Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Oct 29;77(Pt 11):1175–1179. doi: 10.1107/S2056989021011178

Crystal structure of trans-di­aqua­(1,4,8,11-tetra­aza­undeca­ne)nickel(II) bis­(pyridine-2,6-di­carboxyl­ato)nickel(II)

Irina L Andriichuk a, Liudmyla V Tsymbal a, Vladimir B Arion b, Yaroslaw D Lampeka a,*
PMCID: PMC8587994  PMID: 34868658

The coordination polyhedra of the nickel(II) ions of the title compound in the complex cation and the anion, viz., trans-NiN4O2 and trans-NiO4N2, are distorted octa­hedra. In the crystal, the donor groups of the tetra­amine and the coordinated water mol­ecules and the carboxyl­ate groups of the pyridine-2,6-di­carboxyl­ate anions are involved in numerous N—H⋯O and O—H⋯O hydrogen bonds, thereby forming sheets of ions lying parallel to the (001) plane.

Keywords: crystal structure; cyclam; nickel; pyridine-2,6-di­carboxyl­ate; hydrogen bonds

Abstract

The asymmetric unit of the title compound, trans-di­aqua­(1,4,8,11-tetra­aza­undecane-κ4 N 1,N 4,N 8,N 11)nickel(II) bis­(pyridine-2,6-di­carboxyl­ato-κ3 O 2,N,O 6)nickel(II) {[Ni(L)(H2O)2][Ni(pdc)2] where L = 1,4,8,11-tetra­aza­undecane (C7H20N4) and pdc = the dianion of pyridine-2,6-di­carb­oxy­lic acid (C7H3NO4 2−)} consists of an [Ni(L)(H2O)2]2+ complex cation and a [Ni(pdc)2]2– anion. The metal ion in the cation is coordinated by the four N atoms of the tetra­amine ligand and the mutually trans O atoms of the water mol­ecules in a tetra­gonally elongated octa­hedral geometry with the average equatorial Ni—N bond length slightly shorter than the average axial Ni—O bond [2.087 (4) versus 2.128 (4) Å]. The ligand L adopts its energetically favored conformation with five-membered and six-membered chelate rings in gauche and chair conformations, respectively. In the complex anion, the NiII ion is coordinated by the two tridentate pdc2– ligands via their carboxyl­ate and nitro­gen atom donors in a distorted octa­hedral trans-NiO4N2 geometry with nearly orthogonal orientation of the planes defining the carboxyl­ate rings and the average Ni—N bond length [1.965 (4) Å] shorter than the average Ni—O bond distance [2.113 (7) Å]. In the crystal, the NH donor groups of the tetra­amine, the carb­oxy­lic groups of the pdc2– anion and the coordinated water mol­ecules are involved in numerous N—H⋯O and O—H⋯O hydrogen bonds, leading to electroneutral sheets oriented parallel to the (001) plane.

Chemical context

Crystalline coordination polymers possessing permanent porosity (metal–organic frameworks, MOFs) are of enormous current inter­est because of their potential for applications in different areas including gas storage, separation, catalysis, etc. (MacGillivray & Lukehart, 2014; Kaskel, 2016). Nickel(II) complexes of the 14-membered macrocyclic tetra­amine ligands, in particular of cyclam and its C-alkyl­ated derivatives (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4), are widely used as metal-containing building units for the construction of MOFs (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Suh et al., 2012; Stackhouse & Ma, 2018; Lee & Moon, 2018). At the same time, nickel(II) complexes of 1,4,8,11-tetra­aza­undecane (C7H20N4; L) – the closest open-chain analogue of cyclam – are rarely utilized for the construction of MOFs and only a few examples of coordin­ation polymers formed by the [Ni(L)]2+ cation with azide (Escuer et al., 1993), cyanide (Koo et al., 2003), and cyano­metalate (Koo et al., 2003; Shek et al., 2005; Talukder et al., 2012; Ni et al., 2014) bridging anions have been characterized by single-crystal X-ray diffraction. graphic file with name e-77-01175-scheme1.jpg

Multidentate aromatic carboxyl­ates are known as the most common linkers in MOFs (Rao et al., 2004). Although the bridging properties of one of the simplest representative of this class of compounds, 1,3-benzene­dicarboxyl­ate, with macrocyclic nickel(II) cations are well studied (see, for example, Tsymbal et al., 2021), coordination polymers based on its structural analogue, pyridine-2,6-di­carboxyl­ate (C7H3NO4 2–; pdc2–), are confined to a sole example (Choi et al., 2003). Inter­estingly, an attempt to prepare a coordination polymer containing the [Ni(cyclam)]2+ cation with pdc2– led to the ionic product [Ni(cyclam)(H2O)2][Ni(pdc)2]·2.5H2O due to sequestering of the metal ion from the cavity of the macrocycle by this chelating ligand (Park et al., 2007).

As part of our research on MOFs formed by nickel(II) tetra­aza cations and aromatic carboxyl­ates, we report here the synthesis and crystal structure of the product of the reaction of [Ni(L)]2+ with pdc2–, namely [trans-di­aqua­(1,4,8,11-tetra­aza­undecane-k 4 N 1 N 4 N 8 N 11)nickel(II)][bis­(pyridine-2,6-di­carb­oxy­lato-κ 3 N,O,O)nickel(II)], [Ni(L)(H2O)2][Ni(pdc)2], I. Similar to the reaction of pyridine-2,6-di­carboxyl­ate with the [Ni(cyclam)]2+ cation, the formation of the title compound is explained by the sequestering of the metal ion from the starting cation with the formation of the [Ni(pdc)2]2– anion. Additionally, to the best of our knowledge, the structure of the [trans-di­aqua­(1,4,8,11-tetra­aza­undeca­ne)nickel(II)] moiety has not previously been reported in the literature.

Structural commentary

The mol­ecular structure of the title compound I is shown in Fig. 1. Atom Ni1 is coordinated by the two tridentate pdc2– ligands via their carboxyl­ate and nitro­gen donors, resulting in the formation of the [Ni(pdc)2]2– divalent anion, which is charge-balanced by the [Ni(L)(H2O)2]2+ divalent cation formed by atom Ni2.

Figure 1.

Figure 1

View of the mol­ecular structure of I, showing the partial atom-labeling scheme, with displacement ellipsoids drawn at the 40% probability level. C-bound H atoms are omitted for clarity. Hydrogen-bonding inter­actions are shown as dotted lines.

The coordination polyhedron of Ni1II in the complex anion ion can be described as a tetra­gonally compressed trans-NiO4N2 octa­hedron with the Ni—N bond lengths [average value 1.965 (4) Å] shorter than the Ni—O ones [average value 2.113 (7) Å] (Table 1). Another source of distortion is the alternating displacement (by ca 0.43 Å) of the coordinated oxygen atoms of deprotonated carb­oxy­lic groups from the mean equatorial plane formed by the four oxygen atoms. The values of the bite angles in the five-membered chelate rings in the complex anion are very similar (Table 1). The pdc2– carboxyl­ate rings are oriented nearly orthogonally with an angle of 81.5 (3)° between their mean planes.

Table 1. Selected geometric parameters (Å, °).

Ni1—O1 2.099 (2) Ni2—O1W 2.131 (2)
Ni1—O3 2.109 (2) Ni2—O2W 2.124 (2)
Ni1—O5 2.111 (2) Ni2—N3 2.074 (2)
Ni1—O7 2.1343 (19) Ni2—N4 2.088 (2)
Ni1—N1 1.961 (2) Ni2—N5 2.095 (2)
Ni1—N2 1.969 (2) Ni2—N6 2.089 (3)
       
O1—Ni1—O3 156.79 (8) O2W—Ni2—O1W 174.88 (8)
O1—Ni1—O5 95.74 (8) N3—Ni2—O1W 86.26 (9)
O1—Ni1—O7 89.96 (8) N3—Ni2—O2W 92.25 (9)
O3—Ni1—O5 89.36 (8) N3—Ni2—N4 84.10 (10)
O3—Ni1—O7 94.68 (8) N3—Ni2—N5 174.54 (10)
O5—Ni1—O7 155.62 (7) N3—Ni2—N6 101.01 (10)
N1—Ni1—O1 78.63 (9) N4—Ni2—O1W 87.83 (9)
N1—Ni1—O3 78.19 (9) N4—Ni2—O2W 96.90 (9)
N1—Ni1—O5 105.53 (9) N4—Ni2—N5 90.45 (10)
N1—Ni1—O7 98.84 (9) N4—Ni2—N6 172.57 (10)
N1—Ni1—N2 176.06 (10) N5—Ni2—O1W 93.07 (9)
N2—Ni1—O1 99.61 (9) N5—Ni2—O2W 88.86 (9)
N2—Ni1—O3 103.60 (9) N6—Ni2—O1W 87.13 (9)
N2—Ni1—O5 78.10 (9) N6—Ni2—O2W 88.34 (9)
N2—Ni1—O7 77.58 (9) N6—Ni2—N5 84.36 (10)

The Ni2II ion in the complex cation is coordinated by the four N atoms of the ligand L and the mutually trans O atoms of the water mol­ecules in a tetra­gonally elongated trans-NiN4O2 octa­hedral geometry with the average equatorial Ni—N bond length slightly shorter than the average axial Ni—O bond [2.087 (4) and 2.128 (4) Å, respectively (Table 1)]. The ligand L in I adopts its energetically favored conformation with the five-membered and six-membered chelate rings in gauche and chair conformations, respectively, which resemble the trans-III configuration usually observed in cyclam complexes (Bosnich et al., 1965). This conformation is also characteristic of the macrocyclic ligand in [Ni(cyclam)(H2O)2]2+ (Park et al., 2007), although the bite angles in the five-membered (85.54°) and six-membered (94.46°) chelate rings are correspondingly larger and smaller compared to those in I (Table 1).

Supra­molecular features

The crystals of I are composed of [Ni(L)(H2O)2]2+ complex cations and [Ni(pdc)2]2– anions connected by numerous hydrogen bonds (Table 2). Each ion is surrounded by four counter-ions (Figs. 2 and 3); the cation acts as the hydrogen-bond donor due to the presence of the N—H fragments of amino groups and the O—H groups of coordinated water mol­ecules, while the anion displays proton-acceptor properties because of the availability of the carb­oxy­lic groups. These aggregates are further arranged into two-dimensional sheets oriented parallel to the (001) plane (Fig. 4). There are no hydrogen-bonding contacts between the sheets, and the three-dimensional coherence of the crystal is provided by van der Waals inter­actions.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O8i 0.91 2.41 3.213 (3) 147
N3—H3B⋯O4ii 0.91 2.11 3.015 (3) 176
N4—H4A⋯O1 1.00 2.07 3.054 (3) 167
N5—H5A⋯O2 1.00 2.08 3.054 (3) 163
N6—H6A⋯O3ii 0.91 2.14 2.986 (3) 154
N6—H6B⋯O6iii 0.91 2.07 2.943 (3) 160
O1W—H1WA⋯O1 0.86 2.56 3.088 (3) 121
O1W—H1WA⋯O2 0.86 2.00 2.795 (3) 154
O1W—H1WB⋯O3ii 0.86 1.91 2.757 (3) 170
O2W—H2WA⋯O7i 0.87 1.80 2.663 (3) 169
O2W—H2WB⋯O6iii 0.87 1.90 2.742 (3) 160

Symmetry codes: (i) x-1, y, z; (ii) -x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}; (iii) -x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}.

Figure 2.

Figure 2

Nearest surroundings of the cation in I formed by hydrogen bonding (dotted lines). [Symmetry codes: (i) x − 1, y, z; (ii) −x + 1, y +  Inline graphic , −z +  Inline graphic ; (iii) −x + 2, y +  Inline graphic , −z +  Inline graphic .]

Figure 3.

Figure 3

Nearest surroundings of the anion in I formed by hydrogen bonding (dotted lines). [Symmetry codes: (i) x + 1, y, z; (ii) −x + 2, y −  Inline graphic , −z +  Inline graphic ; (iii) −x + 1, y −  Inline graphic , −z +  Inline graphic

Figure 4.

Figure 4

Electroneutral sheets of the complex ions in I parallel to the (001) plane. C-bound H atoms are omitted for clarity. C atoms of the cation and anion are shown in purple and green, respectively. Hydrogen bonds are shown as dotted lines.

Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, last update February 2021; Groom et al., 2016) indicated that no compounds containing the [Ni(L)(H2O)2]2+ cation have been structurally characterized to date, the closest analogue being the complex [Ni(L)(H2O)(Cl)]Cl (refcode UMOFEH; Oblezov et al., 2003). In general, the geometrical parameters of both cations in these compounds are similar, although the Ni—O bond length in the latter is longer (2.182 Å), probably because of the trans influence of the chloride ligand.

As far as the structures of the cations in the compounds with the same bis­(pyridine-2,6-di­carboxyl­ato)-nickel(II) anion are concerned, {[Ni(L)(H2O)2]2+ in I and [Ni(cyclam)(H2O)2]2+ in TICJEV (Park et al., 2007)}, a higher tetra­gonal distortion of the coordination polyhedron in the latter case [average Ni—N bond length of 2.068 (6) Å and Ni—O bond length of 2.152 Å] should be mentioned, which can be explained by the stronger cis influence of the macrocyclic ligand compared to the non-cyclic one (Yatsimirskii & Lampeka, 1985).

Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The complex [Ni(L)](ClO4)2 was prepared by mixing equimolar amount of L and nickel perchlorate hexa­hydrate in ethanol. The title compound I was prepared as follows. A solution of [Ni(L)](ClO4)2 (11 mg, 0.026 mmol) in 1 ml of DMF was added to 0.4 ml of an aqueous solution of Na2(pdc) (2.7 mg, 0.013 mmol). Blue crystals formed in a day, which were filtered off, washed with diethyl ether and dried in air. Yield: 1.3 mg (15.5%). Analysis calculated for C21H30N6Ni2O10: C 39.17, H 4.66, N 13.06%. Found: C 39.04, H 5.0, N 13.21%. Single crystals of I suitable for X-ray diffraction analysis were selected from the sample resulting from the synthesis.

Safety note: Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms in I were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99 Å (aliphatic H atoms), N—H distances of 0.91 (primary amino groups) or 1.00 Å (secondary amino­groups) with U iso(H) values of 1.2U eq of the parent atoms. Water H atoms were positioned geometrically (O—H = 0.71–0.85 Å) and refined as riding with U iso(H) = 1.5U eq(O).

Table 3. Experimental details.

Crystal data
Chemical formula [Ni(C7H20N4)(H2O)2][Ni(C7H3NO4)2]
M r 643.93
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 9.3219 (6), 16.3211 (10), 16.9483 (8)
V3) 2578.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.53
Crystal size (mm) 0.25 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.705, 0.737
No. of measured, independent and observed [I > 2σ(I)] reflections 36128, 4909, 4668
R int 0.045
(sin θ/λ)max−1) 0.610
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.021, 0.050, 1.04
No. of reflections 4909
No. of parameters 356
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.26
Absolute structure Flack x determined using 1953 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.010 (4)

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021011178/hb7995sup1.cif

e-77-01175-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021011178/hb7995Isup2.hkl

e-77-01175-Isup2.hkl (269.2KB, hkl)

CCDC reference: 2115829

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[Ni(C7H20N4)(H2O)2][Ni(C7H3NO4)2] Dx = 1.659 Mg m3
Mr = 643.93 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 8341 reflections
a = 9.3219 (6) Å θ = 2.5–25.3°
b = 16.3211 (10) Å µ = 1.53 mm1
c = 16.9483 (8) Å T = 100 K
V = 2578.6 (3) Å3 Prism, clear light pink
Z = 4 0.25 × 0.2 × 0.2 mm
F(000) = 1336

Data collection

Bruker APEXII CCD diffractometer 4668 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.045
φ and ω scans θmax = 25.7°, θmin = 2.4°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) h = −11→11
Tmin = 0.705, Tmax = 0.737 k = −19→19
36128 measured reflections l = −20→20
4909 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.7375P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050 (Δ/σ)max = 0.002
S = 1.04 Δρmax = 0.49 e Å3
4909 reflections Δρmin = −0.26 e Å3
356 parameters Absolute structure: Flack x determined using 1953 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: −0.010 (4)
Primary atom site location: dual

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 1.09379 (4) 0.79146 (2) 0.79300 (2) 0.01132 (9)
O1 0.9734 (2) 0.89973 (12) 0.80207 (12) 0.0156 (4)
O3 1.2374 (2) 0.69917 (13) 0.82970 (11) 0.0150 (4)
O2 0.9525 (2) 1.01235 (13) 0.87640 (12) 0.0190 (5)
O4 1.3661 (3) 0.65997 (13) 0.93534 (13) 0.0250 (5)
O5 0.9208 (2) 0.71131 (13) 0.81555 (11) 0.0178 (4)
O7 1.2475 (2) 0.85377 (12) 0.72153 (10) 0.0151 (4)
O6 0.7669 (2) 0.62760 (13) 0.75366 (12) 0.0208 (5)
O8 1.2894 (2) 0.88805 (13) 0.59530 (12) 0.0197 (5)
N1 1.1543 (3) 0.83219 (15) 0.89664 (13) 0.0117 (5)
N2 1.0390 (3) 0.75735 (15) 0.68573 (13) 0.0124 (5)
C1 1.0034 (3) 0.94313 (19) 0.86156 (17) 0.0147 (6)
C2 1.1083 (3) 0.90574 (17) 0.91977 (15) 0.0136 (6)
C3 1.1561 (3) 0.93967 (19) 0.98988 (17) 0.0160 (6)
H3 1.127255 0.993102 1.005442 0.019*
C4 1.2481 (3) 0.89317 (19) 1.03707 (17) 0.0178 (7)
H4 1.278944 0.913881 1.086623 0.021*
C5 1.2944 (3) 0.81687 (19) 1.01178 (16) 0.0155 (6)
H5 1.357733 0.785035 1.043217 0.019*
C6 1.2463 (3) 0.78819 (18) 0.93978 (16) 0.0136 (6)
C7 1.2889 (3) 0.70808 (19) 0.90009 (17) 0.0154 (6)
C8 0.8683 (3) 0.67716 (17) 0.75527 (17) 0.0149 (6)
C9 0.9355 (3) 0.70262 (18) 0.67704 (17) 0.0131 (6)
C10 0.8957 (4) 0.67512 (17) 0.60250 (17) 0.0166 (6)
H10 0.821798 0.635587 0.596314 0.020*
C11 0.9667 (3) 0.7068 (2) 0.53760 (18) 0.0194 (7)
H11 0.941943 0.688728 0.486084 0.023*
C12 1.0745 (3) 0.76525 (18) 0.54766 (16) 0.0164 (6)
H12 1.123225 0.787779 0.503466 0.020*
C13 1.1087 (3) 0.78960 (17) 0.62377 (16) 0.0132 (6)
C14 1.2247 (3) 0.84969 (18) 0.64704 (16) 0.0147 (6)
Ni2 0.58765 (4) 1.01066 (2) 0.76468 (2) 0.01201 (9)
O1W 0.8016 (2) 1.04716 (13) 0.73792 (12) 0.0192 (5)
H1WA 0.869828 1.041746 0.771368 0.031 (10)*
H1WB 0.797698 1.092906 0.712918 0.040 (11)*
O2W 0.3684 (2) 0.98471 (13) 0.78767 (12) 0.0172 (4)
H2WA 0.325706 0.939783 0.772223 0.042 (12)*
H2WB 0.308376 1.025333 0.781113 0.069 (16)*
N3 0.5586 (3) 1.00016 (16) 0.64375 (14) 0.0192 (6)
H3A 0.465077 0.989548 0.632344 0.023*
H3B 0.584859 1.047317 0.618999 0.023*
N4 0.6569 (3) 0.88925 (15) 0.75663 (15) 0.0174 (5)
H4A 0.763467 0.890194 0.763131 0.021*
N5 0.6255 (3) 1.01005 (15) 0.88651 (13) 0.0163 (5)
H5A 0.731507 1.013124 0.894920 0.020*
N6 0.5419 (3) 1.13467 (15) 0.78184 (14) 0.0170 (6)
H6A 0.586732 1.165700 0.744666 0.020*
H6B 0.445736 1.143679 0.778488 0.020*
C15 0.6505 (4) 0.9317 (2) 0.61828 (18) 0.0236 (7)
H15A 0.752369 0.948818 0.618268 0.028*
H15B 0.624339 0.914509 0.564135 0.028*
C16 0.6286 (4) 0.8613 (2) 0.67532 (19) 0.0226 (8)
H16A 0.528893 0.840840 0.671222 0.027*
H16B 0.694390 0.815805 0.661796 0.027*
C17 0.6005 (4) 0.83218 (18) 0.81722 (18) 0.0210 (7)
H17A 0.639786 0.776760 0.807346 0.025*
H17B 0.494866 0.829025 0.812244 0.025*
C18 0.6383 (4) 0.8580 (2) 0.90014 (19) 0.0234 (8)
H18A 0.743906 0.863351 0.903632 0.028*
H18B 0.609403 0.813510 0.936547 0.028*
C19 0.5716 (4) 0.93725 (19) 0.92903 (18) 0.0230 (7)
H19A 0.466236 0.934035 0.922537 0.028*
H19B 0.592126 0.943637 0.986010 0.028*
C20 0.5617 (4) 1.0860 (2) 0.91737 (18) 0.0216 (8)
H20A 0.601711 1.098266 0.970176 0.026*
H20B 0.456571 1.079348 0.922625 0.026*
C21 0.5947 (4) 1.15564 (18) 0.86117 (17) 0.0207 (7)
H21A 0.547856 1.206507 0.879817 0.025*
H21B 0.699559 1.165229 0.859354 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01194 (18) 0.01160 (18) 0.01043 (16) −0.00100 (17) −0.00079 (17) −0.00127 (13)
O1 0.0139 (10) 0.0152 (11) 0.0177 (10) 0.0013 (9) −0.0033 (8) −0.0023 (9)
O3 0.0179 (11) 0.0130 (11) 0.0142 (10) 0.0014 (9) −0.0025 (9) −0.0030 (8)
O2 0.0168 (11) 0.0133 (11) 0.0270 (11) 0.0034 (9) −0.0032 (8) −0.0013 (9)
O4 0.0324 (14) 0.0204 (13) 0.0222 (11) 0.0110 (10) −0.0066 (10) −0.0003 (9)
O5 0.0170 (11) 0.0199 (11) 0.0164 (10) −0.0050 (11) 0.0015 (9) −0.0006 (8)
O7 0.0161 (11) 0.0165 (11) 0.0126 (11) −0.0039 (9) −0.0008 (8) −0.0009 (8)
O6 0.0182 (12) 0.0174 (11) 0.0267 (12) −0.0069 (10) 0.0006 (9) −0.0020 (9)
O8 0.0209 (12) 0.0198 (12) 0.0185 (11) −0.0028 (10) 0.0058 (9) 0.0036 (9)
N1 0.0110 (12) 0.0126 (13) 0.0115 (12) −0.0015 (10) 0.0003 (10) −0.0001 (10)
N2 0.0113 (12) 0.0116 (13) 0.0141 (12) 0.0025 (10) −0.0014 (9) −0.0013 (10)
C1 0.0084 (16) 0.0155 (17) 0.0203 (15) 0.0004 (13) 0.0032 (12) 0.0010 (12)
C2 0.0135 (16) 0.0124 (15) 0.0148 (13) −0.0028 (13) 0.0030 (12) 0.0004 (11)
C3 0.0179 (16) 0.0148 (17) 0.0153 (14) −0.0031 (13) 0.0037 (12) −0.0031 (12)
C4 0.0216 (18) 0.0201 (17) 0.0117 (13) −0.0037 (14) 0.0006 (12) −0.0027 (12)
C5 0.0159 (16) 0.0180 (17) 0.0127 (14) −0.0021 (13) −0.0009 (12) 0.0028 (12)
C6 0.0123 (15) 0.0138 (15) 0.0148 (14) −0.0024 (13) 0.0020 (11) 0.0025 (11)
C7 0.0150 (15) 0.0151 (16) 0.0160 (14) 0.0002 (13) 0.0029 (12) 0.0002 (12)
C8 0.0126 (16) 0.0118 (15) 0.0204 (16) 0.0002 (12) 0.0017 (12) 0.0001 (12)
C9 0.0103 (15) 0.0100 (14) 0.0190 (14) 0.0026 (12) −0.0021 (11) −0.0010 (11)
C10 0.0160 (16) 0.0127 (15) 0.0212 (15) 0.0007 (14) −0.0074 (14) −0.0018 (11)
C11 0.0226 (17) 0.0200 (17) 0.0154 (14) 0.0049 (14) −0.0060 (12) −0.0026 (13)
C12 0.0194 (17) 0.0177 (16) 0.0122 (13) 0.0032 (14) −0.0009 (12) 0.0019 (11)
C13 0.0132 (15) 0.0121 (14) 0.0142 (13) 0.0041 (13) 0.0001 (12) 0.0012 (11)
C14 0.0110 (15) 0.0142 (16) 0.0191 (15) 0.0044 (13) 0.0012 (12) −0.0013 (12)
Ni2 0.01145 (18) 0.01053 (18) 0.01407 (17) −0.00027 (16) −0.00135 (15) 0.00039 (13)
O1W 0.0169 (12) 0.0177 (12) 0.0231 (11) −0.0015 (9) −0.0018 (9) 0.0056 (9)
O2W 0.0143 (10) 0.0127 (11) 0.0247 (11) 0.0001 (9) −0.0021 (8) 0.0009 (9)
N3 0.0191 (15) 0.0190 (15) 0.0195 (13) −0.0019 (12) −0.0024 (10) 0.0010 (11)
N4 0.0147 (13) 0.0142 (14) 0.0232 (13) 0.0001 (11) −0.0017 (10) −0.0007 (11)
N5 0.0148 (14) 0.0166 (13) 0.0174 (12) −0.0005 (11) −0.0015 (10) 0.0031 (10)
N6 0.0156 (13) 0.0147 (13) 0.0207 (14) 0.0001 (10) 0.0007 (10) 0.0028 (11)
C15 0.0248 (18) 0.0260 (19) 0.0201 (16) 0.0000 (15) −0.0007 (13) −0.0062 (14)
C16 0.0199 (19) 0.0188 (18) 0.0292 (17) 0.0016 (14) −0.0029 (13) −0.0074 (14)
C17 0.0163 (16) 0.0118 (15) 0.0350 (17) 0.0008 (14) 0.0018 (15) 0.0018 (12)
C18 0.0204 (18) 0.0197 (18) 0.0301 (18) −0.0005 (14) 0.0004 (14) 0.0097 (14)
C19 0.0228 (19) 0.0250 (19) 0.0213 (15) −0.0020 (15) 0.0025 (14) 0.0091 (13)
C20 0.025 (2) 0.0221 (18) 0.0179 (15) 0.0019 (14) 0.0001 (13) −0.0043 (13)
C21 0.0234 (17) 0.0136 (15) 0.0252 (16) −0.0018 (16) 0.0012 (16) −0.0046 (12)

Geometric parameters (Å, º)

Ni1—O1 2.099 (2) Ni2—N3 2.074 (2)
Ni1—O3 2.109 (2) Ni2—N4 2.088 (2)
Ni1—O5 2.111 (2) Ni2—N5 2.095 (2)
Ni1—O7 2.1343 (19) Ni2—N6 2.089 (3)
Ni1—N1 1.961 (2) O1W—H1WA 0.8563
Ni1—N2 1.969 (2) O1W—H1WB 0.8593
O1—C1 1.264 (4) O2W—H2WA 0.8743
O3—C7 1.294 (3) O2W—H2WB 0.8744
O2—C1 1.251 (4) N3—H3A 0.9100
O4—C7 1.221 (4) N3—H3B 0.9100
O5—C8 1.262 (3) N3—C15 1.473 (4)
O7—C14 1.282 (3) N4—H4A 1.0000
O6—C8 1.245 (3) N4—C16 1.475 (4)
O8—C14 1.235 (4) N4—C17 1.483 (4)
N1—C2 1.334 (4) N5—H5A 1.0000
N1—C6 1.336 (4) N5—C19 1.477 (4)
N2—C9 1.323 (4) N5—C20 1.471 (4)
N2—C13 1.343 (4) N6—H6A 0.9100
C1—C2 1.517 (4) N6—H6B 0.9100
C2—C3 1.385 (4) N6—C21 1.472 (4)
C3—H3 0.9500 C15—H15A 0.9900
C3—C4 1.396 (4) C15—H15B 0.9900
C4—H4 0.9500 C15—C16 1.515 (5)
C4—C5 1.386 (4) C16—H16A 0.9900
C5—H5 0.9500 C16—H16B 0.9900
C5—C6 1.382 (4) C17—H17A 0.9900
C6—C7 1.523 (4) C17—H17B 0.9900
C8—C9 1.524 (4) C17—C18 1.509 (4)
C9—C10 1.391 (4) C18—H18A 0.9900
C10—H10 0.9500 C18—H18B 0.9900
C10—C11 1.384 (4) C18—C19 1.517 (5)
C11—H11 0.9500 C19—H19A 0.9900
C11—C12 1.396 (5) C19—H19B 0.9900
C12—H12 0.9500 C20—H20A 0.9900
C12—C13 1.387 (4) C20—H20B 0.9900
C13—C14 1.512 (4) C20—C21 1.515 (4)
Ni2—O1W 2.131 (2) C21—H21A 0.9900
Ni2—O2W 2.124 (2) C21—H21B 0.9900
O1—Ni1—O3 156.79 (8) N5—Ni2—O1W 93.07 (9)
O1—Ni1—O5 95.74 (8) N5—Ni2—O2W 88.86 (9)
O1—Ni1—O7 89.96 (8) N6—Ni2—O1W 87.13 (9)
O3—Ni1—O5 89.36 (8) N6—Ni2—O2W 88.34 (9)
O3—Ni1—O7 94.68 (8) N6—Ni2—N5 84.36 (10)
O5—Ni1—O7 155.62 (7) Ni2—O1W—H1WA 121.7
N1—Ni1—O1 78.63 (9) Ni2—O1W—H1WB 107.9
N1—Ni1—O3 78.19 (9) H1WA—O1W—H1WB 116.6
N1—Ni1—O5 105.53 (9) Ni2—O2W—H2WA 123.4
N1—Ni1—O7 98.84 (9) Ni2—O2W—H2WB 116.2
N1—Ni1—N2 176.06 (10) H2WA—O2W—H2WB 107.9
N2—Ni1—O1 99.61 (9) Ni2—N3—H3A 110.5
N2—Ni1—O3 103.60 (9) Ni2—N3—H3B 110.5
N2—Ni1—O5 78.10 (9) H3A—N3—H3B 108.7
N2—Ni1—O7 77.58 (9) C15—N3—Ni2 106.06 (18)
C1—O1—Ni1 114.33 (19) C15—N3—H3A 110.5
C7—O3—Ni1 115.29 (18) C15—N3—H3B 110.5
C8—O5—Ni1 115.02 (18) Ni2—N4—H4A 106.6
C14—O7—Ni1 115.00 (19) C16—N4—Ni2 107.41 (19)
C2—N1—Ni1 118.40 (19) C16—N4—H4A 106.6
C2—N1—C6 122.0 (3) C16—N4—C17 112.9 (2)
C6—N1—Ni1 119.5 (2) C17—N4—Ni2 116.20 (19)
C9—N2—Ni1 118.88 (19) C17—N4—H4A 106.6
C9—N2—C13 122.1 (2) Ni2—N5—H5A 107.9
C13—N2—Ni1 119.07 (19) C19—N5—Ni2 115.30 (19)
O1—C1—C2 115.9 (3) C19—N5—H5A 107.9
O2—C1—O1 125.6 (3) C20—N5—Ni2 106.17 (18)
O2—C1—C2 118.5 (3) C20—N5—H5A 107.9
N1—C2—C1 112.2 (2) C20—N5—C19 111.5 (2)
N1—C2—C3 120.6 (3) Ni2—N6—H6A 110.4
C3—C2—C1 127.2 (3) Ni2—N6—H6B 110.4
C2—C3—H3 120.9 H6A—N6—H6B 108.6
C2—C3—C4 118.1 (3) C21—N6—Ni2 106.50 (18)
C4—C3—H3 120.9 C21—N6—H6A 110.4
C3—C4—H4 119.9 C21—N6—H6B 110.4
C5—C4—C3 120.2 (3) N3—C15—H15A 110.1
C5—C4—H4 119.9 N3—C15—H15B 110.1
C4—C5—H5 120.8 N3—C15—C16 108.1 (3)
C6—C5—C4 118.4 (3) H15A—C15—H15B 108.4
C6—C5—H5 120.8 C16—C15—H15A 110.1
N1—C6—C5 120.6 (3) C16—C15—H15B 110.1
N1—C6—C7 112.8 (2) N4—C16—C15 109.7 (3)
C5—C6—C7 126.6 (3) N4—C16—H16A 109.7
O3—C7—C6 114.0 (3) N4—C16—H16B 109.7
O4—C7—O3 126.7 (3) C15—C16—H16A 109.7
O4—C7—C6 119.3 (3) C15—C16—H16B 109.7
O5—C8—C9 115.1 (2) H16A—C16—H16B 108.2
O6—C8—O5 126.8 (3) N4—C17—H17A 109.0
O6—C8—C9 118.0 (3) N4—C17—H17B 109.0
N2—C9—C8 112.7 (2) N4—C17—C18 112.8 (3)
N2—C9—C10 120.9 (3) H17A—C17—H17B 107.8
C10—C9—C8 126.4 (3) C18—C17—H17A 109.0
C9—C10—H10 120.8 C18—C17—H17B 109.0
C11—C10—C9 118.3 (3) C17—C18—H18A 108.2
C11—C10—H10 120.8 C17—C18—H18B 108.2
C10—C11—H11 119.9 C17—C18—C19 116.3 (3)
C10—C11—C12 120.1 (3) H18A—C18—H18B 107.4
C12—C11—H11 119.9 C19—C18—H18A 108.2
C11—C12—H12 120.8 C19—C18—H18B 108.2
C13—C12—C11 118.4 (3) N5—C19—C18 112.9 (3)
C13—C12—H12 120.8 N5—C19—H19A 109.0
N2—C13—C12 120.2 (3) N5—C19—H19B 109.0
N2—C13—C14 113.4 (2) C18—C19—H19A 109.0
C12—C13—C14 126.4 (3) C18—C19—H19B 109.0
O7—C14—C13 114.2 (3) H19A—C19—H19B 107.8
O8—C14—O7 126.3 (3) N5—C20—H20A 109.9
O8—C14—C13 119.5 (3) N5—C20—H20B 109.9
O2W—Ni2—O1W 174.88 (8) N5—C20—C21 109.1 (2)
N3—Ni2—O1W 86.26 (9) H20A—C20—H20B 108.3
N3—Ni2—O2W 92.25 (9) C21—C20—H20A 109.9
N3—Ni2—N4 84.10 (10) C21—C20—H20B 109.9
N3—Ni2—N5 174.54 (10) N6—C21—C20 109.4 (2)
N3—Ni2—N6 101.01 (10) N6—C21—H21A 109.8
N4—Ni2—O1W 87.83 (9) N6—C21—H21B 109.8
N4—Ni2—O2W 96.90 (9) C20—C21—H21A 109.8
N4—Ni2—N5 90.45 (10) C20—C21—H21B 109.8
N4—Ni2—N6 172.57 (10) H21A—C21—H21B 108.2
Ni1—O1—C1—O2 175.1 (2) C2—C3—C4—C5 3.0 (4)
Ni1—O1—C1—C2 −6.2 (3) C3—C4—C5—C6 −0.7 (4)
Ni1—O3—C7—O4 175.0 (3) C4—C5—C6—N1 −1.7 (4)
Ni1—O3—C7—C6 −5.5 (3) C4—C5—C6—C7 177.3 (3)
Ni1—O5—C8—O6 179.7 (2) C5—C6—C7—O3 −174.5 (3)
Ni1—O5—C8—C9 −2.3 (3) C5—C6—C7—O4 5.0 (5)
Ni1—O7—C14—O8 171.5 (2) C6—N1—C2—C1 −179.3 (2)
Ni1—O7—C14—C13 −10.1 (3) C6—N1—C2—C3 0.7 (4)
Ni1—N1—C2—C1 4.6 (3) C8—C9—C10—C11 178.3 (3)
Ni1—N1—C2—C3 −175.4 (2) C9—N2—C13—C12 −0.7 (4)
Ni1—N1—C6—C5 177.8 (2) C9—N2—C13—C14 −178.9 (3)
Ni1—N1—C6—C7 −1.4 (3) C9—C10—C11—C12 −0.4 (4)
Ni1—N2—C9—C8 2.9 (3) C10—C11—C12—C13 0.6 (5)
Ni1—N2—C9—C10 −178.3 (2) C11—C12—C13—N2 −0.1 (4)
Ni1—N2—C13—C12 178.5 (2) C11—C12—C13—C14 177.9 (3)
Ni1—N2—C13—C14 0.3 (3) C12—C13—C14—O7 −171.3 (3)
O1—C1—C2—N1 1.4 (4) C12—C13—C14—O8 7.2 (5)
O1—C1—C2—C3 −178.6 (3) C13—N2—C9—C8 −177.9 (2)
O2—C1—C2—N1 −179.8 (3) C13—N2—C9—C10 1.0 (4)
O2—C1—C2—C3 0.2 (5) Ni2—N3—C15—C16 45.9 (3)
O5—C8—C9—N2 −0.2 (4) Ni2—N4—C16—C15 34.9 (3)
O5—C8—C9—C10 −178.9 (3) Ni2—N4—C17—C18 −59.1 (3)
O6—C8—C9—N2 178.0 (3) Ni2—N5—C19—C18 60.4 (3)
O6—C8—C9—C10 −0.8 (4) Ni2—N5—C20—C21 −41.5 (3)
N1—C2—C3—C4 −3.0 (4) Ni2—N6—C21—C20 −40.1 (3)
N1—C6—C7—O3 4.6 (4) N3—C15—C16—N4 −55.3 (3)
N1—C6—C7—O4 −175.8 (3) N4—C17—C18—C19 65.8 (4)
N2—C9—C10—C11 −0.4 (4) N5—C20—C21—N6 56.4 (3)
N2—C13—C14—O7 6.8 (4) C16—N4—C17—C18 176.1 (3)
N2—C13—C14—O8 −174.7 (3) C17—N4—C16—C15 164.3 (3)
C1—C2—C3—C4 177.0 (3) C17—C18—C19—N5 −67.0 (4)
C2—N1—C6—C5 1.8 (4) C19—N5—C20—C21 −167.8 (3)
C2—N1—C6—C7 −177.4 (3) C20—N5—C19—C18 −178.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O8i 0.91 2.41 3.213 (3) 147
N3—H3B···O4ii 0.91 2.11 3.015 (3) 176
N4—H4A···O1 1.00 2.07 3.054 (3) 167
N5—H5A···O2 1.00 2.08 3.054 (3) 163
N6—H6A···O3ii 0.91 2.14 2.986 (3) 154
N6—H6B···O6iii 0.91 2.07 2.943 (3) 160
O1W—H1WA···O1 0.86 2.56 3.088 (3) 121
O1W—H1WA···O2 0.86 2.00 2.795 (3) 154
O1W—H1WB···O3ii 0.86 1.91 2.757 (3) 170
O2W—H2WA···O7i 0.87 1.80 2.663 (3) 169
O2W—H2WB···O6iii 0.87 1.90 2.742 (3) 160

Symmetry codes: (i) x−1, y, z; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+1, y+1/2, −z+3/2.

References

  1. Bosnich, B., Poon, C. K. & Tobe, M. C. (1965). Inorg. Chem. 4, 1102–1108.
  2. Choi, K.-Y., Ryu, H., Lim, Y.-M., Sung, N.-D., Shin, U.-S. & Suh, M. (2003). Inorg. Chem. Commun. 6, 412–415.
  3. Escuer, A., Vicente, R., Ribas, J., El Fallah, M. S., Solans, X. & Font-Bardia, M. (1993). Inorg. Chem. 32, 3727–3732.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Kaskel, S. (2016). Editor. The Chemistry of Metal–Organic Frameworks: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH.
  6. Koo, J. E., Kim, D. H., Kim, Y. S. & Do, Y. (2003). Inorg. Chem. 42, 2983–2987. [DOI] [PubMed]
  7. Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.
  8. Lee, J. H. & Moon, H. R. (2018). J. Incl Phenom. Macrocycl Chem. 92, 237–249.
  9. MacGillivray, L. R. & Lukehart, C. M. (2014). Editors. Metal–Organic Framework Materials. Hoboken: John Wiley and Sons.
  10. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  11. Ni, W.-W., Chen, X., Cui, A.-L., Liu, C.-M. & Kou, H.-Z. (2014). Polyhedron, 81, 450–456.
  12. Oblezov, A. E., Talham, D. R. & Abboud, K. A. (2003). Acta Cryst. E59, m1070–m1071.
  13. Park, H., Lough, A. J., Kim, J. C., Jeong, M. H. & Kang, Y. S. (2007). Inorg. Chim. Acta, 360, 2819–2823.
  14. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  15. Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. [DOI] [PubMed]
  16. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  17. Shek, I. Y., Yeung, W.-F., Lau, T.-C., Zhang, J., Gao, S., Szeto, L. & Wong, W.-T. (2005). Eur. J. Inorg. Chem. pp. 364–370.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.
  21. Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.
  22. Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. (2012). Chem. Rev. 112, 782–835. [DOI] [PubMed]
  23. Talukder, P., Shit, S., Nöth, H., Westerhausen, M., Kneifel, A. N. & Mitra, S. (2012). Transition Met. Chem. 37, 71–77.
  24. Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355–2370.
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  26. Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands, Kiev: Naukova Dumka. (In Russian.)

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989021011178/hb7995sup1.cif

e-77-01175-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021011178/hb7995Isup2.hkl

e-77-01175-Isup2.hkl (269.2KB, hkl)

CCDC reference: 2115829

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES