Abstract
Kiwi, a fruit from plants of the genus Actinidia, is one of the famous fruits with thousand years of edible history. In the past twenty years, a great deal of research has been done on the chemical constituents of the Actinidia species. A large number of secondary metabolites including triterpenoids, flavonoids, phenols, etc. have been identified from differents parts of Actinidia plants, which exhibited significant in vitro and in vivo pharmacological activities including anticancer, anti-inflammatory, neuroprotective, anti-oxidative, anti-bacterial, and anti-diabetic activities. In order to fully understand the chemical components and biological activities of Actinidia plants, and to improve their further research, development and utilization, this review summarizes the compounds extracted from different parts of Actinidia plants since 1959 to 2020, classifies the types of constituents, reports on the pharmacological activities of relative compounds and medicinal potentials.
Keywords: Actinidia chemical constituents, Isolation, Biological activities
Introduction
With the development of natural product research, a huge number of chemical constituents have been identified from natural resources. There is no doubt that the research on the chemical composition of fruits, including trace elements, has greatly improved the application prospects of these fruits. With no exception, it is the same to kiwifruit, one of the most prestigious fruits with a long history of eating [1, 2]. Kiwi belongs to plants of the genus Actinidia comprising more than 70 species around the world [3]. Some of these plants are proven to have a wide range of medicinal activities. For example, A. valvata, whose root is known as ‘‘Mao-Ren-Shen” in traditional Chinese medicine, exhibits antitumor and anti-inflammatory activities and has been used for the treatment of hepatoma, lung carcinoma and myeloma for a long time [4, 5]. The roots of A. chinensis Planch, called “Teng-Li-Gen” usually, were used as a traditional Chinese medicine for the treatment of various cancers, such as esophagus cancer, liver cancer, and gastric cancer [6]. In the past two decades, great research had been accomplished about exploring the chemical composition of Actinidia plants. These studies have greatly promoted the understanding of the chemical components and functions of the Actinidia plant. According to literature survey, 12 Actinidia species including A. valvata, A. chinensis, A. argute, A. polygama, A. kolomikta, A. eriantha, A. macrosperma, A. deliciosa, A. chrysantha, A. rufa, A. indochinensis, and A. valvata were reported for their natural products. This review systematically summarizes the chemical components and their biological activities from different parts of 12 Actinidia species from 1959 to 2020. According to structure types, a total of 325 molecules have been collected including terpeniods, phenols, and other small groups (Fig. 1). Names and isolation information were listed in the tables, while the biological activities of the extracts or compounds were discussed in the text.
Fig. 1.

Constituents proportion of 12 Actinidia plants
Chemical Constituents
Terpenoids
In recent years, a large number of terpenoids were isolated from many Actinidia species. Among them, triterpenes account for the vast majority that are mainly composed by several normal frameworks including ursane-type, oleanane-type, and lupane-type. Of the total 325 compounds in this review, 104 are triterpenoids. From the literature review, ursolic acids and their saponins are undoubtedly the most abundant in Actinidia species.
Ursane Triterpenoids
Ursane-type triterpenes are characterized of ursolic acid and its saponins, possessing a 6/6/6/6/6-fused carbon skeleton. A total of 76 ursane-type triterpenoids (1–76) have been identified from plants of the genus Actinidia (Fig. 2, Table 1). Ursolic acid (3β-Hydroxyurs-12-en-28-oic acid 1) [7], is one of the most frequently obtained compound in many kinds of kiwifruit plants with unique flavor. Great attention had been paid on biological activities about ursolic acid, attracting much interest in recent years. Ursolic acid exhibits different pharmacological activities, including anti-cancer, amylolytic enzyme inhibitors, cytotoxicity, downregulating thymic stromal lymphopoietin and others [7–11].
Fig. 2.
Structures of ursane triterpenoids 1‒76 from Actinidia plants
Table 1.
Information of ursane triterpenoids from Actinidia plants
| No. | Compound name | Species Refs. | Part | Bioactivity Refs. |
|---|---|---|---|---|
| 1 | 3β-Hydroxyurs-12-en-28-oic acid | A. eriantha [7] | Roots |
Anticancer (in vitro) [8] Inhibiting amylolytic enzyme (in vitro) [9] Antidepressant and neuroprotective (in vitro) [10] Downregulating thymic stromal lymphopoietin (in vitro) [11] |
| 2 | 3β,24-Dihydroxyurs-12-en-28-oic acid |
A. arguta [37] A. polygama [23] |
Leaves Fruit galls |
|
| 3 | 2α,3β-Dihydroxyurs-12-en-28-oic acid |
A. polygama [23] A. arguta [13] |
Fruit galls Roots |
Anti-metastation (In vitro) [38] Anticancer (In vitro) [12] |
| 4 | 23-Hydroxyursolic acid | A. arguta [13] | Roots |
Anti-pancreatic lipase (In vitro) [13] Anti-inflammatory (in vitro) [17] |
| 5 | 2β,3β-Dihydroxyursolic acid | A. sp [39] | ||
| 6 | 2α,3α-Dihydroxyurs-12-en-28-oic acid | A. chinensis [30] | Roots | |
| 7 | 2α,3α,24-Trihydroxyurs-12-en-28-oic acid | A. eriantha [40] | Roots | |
| 8 | 2α,3β,24-Trihydroxy-urs-12-en-28-oic acid |
A. eriantha Benth [41] A. polygama [18] |
Fruit galls |
Against A549, LOVO, and HepG2 cell lines (in vitro) [19] |
| 9 | 2α,3β,23-Trihydroxyurs-12-en-28-oic acid |
A. polygama [18] A. chrysantha [42] |
Fruit galls Roots |
Against A549, LOVO, and HepG2 cell lines (in vitro) [19] |
| 10 | 2α,3α,23-Trihydroxyurs-12-en-28-oic acid | A. polygama [18] | Fruit galls | |
| 11 | 2β,3α,24-Trihydroxy-urs-12-en-28-oic acid | A. rufa [43] | Roots | |
| 12 | 2β,3β,10-Trihydroxy ursolic acid | A. sp [39] | ||
| 13 | 2α,3β,14β-Trihydroxy ursolic acid | A. sp [39] | ||
| 14 | 2α,3α,19-Trihydroxyurs-12-en-28-oic acid | A. chinensis [44] | Roots | Inhibiting tumor angiogenesis (in vitro) [45] |
| 15 | 2β,3β,23-Trihydroxyurs-12-en-28-oic acid | A. eriantha [7] | Roots | Against HepG2, A549, MCF-7, SK-OV-3, and HeLa cell lines (in vitro) [32] |
| 16 | 2β,3α,23-Trihydroxyurs-12-en-28-oic acid | A. chinensis Planch [32] | Roots | Against HepG2, A549, MCF-7, SK-OV-3, and HeLa cell lines (in vitro) [32] |
| 17 | 2α,3α,23,24-Tetrahydroxyurs-12-en-28-oic acid | A. polygama [18] | Fruit galls |
Against A549, LOVO and HepG2 cell lines (in vitro) [20] |
| 18 | 2α, 3β, 19α, 23-Tetrahydroxyurs-12-en-28-oic acid | A. chinensis Planch [32] | Roots | |
| 19 | 2α,3β,19α,24-Tetrahydroxyurs-12-en-28-oic acid | A. indochinensis Merr. Var [46] | Roots | |
| 20 | 2α,3α,19α,24-Tetrahydroxyurs-12-en-28-oic acid | A. valvata [21] | Leaves | Anti-tumor (in vitro) [21] |
| 21 | 2α,3β,23,24-Tetrahydroxyurs-12-en-28-oic acid | A. chinensis Planch [32] | Roots | |
| 22 | 2α,3β,6β,23-Tetrahydroxyurs-12-en-28-oic acid | A. valvata Dunn [47] | Roots | |
| 23 | 2α,3β,23,27-Tetrahydroxy-12-en-28-ursolic acid | A. deliciosa [48] | Roots | |
| 24 |
2α,3α,19α,23,24-Pentahydroxy-urs-12-en- 28-oic acid |
A. chinensis Planch [19] | Roots | |
| 25 | 2α,3β,19α,23,24-Pentahydroxyurs-12-en-28-oic acid | A. rufa Planch ex miq [43] | Roots | |
| 26 | (2β,3α,6α)-2,3,6,20,23,30-Hexahydroxyurs-12-en-28-oic acid | A. valvata Dunn [22] | Roots | Against BEL-7402 and SMMC-7721 cells lines (in vitro) [22] |
| 27 | 2β,3β-Dihydroxy-23-oxours-12-en-28-oic acid | A. eriantha Benth [49] | Roots | |
| 28 | 2α,3α-Dihydroxyurs-12-ene-24-al-28-oic acid | A. polygama [18] | Fruit galls | |
| 29 | 2α,3α,24-Trihydroxyurs-12-ene-23,28-dioic acid | A. polygama [18] | Fruit galls | |
| 30 | 3β-O-Acetylursolic acid | A. polygama [23] | Fruit galls |
Inhibiting PTP1B (in vitro) [24] |
| 31 | 24-Acetyloxy-2α,3α-dihydroxyurs-12-en-28-oic acid | A. eriantha [7] | Roots | |
| 32 | 2α,3β,19α-Trihydroxyurs-12-en-23,28-dioic,acid-23-methylester | A. chinensis Radix [50] | Roots | |
| 33 | 3β-Hydroxy-13,28-epoxyurs-11-en-3-ol | A. kolomikta [51] | Rhizomes | |
| 34 | 28-Norurs-12-en-3β,17β-diol | A. kolomikta [51] | Rhizomes | |
| 35 | Triptohypol E | A. kolomikta [51] | Rhizomes | |
| 36 | Neoilexonol | A. kolomikta [51] | Rhizomes | |
| 37 | 11α-Methoxyurs-12-ene-3β,12-diol | A. arguta [34] | Leaves | |
| 38 | Ilelatifol A | A. arguta [34] | Leaves | |
| 39 | (2α,3β)-2,3,23-Trihydroxyurs-13(18)-en-28-oic acid | A. chinensis Planch [52] | Roots | |
| 40 | Fupenzic acid | A. chinensis [25] | Root bark | Antiviral (in vitro) [25] |
| 41 | Nrsolaldehyde | A. arguta [26] | Stems | |
| 42 | α-Amyrin | A. arguta [26] | Stems | |
| 43 | Uvaol | A. arguta [26] | Stems |
Anti-inflammatory (in vivo) [27] Anticancer (in vitro) [28] Wound healing (in vivo) [29] |
| 44 | Pseudotaraxasterol | A. chinensis Planch [19] | Roots | |
| 45 | 2α,3α,24-Trihydroxyurs-11-en-13,28-olide | A. polygama [23] | Fruit galls | |
| 46 | 2α,3β-Dihydroxyurs-12-en-28,30-olide | A. chinensis [30] | Roots | |
| 47 | 2α,3β,24-Trihydroxyurs-12-en-28,30-olide | A. chinensis [30] | Roots | |
| 48 | Ehretiolide | A. kolomikta [51] | Rhizomes | |
| 49 | 3β-Acetoxyurs-11-en-28-oic 13(28)-lactone | A. kolomikta [51] | Rhizomes | |
| 50 | 3β-Hydroxyurs-12,18-dien-28-oic acid | A. chinensis [30] | Roots | |
| 51 | (2α,3β,4α)-2,3-Dihydroxy-24-norursa-12,18-dien-28-oic acid | A. valvata Dunn [47] | Roots | |
| 52 | 2α,3α,23-Trihydroxy-12,20(30)-ursadien-28-oic acid |
A. polygama [18] A. deliciosa [31] |
Fruit galls Peels |
Antifungal (in vitro) [31] |
| 53 | 2α,3β,23-Trihydroxy-12,20(30)-ursadien-28-oic acid | A. deliciosa [31] | Peels | Antifungal (in vitro) [31] |
| 54 | 2α,3α,24-Trihydroxy-12,20(30)-ursadien-28-oic acid | A. deliciosa [ 31] | Peels | Antifungal (in vitro) [31] |
| 55 | 2α,3α,23,24-Tetrahydroxyursa-12,20(30)-dien-28-oic acid | A. chinensis Planch [32] | Roots | Anti-tumor (in vitro) [32] |
| 56 | 3β-Trans-p-coumaroyloxy-2α,24-dihydroxy-urs-12- en-28-oic acid | A. polygama [23] | Fruit galls | |
| 57 | 3-O-Trans-p-coumaroyl tormentic acid | A. chinensis Radix [50] | Roots | |
| 58 | 3-O-Cis-p-coumaroyl tormentic acid | A. chinensis Radix [50] | Roots | |
| 59 | 3-O-Trans-p-coumaroylasiatic acid | A. polygama [18] | Fruit galls | |
| 60 | 23-O-Trans-p-coumaroylasiatic acid | A. arguta [34] | Leaves | Inhibiting α-glucosidase (in vitro) [34] |
| 61 | Actiniargupene E | A. arguta [34] | Leaves | Inhibiting α-glucosidase (in vitro) [34] |
| 62 | Actiniargupene F | A. arguta [34] | Leaves | Inhibiting α-glucosidase (in vitro) [34] |
| 63 | Actiniargupene G | A. arguta [34] | Leaves | Inhibiting α-glucosidase (in vitro) [34] |
| 64 | 3-O-Trans-p-coumaroyl actinidic acid |
A. arguta [13] A. arguta [34] |
Roots Leaves |
|
| 65 | 3-O-Cis-p-coumaroylactinidic acid | A. arguta [34] | Leaves | Inhibiting α-glucosidase (in vitro) [34] |
| 66 | Actiniargupene A | A. arguta [34] | Leaves | Inhibiting α-glucosidase (in vitro) [34] |
| 67 | Actiniargupene B | A. arguta [34] | Leaves | Inhibiting α-glucosidase (in vitro) [34] |
| 68 | Actiniargupene C | A. arguta [34] | Leaves | Inhibiting α-glucosidase (in vitro) [34] |
| 69 | (+)-Tormentoside | A. arguta [53] | Roots | |
| 70 | (+)-Euscaphic acid-28-O-β-d-glucopyranoside | A. arguta [53] | Roots | |
| 71 | 2α,3α,19α,24-Tetrahydroxyurs-12-en-28-oic acid 28-O-β-d-glucopyranoside | A. chinensis Planch [19] | Roots |
Inhibiting SKVO3 and TPC-1 cancer cells lines (in vitro) [42] |
| 72 | 2α,3β,19α,23-Tetrahydroxyurs-12-en-28-oic acid 28-O-β-d-glucopyranoside | A. chinensis Radix [50] | Roots | |
| 73 | 2α,3β,19α,23,24-Pentahydroxyurs-12-en-28-oic acid-28-O-β-d-glucopyranoside | A. rufa [35] | Roots | |
| 74 | (2β,3α)-2,3,20,23,24,30-Hexahydroxyurs-12-en-28-oic acid O-β-d-glucopyranosyl ester | A. valvata Dunn [22] | Roots | Against BEL-7402 and SMMC-7721 tumor cells lines (in vitro) [22] |
| 75 |
2α,3β,23,30-Tetrahydroxyurs-12,18-diene- 28-oic acid O-β-d-glucopyranosyl ester |
A. valvata Dunn [36] | Roots | Against BEL-7402 and SMMC-7721 tumor cells lines (in vitro) [36] |
| 76 |
30-O-β-d-Glucopyranosyloxy-2α,3α,24- trihydroxyurs-12,18-diene-28-oic acid O-β-d-glucopyranosyl ester |
A. valvata Dunn [36] | Roots | Against BEL-7402 and SMMC-7721 tumor cells lines (in vitro) [36] |
Compounds 2‒7 are ursane triterpenoids featuring with two hydroxyl groups. Compound 3 (2α-Hydroxyursolic acid) was tested for its antiproliferative activity and cytotoxicity in MDA-MB-231 human breast cancer cells through the methylene blue assay. It significantly down-regulated expressions of TRAF2, PCNA, cyclin D1, and CDK4 and up-regulated the expressions of p-ASK1, p-p38, p-p53, and p-21. Furthermore, it induced apoptosis in MDA-MB-231 cell by significantly increasing the Bax/Bcl-2 ratio and inducing the cleaved caspase-3 [12]. Compound 4 exhibited inhibitory activity on pancreatic lipase with an IC50 value of 20.42 ± 0.95 μM [13]. It also showed cytotoxicity to human lung adenocarcinoma (A549), ovarian cancer (SK-OV-3), skin melanoma (SK-MEL-2), and colon cancer (HCT-15) cell lines with IC50 values ranging from 11.96 to 14.11 μM [14–17].
Compounds 7‒14 are trihydroxy-ursolic acid derivatives. In early 1992, Sashida et al. reported the isolation of 8‒10. Compounds 8 and 9 were evaluated for their cytotoxicity against A549 cells, LOVO cells, and HepG2 cells with IC50 values of 32.9, 31.6, 35.7 μg/mL respectively for 8 and 34.6, 13.9, 34.5 μg/mL respectively for 9 [18, 19]. Compounds 17‒26 are ursolic acids with four or five hydroxy groups. Xu et al. reported 17 from roots of A. valvata, this compound exhibited weak cytotoxicity against A549, LOVO and HepG2 cell lines with IC50 values of above 100 μg/mL [20]. 2α,3α,19α,24-Tetrahydroxyurs-12-en-28-oic acid 20 was separated from the leaves of A. valvata which showed cytotoxicity against PLC, Hep3B, HepG2, HeLa, SW480, MCF-7 and Bel7402 in vitro [21]. A new polyoxygenated triterpenoid (2β,3α,6α)-2,3,6,20,23,30-hexahydroxyurs-12-en-28-oic acid 26 was obtained from the roots of A. valvata DUNN, it exhibited moderate cytotoxic activity against BEL-7402 and SMMC-7721 tumor cell lines in vitro [22].
Compound 30 (3β-O-acetylursolic acid) was isolated from the fruit galls of A. polygama and the structure was elucidated on the basis of chemical and spectral evidence. It was reported to be a mixed-type protein tyrosine phosphatase 1B (PTP1B) inhibitor with an IC50 value of 4.8 ± 0.5 μΜ [23, 24]. Isolation of the antiviral active ingredient of A. chinensis root bark gave fupenzic acid 40, which showed moderate inactivity under the concentration of 100 μg/mL [25]. Callus tissue from the stems of A. arguta (Actinidiaceae) produced three ursane-type triterpenes including ursolaldehyde 41, α-amyrin 42, and uvaol 43 [26]. Of them, compound 43 showed anti-inflammatory, anticancer, and wound healing activities [27–29]. Anti-inflammatory properties of 43 on DSS-induced colitis and LPS-stimulated macrophages have been explored detailly and completely. It showed excellent potential of NO production inhibition. It could attenuate disease activity index (DAI), colon shortening, colon injury, and colonic myeloperoxidase activity in DSS-induced colitis mice. What’s more, studies on LPS challenged murine macrophage RAW246.7 cells also revealed that uvaol reduces mRNA expression and production of pro-inflammatory cytokines and mediators. These results indicating that uvaol is a prospective anti-inflammatory agent for colonic inflammation [27]. Guided by the hepatoprotective activity, the phytochemical study on the roots of A. chinensis led to the isolation of two new compounds 2α,3β-dihydroxyurs-12-en-28,30-olide 46, 2α,3β,24-trihydroxyurs-12-en-28,30-olide 47 and 3β-hydroxyurs-12,18-dien-28-oic acid 50 [30]. Compounds 52‒54 showed antifungal activity against C. musae at 3 μg/mL [31]. A new compound 2α,3α,23,24 -tetrahydroxyursa-12,20(30)-dien-28-oic acid 55 was isolated from the roots of A. chinensis Planch. It exhibited moderate antitumor activities against five human cancer cell lines (HepG2, A549, MCF-7, SK-OV-3, and HeLa) with IC50 values of 19.62 ± 0.81, 18.86 ± 1.56, 45.94 ± 3.62, 62.41 ± 2.29, and 28.74 ± 1.07 μM, respectively [32].
Compounds 59‒63 are actinidic acid derivatives with a phenylpropanoid unit that were identified as 3-O-trans-p-coumaroylasiatic acid 59, 23-O-trans-p-coumaroylasiatic acid 60, actiniargupene E 61, actiniargupene F 62, and actiniargupene G 63 from the leaves of A. arguta. All the compounds showed inhibitory effects on α-glucosidase activity. Among them compound 59 showed most potentially inhibitory activity on α-glucosidase with an IC50 of 81.3 ± 2.7 μM, equal to that of the positive control (acarbose, 72.8 ± 3.1 μM) [33]. The structure–activity relationship suggested that triterpenoids with a phenylpropanoid moiety exhibited more potent effects than those without such a unit [34]. Compound 71 showed potent cytotoxic activity against human SKVO3 and TPC-1 cancer cell lines with IC50 values of 10.99 and 14.34 μM, respectively [19, 35]. Compound 74 exhibited moderate cytotoxic activity against BEL-7402 and SMMC-7721 tumor cell lines [22]. Compounds 75 and 76 were isolated from roots of A. valvata Dunn. They exhibited moderate cytotoxic activity in vitro against BEL-7402 and SMMC-7721 tumor cell line [36].
Oleanane Triterpenoids
Oleanane-type triterpenoids also possessed a 6/6/6/6/6 pentacyclic carbon skeleton. Unlike ursane triterpenes, oleanane-type triterpenoids have two methyl groups at the C-20 position instead of each one at the C-19 and C-20, respectively. So far, a total of 24 oleanane-type triterpenoids have been identified from Actinidia plants (77‒100, Fig. 3, Table 2). The most representative compound is oleanolic acid 77. It was found from callus tissue from the stems of A. arguta, together with 2α,3β-dihydroxyolean-12-en-28-oic acid 78 [26]. Oleanolic acid 77 is abundant in nature and exhibits a wide range of biological activities including anti-inflammatory [54], anti-hypertension [55], anti-tumor [56, 57], neuroprotection [58], and anti-cholesterol activities [59]. Oleanolic acid was performed to test the effect on apoptosis and autophagy of SMMC-7721 Hepatoma cells. It can significantly inhibit the growth of liver cancer SMMC-7721 cells and induce autophagy and apoptosis [57]. Compound 78 also showed anti-tumor and anti-inflammatory activities [60, 61]. Lim et al. have demonstrated that 78 showed very strong anti-tumor-promoting activity with an IC50 of 0.1 mg/mL [60].
Fig. 3.
Structures of oleanane triterpenoids 77‒100 from Actinidia plants
Table 2.
Information of oleanane triterpenoids from Actinidia plants
| No. | Compound name | Species Refs. | Part | Bioactivity Refs. |
|---|---|---|---|---|
| 77 | Oleanolic acid | A. arguta [26] | Stems |
Anti-inflammatory (in vitro) [54] Anti-hypertension (in vivo) [55] Anti-tumor Neuroprotection(in vitro) [58] Anti-cholesterol(in vitro) [59] |
| 78 | 2α,3β-Dihydroxyolean-12-en-28-oic acid | A. arguta [26] | Stems | |
| 79 | 2α,3α-Dihydroxyolean-12-en-28-oic acid | A. chinensis Planch [63] | Fruits | |
| 80 | 2α,3β,23-Trihydroxyolean-12-en-28-oic acid | A. deliciosa [31] | Peels | Antifungal (in vitro) [31] |
| 81 | 2α,3α,24-Trihydroxyolean-12-en-28-oic acid | A. deliciosa [31] | Peels | Antifungal (in vitro) [31] |
| 82 | 3β-O-Acetyloleanolic acid |
A. arguta [64] A. chinensis [45] |
Stems Roots |
Anti-angiogenesis (in vitro) [45] |
| 83 | 2α,3β,19-Trihydroxyolean-12-en-28-oic acid | A. chinensis [45] | Roots | Anti-angiogenesis (in vitro) [45] |
| 84 |
(3β,4α,16α)-3,16,23-Trihydroxyolean-12- en-28-oic acid |
A. valvata Dunn [47] | Roots | |
| 85 | (2β, 3β, 4α, 16α)-2, 3, 16, 23-Tetrahydroxyolean-12-en-28-oic acid | A. valvata Dunn [47] | Roots | |
| 86 | 2α,3β,19α,23-Tetrahydroxyoleanolic acid | A. deliciosa [65] | Roots | |
| 87 | 3β,23,24-Trihydroxyl-12-oleanen-28-oic acid | A. eriantha Benth [62] | Roots | Anti-angiogenesis (in vitro) [62] |
| 88 | 9(11),12-Diene-30-oic acid | A. chinensis [25] | Roots bark | Anti-viral (in vitro) [25] |
| 89 | 12α-Chloro-2α,3β,13β,23-tetrahydroxyolean-28-oic acid-13-lactone | A. chinensis Planch [19] | Roots | Anti-catalysis (in vitro) [43] |
| 90 | β-Amyrin | A. arguta [26] | Stems | |
| 91 | Erythrodiol | A. kolomikta [51] | Dried rhizomes | |
| 92 | 12-Oleanene 2α,3α,24-triol | A. macrosperma [66] | Roots | |
| 93 | 3β-(2-Carboxybenzoyloxy) oleanolic acid | A. chinensis [25] | Root bark | Anti-phytoviral (in vitro) [25] |
| 94 | Spathodic acid-28-O-β-d-glucopyranoside | A. chinensis [25] | Root bark | Anti-phytoviral (in vitro) [25] |
| 95 | Oleanolic acid-23-O-β-d-glucopyranoside | A. eriantha Benth [62] | Roots | Anti-angiogenesis (in vitro) [62] |
| 96 | 2α,3β,19α,23,24-Pentahydroxy-12-oleanen 28-oic acid 28-β-d-glucopyranosyl | A. chinensis Radix [50] | Roots | |
| 97 | 3-O-β-d-Glucopyranosyl-2α,3β,6β,19α,21β,23-hexahydroxylolean-12-en-28-oic acid | A. kolomikta [67] | Leaves | |
| 98 |
3β,23-Dihydroxy-30-norolean-12,20(29)- dien-28-oic acid |
A. chinensis Radix [50] | Roots | |
| 99 |
3β,23-Dihydroxy-1-oxo-30-norolean- 12,20(29)-dien-28-oic acid |
A. chinensis Radix [50] | Roots | |
| 100 |
2α,3α,23,24-Tetrahydroxy-30-norolean- 12,20(29)-dien-28-oic acid |
A. chinensis Radix [50] | Roots |
Bioassay- and 1H NMR-guided fractionation of the methanol extract afforded two oleanolic acids of 2α,3β,23-trihydroxyolean-12-en-28-oic acid 80 and 2α,3α,24-trihydroxyolean-12-en-28-oic acid 81, showing antifungal activity against C. musae at 3 μg/mL [31]. The EtOAc extract of the roots of A. eriantha Benth exhibited potent growth inhibitory activity against SGC7901 cells, CNE2 cells and HUVECs cells. From which, compound 87 (3β,23,24-trihydroxyl-12-oleanen-28-oic acid) was identified [62]. Compound 88 was extracted from the roots bark of A. chinensis, which showed anti-viral activity [25]. A new triterpenoid 12α-chloro-2α,3β,13β,23 -tetrahydroxyolean-28-oic acid-13-lactone 89 was extracted from the roots of A. chinensis Planch (Actinidiaceae). It was tested for cytochrome P450 (CYPs) enzyme inhibitory activity in later years, which could significantly inhibit the catalytic activities of CYP3A4 to < 10% of its control activities [19, 52].
3β-(2-Carboxybenzoyloxy) oleanolic acid 93 and spathodic acid-28-O-β-d-glucopyranoside 94 were extracted from the root bark of A. chinensis. The anti-phytoviral activity test indicated that 94 showed potent activity on TMV, and CMV with inactivation effect of 46.67 ± 1.05, and 45.79 ± 2.23 (100 mg/L), compared to ningnanmycin with inactivation effect of 30.15 ± 1.16 and 27.18 ± 1.02 (100 mg/L) respectively [25]. 3β,23-Dihydroxy- -30-norolean-12,20(29)-dien-28-oic acid 98, 3β,23-dihydroxy-1-oxo-30-norolean-12,20(29)-dien-28-oic acid 99, and 2α,3α,23,24-tetrahydroxy-30-norolean-12,20(29)-dien-28-oicacid 100 are three one-carbon-degraded oleanane triterpenoids that were identified from A. chinensis Radix for the first time [50].
Lupane Triterpenoids
Lupane triterpenoids possess a 6/6/6/6/5-fused carbon skeleton. Compared with ursane and oleanane triterpenoids, the number of lupane triterpenoids in the Actinidia plants is much smaller, only four related compounds have been identified (101‒104, Fig. 4, Table 3). Three of them (101‒103) were identified from the rhizomes of A. kolomikta [51]. Betulinic acid 101 is one of the most representative compound of lupane triterpenes, it has been extensively studied in recent years based on the wide biological activities including anti-inflammatory, antitumor, anti-HIV, anti-diabetic and antimalarial activities [68–73]. Much attention as a molecular target about protein tyrosine phosphatase 1B had been paid to the treatment of insulin resistance diseases because of its critical roles in negatively regulating insulin- and leptin-signaling cascades. Betulinic acid showed significant PTP1B inhibitory activity, with IC50 values of 3.5 μM [24].
Fig. 4.

Structures of lupane triterpenoids 101‒104 from Actinidia plants
Table 3.
Information of lupane triterpenoids from Actinidia Plants
| No. | Compound name | Species Refs. | Part | Bioactivity Refs. |
|---|---|---|---|---|
| 101 | Betulinic acid | A. kolomikta [51] | Rhizomes |
Anti-inflammatory (in vitro) [68] Antitumor(in vitro) [69] Anti-HIV(in vitro) [72] Anti-diabetic(in vivo) [73] |
| 102 | Betulin | A. kolomikta [51] | Rhizomes | Anti-tumor(in vitro) [74–76] |
| 103 | Diospyrolide | A. kolomikta [51] | Rhizomes | |
| 104 | Lupa-12,20(30)-diene-2β,3β,28-triol | A. deliciosa [48] | Roots |
Other Terpenoids
A total of 19 other terpenoids including iridoids, diterpenoids, and their glycosides have been found from Actinidia plants (105 − 123, Fig. 5, Table 4). None of these compounds have good biological activities, only compound 120 showed certain anti-angiogenesis activity [77].
Fig. 5.
Structures of other terpenoids 105‒123 from Actinidia plants
Table 4.
Information of other triterpenoids from Actinidia plants
| No. | Compound name | Species Refs. | Part | Bioactivity Refs. |
|---|---|---|---|---|
| 105 | Dihydroepinepetalactone | A. polygama [78] | Fresh fruits | |
| 106 | Isodihydroepinepetalactone | A. polygama [78] | Fresh fruits | |
| 107 | Isoepiiridomyrmecin | A. polygama [78] | Fresh fruits | |
| 108 | Isoneonepetalactone | A. polygama [78] | Fresh fruits | |
| 109 | Dehydroiridomyrmecin | A. polygama [78] | Fresh fruits | |
| 110 | Isodehydroiridomyrmecin | A. polygama [78] | Fresh fruits | |
| 111 | Actinidialactone | A. polygama [78] | Fresh fruits | |
| 112 | Isoactinidialactone | A. polygama [78] | Fresh fruits | |
| 113 | Neonepetalactone | A. polygama [78] | Fresh fruits | |
| 114 | Dihydronepetalactone | A. polygama [78] | Fresh fruits | |
| 115 | Isodihydronepetalactone | A. polygama [78] | Fresh fruits | |
| 116 | Iridomyrmecin | A. polygama [78] | Fresh fruits | |
| 117 | Isoiridomyrmecin | A. polygama [78] | Fresh fruits | |
| 118 | Matatabiether | A. polygama [79] | Leaves and galls | |
| 119 | (R)-1,2,6,7,8,9-Hexahydro-10-hydroxy-1,6,6-trimethylphenanthro[1,2-b]furan-5,11-dione | A. valvataDunn [47] | Roots | |
| 120 | (6R,7E,9S)-6,9-Hydroxy-megastigman-4,7-dien-3-one-9-O-β-glucopyranoside | A. eriantha Benth [62] | Roots | Anti-angiogenesis (in vitro) [62] |
| 121 | Kiwiionoside | A. chinensis [80] | Fresh leaves | |
| 122 | Iridodialo-β-d-gentiobioside | A. polygama [77] | Leaves | |
| 123 | Dehydroiridodialo-β-d-gentiobioside | A. polygama [77] | Leaves |
Steroids
β-Sitosterol 124 is a very normal phytosterol almost distributed in all plants. Eight phytosterols have been obtained from the Actinidia plants (124‒131, Fig. 6, Table 5). Pharmacological studies on these steroids have demonstrated that β-sitosterol showed various bioactivities including anti-inflammatory, anti-cancer, antimicrobial and anti-diabetic properties [81–88]. A study suggested that β-sitosterol may serve as a potential therapeutic in the treatment of acute organ damages [82].
Fig. 6.
Structures of steroids 124‒138 from Actinidia plants
Table 5.
Information of steroids from Actinidia plants
| No. | Compound name | Species Refs. | Part | Bioactivity Refs. |
|---|---|---|---|---|
| 124 | β-Sitosterol | A. eriantha [7] | Roots |
Anti-inflammatory (In vivo) [84] Anticancer (in vitro) [85] Anti-microbial (in vitro) [86] Anti-diabetic (In vivo) [88] |
| 125 | Stigmast-3,6-dione | A. chrysantha [42] | Roots | |
| 126 | Masterol | A. deliciosa [89] | Peels | |
| 127 | Stigmast-7-en-3β-ol | A. deliciosa [89] | Peels | |
| 128 | 3β-Hydroxystigmast-5-en-7-one | A. chinensis Planch [52] | Roots | |
| 129 | Sitostanetriol | A. kolomikta [51] | Dried rhizomes | |
| 130 | (24R)-Stigmast-4-en-3-one | A. kolomikta [51] | Dried rhizomes | |
| 131 | Stigmasterol | A. arguta [26] | Stems |
Anti-inflammatory (in vitro) [90] |
| 132 | Daucosterol |
A. eriantha [40] A. chinensis [44] |
Roots Roots |
|
| 133 | Campesterol | A. deliciosa [89] | Peels | |
| 134 | Ergosterol | A. deliciosa [89] | Peels | |
| 135 | Ergost-22-en-3-ol | A. deliciosa [89] | Peels | |
| 136 | 5,7,14,22-Ergostatetraen-3β-ol | A. deliciosa [89] | Peels | |
| 137 | 5,8-Epidioxyergosta-6,22-dien-3β-ol | A. kolomikta [51] | Dried rhizomes | |
| 138 | 24-Methylene-pollinastanol | A. kolomikta [51] | Dried rhizomes |
In addition to phytosterols, seven normal ergosterols (132‒137, Fig. 6, Table 5) were obtained from peel or rhizomes of kiwifruit plants. It is well known that ergosterols should be fungal products. Compounds 132‒137 may be produced by fungal infected kiwifruit plants.
Phenols
Catechins and Epicatechins
A total of 16 related compounds (139‒154) have been obtained from kiwifruit plants (Fig. 7, Table 6). Compounds 148 and 149 possessed a novel structure featuring with a pyrrolidin-2-one substituent at C-6 and C-8, respectively. Compounds 152 and 153 were two sulfur-containing catechins that was rare in nature. Pharmacological studies have revealed that (+)-catechin 139 and (−)-epi-catechin 140 showed nitric oxide inhibitory activity in LPS stimulated RAW 264.7 cell with IC50 values of 26.61 and 25.30 μg/mL, respectively [53, 91]. Compound 147 showed moderate radical scavenging and antioxidant capabilities by measuring their capacity to scavenge DPPH and anion superoxide radical and to reduce a Mo(VI) salt [89]. Two new flavan-3-ols, 6-(2-pyrrolidinone-5-yl)-(−)-epicatechin 148 and 8-(2-pyrrolidinone-5-yl)-(−)-epicatechin 149, as well as proanthocyanidin B-4 150, were isolated from an EtOAc-soluble extract of the roots of A. arguta. The isolates were tested in vitro for their inhibitory activity on the formation of advanced glycation end products (AGEs). All of them exhibited significant inhibitory activity against AGEs formation with IC50 values ranging from 10.1 to 125.2 μM [92].
Fig. 7.
Structures of catechins and epicatechins 139‒154 from Actinidia plants
Table 6.
Information of catechins and epicatechins from Actinidia plants
| No. | Compound name | Species Refs. | Part | Bioactivity Refs. |
|---|---|---|---|---|
| 139 | (+)-Catechin | A. arguta [41] | Roots |
Anti-DPPH radical and inhibiting nitric oxide (in vitro) [57] Anti-bacteria (in vitro) [93] |
| 140 | (−)-Epi-catechin | A. arguta [41] | Roots | Anti-DPPH radical and inhibiting nitric oxide (in vitro) [57] |
| 141 | (+)-Afzelechin | A. chinensis Planch [94] | Roots | |
| 142 | (−)-Epi-afzelechin | A. chinensis Planch [94] | Roots | |
| 143 | (+)-Catechin(4α → 8)(+)-catechin | A. chinensis Planch [94] | Roots | |
| 144 | (−)-Epi-catechin(4β → 8)(−)-epi-catechin | A. chinensis Planch [94] | Roots | |
| 145 | (+)-Afzelechin(4α → 8) (+)-afzelechin | A. chinensis Planch [94] | Roots | |
| 146 | (−)-Epi-afzelechin(4β → 8)(−)-epi-afzelechin | A. chinensis Planch [94] | Roots | |
| 147 | Gallocatechin | A. deliciosa [89] | Peels |
Radical scavenging and antioxidant (in vitro) [89] |
| 148 | 6-(2-Pyrrolidinone-5-yl)-(−)-epicatechin | A. arguta [92] | Roots |
Against advanced glycation-end (in vitro) [92] |
| 149 | 8-(2-Pyrrolidinone-5-yl)-(−)-epicatechin | A. arguta [92] | Roots |
Against advanced glycation-end (in vitro) [92] |
| 150 | Proanthocyanidin B-4 | A. arguta [92] | Roots |
Against advanced glycation-end (in vitro) [92] |
| 151 | (−)-Epi-Catechin-5-O-β-D-glucopyranoside | A. arguta [92] | Roots |
Against advanced glycation-end (in vitro) [92] |
| 152 | Benzylthio-(−)-epicatechol | A. chinensis [95] | Vegetative parts | |
| 153 | 4′-Benzylthioprocyanidol B2 | A. chinensis [95] | Vegetative parts | |
| 154 | Procyanidol C1 | A. chinensis [95] | Vegetative parts |
Flavones, Isoflavones, and Flavonols
A total of 48 flavone derivatives have been identified from kiwifruit plants, most of which are glycosides (155‒202, Fig. 8, Table 7). Pharmacological studies indicated that these compounds, particularly kaempferol and its derivative, had a wide range of biological activities including antiproliferation, antioxidation, anti-inflammation, anticancer, anti-free radical, and neuroprotection activities [96–99]. Kaempferol 157 was found to prevent neurotoxicity by several ways which was able to completely block N-methyl-D-aspartate (NMDA)-induced neuronal toxicity and potently inhibited MAO (monoamine oxidase) with the IC50 of 0.8 μM [99]. Two novel flavonoids 171 and 172 were separated from the leaves of A. valvata Dunn. They exhibited dose-dependent activity in scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals, superoxide anion radicals, and hydroxyl radicals, and inhibited lipid peroxidation of mouse liver homogenate in vitro [100]. Compounds 178 [101] and 179 [102] were two new compounds obtained from the leaves of A. kolomikta. The latter was screened for its protective effect on human erythrocytes against AAPH-induced hemolysis, which could slow the hemolysis induced by AAPH [102]. Eerduna et al. evaluated the effects of compound 182 on acute myocardial infarction in rats, the groups treated with 182 showed a dose-dependent reduction in myocardial infarct size model, markedly inhibited the elevation of the activity of creatine kinase, troponin T level, and the content of malondialdehyde induced by AMI [103]. Compound 182 also showed a capacity to increase the activities of superoxide dismutase, catalase, and endothelial nitric oxide synthase [104]. Lim et al. tested the DPPH radical scavenging activity and nitric oxide production inhibitory activity in IFN-γ, LPS stimulated RAW 264.7 cell of quercetin 185, quercetin-3-O-β-d-glucoside 186, and quercetin 3-O-β-d-galactoside 193 with IC50 value of 20.41, 18.23, and 30.46 μg/mL, respectively [91].
Fig. 8.
Structures of flavones, isoflavones, and flavonols 155‒202 from Actinidia plants
Table 7.
Information of flavones, isoflavones, and flavonols from Actinidia plants
| No. | Compound name | Species Refs. | Part | Bioactivity Refs. |
|---|---|---|---|---|
| 155 | 7,4′-Dihydroxyflavone | A. chinensis Planch [105] | Roots |
Anti-inflammatory (in vitro) [106] |
| 156 | Formononetin | A. chinensis Planch [105] | Roots | |
| 157 | Kaempferol | A. deliciosa [107] | Leaves |
Antiproliferation human tumor cell (in vitro) [96] Antioxidant and anti-inflammatory (in vitro) [97] Anticancer (in vitro) [98] Neuroprotection (in vitro) [99] |
| 158 | 6-C-Glucose-5,7,3′,4′-tetrahydroxy flavone | A. arguta [108] | Roots | |
| 159 | 6-C-Glucose-5,7,4′-trihydroxy flavone | A. arguta [108] | Roots | |
| 160 | 6-C-Glycopyranosyl-8-C-xyloeyl apigenin | A. polygama [109] | Leaves | |
| 161 | Vicenin-I | A. polygama [110] | Aerial Parts | |
| 162 | Kaempferol 3-O-glucoside | A. deliciosa [107] | Leaves | |
| 163 | Kaempferol 3-O-rhamnoside | A. deliciosa [107] | Leaves | |
| 164 | Kaempferol 7-O-glucoside | A. deliciosa [107] | Leaves | |
| 165 | Kaempferol 3-O-β-d-galactopyranoside | A. polygama [109] | Leaves | |
| 166 | Kaempferol-7-O-β-l-rhamnoside | A. kolomikta [102] | Leaves | |
| 167 | Kaempnferol-3-O-α-l-rhamnopyranosyl-(1 → 6)-β-d-galactopyranoside | A. polygama [109] | Leaves | |
| 168 | Kaempferol 3-O-rutinoside | A. deliciosa [107] | Leaves | |
| 169 | Kaempferol-7-O-(4″-O-acetylrhamnosyl)-3-O-rutinoside | A. kolomikta [111] | Leaves | |
| 170 | Kaempferol-3-O-α-l-rhamnopyranosyl- (1 → 3)-α-l-rhamnopyranosyl- (1 → 6)-β-d-galactopyranoside | A. polygama [109] | Leaves | |
| 171 | Kaempferol 3-O-α-l-rhamnopyranosyl-(1 → 3) (2,4-di-O-acetyl-α-l-rhamnopyranosyl) (1 → 6) β-d-galactopyranoside | A. valvata Dunn [100] | Leaves |
Anti-free radical (in vitro) [100] |
| 172 | Kaempferol 3-O-α-l-rhamnopyranosyl (1 → 3) (4-O-acetyl-α-l-rhamnopyranosyl) (1 → 6) β-D-galactopyranoside | A. valvata Dunn [100] | Leaves |
Anti-free radical (in vitro) [100] |
| 173 |
Kaempferol 3-O-[α-l-rhamnopyranosyl-(1 → 3)- (4-O-acetyl)-O-α-l-rhamnopyranosyl-(1 → 6)- O-acetyl)-O-β-d-galactopyranoside] |
A. polygama [110] | Aerial parts | |
| 174 |
Kaempferol 3-O-[α-rhamnopyranosyl-(1 → 4)- rhamnopyranosyl-(1 → 6)-β-galactopyranoside] |
A. deliciosa [112] | Leaves | |
| 175 |
Kaempferol 3-O-[α-rhamnopyranosyl-(1 → 4)- rhamnopyranosyl-(1 → 6)-β-glucopyranoside] |
A. deliciosa [112] | Leaves | |
| 176 |
Kaempferol 3-O-[α-rhamnopyranosyl-(1 → 4)-3‴ -O-acetyl-α-rhamnopyranosyl-(1 → 6)-β-galactop-yranoside] |
A. deliciosa [112] | Leaves | |
| 177 | Kaempferol-7-O-α-l-rhamnosyl-3-O-rutinoside | A. kolomikta [102] | Leaves | |
| 178 | Kaempferide-7-O-rhamnoside | A. kolomikta [101] | Leaves | |
| 179 | Kaempferide-7-O-(4″-O-acetyl)-α-l-rhamnoside | A. kolomikta [102] | Leaves |
Against AAPH-induced hemolysis (in vitro) [102] |
| 180 | Kaempferide-3-O-rutinoside | A. kolomikta [113] | Leaves |
Anti-free radical (in vitro) [113] |
| 181 | Kaempferide-7-O-(4″-O-acetyl-rhamnosyl)-3-O-glucoside | A. kolomikta [113] | Leaves |
Anti-free radical (in vitro) [113] |
| 182 | Kaempferide-7-O-(4″-O-acetyl-rhamnosyl)-3-O-rutinoside | A. kolomikta [113] | Leaves |
Anti-free radical (in vitro) [113] Reducing myocardial infarction (in vivo) [104] |
| 183 | Kaempferide-7-O-rhamnosyl-3-O-rutinoside | A. kolomikta [101] | Leaves | |
| 184 | Kaempferide-7-O-(3″-O-acetylrhamnosyl)-3-O-rutinoside | A. kolomikta [111] | Leaves | |
| 185 | Quercetin | A. deliciosa [107] | Leaves | |
| 186 | Quercetin-3-O-β-d-glucoside | A. deliciosa [107] | Leaves | |
| 187 | Quercetin 3-O-rhamnoside | A. deliciosa [107] | Leaves | |
| 188 | Quercetin 7-O-glucoside | A. deliciosa [107] | Leaves | |
| 189 | Quercetin 3-O-xyloside | A. deliciosa [107] | Leaves | |
| 190 | Quercetin 3-O-arabinoside | A. deliciosa [107] | Leaves | |
| 191 | Quercetin 3-O-rutinoside | A. deliciosa [107] | Leaves | |
| 192 | Quercetin 3-O-rhamnoside 7-O-glucoside | A. deliciosa [107] | Leaves | |
| 193 | Quercetin 3-O-β-d-galactoside | A. polygama [110] | Aerial parts | Anti-DPPH radical and nitric oxide production (in vitro) [110] |
| 194 | Quercetin 3-O-β-d-glucofuranoside (isoquercitrin) | A. chinensis Planch [114] | ||
| 195 | Quercetin 3-O-α-l-rhamnopyranosyl-(1 → 6)-β-d-galactopyranoside | A. arguta [108] | Roots | |
| 196 | Isorhamnetin-3-O-β-d-glucoside | A. kolomikta [102] | Leaves | |
| 197 | Quercetin3-O-[α-rhamnopyranosyl-(1 → 4) -rhamnopyranosyl-(1 → 6)-β-galactopyranoside | A. deliciosa [112] | Leaves | |
| 198 | Quercetin 3-O-β-d-[2G-O-β-d-xylopyranosyl-6G-O-α-l-rhamnopyranosyl] glucopyranoside | A. arguta [115] | Leaves | |
| 199 | Quercetin 3-O-β-d-xylopyranosyl- (1 → 2)-O-β-d-glucopyranoside | A. arguta [115] | Leaves | |
| 200 | 7-O-[β-d-Pyranrhamnose-(1 → 6)-β-D-pyran glucose]-5,3′-dihydroxy-4′-methoxy two dihydrogen flavone | A. arguta [108] | Roots | |
| 201 | 4′-Methoxyl-quercetin-7-(4″-O-acetylrhamnosyl)-3-O-β-D-glucopyranoside | A. kolomikta [111] | Leaves | |
| 202 | 4′-Methoxyl-quercetin-7-(4″-O-acetylrhamnosyl)-3-O-rutinoside | A. kolomikta [111] | Leaves |
Xanthones
Three xanthones were isolated from n-butyl alcohol fraction of A. arguta (Sieb. & Zucc) Planch. ex Miq and identified as 2-β-d-glu-1,3,7-trihydrogen xanthone 203, 7-O-[β-d-xylose-(1 → 6)-β-d-glucopyranoside]-1,8-dihydroxy-3-methoxy xanthone 204, and 1-O-[β-d-xylose-(1 → 6)-β-d-glucopyranside] -8-hydroxy-3,7-dimethoxy xanthone 205 (Fig. 9, Table 8). They were isolated from this plant for the first time [108]. Compound 203 showed extensive biological activities, including inhibiting α-Glycosidase, NO production inhibition and NF-κB inhibition and PPAR activation [116, 117]. It has been demonstrated the inhibitory effects on NF-κB transcriptional activation in HepG2 cells stimulated with TNFα with an IC50 value of 0.85 ± 0.07 μM, which was more potent than the positive control of sulfasalazine (IC50 = 0.9 μM) [118].
Fig. 9.
Structures of xanthones, isoflavones, and flavonols 203‒219 from Actinidia plants
Table 8.
Information of xanthones, anthocyanins, and emodins from Actinidia plants
| No. | Compound name | Species Refs. | Part | Bioactivity Refs. |
|---|---|---|---|---|
| 203 | 2-β-d-Glu-1,3,7-trihydrogen xanthone | A. arguta [108] | Roots |
Inhibiting α-Glycosidase (in vitro) [116] NO inhibitory (in vitro) [117] NF-κB Inhibition and PPAR Activation (in vitro) [118] |
| 204 | 7-O-[β-d-Xylose-(1 → 6)-β-d-glucopyranoside]-1,8-dihydroxy-3-methoxy xanthone | A. arguta [108] | Roots | |
| 205 | 1-O-[β-d-Xylose-(1 → 6)-β-d-glucopyranoside] -8-hydroxy-3,7-dimethoxy xanthone | A. arguta [108] | Roots | |
| 206 | Delphinidin 3-galactoside | A. deliciosa [119] | Fruits | Antioxidation (in vitro) [135] |
| 207 | Cyanidin 3-galactoside | A. deliciosa [119] | Fruits | |
| 208 | Cyanidin 3-glucoside | A. deliciosa [119] | Fruits |
Anti-inflammatory (in vitro) [120, 121] Neuroprotective (in vivo) [122] Anti-cancer (in vitro) [123] Antioxidation (in vivo) [124] |
| 209 | Delphinidin 3-[2-(xylosyl)galactoside] | A. deliciosa [119] | Fruits | |
| 210 | Cyanidin 3-[2-(xylosyl)galactoside] | A. deliciosa [119] | Fruits | |
| 211 | Aloe-emodin | A. deliciosa [125] | Roots |
Anti-inflammatory (in vitro) [126] Antifungal (in vitro) [127] Anticancer (in vitro) [128] |
| 212 | 11-O-Acetyl-aloe-emodin | A. deliciosa [125] | Roots | |
| 213 | Aloe-emodin 11-O-α-l-rhamnopyranoside | A. deliciosa [125] | Roots | |
| 214 | Physcion (emodin-6-Me ether) | A. chinensis Planch [133] | Roots | |
| 215 | Emodin (frangala-emodin) | A. chinensis Planch [133] | Roots |
Anti-inflammatory (in vivo and in vitro) [129] Neuroprotection (in vitro) [130] Anti-cardiovascular (in vitro) [131] Inhibiting α-Glucosidase (in vitro) [132] |
| 216 | Questin (emodin-8-Me ether) | A. chinensis Planch [133] | Roots |
Hepatoprotection (in vitro) [134] |
| 217 | Citreorosein (ω-hydroxyemodin) | A. chinensis Planch [133] | Roots | |
| 218 | Emodic acid | A. chinensis Planch [133] | Roots | |
| 219 | Emodin-8-β-d-glucoside | A. chinensis Planch [133] | Roots |
Anthocyanins
Five anthocyanins were obtained from the flesh of larger fruit of A. deliciosa and A. chinensis and identified as delphinidin 3-galactoside 206, cyanidin 3-galactoside 207, cyanidin 3-glucoside 208, delphinidin 3-[2-(xylosyl)galactoside] 209, and cyanidin 3-[2-(xylosyl)galactoside] 210, respectively (Fig. 9, Table 8) [119]. Cyanidin 3-glucoside 208 exhibited a wide range of pharmacological activities including anti-inflammatory, neuroprotective, anti-cancer, and antioxidant activities [120–124].
Emodins
A total of nine emodin derivatives were obtained (211‒219, Fig. 9, Table 8). Three emodin constituents were isolated from EtOAc fraction of the roots of A. deliciosa for the first time, and their structures were identified to be aloe-emodin 211, 11-O-acetyl-aloe-emodin 212, and aloe-emodin 11-O-α-l-rhamno -pyranoside 213 [125]. Compound 211 exhibited intriguing biological activities including inflammatory, antifungal, and anticancer activity [126–128]. Lipoxygenases (LOXs) are potential treatment targets in a variety of inflammatory conditions, enzyme kinetics showed that aloe emodin inhibited lipoxygenase competitively with an IC50 of 29.49 μM [126]. Compound 215 was reported to possess wide biological activities including anti-inflammatory, neuroprotection, anti-cardiovascular and α-glucosidase inhibitory activity [129–132]. It exhibited potent inhibition of α-glucosidase with an IC50 value of 19 ± 1 μM and lower cytotoxicity to the Caco-2 cell line [132].
Phenylpropionic Acids
A total of 38 phenylpropionic acid derivatives have been identified from kiwifruit plants (220‒257. Fig. 10, Table 9), while most of them were glycosides or quinic acid derivatives. Phytochemical examination of the fruits of A. arguta led to the isolation of two organic acids including caffeic acid 220 and caffeoyl-β-d-glucopyranoside 221, which were tested for their nitric oxide production inhibitory activity in LPS-stimulated RAW 264.7 cells and DPPH radical scavenging activities. Compared with positive control (L-NMMA), they were potently reduced nitric oxide productions and showed anti-oxidative activities [135]. Nine succinic acid derivatives (228‒236), eleven quinic acid (245‒255) derivatives and two shikimic acid derivatives (256 and 257) were isolated from the fruits of A. arguta. The NF-κB transcriptional inhibitory activity of the compounds was evaluated using RAW 264.7 macrophages cells induced by lipopolysaccharide. Among the groups of different organic acid derivatives, the quinic acid derivatives inhibited NF-κB transcriptional activity with an IC50 value of 4.0 μM [136].
Fig. 10.
Structures of phenylpropionic acids 220‒257 from Actinidia plants
Table 9.
Information of phenylpropionic acids from Actinidia plants
| No. | Compound name | Species Refs. | Part | Bioactivity Refs. |
|---|---|---|---|---|
| 220 | Caffeic acid | A. arguta [135] | Fruits |
Anti-oxidation (in vitro) [135] |
| 221 | Caffeoyl-β-d-glucopyranoside | A. arguta [135] | Fruits |
Anti-oxidation (in vitro) [135] |
| 222 | Trans-ferulic acid | A. polygama [110] | Aerial parts | |
| 223 | Coumaric acid 4-O-glucoside | A. polygama [110] | Aerial parts | |
| 224 | Trans-phydroxycinnamic acid | A. chinensis [137] | Roots | |
| 225 | Caffeic 3-O-β-d-glucopyranoside acid | A. deliciosa [89] | Pulps | |
| 226 | Caffeic 4-O-β-d-glucopyranoside acid | A. deliciosa [89] | Pulps | |
| 227 | 4,4′-Dihydroxyl-dihydrochalcone-2′-O-β-d-glucopyranoside | A. chinensis Plach [52] | Roots | |
| 228 | Argutinoside A | A. arguta [136] | Fruits | |
| 229 | Argutinoside B | A. arguta [136] | Fruits | |
| 230 | Argutinoside C | A. arguta [136] | Fruits | |
| 231 | Argutinoside D | A. arguta [136] | Fruits | |
| 232 | Argutinoside E | A. arguta [136] | Fruits | |
| 233 | Argutinoside F | A. arguta [136] | Fruits | |
| 234 | Argutinoside G | A. arguta [136] | Fruits | |
| 235 | Argutinoside H | A. arguta [136] | Fruits | |
| 236 | Argutinoside I | A. arguta [136] | Fruits | |
| 237 | Fertaric acid | A. arguta [138] | Fruits | |
| 238 | Cryptochlorogenic acid | A. chinensis [137] | Roots | |
| 239 | Neochlorogenic acid | A. chinensis [137] | Roots |
Anti-inflammatory (in vitro) [139] Antibacteria and antioxidation (in vitro) [140] |
| 240 | 3-O-Coumaroylquinic acid | A. chinensis [137] | Roots | |
| 241 | Chlorogenic acid | A. deliciosa [89] | Pulp |
Antitumor (in vitro) [141] Anti-inflammatory (in vitro) [142] |
| 242 | 5- Trans-p-coumaroylmalic acid | A. chinensis Radix [50] | Roots | |
| 243 | 5- Cis-p-coumaroylquinic acid | A. chinensis Radix [50] | Roots | |
| 244 | 4-O- Cis-p-coumaroylquinic acid | A. chinensis Radix [50] | Roots | |
| 245 | 3-O-Trans-p-coumaroyl quinic acid methyl ester | A. arguta [136] | Fruits | Inhibiting NF-κB transcription (in vitro) [136] |
| 246 | 3-O-Cis-p-coumaroyl quinic acid methyl ester | A. arguta [136] | Fruits | |
| 247 | 3-O-Trans-p-caffeoyl quinic acid methyl ester | A. arguta [136] | Fruits | |
| 248 | 5-O-Trans-p-coumaroyl quinic acid methyl ester | A. arguta [136] | Fruits | |
| 249 | 5-O-Cis-p-coumaroyl quinic acid methyl ester | A. arguta [136] | Fruits | |
| 250 | 5-O-Trans-p-caffeoyl quinic acid methyl ester | A. arguta [136] | Fruits | |
| 251 | 5-O-Cis-p-caffeoyl quinic acid methyl ester | A. arguta [136] | Fruits | |
| 252 | 3-O-Trans-p-caffeoyl quinic acid butyl ester | A. arguta [136] | Fruits | |
| 253 | 4-O-Trans-p-caffeoyl quinic acid butyl ester | A. arguta [136] | Fruits | |
| 254 | 5-O-Trans-p-coumaroyl quinic acid butyl ester | A. arguta [136] | Fruits | |
| 255 | 5-O-Trans-p-caffeoyl quinic acid butyl ester | A. arguta [136] | Fruits | |
| 256 | 3-O-Trans-p-coumaroyl shikimic acid | A. arguta [136] | Fruits | |
| 257 | 3-O-Cis-p-coumaroyl shikimic acid | A. arguta [136] | Fruits |
Coumarins
Coumarins are rarely identified from kiwifruit plants, and only eleven members have been reported (258‒267, Fig. 11, Table 10). Umbelliferone 258 was obtained from the leaves of A. polygama (Sieb. et Zucc.) Miq [109]. A number of studies demonstrate the pharmacological properties of 258 including antitumor, anti-inflammatory, antioxidant, antidiabetic, and immunomodulatory activities [143–149]. It showed cytotoxicity against MCF-7 and MDA-MB-231 cell lines with IC50 values of 15.56 and 10.31 μM, respectively [148]. Phytochemical examination of the fruits of A. arguta led to the isolation of esculetin 259 [135]. Two coumarins were isolated from the roots of A. deliciosa and identified as fraxetin 260 and isoscopoletin 261 [150]. Compound 260 showed potent inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation with an IC50 value of 10.11 ± 0.47 µM [151]. Esculin 263 and fraxin 264 were characterized from the stems and fruits of A. deliciosa (kiwifruit) and A. chinensis [152]. Compound 264 showed inhibitory activity towards HepG2 with an IC50 value of 14.71 μM [153].
Fig. 11.
Structures of coumarins 258‒268 from Actinidia plants
Table 10.
Information of coumarins from Actinidia plants
| No. | Compound name | Species Refs. | Part | Bioactivity Refs. |
|---|---|---|---|---|
| 258 | Umbelliferone | A. polygama [109] | Leaves |
Anti-tumor (in vitro) [143] Anti-inflammatory (in vitro) [144] Antioxidant (in vitro) [149] Antidiabetic (in vitro and in vivo) [146] Immunomodulatory(in vitro) [148] |
| 259 | Esculetin | A. arguta [135] | Fruits |
Anti-tumor (in vitro) [154] Anti-oxidant and anti-inflammatory (in vivo) [155] |
| 260 | Fraxetin | A. deliciosa [150] | Roots |
Anti-inflammatory (in vitro) [151] Anti-tumor (in vitro) [156] |
| 261 | Isoscopoletin | A. deliciosa [150] | Roots | Anti-inflammatory [151] |
| 262 | Isofraxoside | A. chinensis [137] | Roots | |
| 263 | Esculin | A. deliciosa [152] | Stems | |
| 264 | Fraxin | A. chinensis [152] | Fruits |
Anti-inflammatory (in vivo) [157] Antitumor (in vitro) [153] |
| 265 |
5-Hydroxy-6-methoxy-7-O-β-d- glycopyranosylcoumarin |
A. chinensis Radix [50] | Roots | |
| 266 |
6′-Acetoxy-8-β-d-glucopyranosyloxy-7- hydroxy-6-methoxy-coumarin |
A. chinensis Radix [50] | Roots | |
| 267 | 6-Hydroxy7-(β-d-glucopyranosyloxy) coumarin | A. deliciosa [89] | Peels | |
| 268 | 6,8-Dimethoxy-7-(β-d-glucopyranosyloxy) coumarin | A. deliciosa [89] | Peels |
Lignans
Lignans also had a narrow distribution in kiwi plants, only six members have been identified from Actinidia plants (269‒274, Fig. 12, Table 11). (+)-Pinoresinol 271, (+)-medioresinol 272, and (−)-syringaresinol 273 were partitioned from the fraction of the roots of A. arguta [53]. Compound 271 is a biologically active lignan and widely found in many dietary plants. It was reported to possess antifungal, anti-inflammatory, antioxidant, hypoglycemic, and antitumor activities [158–162]. A study on this compound suggested that 271 displayed significant inhibition of fMLP/CB-induced superoxide anion generation and elastase release, with an IC50 value of 1.3 ± 0.2 μg/mL [159]. The 50% ethanol extract of A. arguta showed strong inhibitory effect on α-glucosidase (32.6%), while a bio-guided isolation on the extract gave a bioactive compound pinoresinol diglucoside 274 [138].
Fig. 12.
Structures of lignans 269‒274 from Actinidia plants
Table 11.
Information of of lignans from Actinidia plants
| No. | Compound name | Species Refs. | Part | Cytotoxicity Refs. | |
|---|---|---|---|---|---|
| 269 | Urolingoside | A. polygama [110] | Aerial parts | ||
| 270 | 4′-O-β-Dxylopyranoside | A. chinensis Radix [50] | Roots | ||
| 271 | (+)-Pinoresinol | A. arguta [53] | Roots |
Antifungal (in vitro) [158] Anti-inflammatory (in vitro) [159] Antioxidation (in vitro) [160] Hypoglycemic (in vitro) [161] Anti-tumor (in vitro) [162] |
|
| 272 | (+)-Medioresinol | A. arguta [53] | Roots | ||
| 273 | (−)-Syringaresinol | A. arguta [53] | Roots | ||
| 274 | Pinoresinol diglucoside | A. arguta [138] | Leaves | Inhibiting α-glucosidase (in vitro) [138] | |
Simple Phenols
Simple benzene derivatives including glycosides and isoprenylated benzene products from Actinidia plants were collected (275‒298, Fig. 13, Table 12). Phytochemical examination of the fruits of A. arguta led to the isolation of protocatechuic acid 279 [135]. It showed anti-inflammatory [163], antioxidant [163], neuroprotective [164], and anti-proliferative activities [165]. Protocatechuic acid exhibited significant (p < 0.05) anti-inflammatory (83% and 88% inhibition for egg-albumin induced and xylene induced oedema, respectively), analgesic (56% inhibition and 22 s of pain suppression for acetic acid-induced and hot plate-induced pain, respectively), and antioxidant effects (97% inhibition and absorbance of 2.516 at 100 μg/mL for DPPH and FRAP assay, respectively) in the models [166]. Extraction of leaf tissue from the golden-fleshed kiwifruit cultivar A. chinensis “Hort16A” expressing genotype-resistance against the fungus Botrytis cinerea, a new phenolic compound, 3,5-dihydroxy-2-(methoxycarbonylmethyl)phenyl 3,4-dihydroxybenzoate 278 was therefore obtained [167].
Fig. 13.
Structures of simple phenols 275‒298 from Actinidia plants
Table 12.
Information of simple phenols from Actinidia plants
| No. | Compound name | Species Refs. | Part | Bioactivity Refs. |
|---|---|---|---|---|
| 275 | Tyrosol | A. arguta [168] | Roots | Anti-inflammatory (in vitro) [151] |
| 276 | 2,2-Dimethyl-6-chromancarboxylic acid | A. deliciosa [150] | Roots | |
| 277 | Monodictyphenone | A. chinensis Radix [50] | Roots | Inhibiting protein tyrosine phosphatase (in vitro) [169] |
| 278 | 3,5-Dihydroxy-2-(methoxycarbonyl methyl) phenyl 3,4-dihydroxybenzoate | A. chinensis [167] | Leaves | |
| 279 | Protocatechuic acid | A. arguta [135] | Fruits |
Anti-inflammatory and antioxidant (in vitro and in vivo) [163] Neuroprotective (in vitro) [164] Anti-proliferative (in vitro) [165] |
| 280 | 4-Hydroxy benzoic acid | A. arguta [92] | Roots | |
| 281 | Vanillic acid | A. deliciosa [150] | Roots | |
| 282 | 4-(β-d-Glucopyranosyloxy)-3-hydroxybenzoic acid | A. chinensis Radix [50] | Roots | |
| 283 | p-Hydroxybenzaldehyde | A. chinensis Radix [50] | Roots | |
| 284 | Tachioside | A. deliciosa [150] | Roots | |
| 285 | Syringaldehyde | A. chinensis Planch [105] | Roots | Anti-inflammatory (in vitro) [170] |
| 286 | Vanillic acid 4-O-β-d-glucopyranoside | A. deliciosa [150] | Roots | |
| 287 | Protocatechualdehyde | A. chinensis [171] | Roots | Antioxidant and anti-inflammatory (in vitro) [172] |
| 288 | 4-Hydroxy-2-methoxyphenyl-β-d-glucopyranoside |
A. macrosperma [66] |
Roots | |
| 289 | Erythro-1,2-bis-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol | A. chinensis [171] | Roots | |
| 290 | Threo-1,2-bis-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol | A. chinensis [171] | Roots | |
| 291 | Planchols A | A. chinensis Planch [94] | Roots | Against P-388 and A-549 cell lines (in vitro) [94] |
| 292 | Planchols B | A. chinensis Planch [94] | Roots | Against P-388 and A-549 cell lines (in vitro) [94] |
| 293 | Planchols C | A. chinensis Planch [94] | Roots | Against P-388 and A-549 cell lines (in vitro) [94] |
| 294 | Planchols D | A. chinensis Planch [94] | Roots | Against P-388 and A-549 cell lines (in vitro) [94] |
| 295 | 2,8-Dimethyl-2-(4,8,12-trimethyltridec-11-enyl)chroman-6-ol | A. deliciosa [89] | Peels | |
| 296 | α-Tocopherol | A. deliciosa [89] | Peels | |
| 297 | δ-Tocopherol | A. deliciosa [89] | Peels | |
| 298 | 2,8-Dimethyl-2-(4,8,12-trimethyltridec-11-enyl)chroman-6-ol | A. chinensis [173] | Peels |
Four novel skeleton phenolic compounds planchols A‒D (291‒294) were isolated from the roots of A. chinensis Planch. Their structures were elucidated by spectroscopic analysis and chemical evidence. The structure of 291 was further confirmed by the single-crystal X-ray diffraction. Moreover, it was found that 291 and 292 showed remarkable cytotoxic activity against P-388 with IC50 of 2.50 and 3.85 μM, respectively, and against A-549 with IC50 of 1.42 and 2.88 μM, respectively [94].
Miscellaneous
Three alkaloids (299‒301), eleven fatty acids and derivatives (302‒312), and other thirteen small molecules (313‒325) were obtained from Actinidia plants (Fig. 14, Table 13). Actinidine 299 and boschniakine 300 were isolated from the leaves and galls of A. polygama and also isolated from A. arguta which might be converted from iridoids [174, 175]. A bioassay-guided fractionation of the fruits of A. polygama led to the separation and identification of a polyunsaturated fatty acid, α-linolenic acid (ALA) 305 [176]. This compound was found to possess a broad biological properties including anti-inflammatory [177], anti-tumor [178], anti-hyperlipidemic [179], anti-diabetic [180], and anti-fungal [181] activities. By a bio-guided fractionation, a ceramide namely actinidiamide 312 was identified as an anti-inflammatory component from the EtOAc fraction of A. polygama Max. It potently inhibited nitric oxide production (30.6% inhibition at 1 μg/mL) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and β-hexosaminidase release (91.8% inhibition at 1 μg/mL) in IgE-sentized RBL-2H3 cells [182].
Fig. 14.
Structures of other molecules 299‒325 from Actinidia plants
Table 13.
Information other molecules from Actinidia plants
| No. | Compound name | Species Refs. | Part | Bioactivity Refs. |
|---|---|---|---|---|
| 299 | Actinidine | A. polygama [174] | Leaves and galls | Anti-obesity (in vivo) [183] |
| 300 | Boschniakine | A. arguta [175] | ||
| 301 | Indole-3-carboxylic acid | A. chinensis Planch [184] | Roots | |
| 302 | Undecanoic acid | A. deliciosa [185] | Roots |
Anti-inflammatory (in vivo) [186] |
| 303 | n-Stearic acid | A. deliciosa [150] | Roots | |
| 304 | Tetracosanoic acid | A. eriantha Benth [41] | Roots | |
| 305 | α-Linolenic acid | A. polygama [176] | Fruits |
Anti-inflammatory (in vivo) [177] Anti-tumor (in vivo) [178] Anti-hyperlipidemic (in vivo) [179] Anti-diabetic (in vivo) [180] Anti-fungal (in vitro) [181] |
| 306 | (9Z,11E)-13-Hydroxy-9,11-octadecadienoic acid | A. chinensis Radix [50] | Roots | |
| 307 | Ricinoleic acid | A. chinensis Radix [50] | Roots | |
| 308 | Lignoceric acid | A. chinensis Planch [187] | Roots | |
| 309 | Stearyl-β-d-glucopyranoside | A. chinensis Planch [187] | Roots | |
| 310 | Dotriacontanic acid | A. chinensis Planch [52] | Roots | |
| 311 | Sphingolipid | A. chinensis Planch [52] | Roots | |
| 312 | Actinidiamide | A. polygama [182] | Fruits |
Anti-inflammatory (in vitro) [182] |
| 313 | n-Butyl-O-β-d-fructopyranoside | A. deliciosa [188] | Roots | |
| 314 | Sucrose | A. chinensis Planch [187] | Roots | |
| 315 | γ-Quinide | A. chinensis Planch [187] | Roots | |
| 316 | 1-Methyl-5-ethyl citrate | A. arguta [136] | Fruits | |
| 317 | 1,6-Dimethyl citrate | A. arguta [136] | Fruits | |
| 318 | 1,5,6-Trimethyl citrate | A. arguta [136] | Fruits | |
| 319 | 1,6-Dimethyl-5-ethyl citrate | A. arguta [136] | Fruits | |
| 320 | 6-Butyl citrate | A. arguta [136] | Fruits | |
| 321 | 1-Methyl-6-butyl citrate | A. arguta [136] | Fruits | |
| 322 | Succinic acid | A. kolomikta [189] | Leaves | |
| 323 | Meso-inositol | A. kolomikta [189] | Leaves | |
| 324 | Maltose | A. kolomikta [189] | Leaves | |
| 325 | α-Kolomiktriose | A. kolomikta [190] | Roots |
In summary, this review focused on the biological components and related pharmacological activities of various parts of Actinidia plants, including triterpenoids, steroids, flavonoids, catechins, coumarins, lignans, phenols, and other small organic molecules. A total of 325 molecules have been collected in this review. Most of the active molecules are derived from the roots of Actinidia plants, while triterpenes and flavonoids are the most important types regardless of the number of compounds and their biological activity significance. The stems, leaves, fruit galls, and other parts of kiwi are mainly rich in flavonoids, phenylpropionic acids, and other small molecule compounds. Currently, these chemical components are not structurally novel. In addition, there are few in-depth researches on pharmacological activities of the bioactive compounds. Therefore, research on the chemical constituents of Actinidia plants is still promising. We hope that this review can provide positive information for the further exploration of the chemical components and their biological activities of Actinidia plants.
Funding
This work was financially supported by the National Natural Science Foundation of China (22177139) and the Scientific Research Program of Hubei Provincial Department of Education, China (D20183001).
References
- 1.Henare SJ, Rutherfurd SM, Drummond LN, Borges V, Boland MJ, Moughan PJ. Food Chem. 2012;130:67–72. [Google Scholar]
- 2.Du G, Li M, Ma F, Liang D. Food Chem. 2009;113:557–562. [Google Scholar]
- 3.Garcia CV, Quek SY, Stevenson RJ, Winz RA. J. Agric. Food Chem. 2011;59:8358–8365. doi: 10.1021/jf201469c. [DOI] [PubMed] [Google Scholar]
- 4.Xiao X, Sun R, Jiang S, Du T, Yang G, Ye F. China Med. Hered. 2014;11:157–159. [Google Scholar]
- 5.Zhang YN, Liu L, Ling CQ. Chin J. Chin. Mater. Med. 2006;31:918–920. [PubMed] [Google Scholar]
- 6.Fang T, He M, Xia J, Hou J, Wang L, Zheng M, Wang X, Xia J. Cell Biol. Toxicol. 2016;32:499–511. doi: 10.1007/s10565-016-9351-z. [DOI] [PubMed] [Google Scholar]
- 7.Huang C, Zhang Z, Li G, Zhou J. Plant Divers. Resour. 1988;10:93–100. [Google Scholar]
- 8.Manayi A, Nikan M, Nobakht-Haghighi N, Abdollahi M. Curr. Med. Chem. 2018;25:4866–4875. doi: 10.2174/0929867324666170713102918. [DOI] [PubMed] [Google Scholar]
- 9.Singh AK, Pandey H, Ramteke PW, Mishra SB. Lat. Am. J. Pharm. 2019;38:513–517. [Google Scholar]
- 10.Ramos-Hryb AB, Platt N, Freitas AE, Heinrich IA, Lopez MG, Leal RB, Kaster MP, Rodrigues ALS. Neurochem. Res. 2019;44:2843–2855. doi: 10.1007/s11064-019-02906-1. [DOI] [PubMed] [Google Scholar]
- 11.Moon PD, Han NR, Lee JS, Kim HM, Jeong HJ. Int. J. Mol. Med. 2019;43:2252–2258. doi: 10.3892/ijmm.2019.4144. [DOI] [PubMed] [Google Scholar]
- 12.Jiang X, Li T, Liu RH. J. Agric. Food Chem. 2016;64:1806–1816. doi: 10.1021/acs.jafc.5b04852. [DOI] [PubMed] [Google Scholar]
- 13.Jang DS, Lee GY, Kim J, Lee YM, Kim JM, Kim YS, Kim JS. Arch. Pharmacal. Res. 2008;31:666–670. doi: 10.1007/s12272-001-1210-9. [DOI] [PubMed] [Google Scholar]
- 14.Takaya M, Nomura M, Takahashi T, Kondo Y, Lee KT, Kobayashi S. Anticancer Res. 2009;29:995–1000. [PubMed] [Google Scholar]
- 15.Won JH, Chung KS, Park EY, Lee JH, Choi JH, Tapondjou LA, Park HJ, Nomura M, Hassan AHE, Lee KT. Molecules. 2018;23:3306. doi: 10.3390/molecules23123306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Woo KW, Choi SU, Kim KH, Lee KR. J. Braz. Chem. Soc. 2015;26:1450–1456. [Google Scholar]
- 17.Shin KM, Kim RK, Azefack TL, David L, Luc SB, Choudhary MI, Park HJ, Choi JW, Lee KT. Planta Med. 2004;70:803–807. doi: 10.1055/s-2004-827226. [DOI] [PubMed] [Google Scholar]
- 18.Sashida Y, Ogawa K, Mori N, Yamanouchi T. Phytochemistry. 1992;31:2801–2804. [Google Scholar]
- 19.Xu YX, Xiang ZB, Jin YS, Shen Y, Chen HS. Fitoterapia. 2010;81:920–924. doi: 10.1016/j.fitote.2010.06.007. [DOI] [PubMed] [Google Scholar]
- 20.Xu YX, Xiang ZB, Chen XJ, Chen HS. Acad. J. Second Mil. Med. Univ. 2011;32:749–753. [Google Scholar]
- 21.Xin HL, Wu YC, Xu YF, Su YH, Zhang YN, Ling CQ. Chin. J. Nat. Med. 2010;8:260–263. [Google Scholar]
- 22.Xin HL, Yue XQ, Xu YF, Wu YC, Zhang YN, Wang YZ, Ling CQ. Helv. Chim. Acta. 2008;91:575–580. [Google Scholar]
- 23.Sashida Y, Ogawa K, Yamanouchi T, Tanaka H, Shoyama Y, Nishioka I. Phytochemistry. 1994;35:377–380. [Google Scholar]
- 24.Li D, Li W, Higai K, Koike K. J. Nat. Med. 2014;68:427–431. doi: 10.1007/s11418-013-0804-x. [DOI] [PubMed] [Google Scholar]
- 25.Zhang XY, Zhou Y, Wei ZP, Shen J, Wang LK, Ma ZQ, Zhang X. Pest Manag. Sci. 2018;74:1630–1636. doi: 10.1002/ps.4854. [DOI] [PubMed] [Google Scholar]
- 26.Takazawa H, Yoshimura K, Ikuta A, Kawaguchi K. Plant Biotechnol. 2002;19:181–186. [Google Scholar]
- 27.Du SY, Huang HF, Li XQ, Zhai LX, Zhu QC, Zheng K, Song X, Xu CS, Li CY, Li Y, He ZD, Xiao HT. Chin. Med. 2020;15:43. doi: 10.1186/s13020-020-00322-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Bonel-Perez GC, Perez-Jimenez A, Gris-Cardenas I, Parra-Perez AM, Lupianez JA, Reyes-Zurita FJ, Siles E, Csuk R, Peragon J, Rufino-Palomares EE. Molecules. 2020;25:4254. doi: 10.3390/molecules25184254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Carmo J, Cavalcante-Araujo P, Silva J, Ferro J, Correia AC, Lagente V, Barreto E. Molecules. 2020;25:4982. doi: 10.3390/molecules25214982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Zhou XF, Zhang P, Pi HF, Zhang YH, Ruan HL, Wang H, Wu JZ. Chem. Biodivers. 2009;6:1202–1207. doi: 10.1002/cbdv.200800214. [DOI] [PubMed] [Google Scholar]
- 31.Lahlou EH, Hirai N, Kamo T, Tsuda M, Ohigashi H. Biosci. Biotechnol. Biochem. 2001;65:480–483. doi: 10.1271/bbb.65.480. [DOI] [PubMed] [Google Scholar]
- 32.Wei LB, Ma SY, Liu HX, Huang CS, Liao N. Chem. Biodivers. 2018;15:e1700454. doi: 10.1002/cbdv.201700454. [DOI] [PubMed] [Google Scholar]
- 33.Dangroo NA, Singh J, Dar AA, Gupta N, Chinthakindi PK, Kaul A, Khuroo MA, Sangwan PL. Eur. J. Med. Chem. 2016;120:160–169. doi: 10.1016/j.ejmech.2016.05.018. [DOI] [PubMed] [Google Scholar]
- 34.Ahn JH, Park Y, Yeon SW, Jo YH, Han YK, Turk A, Ryu SH, Hwang BY, Lee KY, Lee MK. J. Nat. Prod. 2020;83:1416–1423. doi: 10.1021/acs.jnatprod.9b00643. [DOI] [PubMed] [Google Scholar]
- 35.Huang CS, Ma SY, Liu HX, Lu Q, Huang CS, Liu HX, Wei LB, Shi LG, Liao N, Wei LB. China J. Chin. Mater. Med. 2017;42:2714–2718. doi: 10.19540/j.cnki.cjcmm.20170419.006. [DOI] [PubMed] [Google Scholar]
- 36.Qu LP, Zheng GY, Su YH, Zhang HQ, Yang YL, Xin HL, Ling CQ. Int. J. Mol. Sci. 2012;13:14865–14870. doi: 10.3390/ijms131114865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Shi Y, Wang H, Ma B. Chin. Tradit. Herb. Drugs. 1993;24:386–387. [Google Scholar]
- 38.Dong SC, Shin TY, Eun JS, Kim DK, Jeon H. Arch. Pharmacal. Res. 2011;34:425–436. doi: 10.1007/s12272-011-0310-1. [DOI] [PubMed] [Google Scholar]
- 39.D. Xu, A. Qiu, N. Tang, G. Liu, Y. Lai, CN101502542.
- 40.Huang C, Li G, Fan H, Zhang Z, Zhou J. Plant Divers. Resour. 1986;8:489–491. [Google Scholar]
- 41.Huang C, Chen X. Nat. Prod. Res. Dev. 1992;4:27–30. [Google Scholar]
- 42.Meng L, Huang C, Liu H, Chen X. Chin. Tradit. Herb. Drugs. 2009;32:1544–1546. [PubMed] [Google Scholar]
- 43.Wei L, Huang C, Liu H, Chen X. Technol. Dev Chem. Ind. 2009;38:1–3. [Google Scholar]
- 44.Cui Y, Zhang XM, Chen JJ, Zhang Y, Lin XK, Zhou L. China J. Chin. Mater. Med. 2007;32:1663–1665. [PubMed] [Google Scholar]
- 45.Zhu WJ, Yu DH, Zhao M, Lin MG, Lu Q, Wang QW, Guan YY, Li GX, Luan X, Yang YF, Qin XM, Fang C, Yang GH, Chen HZ. Anti-Cancer Agents Med. Chem. 2013;13:195–198. doi: 10.2174/1871520611313020002. [DOI] [PubMed] [Google Scholar]
- 46.Qin Y, Huang C, Chen X, Cai M, Liu H. Chin. Tradit. Herb. Drugs. 1999;30:323–326. [Google Scholar]
- 47.Lu F, Zhao L, Zheng L, Lu L. Cent. S. Pharm. 2014;12:165–168. [Google Scholar]
- 48.Xu YD, Yin L. Chin. Tradit. Herb. Drugs. 2013;44:935–937. [Google Scholar]
- 49.Bei S, Huang C, Chen X. Nat. Prod. Res. Dev. 1997;9:15–18. [Google Scholar]
- 50.Nie C, Yang J, Wu D, Wan L, Liang G. Chem. Res. Chin. Univ. 2019;35:823–829. [Google Scholar]
- 51.Ye C, Jin M, Zhou Y, Zhou W, Li G. Chem. Nat. Compd. 2019;55:975–977. [Google Scholar]
- 52.Xu YX, Xiang ZB, Jin YS, Xu W, Sun LN, Chen WS. HSJC Chem. Biodivers. 2016;13:1454–1459. doi: 10.1002/cbdv.201500518. [DOI] [PubMed] [Google Scholar]
- 53.Whang JI, Moon HI, Zee OP. Saengyak Hakhoechi. 2000;31:357–365. [Google Scholar]
- 54.Han Y, Tong Z, Wang C, Li X, Liang G. Eur. J. Pharmacol. 2021;893:173811. doi: 10.1016/j.ejphar.2020.173811. [DOI] [PubMed] [Google Scholar]
- 55.Zhang S, Liu Y, Wang X, Tian Z, Qi D, Li Y, Jiang H. Int. J. Mol. Med. 2020;46:2019–2034. doi: 10.3892/ijmm.2020.4744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Edathara PM, Chintalapally S, Makani VKK, Pant C, Yerramsetty S, Rao MD, Bhadra MP. Gene. 2021;771:145370. doi: 10.1016/j.gene.2020.145370. [DOI] [PubMed] [Google Scholar]
- 57.Zhou W, Zeng X, Wu X. Med. Sci. Monit. 2020;26:e921606. doi: 10.12659/MSM.921606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Castellano JM, Garcia-Rodriguez S, Espinosa JM, Millan-Linares MC, Rada M, Perona JS. Biomolecules. 2019;9:683. doi: 10.3390/biom9110683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Musa WJA, Situmeang B, Sianturi J. Int. J. Food Prop. 2019;22:1439–1444. [Google Scholar]
- 60.Mooi LY, Abdul Wahab N, Lajis NH, Ali AM. Chem. Biodivers. 2010;7:1267–1275. doi: 10.1002/cbdv.200900193. [DOI] [PubMed] [Google Scholar]
- 61.Huang L, Guan T, Qian Y, Huang M, Tang X, Li Y, Sun H. Eur. J. Pharmacol. 2011;672:169–174. doi: 10.1016/j.ejphar.2011.09.175. [DOI] [PubMed] [Google Scholar]
- 62.Wu JG, Ma L, Lin SH, Wu YB, Yi J, Yang BJ, Wu JZ, Wong KH. J. Ethnopharmacol. 2017;203:1–10. doi: 10.1016/j.jep.2017.03.013. [DOI] [PubMed] [Google Scholar]
- 63.F. A. Ma, D. L. Wu, F. Q. Xu, W. Zhang, Y. S. R, Chin. Tradit. Pat. Med. 38, 591–593 (2016).
- 64.Zhao H, Wang BZ, Ma BR, Sun JY. Chin. Pharm. J. 1994;29:523–524. [Google Scholar]
- 65.Lai Y, Xu D. J. Chin. Med. Mater. 2007;30:166–168. [PubMed] [Google Scholar]
- 66.Ding L, Wang S, Wang Z. China J. Chin. Mater. Med. 2007;32:1893–1895. [PubMed] [Google Scholar]
- 67.Lu J, Yang R, Gui M, Jin Y, Dong J, Li X. Chin. Pharm. J. 2009;44:1215–1217. [Google Scholar]
- 68.Zhu LJ, Xiang ST, Wang XH, Zhao J, Tan ZI, Yi JE. J. Tradit. Chin. Vet. Med. 2016;35:18–22. [Google Scholar]
- 69.Farcas CG, Dehelean C, Pinzaru IA, Mioc M, Socoliuc V, Moaca EA, Avram S, Ghiulai R, Coricovac D, Pavel I, Alla PK, Cretu OM, Soica C, Loghin F. Int. J. Nanomed. 2020;15:8175–8200. doi: 10.2147/IJN.S269630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Kun L, Wang JY, Zhang L, Pan YY, Chen XY, Yuan Y. Int. J. Immunopathol. Pharmacol. 2020;34:2058738420945078. doi: 10.1177/2058738420945078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Wang H, Dong F, Wang Y, Wang XA, Hong D, Liu Y, Zhou J. Acta Biochim. Biophys. Sin. 2020;52:200–206. doi: 10.1093/abbs/gmz148. [DOI] [PubMed] [Google Scholar]
- 72.Wang Q, Li Y, Zheng L, Huang X, Wang Y, Chen CH, Cheng YY, Morris-Natschke SL, Lee KH, Med ACS. Chem. Lett. 2020;11:2290–2293. doi: 10.1021/acsmedchemlett.0c00414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Birgani GA, Ahangarpour A, Khorsandi L, Moghaddam HF. Braz. J. Pharm. Sci. 2018;54:e17171. [Google Scholar]
- 74.Zhou Z, Zhu C, Cai Z, Zhao F, He L, Lou X, Qi X. Oncol. Lett. 2018;15:7319–7327. doi: 10.3892/ol.2018.8183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Han YH, Mun JG, Jeon HD, Kee JY, Hong SH. Nutrients. 2019;12:66. doi: 10.3390/nu12010066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Yin F, Feng F, Wang L, Li Z, Wang X, Cao Y. Cell Death Dis. 2019;10:672. doi: 10.1038/s41419-019-1884-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Murai F, Tagawa M. Planta Med. 1979;37:234–240. [Google Scholar]
- 78.Sakai T, Nakajima K, Sakan T. Bull. Chem. Soc. Jpn. 1980;53:3683–3686. [Google Scholar]
- 79.Isoe S, Ono T, Hyeon SB, Sakan T. Tetrahedron Lett. 1968;9:5319–5323. [Google Scholar]
- 80.Murai F, Tagawa M, Ohishi H. Planta Med. 1992;58:112–113. doi: 10.1055/s-2006-961406. [DOI] [PubMed] [Google Scholar]
- 81.Jain S, Ganeshpurkar A, Dubey N. Pharmacogn. Commun. 2020;10:134–135. [Google Scholar]
- 82.Koc K, Geyikoglu F, Cakmak O, Koca A, Kutlu Z, Aysin F, Yilmaz A, Askin H. Naunyn-Schmiedeberg's Arch. Pharmacol. 2021;394:469–479. doi: 10.1007/s00210-020-01984-1. [DOI] [PubMed] [Google Scholar]
- 83.Ye JY, Li L, Hao QM, Qin Y, Ma CS. Korean J. Physiol. Pharmacol. 2020;24:39–46. doi: 10.4196/kjpp.2020.24.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Zhang F, Liu Z, He X, Li Z, Shi B, Cai F. Drug Deliv. 2020;27:1329–1341. doi: 10.1080/10717544.2020.1818883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Karthik L, Vijayakumar B. Int. J. Pharm. Phytopharm. Res. 2020;10:8–21. [Google Scholar]
- 86.Sen A, Dhavan P, Shukla KK, Singh S, Tejovathi G. Sci. Secure J. Biotechnol. 2012;1:9–13. [Google Scholar]
- 87.Babu S, Jayaraman SJB. Pharmacotherapy. 2020;131:110702. doi: 10.1016/j.biopha.2020.110702. [DOI] [PubMed] [Google Scholar]
- 88.Babu S, Krishnan M, Rajagopal P, Periyasamy V, Veeraraghavan V, Govindan R, Jayaraman S. Eur. J. Pharmacol. 2020;873:173004. doi: 10.1016/j.ejphar.2020.173004. [DOI] [PubMed] [Google Scholar]
- 89.Fiorentino A, Abrosca BD, Pacifico S, Mastellone C, Scognamiglio M, Monaco P. J. Agric. Food Chem. 2009;57:4148–4155. doi: 10.1021/jf900210z. [DOI] [PubMed] [Google Scholar]
- 90.Ahmad Khan M, Sarwar AHMG, Rahat R, Ahmed RS, Umar S. Int. Immunopharmacol. 2020;85:106642. doi: 10.1016/j.intimp.2020.106642. [DOI] [PubMed] [Google Scholar]
- 91.Lim HW, Shim JG, Choi HK, Lee MW. Saengyak Hakhoechi. 2005;36:245–251. [Google Scholar]
- 92.Jang DS, Lee GY, Lee YM, Kim YS, Sun H, Kim DH, Kim JS. Chem. Pharm. Bull. 2009;57:397–400. doi: 10.1248/cpb.57.397. [DOI] [PubMed] [Google Scholar]
- 93.Riyana B, Putri Huspa DH, Satari MH, Kurnia D. Lett. Drug Des. Discov. 2020;17:1531–1537. [Google Scholar]
- 94.Chang J, Case R. Planta Med. 2005;71:955–959. doi: 10.1055/s-2005-871225. [DOI] [PubMed] [Google Scholar]
- 95.Michaud J, Ane-Margail M. Bull. Soc. Pharm. Bordeaux. 1977;116:52–64. [Google Scholar]
- 96.Wang J, Fang X, Ge L, Cao F, Zhao L, Wang Z, Xiao W. PLoS ONE. 2018;13(5):e0197563. doi: 10.1371/journal.pone.0197563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Bakhshii S, Khezri S, Ahangari R, Jahedsani A, Salimi A. Drug Dev. Res. 2021 doi: 10.1002/ddr.21790. [DOI] [PubMed] [Google Scholar]
- 98.Arowosegbe MA, Amusan OT, Adeola SA, Adu OB, Akinola IA, Ogungbe BF, Omotuyi OI, Saibu GM, Ogunleye AJ, Kanmodi RI, Lugbe NE, Ogunmola OJ, Ajayi DC, Ogun SO, Oyende FO, Bello AO, Ishola PG, Obasieke PE. Curr. Drug Discov. Technol. 2020;17:682–695. doi: 10.2174/1570163816666190823135948. [DOI] [PubMed] [Google Scholar]
- 99.Sloley BD, Urichuk LJ, Morley P, Durkin J, Shan JJ, Pang PKT, Coutts RT. J. Pharm. Pharmacol. 2000;52:451–459. doi: 10.1211/0022357001774075. [DOI] [PubMed] [Google Scholar]
- 100.Xin HL, Wu YC, Su YH, Sheng JY, Ling CQ. Planta Med. 2011;77:70–73. doi: 10.1055/s-0030-1250113. [DOI] [PubMed] [Google Scholar]
- 101.Chang X, Ma B, He L, Xiao Y, Li X. Chin. Tradit. Herb. Drugs. 1993;24:283–285. [Google Scholar]
- 102.Lu J, Jin Y, Liu G, Zhu N, Gui M, Yu A, Li X. Chem. Nat. Compd. 2010;46:205–208. [Google Scholar]
- 103.Horiuch M, Murakami C, Fukamiya N, Yu D, Lee KH. J. Nat. Prod. 2006;69:1271–1274. doi: 10.1021/np060124a. [DOI] [PubMed] [Google Scholar]
- 104.Eerduna G, Wei D, Yu X, Qu S, Sui D. Pharmazie. 2013;68:453–458. [PubMed] [Google Scholar]
- 105.He GN, Wang BC, Wang H, Fan L, Hu XM. Chin. Arch. Tradit. Chin. Med. 2016;31:2353–2355. [Google Scholar]
- 106.Liu C, Weir D, Busse P, Yang N, Zhou Z, Emala C, Li XM. Phytother. Res. 2015;29:925–932. doi: 10.1002/ptr.5334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Webby RF. N. Z. J. Crop Hortic. Sci. 1990;18:1–4. [Google Scholar]
- 108.Xiang M, Jin C, Kou R, Yang G, Li J, Huazhong J. Norm. Univ. Nat. Sci. 2015;49:397–401. [Google Scholar]
- 109.Lu J, Cui G, Wang X, Zhu N, Liu G, Li X, Jin Y. Chin. Pharm. J. 2009;44:328–330. [Google Scholar]
- 110.Syed AS, Jeon JS, Kim CY. Nat. Prod. Res. 2017;31:1501–1508. doi: 10.1080/14786419.2017.1278592. [DOI] [PubMed] [Google Scholar]
- 111.Lu J, Li XW, Gui MY, Liu GY, Zhu N, Yu AM, Okuyama T, Masaki B, Jin YR. Chem. J. Chin. Univ. 2009;30:468–473. [Google Scholar]
- 112.Webby RF, Markham KR. Phytochemistry. 1990;29:289–292. [Google Scholar]
- 113.Y. Jin, M. Gui, X. Li, CN1566127A.
- 114.Kalandiya A, Vanidze M, Papunidze S, Chkhikvishvili I, Shalashvili A. Bull. Georgian Acad. Sci. 2001;163:157–159. [Google Scholar]
- 115.Webby RF. Phytochemistry. 1991;30:2443–2444. doi: 10.1016/0031-9422(91)83680-j. [DOI] [PubMed] [Google Scholar]
- 116.Luo CT, Zheng HH, Mao SS, Yang MX, Luo C, Chen H. Planta Med. 2014;80:201–208. doi: 10.1055/s-0033-1360173. [DOI] [PubMed] [Google Scholar]
- 117.Shi TX, Wang S, Zeng KW, Tu PF, Jiang Y. Bioorg. Med. Chem. Lett. 2013;23:5904–5908. doi: 10.1016/j.bmcl.2013.08.085. [DOI] [PubMed] [Google Scholar]
- 118.Li W, Ding Y, Quang TH, Nguyen TTN, Sun YN, Yan XT, Yang SY, Choi CW, Lee EJ, Paek KY, Kim YH. Bull. Korean Chem. Soc. 2013;34:1407–1413. [Google Scholar]
- 119.Comeskey DJ, Montefiori M, Edwards PJB, McGhie TK. J. Agric. Food Chem. 2009;57:2035–2039. doi: 10.1021/jf803287d. [DOI] [PubMed] [Google Scholar]
- 120.Ferrari D, Cimino F, Fratantonio D, Molonia MS, Bashllari R, Busa R, Saija A, Speciale A. Mediat. Inflamm. 2017;2017:3454023. doi: 10.1155/2017/3454023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Pereira SR, Almeida LM, Dinis TCP. J. Funct. Foods. 2019;63:103586. [Google Scholar]
- 122.Di GC, Acquaviva R, Santangelo R, Sorrenti V, Vanella L, Li VG, Orazio ND, Vanella A, Galvano F. J. Evid. Based Complement. Altern. Med. 2012;20:285750. doi: 10.1155/2012/285750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Ma X, Ning S. Phytother. Res. 2019;33:81–89. doi: 10.1002/ptr.6201. [DOI] [PubMed] [Google Scholar]
- 124.Zhang P, Liu S, Zhao Z, You L, Harrison MD, Zhang Z. Food Chem. 2021;343:128482. doi: 10.1016/j.foodchem.2020.128482. [DOI] [PubMed] [Google Scholar]
- 125.Fu W, Tan C, Meng X, Lu L, Jiang S, Zhu D. Chin. J. Med. Chem. 2010;20:116–118. [Google Scholar]
- 126.Sharanya CS, Arun KG, Sabu A, Haridas M. Prostaglandins Other Lipid Mediat. 2020;150:106453. doi: 10.1016/j.prostaglandins.2020.106453. [DOI] [PubMed] [Google Scholar]
- 127.Ma W, Liu C, Li J, Hao M, Ji Y, Zeng X. Photochem. Photobiol. Sci. 2020;19:485–494. doi: 10.1039/c9pp00352e. [DOI] [PubMed] [Google Scholar]
- 128.Jangra S, Sharma B, Singh S. Mater. Res Innov. 2020;25:264–275. [Google Scholar]
- 129.De Oliveira MR, De Souza ICC, Brasil FB. Neurochem. Res. 2020;46:482–493. doi: 10.1007/s11064-020-03181-1. [DOI] [PubMed] [Google Scholar]
- 130.Leung SW, Lai JH, Wu JCC, Tsai YR, Chen YH, Kang SJ, Chiang YH, Chang CF, Chen KY. Int. J. Mol. Sci. 2020;21:2899. doi: 10.3390/ijms21082899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Li Q, Gao J, Pang X, Chen A, Wang Y. Front. Pharmacol. 2020;11:559607. doi: 10.3389/fphar.2020.559607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Wang C, Guo L, Hao J, Wang L, Zhu W. J. Nat. Prod. 2016;79:2977–2981. doi: 10.1021/acs.jnatprod.6b00766. [DOI] [PubMed] [Google Scholar]
- 133.Ji Z, Liang X. Acta Pharm Sin. 1985;20:778–781. [PubMed] [Google Scholar]
- 134.Ali MY, Jannat S, Jung HA, Min BS, Paudel P, Choi JS. J. Food Biochem. 2018;42:e12439. [Google Scholar]
- 135.Lim HW, Kang SJ, Park M, Yoon JH, Han BH, Choi SE, Lee MW. Nat. Prod. Sci. 2006;12:221–225. [Google Scholar]
- 136.Ahn JH, Park Y, Jo YH, Kim SB, Yeon SW, Kim JG, Turk A, Song JY, Kim Y, Hwang BY, Lee MK. Food Chem. 2020;308:125666. doi: 10.1016/j.foodchem.2019.125666. [DOI] [PubMed] [Google Scholar]
- 137.He J, Ma BZ, Wang XX, Liu F, Qin WJ, Zhang XI, Zhao T. Chin. Pharm. J. 2015;50:1960–1963. [Google Scholar]
- 138.Kwon D, Kim GD, Kang W, Park JE, Kim SH, Choe E, Kim JI, Auh JH. J. Korean Soc. Appl. Biol. Chem. 2014;57:473–479. [Google Scholar]
- 139.Gao XH, Zhang SD, Wang LT, Yu L, Zhao XI, Ni HY, Wang YQ, Wang JD, Shan CH, Fu YJ. Molecules. 2020;25:1385. doi: 10.3390/molecules25061385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Hu J, Han X, Li X, Huang B. Med. Plant. 2018;9:9–13. [Google Scholar]
- 141.Zeng A, Liang X, Zhu S, Liu C, Wang S, Zhang Q, Zhao J, Song DL. Oncol. Rep. 2021;45:717–727. doi: 10.3892/or.2020.7891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Wang D, Tian L, Lv H, Pang Z, Li D, Yao Z, Wang S. Biomed. Pharmacother. 2020;132:110773. doi: 10.1016/j.biopha.2020.110773. [DOI] [PubMed] [Google Scholar]
- 143.Lopez-Gonzalez JS, Prado-Garcia H, Aguilar-Cazares D, Molina-Guarneros JA, Morales-Fuentes J, Mandoki JJ. Lung Cancer. 2004;43:275–283. doi: 10.1016/j.lungcan.2003.09.005. [DOI] [PubMed] [Google Scholar]
- 144.Navarro-Garcia VM, Rojas G, Aviles M, Fuentes M, Zepeda G. Mycoses. 2011;4:e569–e571. doi: 10.1111/j.1439-0507.2010.01993.x. [DOI] [PubMed] [Google Scholar]
- 145.Hoult JRS, Paya M. Gen. Pharmacol. 1996;27:713–722. doi: 10.1016/0306-3623(95)02112-4. [DOI] [PubMed] [Google Scholar]
- 146.Li H, Yao Y, Li L. J. Pharm. Pharmacol. 2017;69:1253–1264. doi: 10.1111/jphp.12774. [DOI] [PubMed] [Google Scholar]
- 147.Vasconcelos JF, Teixeira MM, Barbosa-Filho JM, Agra MF, Nunes XP, Giulietti AM, Ribeiro-dos-Santos R, Soares MBP. Eur. J. Pharmacol. 2009;609:126–131. doi: 10.1016/j.ejphar.2009.03.027. [DOI] [PubMed] [Google Scholar]
- 148.Rashmi R, Prakash N, Rathnamma D, Rao S, Sahadev A, Santhosh CR, Sunilchandra U, Naveen KS, Wilfred RS, Kalmath GP, Kumar KRA, Yathish HM, Waghe P. Pharma Innov. 2019;8:29–35. [Google Scholar]
- 149.R. Rashmi, N. Prakash, D. Rathnamma, S. Rao, A. Sahadev, C.R. Santhosh, U. Sunilchandra, N.S. Kumar, W.S. Ruban, G.P. Kalmath, H. Dhanalakshmi, L. G, A.R. Gomes, K.R.A. Kumar, P. Waghe, Pharma Innov. 8, 36–40 (2019).
- 150.Fu WW, Tan CH, Lu LL, Meng XX, Luo HF, Zhu DY. Chin. J. Nat. Med. 2010;8:247–249. [Google Scholar]
- 151.Chang HC, Wang SW, Chen CY, Hwang TL, Cheng MJ, Sung PJ, Liao KW, Chen JJ. Molecules. 2020;25:5911. doi: 10.3390/molecules25245911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152.Hirsch AM, Longeon A, Guyot M. Biochem. Syst. Ecol. 2002;30:55–60. [Google Scholar]
- 153.Li Y, Ma C, Huang J. Chin. Pharm. J. 2009;44:1294–1297. [Google Scholar]
- 154.Kimura Y, Sumiyoshi M. Eur. J. Pharmacol. 2015;746:115–125. doi: 10.1016/j.ejphar.2014.10.048. [DOI] [PubMed] [Google Scholar]
- 155.Aouey B, Samet AM, Fetoui H, Simmonds MSJ, Bouaziz M. Biomed. Pharmacother. 2016;84:1088–1098. doi: 10.1016/j.biopha.2016.10.033. [DOI] [PubMed] [Google Scholar]
- 156.Ren S, Xing Y, Wang C, Jiang F, Liu G, Li Z, Jiang T, Zhu Y, Piao D. Int. J. Biochem. Cell Biol. 2020;125:105777. doi: 10.1016/j.biocel.2020.105777. [DOI] [PubMed] [Google Scholar]
- 157.Wu P, He W, Fu Y, Wu J, Li J, Xiao L. Immunol. J. 2020;36:22–28. [Google Scholar]
- 158.Hwang B, Lee J, Liu QH, Woo ER, Lee DG. Molecules. 2010;15:3507–3516. doi: 10.3390/molecules15053507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Kuo PC, Hung HY, Nian CW, Hwang TL, Cheng JC, Kuo DH, Lee EJ, Tai SH, Wu TS. J. Nat. Prod. 2017;80:1055–1064. doi: 10.1021/acs.jnatprod.6b01141. [DOI] [PubMed] [Google Scholar]
- 160.Ouyang XL, Wei LX, Wang HS, Pan YM, Afr S. J. Bot. 2015;98:162–166. [Google Scholar]
- 161.Wikul A, Damsud T, Kataoka K, Phuwapraisirisan P. Bioorg. Med. Chem. Lett. 2012;22:5215–5217. doi: 10.1016/j.bmcl.2012.06.068. [DOI] [PubMed] [Google Scholar]
- 162.Zhang Y, Zhao H, Di Y, Li Q, Shao D, Shi J, Huang Q. J. Funct. Foods. 2018;45:206–214. [Google Scholar]
- 163.Paterniti I, Impellizzeri D, Cordaro M, Siracusa R, Bisignano C, Gugliandolo E, Carughi A, Esposito E, Mandalari G, Cuzzocrea S. Nutrients. 2017;9:915. doi: 10.3390/nu9080915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164.Winter AN, Brenner MC, Punessen N, Snodgrass M, Byars C, Arora Y, Linseman DA. Oxid. Med. Cell. Longevity. 2017;2017:6297080. doi: 10.1155/2017/6297080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Wang YH, Gao Y, Li Z, Wang DI, Ling WH. Acta Nutr. Sin. 2014;36:53–57. [Google Scholar]
- 166.Thomas P, Essien E, Udoh A, Archibong B, Akpan O, Etukudo E, Leo M, Eseyin O, Flamini G, Ajibesin K. J. Ethnopharmacol. 2021;269:113737. doi: 10.1016/j.jep.2020.113737. [DOI] [PubMed] [Google Scholar]
- 167.Wurms KV, Cooney JM. Asian J. Biochem. 2006;1:325–332. [Google Scholar]
- 168.Qin X, Zhang CH, Yao DL, Cui JM, Li G. J. Yanbian Med. Coll. 2013;36:187–189. [Google Scholar]
- 169.Sumilat DA, Yamazaki H, Endo K, Rotinsulu H, Wewengkang DS, Ukai K, Namikoshi M. J. Nat. Med. 2017;71:776–779. doi: 10.1007/s11418-017-1094-5. [DOI] [PubMed] [Google Scholar]
- 170.Farah MH, Samuelsson G. Planta Med. 1992;58:14–18. doi: 10.1055/s-2006-961380. [DOI] [PubMed] [Google Scholar]
- 171.He J, Ma BZ, Zhao T, Wang W, Wei FL, Lu J, Zhang XL. Chin. Pharm. J. 2014;49:184–186. [Google Scholar]
- 172.Chang ZQ, Gebru E, Lee SP, Rhee MH, Kim JC, Cheng H, Park SC. J. Nutr. Sci. Vitaminol. 2011;57:118–122. doi: 10.3177/jnsv.57.118. [DOI] [PubMed] [Google Scholar]
- 173.Fiorentino A, Mastellone C, Abrosca BD, Pacifico S, Scognamiglio M, Cefarelli G, Caputo R, Monaco P. Food Chem. 2009;115:187–192. [Google Scholar]
- 174.Sakan T, Fujino A, Murai F, Butsugan Y, Suzui A. Bull. Chem. Soc. Jpn. 1959;32:315–316. [Google Scholar]
- 175.Gross D, Berg W, Schuette HR. Phytochemistry. 1972;11:3082–3083. [Google Scholar]
- 176.Ren J, Han EJ, Chung SH. Arch. Pharmacal. Res. 2007;30:708–714. doi: 10.1007/BF02977632. [DOI] [PubMed] [Google Scholar]
- 177.Kim J, Ahn M, Choi Y, Kang T, Kim J, Lee NH, Kim GO, Shin T. Inflammation. 2020;43:1876–1883. doi: 10.1007/s10753-020-01260-7. [DOI] [PubMed] [Google Scholar]
- 178.Vara-Messler M, Pasqualini ME, Comba A, Silva R, Buccellati C, Trenti A, Trevisi L, Eynard AR, Sala A, Bolego C, Valentich MA. Eur. J. Nutr. 2017;56:509–519. doi: 10.1007/s00394-015-1096-6. [DOI] [PubMed] [Google Scholar]
- 179.Mounika Y, Naik RM. Int. J. Pharm. Pharm. Res. 2019;17:306–328. [Google Scholar]
- 180.Suanarunsawat T, Anantasomboon G, Piewbang C. Exp. Ther. Med. 2016;11:832–840. doi: 10.3892/etm.2016.2991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181.Devi PUM, Reddy PS, Rani NRU, Reddy KJ, Reddy MN, Reddanna P. Eur. J. Plant Pathol. 2000;106:857–865. [Google Scholar]
- 182.Bang MH, Chae IG, Lee EJ, Baek NI, Baek YS, Lee DY, Lee IS, Lee SP, Yang SA. Biosci. Biotechnol. Biochem. 2012;76:289–293. doi: 10.1271/bbb.110654. [DOI] [PubMed] [Google Scholar]
- 183.K. Kono, A. Yamashita, T. Ishihara, JP2008120772A.
- 184.He GN, Hu XM, Wang H, Fan L, Wang BC. China J. Chin. Mater. Med. 2015;30:498–500. [Google Scholar]
- 185.Lai Y, Xu DP. Chin. Tradit. Herb. Drugs. 2007;30:166–168. [Google Scholar]
- 186.P. Roger, J. P. Fournier, A. Martin, J. Choay, EP238401A2.
- 187.Chen X, Yang S, Bai S. Chin. Tradit. Herb. Drugs. 2011;42:841–843. [Google Scholar]
- 188.Liang J, Zhen H, Li S, Zhang W, Wang X, Liang C. China J. Chin. Mater. Med. 2008;33:1275–1277. [PubMed] [Google Scholar]
- 189.Chang X, Ma B, Shan J, Chen L. Chin. Tradit. Herb. Drugs. 1996;27:395. [Google Scholar]
- 190.Li P, Lu A, Ma B, Wei J. China J. Chin. Mater. Med. 1992;17:420–421. [PubMed] [Google Scholar]



















