U iso(H) = 1.2U eq(C) (1.5 for methyl H atoms) using a riding model.

Table 3. Experimental details.

Crystal data
Chemical formula [Co(NCS)2(C6H12N4)2(H2O)2]·2C6H12N4·2C2H3N
M r 854.01
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.0008 (2), 12.5903 (2), 12.9988 (2)
β (°) 114.899 (2)
V3) 1929.93 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 4.99
Crystal size (mm) 0.20 × 0.04 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.779, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25388, 4088, 3972
R int 0.021
(sin θ/λ)max−1) 0.635
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.025, 0.071, 1.09
No. of reflections 4088
No. of parameters 259
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.39

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010033/hb7982sup1.cif

e-77-01082-sup1.cif (770.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010033/hb7982Isup2.hkl

e-77-01082-Isup2.hkl (325.9KB, hkl)

Fig. S1. Experimental (top) and calculated X-ray powder pattern (bottom) of the title compound. The title compound is contaminated with at least one additional unknown phase. For the calculation of the powder pattern the data obtained from a a single crystal measured at 24 C was used. DOI: 10.1107/S2056989021010033/hb7982sup3.png

Fig. S2. IR spectra of the title compound. The value of the CN stretching vibration of the thiocyanat anions is given. DOI: 10.1107/S2056989021010033/hb7982sup4.png

CCDC reference: 2112185

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Co(NCS)2(C6H12N4)2(H2O)2]·2C6H12N4·2C2H3N F(000) = 906
Mr = 854.01 Dx = 1.470 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 13.0008 (2) Å Cell parameters from 20611 reflections
b = 12.5903 (2) Å θ = 3.7–77.9°
c = 12.9988 (2) Å µ = 4.99 mm1
β = 114.899 (2)° T = 100 K
V = 1929.93 (6) Å3 Needle, light yellow
Z = 2 0.20 × 0.04 × 0.03 mm

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 4088 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 3972 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.021
Detector resolution: 10.0000 pixels mm-1 θmax = 78.0°, θmin = 3.8°
ω scans h = −12→16
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) k = −15→15
Tmin = 0.779, Tmax = 1.000 l = −16→16
25388 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.5759P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
4088 reflections Δρmax = 0.20 e Å3
259 parameters Δρmin = −0.39 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.500000 0.500000 0.500000 0.01162 (8)
N1 0.49434 (8) 0.46285 (8) 0.65301 (8) 0.01532 (19)
C1 0.46823 (9) 0.46250 (9) 0.72848 (10) 0.0135 (2)
S1 0.43052 (3) 0.46382 (2) 0.83365 (3) 0.02096 (8)
O1 0.62345 (7) 0.61232 (7) 0.58179 (7) 0.01480 (16)
H1A 0.6441 (16) 0.6265 (15) 0.6543 (17) 0.034 (5)*
H1B 0.6416 (17) 0.6677 (18) 0.5509 (18) 0.046 (6)*
N11 0.36295 (8) 0.62692 (8) 0.47457 (8) 0.01335 (19)
N12 0.31137 (9) 0.78613 (8) 0.55340 (9) 0.0178 (2)
N13 0.23595 (9) 0.76282 (8) 0.34775 (9) 0.0188 (2)
C11 0.32652 (10) 0.68571 (9) 0.36510 (10) 0.0175 (2)
H11A 0.391355 0.722732 0.363717 0.021*
H11B 0.300127 0.635132 0.303039 0.021*
C12 0.40035 (10) 0.70880 (9) 0.56706 (10) 0.0163 (2)
H12A 0.423172 0.673366 0.639612 0.020*
H12B 0.465940 0.746048 0.567719 0.020*
C13 0.27803 (11) 0.83883 (9) 0.44318 (11) 0.0194 (2)
H13A 0.342809 0.876660 0.442661 0.023*
H13B 0.219187 0.890515 0.432994 0.023*
C14 0.21257 (10) 0.72912 (10) 0.55236 (11) 0.0194 (2)
H14A 0.153212 0.779834 0.543355 0.023*
H14B 0.233623 0.693517 0.624588 0.023*
C15 0.13874 (10) 0.70598 (10) 0.35186 (10) 0.0196 (2)
H15A 0.110306 0.654944 0.290289 0.023*
H15B 0.078532 0.756406 0.340611 0.023*
C16 0.25985 (9) 0.57494 (9) 0.47493 (10) 0.0156 (2)
H16A 0.231942 0.522809 0.414419 0.019*
H16B 0.280830 0.537541 0.546167 0.019*
N14 0.16833 (8) 0.64994 (8) 0.46020 (9) 0.0173 (2)
N21 0.70755 (8) 0.64919 (8) 0.80957 (8) 0.01507 (19)
N22 0.71117 (9) 0.72608 (8) 0.98413 (9) 0.0167 (2)
N23 0.87597 (9) 0.74634 (8) 0.93941 (9) 0.0184 (2)
N24 0.83066 (8) 0.57193 (8) 0.99309 (8) 0.0165 (2)
C21 0.64056 (10) 0.70037 (9) 0.86374 (10) 0.0166 (2)
H21A 0.579657 0.653203 0.858804 0.020*
H21B 0.606714 0.765088 0.823090 0.020*
C22 0.75820 (10) 0.55052 (9) 0.87319 (10) 0.0159 (2)
H22A 0.697996 0.502245 0.867830 0.019*
H22B 0.802836 0.516073 0.838924 0.019*
C23 0.76143 (11) 0.62520 (10) 1.04253 (10) 0.0184 (2)
H23A 0.808248 0.639798 1.121947 0.022*
H23B 0.700979 0.577825 1.038421 0.022*
C24 0.80542 (11) 0.79507 (10) 0.98977 (11) 0.0195 (2)
H24A 0.774373 0.861136 0.950611 0.023*
H24B 0.852716 0.811921 1.068513 0.023*
C25 0.92101 (10) 0.64522 (10) 0.99882 (10) 0.0197 (2)
H25A 0.966605 0.611322 0.965300 0.024*
H25B 0.969896 0.659937 1.077698 0.024*
C26 0.80131 (10) 0.72159 (10) 0.82069 (10) 0.0180 (2)
H26A 0.845870 0.689137 0.785169 0.022*
H26B 0.769710 0.787150 0.780642 0.022*
N31 0.02532 (10) 0.44658 (10) 0.24906 (11) 0.0297 (3)
C31 −0.03061 (10) 0.46842 (10) 0.29362 (11) 0.0198 (2)
C32 −0.10137 (13) 0.49834 (10) 0.35086 (13) 0.0242 (3)
H32A −0.179624 0.497188 0.297589 0.036*
H32B −0.081381 0.568548 0.381669 0.036*
H32C −0.089767 0.449026 0.411080 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.01283 (13) 0.01259 (14) 0.01083 (13) −0.00162 (9) 0.00635 (10) −0.00092 (9)
N1 0.0171 (5) 0.0161 (5) 0.0139 (5) −0.0003 (4) 0.0077 (4) 0.0002 (4)
C1 0.0131 (5) 0.0120 (5) 0.0148 (5) −0.0004 (4) 0.0052 (4) −0.0002 (4)
S1 0.02595 (16) 0.02425 (17) 0.01980 (15) 0.00071 (11) 0.01660 (12) −0.00011 (11)
O1 0.0176 (4) 0.0156 (4) 0.0124 (4) −0.0034 (3) 0.0074 (3) −0.0018 (3)
N11 0.0151 (4) 0.0126 (4) 0.0136 (4) −0.0011 (3) 0.0072 (4) −0.0004 (4)
N12 0.0189 (5) 0.0153 (5) 0.0207 (5) 0.0013 (4) 0.0099 (4) −0.0024 (4)
N13 0.0229 (5) 0.0147 (5) 0.0199 (5) 0.0035 (4) 0.0099 (4) 0.0022 (4)
C11 0.0226 (6) 0.0159 (5) 0.0164 (5) 0.0025 (4) 0.0104 (5) 0.0022 (4)
C12 0.0164 (5) 0.0145 (5) 0.0178 (5) 0.0002 (4) 0.0071 (4) −0.0040 (4)
C13 0.0232 (6) 0.0125 (5) 0.0245 (6) 0.0008 (4) 0.0120 (5) 0.0004 (4)
C14 0.0208 (6) 0.0197 (6) 0.0220 (6) 0.0026 (5) 0.0133 (5) −0.0008 (5)
C15 0.0186 (5) 0.0175 (6) 0.0197 (6) 0.0023 (4) 0.0051 (5) 0.0012 (4)
C16 0.0140 (5) 0.0133 (5) 0.0201 (5) 0.0002 (4) 0.0078 (4) 0.0008 (4)
N14 0.0157 (5) 0.0156 (5) 0.0216 (5) 0.0024 (4) 0.0088 (4) 0.0013 (4)
N21 0.0186 (5) 0.0135 (4) 0.0142 (4) 0.0001 (4) 0.0080 (4) −0.0003 (4)
N22 0.0219 (5) 0.0151 (5) 0.0170 (5) −0.0011 (4) 0.0119 (4) −0.0011 (4)
N23 0.0202 (5) 0.0178 (5) 0.0195 (5) −0.0041 (4) 0.0107 (4) −0.0024 (4)
N24 0.0174 (5) 0.0173 (5) 0.0153 (5) −0.0001 (4) 0.0074 (4) 0.0009 (4)
C21 0.0172 (5) 0.0160 (5) 0.0178 (6) 0.0015 (4) 0.0084 (4) 0.0002 (4)
C22 0.0194 (5) 0.0129 (5) 0.0159 (5) −0.0001 (4) 0.0079 (4) −0.0011 (4)
C23 0.0240 (6) 0.0190 (6) 0.0159 (5) 0.0006 (5) 0.0120 (5) 0.0017 (4)
C24 0.0252 (6) 0.0159 (5) 0.0203 (6) −0.0051 (5) 0.0124 (5) −0.0059 (4)
C25 0.0162 (5) 0.0235 (6) 0.0189 (6) −0.0017 (5) 0.0067 (4) −0.0007 (5)
C26 0.0247 (6) 0.0171 (5) 0.0167 (6) −0.0022 (4) 0.0130 (5) 0.0000 (4)
N31 0.0242 (6) 0.0341 (6) 0.0311 (6) −0.0005 (5) 0.0119 (5) −0.0095 (5)
C31 0.0180 (6) 0.0164 (6) 0.0216 (6) 0.0005 (5) 0.0051 (5) −0.0009 (5)
C32 0.0226 (7) 0.0262 (7) 0.0267 (7) 0.0014 (5) 0.0131 (6) 0.0011 (5)

Geometric parameters (Å, º)

Co1—N1i 2.0744 (10) C16—H16B 0.9700
Co1—N1 2.0744 (10) C16—N14 1.4670 (14)
Co1—O1i 2.0661 (8) N21—C21 1.4786 (14)
Co1—O1 2.0661 (8) N21—C22 1.4840 (14)
Co1—N11 2.3112 (9) N21—C26 1.4797 (15)
Co1—N11i 2.3112 (9) N22—C21 1.4788 (15)
N1—C1 1.1654 (16) N22—C23 1.4827 (15)
C1—S1 1.6352 (12) N22—C24 1.4784 (15)
O1—H1A 0.88 (2) N23—C24 1.4669 (15)
O1—H1B 0.88 (2) N23—C25 1.4763 (16)
N11—C11 1.4931 (14) N23—C26 1.4695 (15)
N11—C12 1.5008 (14) N24—C22 1.4673 (15)
N11—C16 1.4934 (14) N24—C23 1.4697 (15)
N12—C12 1.4645 (14) N24—C25 1.4707 (15)
N12—C13 1.4690 (16) C21—H21A 0.9700
N12—C14 1.4665 (15) C21—H21B 0.9700
N13—C11 1.4685 (15) C22—H22A 0.9700
N13—C13 1.4773 (16) C22—H22B 0.9700
N13—C15 1.4727 (16) C23—H23A 0.9700
C11—H11A 0.9700 C23—H23B 0.9700
C11—H11B 0.9700 C24—H24A 0.9700
C12—H12A 0.9700 C24—H24B 0.9700
C12—H12B 0.9700 C25—H25A 0.9700
C13—H13A 0.9700 C25—H25B 0.9700
C13—H13B 0.9700 C26—H26A 0.9700
C14—H14A 0.9700 C26—H26B 0.9700
C14—H14B 0.9700 N31—C31 1.1377 (18)
C14—N14 1.4764 (16) C31—C32 1.4554 (18)
C15—H15A 0.9700 C32—H32A 0.9600
C15—H15B 0.9700 C32—H32B 0.9600
C15—N14 1.4740 (15) C32—H32C 0.9600
C16—H16A 0.9700
N1i—Co1—N1 180.0 N11—C16—H16B 108.9
N1—Co1—N11i 92.49 (4) H16A—C16—H16B 107.7
N1i—Co1—N11i 87.51 (4) N14—C16—N11 113.40 (9)
N1—Co1—N11 87.51 (4) N14—C16—H16A 108.9
N1i—Co1—N11 92.49 (4) N14—C16—H16B 108.9
O1—Co1—N1i 90.32 (4) C15—N14—C14 107.93 (9)
O1i—Co1—N1i 89.68 (4) C16—N14—C14 108.13 (9)
O1—Co1—N1 89.68 (4) C16—N14—C15 107.69 (9)
O1i—Co1—N1 90.32 (4) C21—N21—C22 108.15 (9)
O1i—Co1—O1 180.0 C21—N21—C26 108.13 (9)
O1—Co1—N11 89.16 (3) C26—N21—C22 107.90 (9)
O1i—Co1—N11 90.84 (3) C21—N22—C23 107.32 (9)
O1—Co1—N11i 90.84 (3) C24—N22—C21 108.26 (9)
O1i—Co1—N11i 89.16 (3) C24—N22—C23 107.49 (9)
N11i—Co1—N11 180.0 C24—N23—C25 108.18 (9)
C1—N1—Co1 161.53 (9) C24—N23—C26 107.26 (9)
N1—C1—S1 179.08 (11) C26—N23—C25 107.92 (9)
Co1—O1—H1A 120.6 (12) C22—N24—C23 108.11 (9)
Co1—O1—H1B 127.1 (14) C22—N24—C25 108.12 (9)
H1A—O1—H1B 107.8 (18) C23—N24—C25 108.33 (9)
C11—N11—Co1 113.28 (7) N21—C21—N22 111.82 (9)
C11—N11—C12 106.78 (9) N21—C21—H21A 109.3
C11—N11—C16 107.17 (9) N21—C21—H21B 109.3
C12—N11—Co1 112.96 (7) N22—C21—H21A 109.3
C16—N11—Co1 109.60 (7) N22—C21—H21B 109.3
C16—N11—C12 106.68 (8) H21A—C21—H21B 107.9
C12—N12—C13 108.19 (9) N21—C22—H22A 109.2
C12—N12—C14 108.65 (9) N21—C22—H22B 109.2
C14—N12—C13 108.33 (10) N24—C22—N21 111.96 (9)
C11—N13—C13 108.05 (9) N24—C22—H22A 109.2
C11—N13—C15 108.54 (9) N24—C22—H22B 109.2
C15—N13—C13 107.73 (9) H22A—C22—H22B 107.9
N11—C11—H11A 109.0 N22—C23—H23A 109.1
N11—C11—H11B 109.0 N22—C23—H23B 109.1
N13—C11—N11 112.72 (9) N24—C23—N22 112.71 (9)
N13—C11—H11A 109.0 N24—C23—H23A 109.1
N13—C11—H11B 109.0 N24—C23—H23B 109.1
H11A—C11—H11B 107.8 H23A—C23—H23B 107.8
N11—C12—H12A 109.0 N22—C24—H24A 108.9
N11—C12—H12B 109.0 N22—C24—H24B 108.9
N12—C12—N11 112.74 (9) N23—C24—N22 113.15 (9)
N12—C12—H12A 109.0 N23—C24—H24A 108.9
N12—C12—H12B 109.0 N23—C24—H24B 108.9
H12A—C12—H12B 107.8 H24A—C24—H24B 107.8
N12—C13—N13 112.28 (10) N23—C25—H25A 109.1
N12—C13—H13A 109.1 N23—C25—H25B 109.1
N12—C13—H13B 109.1 N24—C25—N23 112.47 (10)
N13—C13—H13A 109.1 N24—C25—H25A 109.1
N13—C13—H13B 109.1 N24—C25—H25B 109.1
H13A—C13—H13B 107.9 H25A—C25—H25B 107.8
N12—C14—H14A 109.2 N21—C26—H26A 109.1
N12—C14—H14B 109.2 N21—C26—H26B 109.1
N12—C14—N14 112.24 (9) N23—C26—N21 112.70 (9)
H14A—C14—H14B 107.9 N23—C26—H26A 109.1
N14—C14—H14A 109.2 N23—C26—H26B 109.1
N14—C14—H14B 109.2 H26A—C26—H26B 107.8
N13—C15—H15A 109.1 N31—C31—C32 178.95 (14)
N13—C15—H15B 109.1 C31—C32—H32A 109.5
N13—C15—N14 112.61 (10) C31—C32—H32B 109.5
H15A—C15—H15B 107.8 C31—C32—H32C 109.5
N14—C15—H15A 109.1 H32A—C32—H32B 109.5
N14—C15—H15B 109.1 H32A—C32—H32C 109.5
N11—C16—H16A 108.9 H32B—C32—H32C 109.5
Co1—N11—C11—N13 177.50 (7) C16—N11—C12—N12 −56.82 (12)
Co1—N11—C12—N12 −177.30 (7) C21—N21—C22—N24 −58.62 (12)
Co1—N11—C16—N14 179.51 (7) C21—N21—C26—N23 59.00 (12)
N11—C16—N14—C14 −58.13 (12) C21—N22—C23—N24 58.82 (12)
N11—C16—N14—C15 58.26 (12) C21—N22—C24—N23 −58.16 (13)
N12—C14—N14—C15 −58.00 (12) C22—N21—C21—N22 58.99 (12)
N12—C14—N14—C16 58.24 (12) C22—N21—C26—N23 −57.76 (12)
N13—C15—N14—C14 58.10 (12) C22—N24—C23—N22 −58.82 (12)
N13—C15—N14—C16 −58.43 (12) C22—N24—C25—N23 59.03 (12)
C11—N11—C12—N12 57.52 (12) C23—N22—C21—N21 −58.65 (12)
C11—N11—C16—N14 −57.18 (12) C23—N22—C24—N23 57.48 (12)
C11—N13—C13—N12 −58.92 (12) C23—N24—C22—N21 58.22 (12)
C11—N13—C15—N14 58.66 (12) C23—N24—C25—N23 −57.90 (12)
C12—N11—C11—N13 −57.52 (12) C24—N22—C21—N21 57.10 (12)
C12—N11—C16—N14 56.90 (12) C24—N22—C23—N24 −57.44 (12)
C12—N12—C13—N13 58.99 (12) C24—N23—C25—N24 57.61 (12)
C12—N12—C14—N14 −58.86 (12) C24—N23—C26—N21 −58.72 (12)
C13—N12—C12—N11 −58.73 (12) C25—N23—C24—N22 −57.80 (13)
C13—N12—C14—N14 58.46 (12) C25—N23—C26—N21 57.63 (12)
C13—N13—C11—N11 58.71 (12) C25—N24—C22—N21 −58.86 (12)
C13—N13—C15—N14 −58.10 (12) C25—N24—C23—N22 58.11 (12)
C14—N12—C12—N11 58.67 (12) C26—N21—C21—N22 −57.60 (12)
C14—N12—C13—N13 −58.62 (12) C26—N21—C22—N24 58.13 (11)
C15—N13—C11—N11 −57.84 (12) C26—N23—C24—N22 58.38 (13)
C15—N13—C13—N12 58.16 (12) C26—N23—C25—N24 −58.14 (12)
C16—N11—C11—N13 56.49 (12)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···N21 0.88 (2) 1.85 (2) 2.7298 (13) 171.8 (18)
O1—H1B···N22ii 0.88 (2) 2.01 (2) 2.8759 (13) 167.7 (19)
C12—H12B···O1 0.97 2.60 3.0752 (14) 111
C13—H13A···S1ii 0.97 2.95 3.8089 (12) 148
C13—H13B···N24iii 0.97 2.66 3.5045 (16) 146
C16—H16A···O1i 0.97 2.52 3.0571 (14) 115
C16—H16B···N1 0.97 2.70 3.2713 (15) 118
C21—H21A···S1 0.97 3.00 3.9471 (12) 165
C23—H23B···S1iv 0.97 2.89 3.6683 (12) 138
C26—H26A···N31i 0.97 2.56 3.4794 (17) 158
C32—H32A···S1v 0.96 3.02 3.9560 (15) 166
C32—H32B···N23vi 0.96 2.58 3.4685 (16) 154
C32—H32C···N14v 0.96 2.61 3.4750 (17) 149

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, −y+1, −z+2; (v) −x, −y+1, −z+1; (vi) x−1, −y+3/2, z−1/2.

Funding Statement

This work was funded by Deutsche Forschungsgemeinschaft grant NA720/5-2; State of Schleswig-Holstein.

References

  1. Böhme, M., Jochim, A., Rams, M., Lohmiller, T., Suckert, S., Schnegg, A., Plass, W. & Näther, C. (2020). Inorg. Chem. 59, 5325–5338. [DOI] [PubMed]
  2. Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Ceglarska, M., Böhme, M., Neumann, T., Plass, W., Näther, C. & Rams, M. (2021). Phys. Chem. Chem. Phys. 23, 10281–10289. [DOI] [PubMed]
  4. Chakraborty, J., Samanta, B., Rosair, G., Gramlich, V., Salah El Fallah, M., Ribas, J., Matsushita, T. & Mitra, S. (2006). Polyhedron, 25, 3006–3016.
  5. Czubacka, E., Kruszynski, R. & Sieranski, T. (2012). Struct. Chem. 23, 451–459.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Jin, Y., Che, Y. X. & Zheng, J. M. (2007). J. Coord. Chem. 60, 2067–2074.
  8. Li, J., Meng, S., Zhang, J., Song, Y., Huang, Z., Zhao, H., Wei, H., Huang, W., Cifuentes, M. P., Humphrey, M. G. & Zhang, C. (2012). CrystEngComm, 14, 2787–2796.
  9. Li, X.-L., Niu, D.-Z. & Lu, Z.-S. (2007). Acta Cryst. E63, m2478.
  10. Liu, Q., Xi, H.-T., Sun, X.-Q., Zhu, J.-F. & Yu, K.-B. (2002). Chin. J. Struct. Chem. 21, 355–359.
  11. Lu, J., Liu, H.-T., Zhang, X.-X., Wang, D.-Q. & Niu, M.-J. (2010). Z. Anorg. Allg. Chem. 636, 641–647.
  12. Mautner, F. A., Traber, M., Fischer, R. C., Torvisco, A., Reichmann, K., Speed, S., Vicente, R. & Massoud, S. S. (2018). Polyhedron, 154, 436–442.
  13. Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192. [DOI] [PubMed]
  14. Mousavi, M., Duhayon, C., Bretosh, K., Béreau, V. & Sutter, J. P. (2020). Inorg. Chem. 59, 7603–7613. [DOI] [PubMed]
  15. Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.
  16. Prananto, Y. P., Urbatsch, A., Moubaraki, B., Murray, K. S., Turner, D. R., Deacon, G. B. & Batten, S. R. (2017). Aust. J. Chem. 70, 516–528.
  17. Rams, M., Jochim, A., Böhme, M., Lohmiller, T., Ceglarska, M., Rams, M. M., Schnegg, A., Plass, W. & Näther, C. (2020). Chem. Eur. J. 26, 2837–2851. [DOI] [PMC free article] [PubMed]
  18. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction.
  19. Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. [DOI] [PubMed]
  20. Shang, W.-L., Bai, Y., Ma, C.-Z. & Li, Z.-M. (2008). Acta Cryst. E64, m1184–m1185. [DOI] [PMC free article] [PubMed]
  21. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  22. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  23. Shi, J.-M., Chen, J.-N. & Liu, L.-D. (2006). Pol. J. Chem. 80, 1909–1913.
  24. Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201. [DOI] [PubMed]
  25. Wellm, C., Majcher-Fitas, A., Rams, M. & Näther, C. (2020). Dalton Trans. 49, 16707–16714. [DOI] [PubMed]
  26. Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342. [DOI] [PubMed]
  27. Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015). Dalton Trans. 44, 14149–14158. [DOI] [PubMed]
  28. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  29. Zhang, Y., Li, J., Xu, H., Hou, H., Nishiura, M. & Imamoto, T. (1999). J. Mol. Struct. 510, 191–196.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010033/hb7982sup1.cif

e-77-01082-sup1.cif (770.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010033/hb7982Isup2.hkl

e-77-01082-Isup2.hkl (325.9KB, hkl)

Fig. S1. Experimental (top) and calculated X-ray powder pattern (bottom) of the title compound. The title compound is contaminated with at least one additional unknown phase. For the calculation of the powder pattern the data obtained from a a single crystal measured at 24 C was used. DOI: 10.1107/S2056989021010033/hb7982sup3.png

Fig. S2. IR spectra of the title compound. The value of the CN stretching vibration of the thiocyanat anions is given. DOI: 10.1107/S2056989021010033/hb7982sup4.png

CCDC reference: 2112185

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES