Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Oct 19;77(Pt 11):1116–1119. doi: 10.1107/S2056989021010537

Synthesis and crystal structure of a new chiral α-amino­oxime nickel(II) complex

Yasmina Homrani a, Abdelaziz Dahdouh a, Mohamed Amin El Amrani a, Pauline Loxq b, Frédéric Capet b, Isabelle Suisse b, Mathieu Sauthier b,*
PMCID: PMC8587986  PMID: 34868647

The reaction of a nickel precursor with an enanti­omerically pure amino-oxime issued from (R)-limonene led to the formation of bis­[κ3 N,N,N-(amino­oxime)-μ-chlorido]­dichloro­dinickel as a new dinuclear nickel complex.

Keywords: Nickel, α-amino­oxime, (R)-limonene, crystal structure

Abstract

A dinuclear nickel complex with (S)-limonene based amino­oxime ligand has been isolated and its crystal structure determined. The resolved structure of dichloridobis­{(2S,5R)-2-methyl-5-(prop-1-en-2-yl)-2-[(pyridin-2-yl)methyl­amino]­cyclo­hexan-1-one oxime}dinickel(II), [Ni2Cl2(C16H23ClN3O)2], at 100 K has monoclinic (P21) symmetry. The two NiII ions in the dinuclear complex are each coordinated in a distorted octa­hedral environment by three nitro­gen atoms, a terminal chloride and two μ bridging chlorides. Each oxime ligand is coordinated to nickel(II) by the three nitro­gen atoms, leading to two five-membered chelate rings, each displaying an envelope conformation. In the crystal, numerous inter­molecular and intra­molecular hydrogen bonds lead to the formation of a three-dimensional network structure.

Chemical context

Asymmetric synthesis allows the preparation of enanti­omerically enriched compounds either by using a chiral auxiliary, which will be temporarily introduced, or by using catalytic procedures (Gawley & Aubé, 2012). This latter method is particularly attractive as it contributes to the development of green chemistry, which maximizes efficiency and minimizes haza­rdous effects on human health and the environment (Anastas & Zimmerman, 2013). Thus, asymmetric catalysis avoids synthetic steps and only catalytic amounts of the optically pure auxiliary are needed (Ojima, 2010). As part of the development of this chemistry, the synthesis of new chiral organometallic complexes is always challenging. The pivotal point is then the synthesis of optically pure ligands, which will be coordinated to the metal center. In terms of sustainable chemistry, using the chiral pool to develop new ligands is most inter­esting (Elalami et al., 2015). Coord­ination metal complexes containing terpenoid fragments are widely used in the pharmaceutical field and in catalysis. We have therefore developed ligands based on terpenes such as pinene and limonene (El Alami et al., 2009, 2015; Chahboun et al., 2012). In particular, the synthesis of optically pure amino-oxime ligands has been performed successfully from (R)-limonene (El Alami et al., 2012). These compounds possess structures with two or three nitro­gen atoms as donor heteroatoms that could coordinate to the metal center. They have advantageously replaced phosphine ligands, which are generally unstable under air. Ruthenium (Benabdelouahab et al., 2015) and palladium (de la Cueva-Alique et al., 2019) complexes have already been synthezised with these ligands. Here we report the first synthesis of a limonene-based α-amino­oxime nickel complex and its crystal structure. In the dinuclear title complex, each nickel ion is coordinated by (1S,4R)-1-picolyl­amino-p-menth-8-en-2-one oxime. The ligand was first synthesized from (R)-limonene through the addition of nitrosyl chloride, NOCl, to a picolyl­amine moiety, allowing the formation of the oxime moiety. graphic file with name e-77-01116-scheme1.jpg

Structural commentary

The title compound (Fig. 1) crystallizes in the monoclinic space group P21 with two chiral mol­ecules per unit cell. The two NiII ions in the dinuclear complex are each coordinated by three nitro­gen atoms, a terminal chloride and two μ bridging chlorides. The environment around each metal center can then be described as a distorted octa­hedron with N1—Ni1—N2 and Cl1—Ni1—Cl3 angles of 79.91 (13) and 91.99 (4)°, respectively, together with Cl1—Ni1—N2 and Cl2—Ni1—N1 angles of 165.04 (11) and 88.69 (10)°, respectively. A similar arrange­ment can be found around the Ni2 atom [N4—Ni2—N5, Cl2—Ni2—Cl4, Cl4—Ni2—N5 and Cl4—Ni2—N4 = 79.7 (2), 99.38 (4), 166.04 (12) and 93.24 (16)°, respectively].

Figure 1.

Figure 1

Displacement ellipsoid plot at the 50% probability level for Ni2(amino-oxime)2Cl4. H atoms are omitted for clarity.

Each amino­oxime ligand is coordinated to nickel(II) by the three nitro­gen atoms, leading to two five-membered chelate rings, each displaying an envelope conformation (with N2 as the flap for Ni1/N1/C5/C6/N2 and N5 for Ni2/N4/C21/C22/N5). The six-membered carbocycles of the limonene units adopt a chair conformation. The lengths of the Ni1—N1, Ni1—N2 and Ni1—N3 bonds are 2.077 (3), 2.126 (4) and 2.041 (3) Å, respectively, while Ni2—N4, Ni2—N5 and Ni2—N6 are 2.095 (4), 2.103 (4) and 2.027 (3) Å. Atoms Cl1 and Cl4 are in a trans-position at distances of 2.4408 (12) and 2.4077 (14) Å from the metal centers Ni1 and Ni2, respectively. The two metal centers are linked by two bridging Cl atoms with an average Ni—Cl distance of 2.42 Å, which is normal for these bond lengths. All these values compare well with literature values. The two nickel ions are separated by a distance of 3.5198 (7) Å, which is similar to average values (Zheng et al., 2010; Cheng et al., 2012).

Supra­molecular features

The crystal structure is stabilized by numerous inter­molecular and intra­molecular hydrogen bonds (Table 1), which link the component into a three-dimensional network (Figs. 2 and 3). In particular, the two {Ni(aminoxime)μ-Cl}Cl units are slightly asymmetrical with the existence of a hydrogen-bonding inter­action between the amine N2—H2 linked to Ni1 and the chlorine atom Cl4 linked to Ni2. In addition, the two oxygen atoms O1 and O2 of the oxime groups are involved in intra­molecular O1—H1⋯Cl1 and O2—H2A⋯Cl4 hydrogen bonds and in inter­molecular C3—H3⋯O1 and C26—H26⋯O2 inter­actions.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.85 (7) 2.32 (6) 3.009 (4) 139 (6)
N2—H2⋯Cl4 0.77 (5) 2.46 (5) 3.209 (4) 166 (5)
O2—H2A⋯Cl4 0.76 (8) 2.31 (7) 2.978 (4) 147 (7)
C3—H3⋯O1i 0.95 2.58 3.432 (5) 149
C1—H1A⋯Cl1 0.95 2.75 3.369 (5) 124
C6—H6A⋯Cl2 0.99 2.76 3.309 (5) 115
C11—H11B⋯Cl3ii 0.99 2.64 3.573 (5) 156
C17—H17⋯Cl4 0.95 2.69 3.327 (6) 125
C26—H26⋯O2iii 1.00 2.56 3.489 (6) 154
C22—H22B⋯Cl2 0.99 2.81 3.352 (6) 115
C19—H19⋯Cl1iv 0.95 2.64 3.570 (7) 167

Symmetry codes: (i) -x+2, y-{\script{1\over 2}}, -z+1; (ii) -x+1, y-{\script{1\over 2}}, -z+1; (iii) -x, y+{\script{1\over 2}}, -z; (iv) -x+1, y-{\script{1\over 2}}, -z.

Figure 2.

Figure 2

Inter­molecular and intra­molecular hydrogen bonds in the structure, shown as dashed lines.

Figure 3.

Figure 3

Packing diagram.

Database survey

The amino­oxime ligand used in this study was previously reacted with palladium and platinum precursors, generating three N-coordinated cationic complexes as enanti­opure compounds (de la Cueva-Alique et al., 2019). A heteronuclear TiIV/PdII complex has also been described. The compounds were studied to assess their potential biological activity, a high anti­cancer activity (de la Cueva-Alique et al., 2019).

Synthesis and crystallization

To a solution of NiII chloride ethyl­ene glycol dimethyl ether (0.15 g, 1.48 mmol) in MeOH (5 mL) was added (1S,4R)-1-picolyl­amino-p-menth-8-en-2-one-oxime (0.101 g, 0.36 mmol) dissolved in MeOH (3 mL). The solution turned green. The mixture was stirred overnight at room temperature during which time the mixture changed color to blue–green. The solvent was then evaporated to produce a crude solid that was washed with diethyl ether before crystallization. Single crystals were grown by slow diffusion at room temperature of diethyl ether into a di­chloro­methane solution. Elemental analysis calculated for C32H46Cl4N6Ni2O2: C, 46.33; H, 5.54; N, 9.65. Found: C, 46.35; H, 5.672; N, 9.77.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. N- and O-bound atoms were refined with the restraint U iso(H) = 1.2U eq(N) or 1.5U eq(O). H atoms were positioned geometrically(C—H = 0.95–1.00 Å) and refined as riding with U iso(H) = 1.2U eq(C) or 1.5U eq(C-meth­yl)

Table 2. Experimental details.

Crystal data
Chemical formula [Ni2Cl2(C16H23ClN3O)2]
M r 805.97
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 13.3729 (9), 8.9363 (7), 16.4248 (16)
β (°) 114.014 (2)
V3) 1792.9 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.39
Crystal size (mm) 0.21 × 0.17 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.669, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 42747, 10769, 9436
R int 0.037
(sin θ/λ)max−1) 0.714
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.109, 1.05
No. of reflections 10769
No. of parameters 431
No. of restraints 13
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.50, −1.19
Absolute structure Flack x determined using 3850 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.009 (4)

Computer programs: APEX2 and SAINT (Bruker, 2019), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010537/ex2048sup1.cif

e-77-01116-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010537/ex2048Isup2.hkl

e-77-01116-Isup2.hkl (854.2KB, hkl)

CCDC reference: 2115017

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to thank Céline Delabre for the elemental analysis.

supplementary crystallographic information

Crystal data

[Ni2Cl2(C16H23ClN3O)2] F(000) = 840
Mr = 805.97 Dx = 1.493 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 13.3729 (9) Å Cell parameters from 9996 reflections
b = 8.9363 (7) Å θ = 2.7–30.0°
c = 16.4248 (16) Å µ = 1.39 mm1
β = 114.014 (2)° T = 100 K
V = 1792.9 (3) Å3 Block, green
Z = 2 0.21 × 0.17 × 0.12 mm

Data collection

Bruker APEXII CCD diffractometer 9436 reflections with I > 2σ(I)
Radiation source: microfocus sealed X-ray tube Rint = 0.037
φ and ω scans θmax = 30.5°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −17→19
Tmin = 0.669, Tmax = 0.746 k = −12→12
42747 measured reflections l = −23→21
10769 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.9636P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
10769 reflections Δρmax = 1.50 e Å3
431 parameters Δρmin = −1.18 e Å3
13 restraints Absolute structure: Flack x determined using 3850 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dual Absolute structure parameter: −0.009 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.66455 (4) 0.50226 (6) 0.35327 (3) 0.01526 (11)
Ni2 0.41917 (4) 0.48960 (6) 0.15985 (3) 0.01813 (12)
Cl2 0.61155 (8) 0.45928 (14) 0.19208 (7) 0.0259 (2)
Cl3 0.48342 (7) 0.60270 (12) 0.30567 (7) 0.0212 (2)
Cl1 0.74487 (8) 0.75170 (12) 0.37010 (7) 0.0249 (2)
Cl4 0.38501 (9) 0.25191 (13) 0.21270 (9) 0.0336 (3)
O1 0.7388 (3) 0.6301 (4) 0.5389 (2) 0.0244 (7)
H1 0.740 (5) 0.705 (7) 0.507 (4) 0.037*
N1 0.8111 (3) 0.3926 (4) 0.3786 (2) 0.0182 (7)
N3 0.6939 (2) 0.5043 (5) 0.4853 (2) 0.0183 (6)
N2 0.6216 (3) 0.2811 (4) 0.3745 (2) 0.0183 (7)
H2 0.563 (4) 0.289 (6) 0.339 (3) 0.022*
O2 0.1908 (3) 0.4533 (5) 0.1497 (2) 0.0339 (9)
H2A 0.226 (6) 0.389 (9) 0.176 (5) 0.051*
C8 0.6846 (3) 0.3877 (5) 0.5258 (3) 0.0203 (8)
C5 0.8008 (3) 0.2431 (5) 0.3699 (3) 0.0202 (8)
N6 0.2619 (3) 0.5471 (4) 0.1318 (2) 0.0212 (8)
N5 0.4081 (3) 0.6943 (5) 0.0936 (3) 0.0394 (12)
H5 0.468 (5) 0.736 (8) 0.140 (4) 0.047*
C12 0.7001 (3) 0.1123 (6) 0.5107 (3) 0.0250 (9)
H12A 0.660298 0.022653 0.478112 0.030*
H12B 0.770464 0.117488 0.504159 0.030*
C14 0.9033 (3) 0.2356 (6) 0.6758 (3) 0.0257 (9)
C3 0.9925 (4) 0.2136 (6) 0.4131 (3) 0.0301 (11)
H3 1.054899 0.151943 0.425362 0.036*
C9 0.7192 (4) 0.3765 (6) 0.6253 (3) 0.0279 (10)
H9A 0.653362 0.378843 0.638523 0.034*
H9B 0.764996 0.464264 0.654444 0.034*
C1 0.9109 (3) 0.4531 (5) 0.4044 (3) 0.0220 (9)
H1A 0.918464 0.558677 0.410777 0.026*
C30 0.0369 (4) 0.6416 (7) −0.1114 (4) 0.0357 (12)
N4 0.3669 (3) 0.4143 (6) 0.0282 (3) 0.0361 (11)
C2 1.0041 (3) 0.3660 (6) 0.4222 (3) 0.0277 (10)
H2B 1.074096 0.411370 0.440161 0.033*
C25 0.1029 (4) 0.7072 (7) 0.0546 (4) 0.0384 (13)
H25A 0.095090 0.786671 0.093629 0.046*
H25B 0.059972 0.619493 0.058673 0.046*
C7 0.6314 (3) 0.2540 (5) 0.4678 (3) 0.0206 (8)
C4 0.8897 (4) 0.1499 (6) 0.3860 (3) 0.0278 (10)
H4 0.880183 0.044699 0.378533 0.033*
C24 0.2208 (4) 0.6641 (5) 0.0869 (3) 0.0258 (10)
C6 0.6855 (3) 0.1848 (5) 0.3402 (3) 0.0218 (8)
H6A 0.649955 0.182503 0.274260 0.026*
H6B 0.687313 0.081400 0.362311 0.026*
C10 0.7844 (4) 0.2319 (6) 0.6644 (3) 0.0281 (10)
H10 0.785669 0.219265 0.725250 0.034*
C23 0.2999 (4) 0.7724 (5) 0.0732 (4) 0.0365 (12)
C15 0.9419 (4) 0.3220 (6) 0.6296 (3) 0.0301 (10)
H15A 1.016603 0.314817 0.638711 0.036*
H15B 0.894916 0.391186 0.587469 0.036*
C31 0.0663 (3) 0.5006 (7) −0.0931 (3) 0.0322 (10)
H31A 0.053020 0.430999 −0.140077 0.039*
H31B 0.100801 0.468485 −0.032826 0.039*
C13 0.5139 (3) 0.2394 (7) 0.4628 (3) 0.0314 (11)
H13A 0.471161 0.327732 0.433110 0.047*
H13B 0.516636 0.231714 0.523147 0.047*
H13C 0.479378 0.149469 0.428806 0.047*
C11 0.7236 (4) 0.0951 (6) 0.6094 (3) 0.0306 (11)
H11A 0.768517 0.004325 0.633040 0.037*
H11B 0.653697 0.081821 0.615749 0.037*
C16 0.9776 (4) 0.1259 (6) 0.7427 (3) 0.0313 (11)
H16A 0.980940 0.149758 0.802043 0.047*
H16B 1.051172 0.132186 0.743621 0.047*
H16C 0.948965 0.024270 0.726130 0.047*
C18 0.2741 (6) 0.2441 (10) −0.0937 (4) 0.0582 (18)
H18 0.234602 0.153747 −0.115022 0.070*
C17 0.3151 (5) 0.2832 (8) −0.0055 (4) 0.0493 (16)
H17 0.306660 0.213712 0.035033 0.059*
C26 0.0565 (4) 0.7638 (7) −0.0421 (4) 0.0423 (14)
H26 −0.016160 0.810447 −0.054167 0.051*
C21 0.3804 (4) 0.5139 (10) −0.0254 (4) 0.0504 (17)
C28 0.2479 (5) 0.8323 (7) −0.0237 (4) 0.0486 (16)
H28A 0.293285 0.915184 −0.030027 0.058*
H28B 0.247256 0.751483 −0.065083 0.058*
C32 −0.0176 (7) 0.6926 (9) −0.2067 (4) 0.068 (2)
H32A 0.032890 0.756035 −0.220891 0.101*
H32B −0.083660 0.749858 −0.215141 0.101*
H32C −0.037751 0.605256 −0.246168 0.101*
C22 0.4373 (5) 0.6511 (10) 0.0162 (4) 0.064 (2)
H22A 0.416191 0.732765 −0.028357 0.077*
H22B 0.517365 0.635850 0.038173 0.077*
C27 0.1312 (6) 0.8883 (7) −0.0493 (4) 0.0552 (18)
H27A 0.101814 0.926492 −0.111198 0.066*
H27B 0.132010 0.972060 −0.009604 0.066*
C29 0.3272 (7) 0.8968 (8) 0.1403 (5) 0.068 (2)
H29A 0.368891 0.856492 0.200143 0.102*
H29B 0.259425 0.942465 0.137844 0.102*
H29C 0.371164 0.972534 0.126705 0.102*
C19 0.2927 (7) 0.3391 (10) −0.1474 (5) 0.069 (2)
H19 0.270015 0.312455 −0.208304 0.082*
C20 0.3427 (6) 0.4734 (12) −0.1196 (4) 0.070 (2)
H20 0.353114 0.539853 −0.160608 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01393 (19) 0.0171 (2) 0.0136 (2) 0.0000 (2) 0.00431 (17) 0.0017 (2)
Ni2 0.0158 (2) 0.0210 (3) 0.0153 (2) −0.0019 (2) 0.00406 (17) −0.0011 (2)
Cl2 0.0180 (4) 0.0431 (7) 0.0155 (4) 0.0016 (4) 0.0057 (3) 0.0037 (4)
Cl3 0.0178 (4) 0.0225 (5) 0.0194 (5) 0.0017 (4) 0.0034 (4) −0.0031 (4)
Cl1 0.0240 (5) 0.0198 (5) 0.0244 (5) −0.0048 (4) 0.0031 (4) 0.0052 (4)
Cl4 0.0301 (5) 0.0180 (5) 0.0367 (7) −0.0042 (4) −0.0027 (5) 0.0021 (5)
O1 0.0275 (15) 0.0233 (17) 0.0205 (16) 0.0014 (13) 0.0077 (13) −0.0051 (13)
N1 0.0159 (14) 0.0249 (19) 0.0133 (16) 0.0017 (13) 0.0054 (13) 0.0017 (14)
N3 0.0163 (13) 0.0206 (17) 0.0170 (15) 0.0001 (15) 0.0056 (12) 0.0000 (16)
N2 0.0122 (13) 0.0204 (19) 0.0200 (18) 0.0019 (13) 0.0044 (13) 0.0019 (14)
O2 0.0186 (14) 0.052 (3) 0.0312 (19) −0.0003 (14) 0.0099 (13) 0.0128 (17)
C8 0.0184 (18) 0.026 (2) 0.020 (2) 0.0079 (16) 0.0113 (16) 0.0058 (17)
C5 0.0221 (18) 0.025 (2) 0.0146 (19) 0.0034 (17) 0.0086 (15) 0.0006 (17)
N6 0.0182 (15) 0.028 (2) 0.0163 (17) 0.0011 (13) 0.0055 (14) −0.0007 (14)
N5 0.029 (2) 0.040 (3) 0.033 (2) −0.0178 (19) −0.0040 (18) 0.020 (2)
C12 0.0200 (18) 0.025 (2) 0.027 (2) −0.0009 (17) 0.0064 (17) 0.0088 (19)
C14 0.0249 (19) 0.033 (3) 0.016 (2) 0.0063 (18) 0.0045 (16) 0.0044 (19)
C3 0.025 (2) 0.036 (3) 0.029 (3) 0.0125 (19) 0.0111 (19) 0.004 (2)
C9 0.032 (2) 0.037 (3) 0.018 (2) 0.011 (2) 0.0145 (18) 0.006 (2)
C1 0.0194 (17) 0.028 (2) 0.019 (2) 0.0006 (16) 0.0077 (15) 0.0024 (17)
C30 0.035 (2) 0.041 (3) 0.033 (3) 0.006 (2) 0.015 (2) 0.000 (2)
N4 0.0223 (18) 0.061 (3) 0.021 (2) 0.0157 (19) 0.0044 (16) −0.005 (2)
C2 0.0149 (17) 0.041 (3) 0.028 (2) 0.0019 (18) 0.0097 (17) 0.007 (2)
C25 0.033 (2) 0.047 (3) 0.031 (3) 0.022 (2) 0.009 (2) −0.001 (2)
C7 0.0174 (16) 0.025 (2) 0.022 (2) 0.0014 (16) 0.0105 (15) 0.0077 (18)
C4 0.025 (2) 0.032 (3) 0.027 (2) 0.0106 (18) 0.0114 (18) 0.002 (2)
C24 0.029 (2) 0.025 (2) 0.017 (2) 0.0080 (18) 0.0041 (18) −0.0052 (18)
C6 0.0243 (19) 0.017 (2) 0.024 (2) 0.0046 (16) 0.0094 (17) −0.0026 (17)
C10 0.030 (2) 0.034 (3) 0.024 (2) 0.007 (2) 0.0142 (18) 0.012 (2)
C23 0.048 (3) 0.015 (2) 0.032 (3) −0.003 (2) 0.001 (2) 0.006 (2)
C15 0.0204 (19) 0.036 (3) 0.028 (2) 0.0014 (18) 0.0032 (18) 0.008 (2)
C31 0.0267 (19) 0.033 (2) 0.032 (2) −0.005 (2) 0.0058 (18) 0.001 (3)
C13 0.0198 (19) 0.040 (3) 0.034 (3) −0.001 (2) 0.0108 (18) 0.010 (2)
C11 0.026 (2) 0.033 (3) 0.035 (3) 0.0008 (19) 0.015 (2) 0.018 (2)
C16 0.033 (2) 0.037 (3) 0.024 (2) 0.009 (2) 0.0120 (19) 0.011 (2)
C18 0.059 (4) 0.067 (4) 0.032 (3) 0.026 (4) 0.003 (3) −0.011 (3)
C17 0.040 (3) 0.057 (4) 0.032 (3) 0.025 (3) −0.004 (2) −0.020 (3)
C26 0.043 (3) 0.047 (4) 0.028 (3) 0.027 (3) 0.005 (2) 0.002 (2)
C21 0.030 (2) 0.091 (5) 0.031 (3) 0.024 (3) 0.013 (2) 0.016 (3)
C28 0.053 (3) 0.029 (3) 0.043 (3) −0.005 (3) −0.002 (3) 0.018 (3)
C32 0.115 (7) 0.050 (4) 0.026 (3) 0.028 (4) 0.016 (4) 0.002 (3)
C22 0.033 (3) 0.113 (7) 0.049 (4) 0.010 (3) 0.020 (3) 0.057 (4)
C27 0.069 (4) 0.029 (3) 0.041 (3) 0.017 (3) −0.004 (3) 0.007 (3)
C29 0.091 (5) 0.027 (3) 0.051 (4) 0.000 (3) −0.007 (4) −0.001 (3)
C19 0.093 (6) 0.071 (5) 0.055 (4) 0.014 (4) 0.044 (4) −0.020 (4)
C20 0.068 (4) 0.104 (6) 0.040 (3) 0.030 (4) 0.025 (3) 0.035 (4)

Geometric parameters (Å, º)

Ni1—Cl2 2.4762 (11) C2—H2B 0.9500
Ni1—Cl3 2.3964 (10) C25—H25A 0.9900
Ni1—Cl1 2.4408 (12) C25—H25B 0.9900
Ni1—N1 2.077 (3) C25—C24 1.495 (6)
Ni1—N3 2.041 (3) C25—C26 1.536 (8)
Ni1—N2 2.126 (4) C7—C13 1.545 (5)
Ni2—Cl2 2.4216 (10) C4—H4 0.9500
Ni2—Cl3 2.4128 (12) C24—C23 1.516 (7)
Ni2—Cl4 2.4077 (14) C6—H6A 0.9900
Ni2—N6 2.027 (3) C6—H6B 0.9900
Ni2—N5 2.103 (4) C10—H10 1.0000
Ni2—N4 2.095 (4) C10—C11 1.540 (8)
O1—H1 0.85 (7) C23—C28 1.550 (8)
O1—N3 1.403 (5) C23—C29 1.502 (9)
N1—C5 1.345 (6) C15—H15A 0.9500
N1—C1 1.338 (5) C15—H15B 0.9500
N3—C8 1.269 (6) C31—H31A 0.9500
N2—H2 0.77 (5) C31—H31B 0.9500
N2—C7 1.503 (5) C13—H13A 0.9800
N2—C6 1.477 (5) C13—H13B 0.9800
O2—H2A 0.76 (8) C13—H13C 0.9800
O2—N6 1.385 (5) C11—H11A 0.9900
C8—C9 1.509 (6) C11—H11B 0.9900
C8—C7 1.513 (7) C16—H16A 0.9800
C5—C4 1.385 (6) C16—H16B 0.9800
C5—C6 1.508 (6) C16—H16C 0.9800
N6—C24 1.269 (6) C18—H18 0.9500
N5—H5 0.93 (7) C18—C17 1.370 (8)
N5—C23 1.517 (7) C18—C19 1.318 (12)
N5—C22 1.524 (9) C17—H17 0.9500
C12—H12A 0.9900 C26—H26 1.0000
C12—H12B 0.9900 C26—C27 1.532 (10)
C12—C7 1.555 (6) C21—C22 1.457 (12)
C12—C11 1.528 (7) C21—C20 1.465 (10)
C14—C10 1.523 (6) C28—H28A 0.9900
C14—C15 1.326 (7) C28—H28B 0.9900
C14—C16 1.506 (7) C28—C27 1.525 (9)
C3—H3 0.9500 C32—H32A 0.9800
C3—C2 1.373 (8) C32—H32B 0.9800
C3—C4 1.384 (7) C32—H32C 0.9800
C9—H9A 0.9900 C22—H22A 0.9900
C9—H9B 0.9900 C22—H22B 0.9900
C9—C10 1.545 (7) C27—H27A 0.9900
C1—H1A 0.9500 C27—H27B 0.9900
C1—C2 1.396 (6) C29—H29A 0.9800
C30—C31 1.318 (8) C29—H29B 0.9800
C30—C26 1.521 (8) C29—H29C 0.9800
C30—C32 1.503 (8) C19—H19 0.9500
N4—C17 1.359 (8) C19—C20 1.360 (13)
N4—C21 1.314 (8) C20—H20 0.9500
Cl3—Ni1—Cl2 84.13 (4) C8—C7—C13 108.0 (4)
Cl3—Ni1—Cl1 91.99 (4) C13—C7—C12 110.9 (4)
Cl1—Ni1—Cl2 100.61 (4) C5—C4—H4 120.7
N1—Ni1—Cl2 88.69 (10) C3—C4—C5 118.5 (5)
N1—Ni1—Cl3 171.31 (10) C3—C4—H4 120.7
N1—Ni1—Cl1 94.14 (11) N6—C24—C25 124.3 (5)
N1—Ni1—N2 79.91 (13) N6—C24—C23 116.7 (4)
N3—Ni1—Cl2 170.10 (12) C25—C24—C23 118.8 (4)
N3—Ni1—Cl3 94.30 (9) N2—C6—C5 110.5 (4)
N3—Ni1—Cl1 89.21 (12) N2—C6—H6A 109.6
N3—Ni1—N1 91.94 (13) N2—C6—H6B 109.6
N3—Ni1—N2 77.38 (15) C5—C6—H6A 109.6
N2—Ni1—Cl2 93.02 (10) C5—C6—H6B 109.6
N2—Ni1—Cl3 95.56 (9) H6A—C6—H6B 108.1
N2—Ni1—Cl1 165.04 (11) C14—C10—C9 114.7 (4)
Cl3—Ni2—Cl2 84.97 (4) C14—C10—H10 106.7
Cl4—Ni2—Cl2 99.38 (4) C14—C10—C11 111.4 (4)
Cl4—Ni2—Cl3 93.14 (5) C9—C10—H10 106.7
N6—Ni2—Cl2 171.72 (12) C11—C10—C9 110.3 (4)
N6—Ni2—Cl3 92.13 (11) C11—C10—H10 106.7
N6—Ni2—Cl4 88.51 (11) N5—C23—C28 112.0 (5)
N6—Ni2—N5 79.29 (16) C24—C23—N5 109.5 (4)
N6—Ni2—N4 88.11 (15) C24—C23—C28 108.9 (4)
N5—Ni2—Cl2 93.15 (13) C29—C23—N5 104.7 (5)
N5—Ni2—Cl3 94.06 (15) C29—C23—C24 109.9 (5)
N5—Ni2—Cl4 166.04 (12) C29—C23—C28 111.8 (5)
N4—Ni2—Cl2 93.92 (11) C14—C15—H15A 120.0
N4—Ni2—Cl3 173.62 (15) C14—C15—H15B 120.0
N4—Ni2—Cl4 93.24 (16) H15A—C15—H15B 120.0
N4—Ni2—N5 79.7 (2) C30—C31—H31A 120.0
Ni2—Cl2—Ni1 91.88 (4) C30—C31—H31B 120.0
Ni1—Cl3—Ni2 94.09 (4) H31A—C31—H31B 120.0
N3—O1—H1 111 (4) C7—C13—H13A 109.5
C5—N1—Ni1 113.6 (3) C7—C13—H13B 109.5
C1—N1—Ni1 127.6 (3) C7—C13—H13C 109.5
C1—N1—C5 118.8 (4) H13A—C13—H13B 109.5
O1—N3—Ni1 121.4 (3) H13A—C13—H13C 109.5
C8—N3—Ni1 122.2 (3) H13B—C13—H13C 109.5
C8—N3—O1 115.9 (3) C12—C11—C10 112.0 (4)
Ni1—N2—H2 93 (4) C12—C11—H11A 109.2
C7—N2—Ni1 113.6 (3) C12—C11—H11B 109.2
C7—N2—H2 116 (4) C10—C11—H11A 109.2
C6—N2—Ni1 104.0 (2) C10—C11—H11B 109.2
C6—N2—H2 109 (4) H11A—C11—H11B 107.9
C6—N2—C7 118.1 (3) C14—C16—H16A 109.5
N6—O2—H2A 105 (5) C14—C16—H16B 109.5
N3—C8—C9 124.7 (4) C14—C16—H16C 109.5
N3—C8—C7 116.1 (4) H16A—C16—H16B 109.5
C9—C8—C7 119.2 (4) H16A—C16—H16C 109.5
N1—C5—C4 122.3 (4) H16B—C16—H16C 109.5
N1—C5—C6 115.1 (4) C17—C18—H18 121.9
C4—C5—C6 122.6 (4) C19—C18—H18 121.9
O2—N6—Ni2 122.4 (3) C19—C18—C17 116.1 (8)
C24—N6—Ni2 120.3 (3) N4—C17—C18 124.7 (7)
C24—N6—O2 116.7 (4) N4—C17—H17 117.7
Ni2—N5—H5 94 (4) C18—C17—H17 117.7
C23—N5—Ni2 112.0 (3) C30—C26—C25 114.3 (5)
C23—N5—H5 115 (4) C30—C26—H26 107.1
C23—N5—C22 118.6 (4) C30—C26—C27 112.5 (5)
C22—N5—Ni2 102.9 (4) C25—C26—H26 107.1
C22—N5—H5 110 (4) C27—C26—C25 108.5 (5)
H12A—C12—H12B 107.8 C27—C26—H26 107.1
C7—C12—H12A 109.0 N4—C21—C22 116.4 (5)
C7—C12—H12B 109.0 N4—C21—C20 117.2 (8)
C11—C12—H12A 109.0 C22—C21—C20 126.3 (7)
C11—C12—H12B 109.0 C23—C28—H28A 109.2
C11—C12—C7 113.0 (4) C23—C28—H28B 109.2
C15—C14—C10 124.9 (4) H28A—C28—H28B 107.9
C15—C14—C16 120.2 (4) C27—C28—C23 112.2 (6)
C16—C14—C10 114.9 (4) C27—C28—H28A 109.2
C2—C3—H3 120.1 C27—C28—H28B 109.2
C2—C3—C4 119.7 (4) C30—C32—H32A 109.5
C4—C3—H3 120.1 C30—C32—H32B 109.5
C8—C9—H9A 109.2 C30—C32—H32C 109.5
C8—C9—H9B 109.2 H32A—C32—H32B 109.5
C8—C9—C10 112.2 (4) H32A—C32—H32C 109.5
H9A—C9—H9B 107.9 H32B—C32—H32C 109.5
C10—C9—H9A 109.2 N5—C22—H22A 109.7
C10—C9—H9B 109.2 N5—C22—H22B 109.7
N1—C1—H1A 119.0 C21—C22—N5 110.0 (4)
N1—C1—C2 122.1 (4) C21—C22—H22A 109.7
C2—C1—H1A 119.0 C21—C22—H22B 109.7
C31—C30—C26 124.8 (5) H22A—C22—H22B 108.2
C31—C30—C32 120.1 (5) C26—C27—H27A 109.3
C32—C30—C26 115.1 (5) C26—C27—H27B 109.3
C17—N4—Ni2 126.7 (4) C28—C27—C26 111.5 (5)
C21—N4—Ni2 113.2 (4) C28—C27—H27A 109.3
C21—N4—C17 119.9 (5) C28—C27—H27B 109.3
C3—C2—C1 118.6 (4) H27A—C27—H27B 108.0
C3—C2—H2B 120.7 C23—C29—H29A 109.5
C1—C2—H2B 120.7 C23—C29—H29B 109.5
H25A—C25—H25B 107.9 C23—C29—H29C 109.5
C24—C25—H25A 109.2 H29A—C29—H29B 109.5
C24—C25—H25B 109.2 H29A—C29—H29C 109.5
C24—C25—C26 112.1 (4) H29B—C29—H29C 109.5
C26—C25—H25A 109.2 C18—C19—H19 118.5
C26—C25—H25B 109.2 C18—C19—C20 123.0 (7)
N2—C7—C8 109.8 (3) C20—C19—H19 118.5
N2—C7—C12 112.5 (3) C21—C20—H20 120.5
N2—C7—C13 107.1 (3) C19—C20—C21 119.0 (7)
C8—C7—C12 108.5 (3) C19—C20—H20 120.5
Ni1—N1—C5—C4 −178.5 (3) N4—C21—C20—C19 2.4 (9)
Ni1—N1—C5—C6 2.4 (4) C2—C3—C4—C5 −0.9 (7)
Ni1—N1—C1—C2 177.8 (3) C25—C24—C23—N5 −168.7 (4)
Ni1—N3—C8—C9 171.5 (3) C25—C24—C23—C28 −45.9 (6)
Ni1—N3—C8—C7 −10.6 (5) C25—C24—C23—C29 76.9 (6)
Ni1—N2—C7—C8 −7.7 (4) C25—C26—C27—C28 59.6 (6)
Ni1—N2—C7—C12 −128.6 (3) C7—N2—C6—C5 −83.5 (4)
Ni1—N2—C7—C13 109.3 (4) C7—C8—C9—C10 47.9 (5)
Ni1—N2—C6—C5 43.4 (4) C7—C12—C11—C10 −57.9 (5)
Ni2—N6—C24—C25 173.2 (4) C4—C5—C6—N2 148.6 (4)
Ni2—N6—C24—C23 −12.5 (6) C4—C3—C2—C1 0.6 (7)
Ni2—N5—C23—C24 −13.2 (5) C24—C25—C26—C30 73.6 (6)
Ni2—N5—C23—C28 −134.2 (4) C24—C25—C26—C27 −52.8 (6)
Ni2—N5—C23—C29 104.5 (5) C24—C23—C28—C27 49.5 (6)
Ni2—N5—C22—C21 44.6 (5) C6—N2—C7—C8 114.5 (4)
Ni2—N4—C17—C18 174.2 (4) C6—N2—C7—C12 −6.5 (5)
Ni2—N4—C21—C22 5.4 (6) C6—N2—C7—C13 −128.6 (4)
Ni2—N4—C21—C20 −178.0 (4) C6—C5—C4—C3 180.0 (4)
O1—N3—C8—C9 −0.7 (6) C23—N5—C22—C21 −79.6 (6)
O1—N3—C8—C7 177.3 (3) C23—C28—C27—C26 −59.7 (7)
N1—C5—C4—C3 1.0 (7) C15—C14—C10—C9 −24.5 (7)
N1—C5—C6—N2 −32.3 (5) C15—C14—C10—C11 101.6 (6)
N1—C1—C2—C3 −0.2 (7) C31—C30—C26—C25 −6.7 (8)
N3—C8—C9—C10 −134.2 (4) C31—C30—C26—C27 117.5 (6)
N3—C8—C7—N2 11.5 (5) C11—C12—C7—N2 172.3 (3)
N3—C8—C7—C12 134.8 (4) C11—C12—C7—C8 50.6 (4)
N3—C8—C7—C13 −104.9 (4) C11—C12—C7—C13 −67.8 (5)
O2—N6—C24—C25 1.3 (6) C16—C14—C10—C9 158.2 (4)
O2—N6—C24—C23 175.6 (4) C16—C14—C10—C11 −75.7 (5)
C8—C9—C10—C14 77.6 (5) C18—C19—C20—C21 1.5 (12)
C8—C9—C10—C11 −49.1 (5) C17—N4—C21—C22 −179.7 (5)
C5—N1—C1—C2 0.3 (6) C17—N4—C21—C20 −3.0 (7)
N6—C24—C23—N5 16.7 (6) C17—C18—C19—C20 −4.4 (11)
N6—C24—C23—C28 139.5 (5) C26—C25—C24—N6 −136.7 (5)
N6—C24—C23—C29 −97.7 (5) C26—C25—C24—C23 49.2 (7)
N5—C23—C28—C27 170.8 (5) C21—N4—C17—C18 0.0 (8)
C14—C10—C11—C12 −72.9 (5) C32—C30—C26—C25 174.8 (6)
C9—C8—C7—N2 −170.4 (3) C32—C30—C26—C27 −60.9 (7)
C9—C8—C7—C12 −47.1 (5) C22—N5—C23—C24 106.3 (6)
C9—C8—C7—C13 73.2 (5) C22—N5—C23—C28 −14.6 (6)
C9—C10—C11—C12 55.6 (5) C22—N5—C23—C29 −135.9 (6)
C1—N1—C5—C4 −0.6 (6) C22—C21—C20—C19 178.6 (6)
C1—N1—C5—C6 −179.7 (4) C29—C23—C28—C27 −72.1 (7)
C30—C26—C27—C28 −67.9 (6) C19—C18—C17—N4 3.8 (9)
N4—C21—C22—N5 −35.0 (7) C20—C21—C22—N5 148.7 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···Cl1 0.85 (7) 2.32 (6) 3.009 (4) 139 (6)
N2—H2···Cl4 0.77 (5) 2.46 (5) 3.209 (4) 166 (5)
O2—H2A···Cl4 0.76 (8) 2.31 (7) 2.978 (4) 147 (7)
C3—H3···O1i 0.95 2.58 3.432 (5) 149
C1—H1A···Cl1 0.95 2.75 3.369 (5) 124
C6—H6A···Cl2 0.99 2.76 3.309 (5) 115
C11—H11B···Cl3ii 0.99 2.64 3.573 (5) 156
C17—H17···Cl4 0.95 2.69 3.327 (6) 125
C26—H26···O2iii 1.00 2.56 3.489 (6) 154
C22—H22B···Cl2 0.99 2.81 3.352 (6) 115
C19—H19···Cl1iv 0.95 2.64 3.570 (7) 167

Symmetry codes: (i) −x+2, y−1/2, −z+1; (ii) −x+1, y−1/2, −z+1; (iii) −x, y+1/2, −z; (iv) −x+1, y−1/2, −z.

Funding Statement

This work was funded by Ministère de l’Enseignement Supérieur de la Recherche et de l’Innovation (France); Ministère de la Recherche (Maroc); Institut Chevreul; Région Hauts-de-France; FEDER.

References

  1. Anastas, P. T. & Zimmerman, J. B. (2013). Environ. Sci. Technol. 37, 95A–101A. [DOI] [PubMed]
  2. Benabdelouahab, Y., Muñoz-Moreno, L., Frik, M., de la Cueva-Alique, I., El Amrani, M. A., Contel, M., Bajo, A. M., Cuenca, T. & Royo, E. (2015). Eur. J. Inorg. Chem. pp. 2295–2307. [DOI] [PMC free article] [PubMed]
  3. Bruker (2019). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.
  4. Chahboun, G., Brito, J. A., Royo, B., El Amrani, M. A., Gómez-Bengoa, E., Mosquera, M. E. G., Cuenca, T. & Royo, E. (2012). Eur. J. Inorg. Chem. pp. 2940–2949.
  5. Cheng, T.-P., Liao, B.-S., Liu, Y.-H., Peng, S.-M. & Liu, S.-T. (2012). Dalton Trans. 41, 3468–3473. [DOI] [PubMed]
  6. Cueva-Alique, I. de la, Muñoz-Moreno, L., de la Torre-Rubio, E., Bajo, A. M., Gude, L., Cuenca, T. & Royo, E. (2019). Dalton Trans. 48, 14279–14293. [DOI] [PubMed]
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Elalami, M. S., Dahdouh, A. A., Mansour, A. I., ElAmrani, M. A., Suisse, I., Mortreux, A. & Agbossou-Niedercorn, F. (2009). C. R. Chim. 12, 1253–1258.
  9. El Alami, M. S. I., El Amrani, M. A., Agbossou-Niedercorn, F., Suisse, I. & Mortreux, A. (2015). Chem. Eur. J. 21, 1398–1413. [DOI] [PubMed]
  10. Gawley, R. E. & Aubé, J. (2012). Principles and applications of asymmetric synthesis, 2nd ed. Amsterdam: Elsevier Science
  11. El Alami, M. S. I., El Amrani, M. A., Dahdouh, A., Roussel, P., Suisse, I. & Mortreux, A. (2012). Chirality, 24, 675–682. [DOI] [PubMed]
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Ojima, I. (2010). Catalytic asymmetric synthesis, 3rd ed. Hoboken: Wiley
  14. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Zheng, L., Zhang, S., Li, K., Chen, W., Chen, Y., Xu, B., Hu, B., Li, Y. & Li, W. (2010). J. Mol. Struct. 984, 153–156.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021010537/ex2048sup1.cif

e-77-01116-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021010537/ex2048Isup2.hkl

e-77-01116-Isup2.hkl (854.2KB, hkl)

CCDC reference: 2115017

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES