Skip to main content
Wiley Open Access Collection logoLink to Wiley Open Access Collection
. 2020 Mar 3;43(3):243–267. doi: 10.1111/jvp.12848

Aldosterone and the mineralocorticoid receptor in renal injury: A potential therapeutic target in feline chronic kidney disease

Sarah Spencer 1,, Caroline Wheeler‐Jones 1, Jonathan Elliott 1
PMCID: PMC8614124  PMID: 32128854

Abstract

There is a growing body of experimental and clinical evidence supporting mineralocorticoid receptor (MR) activation as a powerful mediator of renal damage in laboratory animals and humans. Multiple pathophysiological mechanisms are proposed, with the strongest evidence supporting aldosterone‐induced vasculopathy, exacerbation of oxidative stress and inflammation, and increased growth factor signalling promoting fibroblast proliferation and deranged extracellular matrix homeostasis. Further involvement of the MR is supported by extensive animal model experiments where MR antagonists (such as spironolactone and eplerenone) abrogate renal injury, including ischaemia‐induced damage. Additionally, clinical trials have shown MR antagonists to be beneficial in human chronic kidney disease (CKD) in terms of reducing proteinuria and cardiovascular events, though current studies have not evaluated primary end points which allow conclusions to made about whether MR antagonists reduce mortality or slow CKD progression. Although differences between human and feline CKD exist, feline CKD shares many characteristics with human disease including tubulointerstitial fibrosis. This review evaluates the evidence for the role of the MR in renal injury and summarizes the literature concerning aldosterone in feline CKD. MR antagonists may represent a promising therapeutic strategy in feline CKD.

Keywords: aldosterone, chronic kidney disease, feline, mineralocorticoid receptor antagonists, renin–angiotensin–aldosterone system

1. INTRODUCTION

Beyond its physiological role in renal sodium reabsorption and potassium excretion, there is extensive experimental evidence implicating excessive aldosterone activation of mineralocorticoid receptors (MR) in nonclassical sites, including the endothelium, vascular smooth muscle cells (VSMCs), cardiomyocytes, inflammatory cells, renal podocytes and fibroblasts, in causing tissue injury. The beneficial effect of MR antagonists (MRAs) on reducing mortality in people with heart failure is well established (Pitt et al., 1999, 2013; Zannad et al., 2011), and their prescription is included in international guidelines of heart failure treatment (Ponikowski et al., 2016). Clinical studies have also demonstrated the benefit of MRAs in people with chronic kidney disease (CKD) (Bianchi, Bigazzi, & Campese, 2006; Currie et al., 2016; Sato, Hayashi, & Saruta, 2005). Indeed, rarely has preclinical experience been translated into therapeutic use more quickly and effectively than the use of MRAs. Whilst it is true that MR activation contributes to renal damage in the context of hypertension, a blood pressure‐independent effect has been demonstrated in various models of kidney injury including subtotal nephrectomy (Ibrahim & Hostetter, 1998), ischaemia\reperfusion injury (Barrera‐Chimal et al., 2015; Mejía‐Villet et al., 2007; Ramírez et al., 2009), diabetic nephropathy (Bamberg et al., 2018), glomerulonephritis (Asai et al., 2005) and calcineurin inhibitor nephrotoxicity (Feria et al., 2003).

Chronic kidney disease is the most common cause of mortality in ageing cats (O’Neill et al., 2015) and may result in significant morbidity in affected individuals. Aetiology is usually unknown on an individual basis, but pathological characteristics, namely multifocal tubulointerstitial fibrosis and chronic mononuclear tubulointerstitial inflammation, are consistent (Chakrabarti, Syme, Brown, & Elliott, 2013; McLeland, Cianciolo, Duncan, & Quimby, 2015; Zini et al., 2014). Important differences exist between feline and human CKD, as cats exhibit a lower frequency of proteinuria and glomerulonephritis compared with humans, and different risk factors for disease development exist, with hypertension and diabetes mellitus being important in people (Jha et al., 2013), and frequent vaccination and dental disease identified in feline epidemiological studies (Finch, Syme, & Eliott, 2016; Greene et al., 2014). Tubulointerstitial fibrosis is the lesion best correlated with disease severity in both cats (Chakrabarti et al., 2013; Sawashima et al., 2000; Yabuki et al., 2010) and people (Hruby et al., 1998; Nath, 1992), however, and occurs early in feline CKD (McLeland et al., 2015). Although several clinicopathological findings, including proteinuria, anaemia and hyperphosphataemia, correlate with fibrosis severity and\or survival (Boyd, Langston, Thompson, Zivin, & Imanishi, 2008; Chakrabarti et al., 2013; Chakrabarti, Syme, & Elliott, 2012; Elliott, Rawlings, Markwell, & Barber, 2000; King, Tasker, Gunn‐Moore, Gleadhill, & Strehlau, 2007; McLeland et al., 2015; Syme et al., 2006), causal and progression factors of feline CKD remain poorly understood. Recently, renal hypoxia\ischaemia, perhaps episodic in nature, has been proposed to contribute to the initiation and progression of feline CKD (Cowgill et al., 2016; Jepson, 2016). This is supported by experimental models where renal ischaemia results in morphological changes akin to those observed in naturally occurring disease (Brown et al., 2019; Schmiedt et al., 2012, 2016). Aside from the feeding of a renal diet (Ross et al., 2006), currently no effective treatments exist which are proven to significantly slow feline CKD progression. One of the benefits of a renal diet is thought to be restriction of phosphate intake (Elliott et al., 2000; Ross, Finco, & Crowell, 1982). As such, it is important to understand factors which may be associated with disease advancement so that novel therapeutic interventions may be established.

This review provides an overview of the evidence supporting the deleterious role of aldosterone\MR activation in renal injury in laboratory animals and humans and discusses its potential relevance in the context of feline CKD.

2. ALDOSTERONE AND THE MR

Aldosterone is a mineralocorticoid hormone produced primarily in the zona glomerulosa of the adrenal cortex whose major physiological function is to maintain sodium and potassium homeostasis and blood pressure control. Upon binding to the MR in the epithelial cells of the renal cortical collecting tubules and collecting ducts, aldosterone stimulates a cascade of events resulting in sodium reabsorption, and thus the maintenance of intravascular volume, and potassium secretion (Ponda & Hostetter, 2006). The major secretagogues of aldosterone are increased serum potassium concentration and angiotensin II (via the angiotensin type 1 receptor) (Beuschlein, 2013). Components of the renin–angiotensin–aldosterone system (RAAS) are important on both a systemic and tissue‐specific level (Nishiyama & Kobori, 2018; Siragy & Carey, 2010), and intrarenal aldosterone may act independently of circulating aldosterone levels. In fact, in humans and laboratory species, MR blockade has been shown to be beneficial in the absence of elevated plasma aldosterone levels (Du et al., 2009; Nagase, Matsui, Shibata, Gotoda, & Fujita, 2007; Nagase et al., 2006; Pitt, Remme, Zannad, & Neaton, 2003; Pitt et al., 1999) and renal MR expression is not correlated with serum aldosterone levels in people with CKD (Quinkler et al., 2005). CYP11B2, the gene which codes for aldosterone synthase, is expressed in the renal cortex of normal rats and is upregulated by angiotensin II (Xue & Siragy, 2005); other extra‐adrenal sites of aldosterone synthesis include the brain, blood vessels and myocardium (MacKenzie et al., 2000; Takeda et al., 1995; White, 2003).

Aldosterone acts by genomic and nongenomic mechanisms, recently reviewed by Hermidorff, Assis, and Isoldi (2017). The relative physiological and clinical relevance of these pathways remains largely unestablished. After aldosterone binds to the cytoplasmic MR, the aldosterone‐MR complex translocates to the nucleus and modulates target gene transcription (Gumz, Popp, Wingo, & Cain, 2003; Poulsen, Limbutara, Fenton, Pisitkun, & Christensen, 2018). Serum glucocorticoid kinase‐1 (Sgk‐1) is the most important MR transcript, whose expression, amongst other effects, triggers a cascade of events in the kidney that ultimately activates the epithelial sodium channel (ENaC) and causes potassium excretion (McCormick, Bhalla, Pao, & Pearce, 2005). The MR is expressed in numerous tissues besides the kidney, including cardiomyocytes, vascular endothelial and smooth muscle cells, colonocytes and inflammatory cells (Bauersachs, Jaisser, & Toto, 2015; Bertocchio, Warnock, & Jaisser, 2011; Jaffe & Mendelsohn, 2005; Lombès et al., 1992; Nguyen Dahn Cat et al., 2010). In the rodent kidney, MRs have been detected in podocytes in vitro (Lee et al., 2009; Nagase et al., 2006; Shibata et al., 2008), mesangial cells (Lai, Chen, Hao, Lin, & Gu, 2006; Nishiyama et al., 2005) and fibroblasts (Nagai et al., 2005) in addition to tubular epithelial cells. The MR has a high affinity for glucocorticoids and epithelial MR selectivity for aldosterone is thought to be protected by 11β‐hydroxysteroid dehydrogenase type 2 (11β‐HSD2), which converts active glucocorticoids (e.g. cortisol) to MR‐inactive 11‐keto analogues (e.g. cortisone) (Odermatt & Kratschmar, 2012). Cortisol may act as an MR agonist in certain tissues or under pathological conditions, however (Mihailidou et al., 2009; Ohtake et al., 2014). 11β‐HSD2 has been detected in feline kidneys, but its localization has not been described (Schipper et al., 2004).

The rapid, nongenomic actions of aldosterone are not fully characterized but include effects on cellular calcium and sodium flux, intracellular pH, release of heat‐shock proteins and protein kinase C activation (Michea et al., 2005; Tumlin et al., 1997; Uhrenholt et al., 2004; Wehling et al., 1998). Not all rapid effects are MR‐mediated; evidence suggests that aldosterone interacts with other receptors such as the G protein‐coupled oestrogen receptor (Gros, Ding, Liu, Chorazyczewski, & Feldman, 2013) and an “unknown receptor” has also been proposed (Hermidorff et al., 2017).

3. MINERALOCORTICOID RECEPTOR ANTAGONISTS

Spironolactone was the first MRA to be developed, initially registered for human use in 1960 as a potassium‐sparing diuretic (Ponda & Hostetter, 2006). It also possesses significant affinity for androgen and progesterone receptors (with antagonistic and agonistic actions, respectively) (Kolkhof & Borden, 2012). The second‐generation MRA, eplerenone, was developed as a more selective MRA but has reduced potency (Shavit et al., 2012; Sica, 2005). Finerenone is a third‐generation nonsteroidal MRA with greater MR selectivity than spironolactone, greater potency than eplerenone and increased renoprotective effects (Barrera‐Chimal et al., 2016; Kolkhof, Nowack, & Eitner, 2015). Aldosterone synthase inhibitors may provide a novel method for aldosterone suppression in the future (Hargovan & Ferro, 2014). Spironolactone is the only veterinary‐licensed MRA, for the treatment of congestive heart failure caused by valvular regurgitation in dogs, either alone or as a combination product with benazepril.

4. ALDOSTERONE IN CKD

In the early stages of CKD, RAAS activation occurs as a compensatory response to maintain glomerular filtration rate (GFR); however, chronic activation is maladaptive and leads to progressive renal injury. Angiotensin II has historically been regarded as the major mediator of RAAS‐induced renal injury, not only through its glomerular effects but also by activating proinflammatory and profibrotic pathways (Ames, Atkins, & Pitt, 2019; Eddy, 1996; Nishiyama & Kobori, 2018). Consequently, the current standard of care for CKD treatment in human medicine involves angiotensin II inhibition with angiotensin‐converting enzyme inhibitors (ACEIs) and\or angiotensin type 1 receptor blockers (ARBs). Substantial and ever‐increasing evidence in laboratory species and humans demonstrates that aldosterone also causes direct organ damage, particularly in the heart and kidneys. Aldosterone's pathophysiological actions are similar to and overlap with those of angiotensin II (Ames et al., 2019), and the interactions between the two are complex, meaning it can be difficult to discern their individual effects (Luther et al., 2012; Virdis et al., 2002).

Chronic kidney disease can be considered as a state of relative hyperaldosteronism. Increased plasma aldosterone levels are a risk factor for kidney injury in human clinical studies, and MRA treatment has been shown to be beneficial in numerous rodent models of renal disease and in human patients, for example by abrogating renal histopathological changes and reducing proteinuria and blood pressure. Aldosterone's detrimental effects on the kidney predominantly occur via nonepithelial MRs, and importantly, can arise independently of aldosterone's effect on blood pressure (Fujisawa et al., 2004; Rafiq, Hitomi, Nakano, & Nishiyama, 2010). The proposed mechanisms underlying the detrimental effects of MR activation in the kidney are outlined in Figure 1. “Aldosterone breakthrough” is a phenomenon which further supports harmful effects of MR activation; this term applies to patients on ACEI\ARB therapy who experience plasma aldosterone concentrations that return to or exceed pretreatment levels following an initial reduction (Terata et al., 2012). Aldosterone breakthrough is associated with more severe proteinuria and a faster deterioration in renal function in people (Buglioni et al., 2015; Sato, Hayashi, Naruse, & Saruta, 2003; Schjoedt, Andersen, Rossing, & Tarnow, 2004). Aldosterone breakthrough is poorly characterized in veterinary species but has been documented in cats with hypertrophic cardiomyopathy treated with ACEIs (MacDonald & Kittleson, 2008), and preliminary studies have demonstrated that aldosterone breakthrough may occur in up to 33% of dogs with proteinuric renal diseases that are receiving ACEIs\ARBs (Ames, unpublished data). Certainly, aldosterone breakthrough has been documented in dogs with cardiac disease treated with ACEIs (Ames, Atkins, Eriksson, & Hess, 2017) and in healthy dogs receiving furosemide following ACEI or ARB treatment (Ames, Atkins, Lee, Lantis, & Zumbrunnen, 2015; Konta et al., 2018; Lantis, Ames, Atkins, et al., 2015; Lantis, Ames, Werre, & Atkins, 2015).

Figure 1.

Figure 1

Proposed mechanisms underlying the detrimental effects of aldosterone\mineralocorticoid receptor activation on the kidney

4.1. Vascular effects of MR activation

The effects of MR activation on vascular function and structure is thought to be the major mechanism by which aldosterone causes renal injury (Duprez, 2007; Jaisser & Farman, 2016). MR activation in vascular endothelial cells and VSMCs results in endothelial dysfunction, increased oxidative stress (where the production of potentially damaging reactive oxygen species [ROS] exceeds endogenous antioxidant capacity) and ultimately vascular injury and remodelling, leading to reduced arterial compliance and vasoconstriction (Duprez, 2007; Gros et al., 2007; Jaffe & Mendelsohn, 2005; Nguyen Dahn Cat et al., 2010; Struthers, 2004).

4.1.1. Effects on endothelial function

Endothelial dysfunction, characterized by impaired vasodilation, increased platelet and leucocyte adhesion, and decreased nitric oxide bioavailability, occurs secondary to MR activation in experimental rodent studies (Gromotowicz et al., 2011; Oberleithner et al., 2004). Aldosterone induces vascular and intercellular cell adhesion molecule (VCAM\ICAM) expression, indicating inflammatory activation of the endothelium (Lai et al., 2006), an effect reduced by MRAs (Caprio et al., 2008; Kobayashi et al., 2005). The endothelial nitric oxide synthase (eNOS)–nitric oxide pathway is key in maintaining endothelial integrity and function (Goligorsky, Brodsky, & Noiri, 2004). MR activation can reduce eNOS activity and cause eNOS uncoupling, resulting in impaired vasodilation (Arima et al., 2004; Bauersachs et al., 2015; Duprez, 2007; Gromotowicz et al., 2011; Liu, Schmuck, Chorazcyzewski, Gros, & Feldman, 2003). Oxidative stress, including enhanced ROS production, is another mechanism by which aldosterone reduces nitric oxide bioavailability and impairs vascular reactivity (Farquharson & Struthers, 2002; Leopold et al., 2007; Sanz‐Rosa et al., 2005; Virdis et al., 2002). In the kidney, impaired nitric oxide activity promotes proteinuria, accelerates innate immune system activation and causes progressive tubulointerstitial injury (Sogawa et al., 2018). eNOS uncoupling also increases hydrogen peroxide production and activates the nuclear factor‐κB pathway, leading to inflammation and fibrosis (Jaisser & Farman, 2016). Following MRA treatment, increased eNOS expression occurs and is associated with improved endothelial function and renal blood flow (Kobayashi et al., 2005; Sanz‐Rosa et al., 2005).

Circulating aldosterone levels are associated with reduced endothelial function (measured by flow‐mediated dilation) in the general population (Hannemann et al., 2011) and patients with chronic heart failure (Duprez et al., 1998), hyperaldosteronism (Nishizaka, Zaman, Green, Renfroe, & Calhoun, 2004) and low‐renin hypertension, with the latter shown to be due to impaired nitric oxide‐mediated vasodilation (Duffy et al., 2005). Endothelial dysfunction is linked to cardiovascular risk in CKD patients (Malyszko, 2010) and with prognosis in coronary heart disease (Heitzer, Schlinzig, Krohn, Meinertz, & Münzel, 2001) and hypertension (Perticone et al., 2001). People with aldosterone dysregulation show evidence of renal vascular dysfunction and have heightened cardiovascular risk (Brown et al., 2014). Improved flow‐mediated dilation with MRA treatment has been demonstrated in several conditions (Fujimura et al., 2012; Macdonald, Kennedy, & Struthers, 2004; Nishizaka et al., 2004). Plasma concentrations of asymmetric dimethylarginine (ADMA), an endogenous eNOS inhibitor, are increased in cats with CKD, suggesting that endothelial dysfunction may also occur in this species (Jepson, Syme, Vallance, & Elliott, 2008) although no direct evidence for this has been established.

4.1.2. Effects on VSMCs, vascular remodelling and calcification

Endothelium\VSMC crosstalk is integral to vascular function, particularly the regulation of vascular tone. Aldosterone leads to rapid changes in calcium and sodium flux in VSMCs (Gros et al., 2007; Wehling, 2005); this mechanism has been shown to induce renal afferent and efferent arteriole vasoconstriction in rabbits, an effect not inhibited by MR blockade (Arima, Kohagura, Xu, & Sugawara, 2003). MR activation in VSMCs also leads to angiotensin II receptor upregulation (Ullian, Schelling, & Linas, 1992), inhibited nitric oxide release following cytokine stimulation (Ikeda et al., 1995) and increased expression of genes involved in vascular fibrosis, inflammation and calcification (Blasi et al., 2003; Jaffe & Mendelsohn, 2005; Virdis et al., 2002). Aldosterone is critical in renal vascular damage induced by angiotensin II and L‐NAME (an eNOS inhibitor) (Rocha et al., 2000), and also affects the plasminogen activator system, resulting in perivascular fibrosis (Aldigier, Kanjanbuch, Ma, Brown, & Fogo, 2005; Brown, Nakamura, et al., 2000), which in turn exacerbates ongoing tissue hypoxia.

Chronic MR activation results in structural vascular changes. Hypertrophic remodelling of renal small arteries occurs in aldosterone‐infused rats, an effect inhibited not only by spironolactone but also by endothelin‐1 type A (ETA) receptor antagonism, indicating the likely underlying mechanism (Pu, Neves, Virdis, Touyz, & Schiffrin, 2003). MR blockade improves carotid intima–media remodelling in haemodialysis patients (Vukusich et al., 2010), decreases angiotensin II‐mediated cardiac endothelial cell and VSMC hypertrophy (Hatakeyama et al., 1994), cerebral vascular remodelling in stroke‐prone rats (Rigsby, Pollock, & Dorrance, 2007) and arteriosclerosis in Dahl salt‐sensitive rats (Kobayashi et al., 2005). Vascular calcification is another feature of MR‐induced vasculopathy (Jaffe & Mendelsohn, 2005; Voelkl, Alesutan, Leibrock, Kuro‐o, & Lang, 2013); evidence suggests interplay between MR activation and the klotho fibroblast growth factor (FGF)‐23 axis, which drives soft tissue and vascular mineralization in CKD‐mineral and bone disorder (Voelkl et al., 2013; Zhang et al., 2016). Increased circulating FGF‐23 concentrations were the strongest independent predictor of feline CKD progression and all‐cause mortality in one study (Geddes, Elliott, & Syme, 2015). Although vascular calcification has not been demonstrated in cats with CKD, mineralization of other tissues occurs and serum calcification propensity (an in vitro assay which predicts vascular calcification in humans) increases with declining renal function (van den Broek, Chang, Elliott, & Jepson, 2018b). As MR activation is likely to contribute to CKD‐mineral and bone disorder in cats as in other species, further rationale exists for the use of MRAs in the management of feline CKD. MRA treatment in people with end‐stage renal disease is associated with a reduced risk of cerebro‐ and cardiovascular events (Matsumoto et al., 2014) and a reduction in vascular mineralization and stiffness likely accounts for this.

4.1.3. Effects on blood pressure

Traditionally, aldosterone was believed to increase systemic blood pressure solely by sodium and volume retention. However, it is now known to act directly on the vasculature, as discussed above, and also on the central nervous system (Duprez, 2007; Shavit et al., 2012). Aldosterone potentiates vasopressor‐induced vasoconstriction in vitro (Michea et al., 2005; Nguyen Dahn Cat et al., 2010) but has little or no effect on blood pressure or systemic vascular resistance in healthy people (Farquharson & Struthers, 2002; Wehling et al., 1998); it is proposed that counteractive vasodilatory nitric oxide‐dependent pathways lost in the presence of endothelial damage attenuate aldosterone's effect on vascular tone (Arima et al., 2004; Uhrenholt et al., 2004).

Sodium and volume retention caused by MR activation contributes to renal damage (including vascular and glomerular sclerosis, tubular damage and inflammation) in rodent experimental models of hypertension (Blasi et al., 2003; Nishiyama et al., 2004; Sun et al., 2006), and protection conferred by MRA blockade can occur partly due to decreases in systolic blood pressure (Du et al., 2009; Martín‐Fernández et al., 2016; Zhou et al., 2011). Hypertension is observed in 19%–65% of cats with CKD (Acierno et al., 2018). Although hypertension has not been independently associated with CKD progression or survival (Chakrabarti et al., 2012; Jepson, Brodbelt, Vallance, Syme, & Elliott, 2009; Syme et al., 2006), it is likely that untreated hypertension results in more severe renal injury and disease progression, as in people (Jamerson & Townsend, 2011). The strong association between hypertension and proteinuria also tends to “mask” significant associations between blood pressure and CKD progression in multivariate models. MRAs are effective in reducing blood pressure in people with CKD and end‐stage renal disease (Bianchi et al., 2006; Bolignano, Palmer, Navaneethan, & Strippoli, 2014; Pisoni et al., 2012; Shavit et al., 2012), although some studies have shown no effect, likely due to differences in treatment duration and patient inclusion criteria (Chrysostomou, Pedagogos, MacGregor, & Becker, 2006; Rachmani et al., 2004; Sato et al., 2003, 2005). Hypertensive human CKD patients have more severe renal injury, lower creatinine clearance and higher serum aldosterone concentrations than their normotensive counterparts but interestingly no difference in renal MR or Sgk‐1 expression (Quinkler et al., 2005). Plasma aldosterone levels are also increased in hypertensive CKD cats when compared to normotensive cats (Jensen, Henik, & Brownfield, 1997; Jepson, Syme, & Elliott, 2014; Mishina et al., 1998). The first‐line treatment for feline hypertension is the calcium channel blocker amlodipine; although amlodipine can cause RAAS activation and aldosterone breakthrough in dogs (Ames, Atkins, Lantis, & Zum Brunnen, 2016), its effect on RAAS in cats is less clear with one study showing increased plasma renin activity but not plasma aldosterone in hypertensive cats postamlodipine treatment compared with pretreatment (Jepson et al., 2014). MRAs may have additional benefits with regard to reducing proteinuria in this population, however, as in people (White et al., 2003). Hypomagnesaemia is associated with systemic hypertension in cats with CKD (van den Broek, Chang, Elliott, & Jepson, 2018a) and MR activation may provide the link between these factors, as urinary magnesium excretion is stimulated by aldosterone (Barr et al., 1995) and aldosterone secretion is inhibited by increased circulating magnesium levels (Atarashi, Matsuoka, Takagi, & Sugimoto, 1989).

4.2. Ischaemic kidney injury

Renin–angiotensin–aldosterone system activation is both a potential cause and effect of renal hypoxia\ischaemia. RAAS‐driven glomerulosclerosis, haemodynamic adaptive alterations and arteriolosclerosis reduce renal capillary oxygen delivery (Hollenberg, 2004; Nangaku, 2006). Uninephrectomy plus ischaemia in rats leads to greater plasma aldosterone levels, hypertension, proteinuria and glomerulosclerosis compared with equivalent surgical reduction alone (Ibrahim & Hostetter, 1998). Sgk‐1 expression, indicating MR activation, is upregulated in vitro in human embryonic kidney cells and in vivo in mice exposed to hypoxia (Rusai et al., 2009).

Mineralocorticoid receptor activation has been investigated experimentally in renal ischaemia\reperfusion injury in rodents and the potential therapeutic use of MRAs in this setting is relevant to the hypothesis that renal ischaemia contributes to feline CKD initiation and progression (Brown et al., 2019; Cowgill et al., 2016; Jepson, 2016). Table 1 summarizes the studies investigating the effects of MR activation on renal hypoxia\ischaemia. Spironolactone prior to renal ischaemia\reperfusion protects against decreased GFR and tubular blood flow and results in reduced severity of histopathological lesions and proteinuria (Barrera‐Chimal et al., 2013, 2015; Mejía‐Villet et al., 2007; Sánchez‐Pozos et al., 2012). Protection is at least partly mediated by augmented eNOS activation (important for re‐establishing blood flow), indicated by increased urinary nitrite\nitrate ratio (Mejía‐Villet et al., 2007). MR blockade around the time of renal ischaemia is protective against progression of acute kidney injury (AKI) to CKD (Barrera‐Chimal et al., 2013, 2015, 2018; Lattenist et al., 2017). Adrenalectomy is likewise protective in these models (Ramírez et al., 2009). As well as enhanced eNOS activation, downregulation of the ETA receptor (which mediates vasoconstriction) and upregulation of the endothelin type B (ETB) receptor (vasodilatory effect) are critical effects of MRA treatment (Barrera‐Chimal et al., 2016, 2018; Ramírez et al., 2009). Activation of the Rho\Rho‐kinase pathway, resulting in calcium‐sensitization and smooth muscle contraction, also plays a role in aldosterone's vasoconstrictive and profibrotic effects following renal ischaemia (Kobayashi et al., 2005; Ramírez et al., 2009; Sun et al., 2006). MRAs likewise provide protection against ischaemic injury in other tissues (Fujita et al., 2005; Oyamada et al., 2008; Ozacmak, Ozacmak, Barut, Arasli, & Ucan, 2014).

Table 1.

Studies investigating the effects of aldosterone\MR activation on renal hypoxia\ischaemia

Reference Species Model\population Results
RI studies
Barrera‐Chimal et al. (2013) Rat 45 min of bilateral RI; spironolactone administered 3 days, 0, 1.5 or 3 hr subsequent to RI

Spironolactone at all time points prevented CKD development:

Inhibition of activation of fibrotic and inflammatory pathways (TGFß‐1, TNF‐α, MCP‐1, IL‐6)

Abrogated structural tubular and glomerular changes

Prevented progressive increase in proteinuria

Barrera‐Chimal et al. (2015) Rat 10, 20 or 45 min of bilateral RI; spironolactone administered at 0 or 1.5 hr after RI

Spironolactone:

Prevented renal hypertrophy and tubulointerstitial fibrosis seen after 20 and 45 min of RI

Prevented activation of TGF‐β signalling pathway and upregulation of ETA receptor, reduced α‐SMA expression

Barrera‐Chimal et al. (2016) Rat 25 min of bilateral RI; nonsteroidal MR antagonist BR−4628 administered 48, 24 and 1 hr before or 3 hr after RI

BR−4628 administration at all time points:

Protected against renal dysfunction, tubular injury and oxidative stress

Prevented ETB receptor downregulation and decreased eNOS activation

Lattenist et al. (2017) Rat

Acute: 25 min of bilateral RI; three doses of finerenone treatment 48, 24 and 1 hr before

Chronic: 45 min of bilateral RI; finerenone treatment 1 and 2 days and 1 hr before

Finerenone:

Acute model: prevented kidney dysfunction and tubular injury, decreased KIM−1 and NGAL expression

Chronic model: prevented AKI‐to‐CKD transition, including reduced TGF‐β and collagen I expression, decreased proteinuria and renal vascular resistance

Mejía‐Villet et al. (2007) Rat 20 min of bilateral RI; spironolactone administered 1, 2 or 3 days before RI

Spironolactone:

Prevented decreased renal blood flow

Prevented acute renal failure

Prevented tubular apoptosis

Decreased oxidative stress

Upregulated eNOS expression, increased activating phosphorylation\decreased inactivating phosphorylation

Ramírez et al. (2009) Rat 20 min of bilateral RI; adrenalectomy 3 days prior

Adrenalectomized rats showed:

Prevention of decreased GFR

Prevention of increased markers of oxidative stress and tubular injury

Increased eNOS expression and activating phosphorylation

Normalization of Rho‐kinase expression

Normalization of ETA receptor expression

Sánchez‐Pozos et al. (2012) Rat 20 min of bilateral RI; spironolactone administered 0, 3, 6 and 9 hr subsequently

Spironolactone at 0 and 3 hr after RI:

Prevented decreases in RBF and GFR

Prevented tubular injury and increase in KIM−1, heat‐shock protein 72 and proteinuria

Inhibited ETA receptor increase and ETB receptor decrease

CIN studies
Amador et al. (2016) Mouse CsA treatment; targeted deletion of MR in endothelial cells or VSMCs

MR deletion in VSMCs abrogated:

Increased renal vascular resistance

Phosphorylation of contractile proteins

Increase in serum creatinine

NGAL overexpression

Feria et al. (2003) Rat 21 days of CsA treatment ± spironolactone; low sodium diet

Spironolactone:

Decreased arteriolopathy

Decreased tubulointerstitial fibrosis, TGF‐β, collagen I and fibronectin expression

Prevented reduced creatinine clearance

Pérez‐Rojas et al. (2005) Rat

Acute CIN: 7 days of CsA treatment, causing 50% reduction in RBF

Chronic CIN: 21 days of CsA treatment

Spironolactone:

Acute model: prevented decreased RBF and GFR

Chronic model: prevented pro‐renin upregulation, angiotensin−2 receptor increase and ETB receptor downregulation

Other studies
Arima et al. (2003) Rabbit (in vitro) Aldosterone added to microperfused renal afferent and efferent arterioles

Aldosterone caused dose‐dependent constriction in afferent and efferent arterioles, with a higher sensitivity in the latter. Pretreatment with neomycin (phospholipase C inhibitor) abolished vasoconstriction

No effect of spironolactone (suspected nongenomic effects)

Arima et al. (2004) Rabbit (in vitro) Aldosterone added to microperfused renal afferent and efferent arterioles Aldosterone caused dose‐dependent constriction in afferent and efferent arterioles. NO‐mediated in the afferent arteriole, via IP3 and PKC pathways
Uhrenholt et al. (2004) Rabbit (in vitro) Aldosterone added to renal afferent arterioles Aldosterone inhibits depolarization‐induced vasoconstriction; effect abolished by eNOS blockade, spironolactone and PI3‐kinase inhibition
Du et al. (2009) Rat (DS) High‐salt diet; eplerenone, amlodipine or both administered

Amlodipine but not eplerenone ameliorated renal hypoxia, estimated by pimonidazole, VEGF expression and peritubular endothelial cell density

Eplerenone attenuated glomerulosclerosis and development of proteinuria; minimal effect on interstitial fibrosis

Waanders et al. (2009) Rat Renal transplant model; spironolactone administered from 2 days prior

Spironolactone:

Ameliorated transplant vasculopathy

Reduced glomerular macrophage influx

Trend towards reduced proteinuria and glomerulosclerosis

No effect on interstitial fibrosis

Laursen et al. (2018) Mouse Nr3c2 knockout (deletion of endothelial cell MR) No effect on renal artery and afferent arteriole contraction or dilation at baseline or after AngII infusion. No effect on proteinuria or renal histology
Ojeda‐Cervantes et al. (2013) Human Adult renal transplant recipients; double‐blind, randomized, placebo‐controlled pilot study. Spironolactone administered 1 day before and 3 days post‐transplantation

Spironolactone:

Reduced oxidative stress, as assessed by urinary H2O2 excretion

No difference in renal function or tubular injury biomarkers

Schmidt et al. (2006) Human Aldosterone infusion ± l‐NMMA (eNOS inhibitor); randomized, double‐blinded fourfold crossover design in healthy men

Aldosterone alone did not affect RBF or GFR

Aldosterone with l‐NMMA increased renal vascular resistance more than l‐NMMA alone, indicating aldosterone's effects are dependent on the presence of endothelial dysfunction

Abbreviations: CIN, cyclosporine‐induced nephropathy; CsA, cyclosporine‐A; eNOS, endothelial nitric oxide synthase; ET, endothelin; GFR, glomerular filtration rate; H2O2, hydrogen peroxide; IL‐6, interleukin‐6; IP3, Inositol trisphosphate; KIM‐1, kidney injury molecule‐1; l‐NMMA, N(G) monomethyl‐l‐arginine; MCP‐1, macrophage chemoattractant protein‐1; NGAL, neutrophil gelatinase‐associated lipocalin; NO, nitric oxide; PKC, protein kinase C; RBF, renal blood flow; RI, renal ischaemia\reperfusion injury; TGF‐ß, transforming growth factor‐ß; TNF‐α, tissue necrosis factor‐α; VSMCs, vascular smooth muscle cells; α‐SMA, α‐smooth muscle actin.

Further evidence that aldosterone modulates renal ischaemia is provided by rodent experiments investigating transplant nephropathy and cyclosporine‐induced nephropathy. Vasoconstriction and altered renal haemodynamics occur in acute cyclosporine‐induced nephropathy (Amador et al., 2016; Bobadilla & Gamba, 2007) and are prevented by MR blockade (Bobadilla & Gamba, 2007; Nielsen, Jensen, Hansen, Marcussen, & Bie, 2013; Pérez‐Rojas et al., 2005), seemingly through VSMC MR inactivation (Amador et al., 2016). MRAs improve transplant‐associated vasculopathy and glomerular macrophage influx (Waanders et al., 2009), protect against chronic changes induced by cyclosporine including vasoconstriction, arteriolopathy and tubulointerstitial fibrosis (Feria et al., 2003; Nielsen, Jensen, Marcussen, Skøtt, & Bie, 2008), and slow kidney damage progression in established injury (Pérez‐Rojas et al., 2007). Experimental evidence is supported by clinical data; spironolactone reduced proteinuria post‐transplantation in human patients already receiving an ACEI and ARB (Gonzales Monte et al., 2010) and reduced markers of oxidative stress (Ojeda‐Cervantes et al., 2013). Clinical trials are ongoing to further characterize the effects of MRAs in renal transplantation (NCT01602861, NCT02490904).

Aldosterone can also contribute to renal ischaemia by promoting microthrombi in injured or dysfunctional vessels (Brown, Kim, et al., 2000; Gromotowicz et al., 2011; Rocha et al., 2000), a process mediated by oxidative stress (Stier, 2000). MRA treatment can reduce thrombosis (Rigsby et al., 2007). Lastly, MR activation may have a deleterious effect on angiogenesis (Kobayashi, Fukushima, Takeshima, Koguchi, et al., 2010; Zheng et al., 2019), although not all studies have demonstrated benefit of MRA treatment in this context (Du et al., 2009).

4.3. Proteinuria\glomerular damage

An enhanced MR effector mechanism is closely related to proteinuria, a strong risk factor for CKD progression in people (Heerspink, Kröpelin, Hoekman, & de Zeeuw, 2015) and prognosis in cats (Chakrabarti et al., 2012; King et al., 2007; Kuwahara, Ohba, & Kitoh, 2006; Syme et al., 2006). MR‐related proteinuria was historically considered to occur secondary to hypertension, but blood pressure‐independent effects have been demonstrated in various rodent models (Aldigier et al., 2005; Blasi et al., 2003; Brown, Nakamura, et al., 2000; Kobayashi, Fukushima, Takeshima, & Ishimitsu, 2010; Nishiyama et al., 2004; Zhou et al., 2011) and in human renal disease (Bertocchio et al., 2011; Bianchi et al., 2006; Chrysostomou et al., 2006; Sato et al., 2003, 2005; White et al., 2003). For example, eplerenone prevented renal failure, proteinuria and histological lesions in rats despite persistence of severe hypertension (Kobayashi et al., 2005). MR activation induces podocyte apoptosis and injury (Lee et al., 2009), mesangial matrix expansion (Nishiyama et al., 2005), and increases mesangial cell production of ROS, transforming growth factor (TGF)‐β1, ICAM‐1 and fibronectin (Kitada et al., 2012; Lai et al., 2006; Nagase et al., 2007; Terada et al., 2012). MRAs attenuate these effects in various rodent models of renal injury, resulting in decreased glomerulosclerosis and proteinuria (Du et al., 2009; Kobayashi et al., 2005; Luther et al., 2012; Nagase et al., 2006; Rocha et al., 2000). In the renal mass reduction model, spironolactone even led to regression of sclerotic lesions in one‐third of rats, although other groups have not corroborated this result (Aldigier et al., 2005).

In humans, plasma aldosterone levels are positively correlated with proteinuria severity in primary hyperaldosteronism (Catena et al., 2007), CKD (Bianchi et al., 2006; Bomback, Kshirsagar, Amamoo, & Klemmer, 2008) and diabetic nephropathy (Schjoedt et al., 2004). Proteinuria is correlated with MR and Sgk‐1 expression in CKD (Quinkler et al., 2005). Reduction in proteinuria is the main benefit of MRA therapy in human renal disease; numerous small randomized controlled trials have demonstrated this effect (Ando et al., 2014; Bianchi et al., 2006; Chrysostomou et al., 2006; Epstein et al., 2006; Esteghamati et al., 2013; Furumatsu et al., 2008; Gonzales Monte et al., 2010; Guney et al., 2009; Rachmani et al., 2004; Schjoedt et al., 2004; Tylicki et al., 2008), and a Cochrane review concluded that MRA treatment in addition to standard therapy is beneficial in reducing proteinuria (Bolignano et al., 2014). MRA combination therapy with an ACEI was more effective in reducing proteinuria than either drug alone (Rachmani et al., 2004), whereas triple therapy (MRA, ACEI and ARB) was no more effective than ACEI and spironolactone co‐therapy (Chrysostomou et al., 2006). Table 2 summarizes the studies investigating MR blockade on glomerular damage and proteinuria.

Table 2.

Studies investigating the effects of MR antagonism on proteinuria and glomerular damage

Reference Model\species\ population Mineralocorticoid antagonist investigated Results
Preclinical studies
Aldigier et al. (2005) Rats 5\6 nephrectomy Spironolactone

84% increase in GS index (compared with 157% in controls), GS regression in some rats

BP increased despite spironolactone; effects on GS were enhanced when BP was controlled by antihypertensives

Asai et al. (2005) Rat model of glomerulonephritis Spironolactone, also looked at the effect of cilazapril (ACEI) Reduced proteinuria (to the same degree as cilazapril)
Bamberg et al. (2018) Uninephrectomized db\db mice (diabetes model) and uninephrectomized rats administered aldosterone and high salt AZD9977 and eplerenone Reduced UACR and GS
Blasi et al. (2003) Uninephrectomized rats, aldosterone\salt treatment Eplerenone Reduced albuminuria and glomerular injury lesions
Brown, Nakamura, et al. (2000) Rats with radiation injury Spironolactone, also looked at an AngI antagonist

Reduced proteinuria and GS (BP‐independent effects)

Combination therapy had a greater effect on proteinuria than spironolactone alone

Du et al. (2009) DS rats Eplerenone, also looked at the effect of amlodipine

Reduced proteinuria and BP

Superior to amlodipine in inhibiting GS but inferior in inhibiting tubulointerstitial fibrosis

Gullulu, Akdag, Kahvecioglu, Filiz, and Savci (2006) Rat model of glomerulonephritis Spironolactone, also looked at the effect of valsartan (ARB) Reduced GS and TGF‐β1 expression
Guo et al. (2006) Uninephrectomized type 1 (streptozotocin‐treated rat) and type 2 (db\db mouse) diabetes models Eplerenone Reduced albuminuria, podocyte injury, fibrosis, glomerular hypertrophy and mesangial expansion (BP‐independent effects)
Huang et al. (2012) Mouse, unilateral ureteral obstruction Eplerenone

Reduced albuminuria, GS and glomerular crescents, infiltration of inflammatory cells, proinflammatory cytokines

Podocyte‐specific MR deletion had no effect

Kang et al. (2009)

Diabetic rats

Cultured mesangial cells treated with high glucose and aldosterone

Eplerenone, also looked at the effect of enalaprilat (ACEI)

Dose‐dependent reduction in albuminuria and GS

Decreased expression of TGF‐β1, type IV collagen and PAI‐1

Synergistic effect with enalaprilat

Kobayashi et al. (2005) Rats Eplerenone Prevented renal failure, proteinuria and histological lesions despite persistence of severe hypertension
Kobayashi et al. (2005) Salt‐treated DS rats Eplerenone Decreased GS and proteinuria
Lee et al. (2009)

Podocytes in vitro under diabetic conditions

Rats with streptozotocin‐induced diabetes

Spironolactone Inhibited podocyte apoptosis and injury
Luther et al. (2012) Aldosterone synthase knockout mice and wild‐type littermates, treated with AngII or vehicle plus salt loading Spironolactone

Reduced glomerular hypertrophy (aldosterone deficiency did not)

AngII\salt promoted glomerular injury via the MR in aldosterone synthase knockout mice

Nagase et al. (2006) and Nagase et al. (2007) Rat model of metabolic syndrome Eplerenone, plus looked at effect of tempol (antioxidant)

Reduced podocyte injury (evidenced by foot process effacement, induction of desmin and attenuation of nephrin)

Delayed progression of proteinuria and GS, as did tempol

Nishiyama et al. (2004) Rats, aldosterone\salt treatment Eplerenone, also looked at effect of tempol (antioxidant) Reduced proteinuria, as did tempol
Nishiyama et al. (2005) Cultured rat mesangial cells Eplerenone

Attenuated aldosterone‐induced ERK1\2 phosphorylation

Prevented the cellular proliferative and deforming effects of aldosterone

Nishiyama et al. (2010) Diabetic rats Eplerenone, also looked at the effect of telmisartan (ARB)

Decreased proteinuria, GS and podocyte injury

Synergistic effect with telmisartan

Rocha et al. (2000) AngII and L‐NAME treated (nitric oxide synthase inhibitor) and salt‐loaded rats Adrenalectomy or eplerenone Abrogated proteinuria; aldosterone administration to adrenalectomized rats restored proteinuria
Shibata et al. (2008) Mice with increased Rac1 activity Eplerenone Prevented albuminuria and podocyte injury
Terada et al. (2005) Rat cultured mesangial cells and rat isolated glomeruli Spironolactone Aldosterone stimulated mesangial cell proliferation by activating mitogen‐activated protein kinase 1\2, cyclin D1 and cyclin A pathways; spironolactone inhibited these effects
Zhou et al. (2011) DS rats fed high‐salt diet Eplerenone Reduced proteinuria and glomerular injury score
Clinical studies
Ando et al. (2014) RCT, hypertensive patients with nondiabetic CKD Eplerenone (in addition to ACE and\or ARB) Reduced UACR

Bakris et al. (2015)

(ARTS‐DN)

RCT, normotensive DN patients with high albuminuria Finerenone (in addition to ACEI or ARB) Dose‐dependent reduction in UACR at 90 days (study end (BP‐independent))
Bianchi et al. (2006) Randomized open‐label study; patients with CKD (non‐DN) Spironolactone (in addition to ACEI and\or ARB)

Additional antiproteinuric effect

Baseline aldosterone levels were correlated with proteinuria and predicted degree of proteinuria reduction with spironolactone

Bolignano et al. (2014) Meta‐analysis (2002–2011); 1549 CKD patients (nondialysis) Spironolactone and eplerenone (in addition to an ACEI and\or ARB)

Concluded that MRAs effectively reduce proteinuria when used in combination with ACEIs and ARBs

No effect on short‐term eGFR

Chrysostomou et al. (2006) RCT, CKD

Spironolactone

(in addition to ACE ± ARB)

Greater reduction in protein excretion occurred in treatment regimens that incorporated spironolactone, sustained at 6 and 12 months

No advantage of triple blockade over dual RAS blockade

Currie et al. (2016) Meta‐analysis (2005–2014); 1,646 CKD patients (nondialysis) Spironolactone and eplerenone (in addition to an ACEI or ARB or both)

Reduced weighted mean protein\albumin excretion by 38.7%

Slightly deleterious short‐term impact on eGFR

Epstein et al. (2006) DN

Eplerenone

(in addition to ACEI)

Reduced UACR compared with placebo; comparable between 50 mg and 100 mg dosages
Esteghamati et al. (2013) RCT DN Spironolactone\ARB vs. ACEI\ARB

Greater reduction in proteinuria after 18 months, independent of BP (decreased urinary albumin excretion by 46, 72 and 59% after 3, 12 and 18 months)

No difference in eGFR decline rate between groups

Furumatsu et al. (2008) RCT, patients with nondiabetic CKD Spironolactone (in addition to ACEI and ARB)

Reduced proteinuria compared with baseline by 58%, no change in controls

Reduced urinary type IV collagen level

Gonzales Monte et al. (2010) Kidney transplant recipients with severe proteinuria Spironolactone (in addition to ARB and ACEI) >50% reduction in proteinuria in 9\11 patients, sustained at 6 months
Guney et al. (2009) Nondiabetic CKD Spironolactone (in addition to ACE and\or ARB)

Reduction in UPCR at 6 months

Reduction in urinary TGF‐β1 excretion

Hou, Xiong, Cao, Wen, and Li (2015) Meta‐analysis of patients with DN Spironolactone (in addition to ACEI or ARB)

Reduced 24‐hr urinary albumin\protein excretion and UACR

Significantly reduced BP was also reported, therefore proteinuria reduction may have been partly due to BP‐lowering effects

Pitt et al. (2013) (ARTS)

RCT, open‐label; heart failure patients with mild or moderate CKD Finerenone vs. spironolactone

Finerenone was equivalent to spironolactone in decreasing albuminuria

Finerenone was associated with a lower incidence of hyperkalaemia and worsening renal function

Rachmani et al. (2004) Patients with DN and hypertension Spironolactone, cilazapril or their combination

Spironolactone was superior to cilazapril in reducing UACR

Co‐therapy more effective than either drug alone

BP‐independent effects

Sato et al. (2003) Patients with DN Spironolactone (in addition to ACEI)

Reduced urinary albumin excretion by 40%

Effect higher in patients with aldosterone breakthrough

BP independent

Sato et al. (2005) CKD (DN and non‐DN, BP controlled) Spironolactone (in addition to ACEI)

Reduced urinary albumin excretion, effect greater in diabetic vs. nondiabetic patients (46% vs. 29%)

Reduced urinary collagen type IV

Tylicki et al. (2008) Randomized open crossover study; nondiabetic CKD Spironolactone (in addition to ACEI and ARB) Triple therapy reduced 24‐hr urine protein excretion compared with dual therapy

White et al. (2003)

Patients ≥ 50 years old with systolic hypertension and widened pulse pressure; double‐blind titration to effect design Eplerenone (vs. amlodipine)

Eplerenone more effective than amlodipine in reducing UACR (52% vs. 10%) at 24 weeks

Equivalent effects on systolic BP, pulse pressure and pulse wave velocity

Abbreviations: ACEI, angiotensin‐converting enzyme inhibitor; AngII, angiotensin II; ARB, angiotensin receptor blocker; BP, blood pressure; CKD, chronic kidney disease; DN, diabetic nephropathy; DS, Dahl salt‐sensitive; eGFR, estimated glomerular filtration rate; ERK, extracellular signal‐regulated kinase; GS, glomerulosclerosis; L‐NAME, N(gamma)‐nitro‐L‐arginine methyl ester; MRA, mineralocorticoid receptor antagonist; PAI‐1, plasminogen activator inhibitor‐1; RAS, renin–angiotensin system; RCT, randomized controlled trial; TGF‐ß1, transforming growth factor‐ß1; UACR, urinary albumin\creatinine ratio.

4.4. Oxidative stress

Data suggest that oxidative stress is a central mechanism by which aldosterone\MR activation causes renal damage (Nishiyama & Abe, 2006; Nishiyama et al., 2004), particularly vascular injury\endothelial dysfunction, renal cell apoptosis, inflammation and fibrosis (Leopold et al., 2007; Sanz‐Rosa et al., 2005; Sun et al., 2002; Sun, Zhang, Zhang, & Ramires, 2000; Terada et al., 2005). Aldosterone‐induced oxidative and nitrosative stress has been demonstrated in multiple cell types, including VSMCs (Maron et al., 2009), endothelial cells (Nagata et al., 2006), mesangial cells (Leopold et al., 2007), proximal tubular epithelial cells (Schupp et al., 2010) and distal tubular cells (Queisser et al., 2013), and increased urinary markers of oxidative stress are detected following MR‐induced injury in rats (Nagase et al., 2006). The pathways by which MR activation may result in oxidative stress are outlined in Figure 2. In laboratory species, MRA treatment reduces oxidative stress markers and ROS generation, and increases antioxidant enzyme mRNA expression (Mejía‐Villet et al., 2007; Queisser et al., 2013; Toyonaga et al., 2011). Further evidence is provided by the demonstration that many renal effects of MR blockade are reproduced by antioxidant treatment (Kitada et al., 2012; Nagase et al., 2006; Son et al., 2008). Reduced oxidative stress is observed in diabetic nephropathy and kidney transplant patients treated with an MRA (Ojeda‐Cervantes et al., 2013; Takebayashi, Matsumoto, Aso, & Inukai, 2006).

Figure 2.

Figure 2

Proposed pathways responsible for the effect of mineralocorticoid receptor activation on oxidative stress. ER, endoplasmic reticulum; glucose‐6‐PDH, glucose‐6‐phosphate dehydrogenase; MAPK, mitogen‐activated protein kinase; NADPH, nicotinamide‐adenine dinucleotide phosphate; NF‐κB, nuclear factor‐ κB; NO, nitric oxide; NOS, nitric oxide synthase; ROS, reactive oxygen species

4.5. Renal inflammation and fibrosis

Renal injury induced by aldosterone\MR activation is characterized by heightened inflammation and fibrosis, and MRAs abrogate these changes in both preclinical and clinical studies. Whether aldosterone directly contributes to inflammation and fibrosis or whether these occur predominantly secondary to vascular injury is somewhat uncertain, although some experimental data suggest the latter (Rocha et al., 2000). Aldosterone\MR activation in rodents induces the renal expression of profibrotic molecules, including connective tissue growth factor (Gumz et al., 2003; Kadoya et al., 2015; Martín‐Fernández et al., 2016), plasminogen activator inhibitor‐1 (Brown, Nakamura, et al., 2000), epidermal growth factor and its receptor (Krug et al., 2003; Sheng et al., 2016), matrix metalloproteinase‐2 (Martín‐Fernández et al., 2016) and TGF‐β1 (Fujisawa et al., 2004; Kadoya et al., 2015; Lai et al., 2006; Sun et al., 2006) with successful inhibition by MRA documented in most cases. Aldosterone induces collagen synthesis in cultured fibroblasts (Nagai et al., 2005; Zhou, Kandala, Tyagi, Katwa, & Weber, 1996) and glomerular mesangial cells (Diah et al., 2008), and fibronectin synthesis (Chen et al., 2013) and osteopontin expression in renal fibroblasts (Irita et al., 2008). Aldosterone causes fibroblast proliferation due to rapid activation of growth factor receptors and induction of phosphoinositide 3‐kinase\mitogen‐activated protein kinase signalling (Huang, Nikolic‐Paterson, Ma, & Tesch, 2012). Collagen deposition is inhibited by spironolactone in vivo (Fujisawa et al., 2004). Aldosterone may also contribute to fibrosis by inducing epithelial‐to‐mesenchymal transition, seemingly via a ROS‐mediated pathway (Zhang, Jia, Guo, & Yang, 2007).

Aldosterone has been used to induce renal inflammation in rodents (Irita et al., 2011; Sogawa et al., 2018; Sun et al., 2006); leucocyte infiltration is associated with ROS accumulation and nuclear factor‐κB activation in this model (Irita et al., 2011; Queisser et al., 2013; Shibata, Nagase, Yoshida, Kawachi, & Fujita, 2007; Terada et al., 2005). Aldosterone‐infused rats show increased renal expression of proinflammatory cytokines, an effect attenuated by MRAs and MR deletion in macrophages (Blasi et al., 2003; Irita et al., 2011; Kadoya et al., 2015; Martín‐Fernández et al., 2016; Sun et al., 2006). Indeed, macrophages are key in mediating MR‐induced injury; MR activation causes macrophage polarization towards the proinflammatory M1 phenotype (Bene, Alcaide, Wortis, & Jaffe, 2014; Martín‐Fernández et al., 2016). Aldosterone\salt treatment causes perivascular leucocyte infiltration and increased expression of monocyte chemoattractant protein (MCP)‐1, interleukin (IL)‐6 and IL‐1β in the rat kidney, with MRAs being protective against this proinflammatory state (Blasi et al., 2003).

In people with CKD, renal MR and Sgk‐1 expression are positively correlated with TGF‐β1 and MCP‐1 expression, and serum aldosterone levels with renal fibrosis (Quinkler et al., 2005). Spironolactone reduces urinary TGF‐β1 levels and markers of fibrosis and tubular injury in renal biopsies in this population (Guney et al., 2009; Tylicki et al., 2008) and also urinary type IV collagen in patients with diabetic (Sato et al., 2005) and nondiabetic nephropathy (Furumatsu et al., 2008). A tendency for reduced tubulointerstitial fibrosis was also demonstrated in a small study of paediatric patients with chronic allograft nephropathy receiving eplerenone (Medeiros et al., 2017). Given that the dominant histopathological features of feline CKD are tubulointerstitial fibrosis and inflammation (Chakrabarti et al., 2013), it is proposed that MR blockade in this species would be beneficial in reducing these lesions and resultant disease progression.

5. FURTHER COMMENTS ON MRAS IN HUMAN CKD AND END‐STAGE RENAL DISEASE

It is important to note that although numerous studies have investigated the effect of MRAs in human CKD patients, most have focused on the reduction in proteinuria and hypertension. To date, no studies have evaluated primary end points which allow conclusions to be made about whether MRAs reduce mortality or slow CKD progression. Two small studies have suggested the latter, however, based on a slower decline in estimated GFR (eGFR) compared with control groups (Bianchi et al., 2006; Tylicki et al., 2008). Enrolment is ongoing for a trial designed to evaluate the effect of finerenone on disease progression in patients with diabetic nephropathy (NCT02540993). Additionally, studies investigating MRA treatment in severe CKD are still limited, although a meta‐analysis of dialysis patients found a reduction in mortality with the addition of MRA treatment (Quach et al., 2016). This is proposed to be due to improved cardiac function and reduced cardiovascular events. Table 3 summaries the studies investigating MRAs in the context of cardiovascular outcomes in renal disease.

Table 3.

Studies investigating the effects of MR antagonism on cardiovascular outcomes in renal disease

Reference Model\species\population Mineralocorticoid antagonist investigated Results
Preclinical studies
Bonnard et al. (2018) Subtotal nephrectomy CKD model in mice Finerenone

Prevented cardiac diastolic dysfunction, improved LV contractility, despite maintained renal dysfunction

Prevented the increase in cardiac α‐SMA expression, no effect on TGF‐β1 expression

Lachaux et al. (2018) Zucker fa\fa rat, a model of metabolic syndrome cardiorenal injury Finerenone

Short‐term: improvement in cardiac perfusion, reduced LV systolic diameter, decreased LV ROS production

Long‐term: reduced cardiac hypertrophy, fibrosis and dysfunction

Michea et al. (2008) Subtotal nephrectomy CKD model in rats Spironolactone

Attenuated LV hypertrophy and prevented increased cardiomyocyte size in both ventricles, despite no effect on BP

Attenuated LV oxidative stress

Clinical studies
Boesby, Elung‐Jensen, Strandgaard, and Kamper (2013) Stage 3–stage 4 CKD Eplerenone

Attenuated pulse wave reflections (as measured by the Augmentation Index) after 24 weeks

No effect on pulse wave velocity or ambulatory arterial stiffness index but may be underpowered and study period may have been too short

Charytan et al. (2019) Haemodialysis patients Spironolactone No effect on echocardiographic parameters measured, although study was of an exploratory design
Edwards et al. (2010) and Edwards, Steeds, Stewart, Ferro, and Townend (2009) “Early” CKD (stage 2–stage 3) Spironolactone Improved LV systolic and diastolic function, LV hypertrophy and arterial stiffness (pulse wave velocity\analysis, aortic distensibility)
Eschalier et al. (2013) (EMPHASIS‐HF) Patients ≥ 55 years old with heart failure and reduced ejection fraction, including patients with mild or moderate CKD Eplerenone Reduced the risk of CV death or hospitalization for heart failure; as effective in CKD patients as in non‐CKD patients
Hammer et al. (2019) Haemodialysis patients Spironolactone No change in LV mass or LV ejection fraction
Matsumoto et al. (2014) Haemodialysis patients Spironolactone Reduced risk of cerebrovascular\CV death or hospitalization due to a cerebrovascular\CV event

Pitt et al. (2013)

(ARTS)

Patients with heart failure and reduced left ventricular ejection fraction and mild to moderate CKD Spironolactone vs. finerenone Finerenone decreased the levels of B‐type natriuretic peptide, amino‐terminal pro‐B‐type natriuretic peptide to the same extent as spironolactone
Quach et al. (2016) Meta‐analysis of 9 trials (829 patients, 2005–2015) in dialysis patients, with or without heart failure Spironolactone and eplerenone Decreased risk of CV mortality (relative risk 0.34) and all‐cause mortality relative to controls (relative risk 0.40), however quality of evidence deemed low
Sato et al. (2003) DN Spironolactone Reduced LV mass index, without BP change
Taheri et al. (2009) Haemodialysis in patients with moderate or severe heart failure Spironolactone Improved ejection fraction and LV mass compared with placebo

Abbreviations: BP, blood pressure; CKD, chronic kidney disease; CV, cardiovascular; DN, diabetic nephropathy; LV, left ventricular; TGF‐ß1, transforming growth factor‐ß1.

5.1. Possible adverse effects of MRAs

MRAs have the potential to reduce renal blood flow and GFR. Small decreases in eGFR are not infrequently reported in people receiving MRAs, likely reflecting reversal of hyperfiltration (Bolignano et al., 2014; Pisoni et al., 2012; Schjoedt et al., 2004). Although “worsening renal function” (based on eGFR) was described in large cardiovascular trials, mortality rates remained improved (Pitt et al., 1999, 2003; Zannad et al., 2011).

Hyperkalaemia is a concern with MRA treatment in human medicine, preventing their prescription in many instances (Maggioni et al., 2013). Individual studies report various effects on plasma potassium concentrations following MR blockade, including no difference between placebo and treatment (Epstein et al., 2006; Gonzales Monte et al., 2010; Sato et al., 2003) and increased hyperkalaemia incidence (Ando et al., 2014; Bianchi et al., 2006; Chrysostomou et al., 2006; Pisoni et al., 2012; Quach et al., 2016; Rachmani et al., 2004). Even though meta‐analyses conclude that MRAs (in addition to ACEIs and\or ARBs) increase the risk of hyperkalaemia, the mean increase in potassium levels with treatment is very small compared with placebo (0.26 mM) (Bolignano et al., 2014) and compared with baseline (0.19 mM) (Currie et al., 2016). Many trials excluded patients with high‐normal baseline circulating potassium concentrations, however. Even when statistically significant, increases in serum potassium are deemed “clinically modest,” and generally, the benefits of MR blockade are deemed greater than the risk of clinically relevant hyperkalaemia (Pisoni et al., 2012; Pitt et al., 1999, 2003).

Other adverse effects of spironolactone are related to its anti‐androgenic and progestogenic properties and include gynaecomastia, impotence, menstrual irregularities and mastalgia (Kolkhof & Borden, 2012; Matsumoto et al., 2014; Pitt et al., 1999; Ponda & Hostetter, 2006). These effects are not reported with eplerenone due to its increased MR selectivity (Ando et al., 2014; Pitt et al., 2003; Zannad et al., 2011) and would not be an issue in treating a cat population which are predominantly neutered.

6. ALDOSTERONE\MR ACTIVATION IN FELINE CKD

Understanding aldosterone's ability to promote renal injury in laboratory animals and humans provides a convincing basis for its potential role in feline CKD. There is limited information available regarding aldosterone\MR activation in this species. Although reference ranges for plasma aldosterone concentrations have been determined, the pulsatile nature of aldosterone release and effect of diet (sodium and potassium intake) may contribute to large intra‐ and interindividual variation (Buranakarl, Mathur, & Brown, 2004; Syme et al., 2007; Yu & Morris, 1998). Primary hyperaldosteronism, either due to adrenal gland neoplasia (Ash, Harvey, & Tasker, 2005) or due to hyperplasia (Javadi et al., 2005), is recognized in cats and, as in people, is associated with progressive renal disease and histopathological changes encompassing hyaline arteriosclerosis, glomerulosclerosis and tubulointerstitial fibrosis (Javadi et al., 2005).

As in laboratory species and human patients, RAAS activation is an important factor in the pathogenesis of feline CKD (Ames et al., 2019). Plasma renin, aldosterone, angiotensin I and angiotensin II are increased in cats with experimentally induced CKD following renal ischaemia\reperfusion injury (Watanabe & Mishina, 2007). Models employing renal wrapping exacerbate RAAS activation, resulting in more pronounced hypertension, proteinuria and histopathological changes (Buranakarl et al., 2004; Mathur et al., 2004). RAAS activation is further exacerbated by low sodium intake in this model (Buranakarl et al., 2004) and also occurs in cats with naturally occurring CKD which are transitioned onto (relatively sodium‐restricted) renal diets (Syme, 2003). Although experimental data support RAAS activation in feline CKD, it may not directly translate to naturally occurring disease, as plasma renin activity and aldosterone concentrations do not differ between normotensive azotaemic CKD cats and nonazotaemic age‐matched controls (Jepson et al., 2014). Mishina et al. (1998) reported increased circulating renin, angiotensin II and aldosterone levels along with increased blood pressure in cats with CKD, although it is unclear whether the groups were age‐matched. As in people and rodents, local (intrarenal) RAAS is likely of importance; three studies to date have investigated this using immunohistochemistry in naturally occurring feline CKD (Mitani, Yabuki, Sawa, Chang, & Yamato, 2013; Mitani, Yabuki, Taniguchi, & Yamato, 2013; Taugner, Baatz, & Nobiling, 1996). Renin expression was not associated with azotaemia severity or histopathological lesions (Taugner et al., 1996). Tubular and interstitial angiotensin II, but not ACE or ACE2 expression, was correlated with glomerulosclerosis and tubulointerstitial inflammation (Mitani, Yabuki, Sawa, et al., 2013; Mitani, Yabuki, Taniguchi, et al., 2013). Intrarenal aldosterone has not been examined, although assessment of renal 11β‐HSD activity has been attempted by urinary cortisol–cortisone ratio measurement; cats with CKD had a lower ratio, not supportive of the hypothesis that decreased excretion of active glucocorticoid may potentially reflect excessive MR stimulation in this population (Walker, Elliott, & Syme, 2009).

Aldosterone appears to be associated with feline systemic hypertension, a common finding in cats with CKD. Plasma aldosterone levels are higher in hypertensive azotaemic cats than nonhypertensive cats with and without renal disease (Jensen et al., 1997; Jepson et al., 2014). Lower plasma potassium tends to be a risk factor for feline hypertension in epidemiological studies, providing support for MR activation (Jepson et al., 2009; Sansom, Rogers, & Wood, 2004; Syme, Barber, Markwell, & Elliott, 2002), although blood pressure is not directly associated with plasma or urinary aldosterone concentrations (Syme, Barber, et al., 2002; Syme et al., 2007; Williams et al., 2013). Increased plasma aldosterone concentration is not seemingly driven by plasma renin activity, as cats with concurrent CKD and hypertension have variable or decreased renin compared with controls, resulting in increased aldosterone‐to‐renin ratios (Jensen et al., 1997; Jepson et al., 2014; Syme, Markwell, et al., 2002). Given that increased circulating aldosterone in cats with concurrent CKD and hypertension does not appear to be secondary to increased renin or hyperkalaemia, alternative explanatory mechanisms include primary adrenal‐dependent pathology, local MR activation, altered sensitivity to stimuli which dictate aldosterone release or reduced aldosterone degradation (Buranakarl et al., 2004).

6.1. MRA use in cats

The optimal way to inhibit RAAS activation in feline CKD has yet to be determined, and to date, treatment has consisted of ACEI and\or ARB therapy. In many countries, the ACEI benazepril is licensed for treating proteinuria associated with CKD in cats and the ARB, telmisartan, is licensed for feline hypertension and proteinuria treatment (Coleman et al., 2019; Glaus, Elliott, Herberich, Zimmering, & Albrecht, 2019). Benazepril ameliorates glomerular capillary hypertension, increases GFR and reduces proteinuria in a partial renal ablation model (Brown et al., 2001), and reduces proteinuria in naturally occurring CKD (King, Gunn‐Moore, Tasker, Gleadhill, & Strehlau, 2006; Watanabe & Mishina, 2007). Telmisartan is as efficacious as benazepril in reducing urine protein\creatinine ratio in clinical cases (Sent, Gössl, Elliott, Syme, & Zimmering, 2015). Although ACEIs and ARBs successfully reduce proteinuria, a factor associated with reduced survival (King et al., 2007; Kuwahara et al., 2006; Syme et al., 2006), the present studies investigating these drugs in feline CKD have important limitations (e.g. are underpowered or not designed to test long‐term outcomes) which prevent definitive conclusions from being made about their effect on CKD progression and prognosis in cats (King et al., 2006; Sent et al., 2015; Watanabe & Mishina, 2007). Aldosterone breakthrough has not been studied in cats with CKD receiving long‐term ACEIs or ARBs.

Two studies have investigated spironolactone in feline cardiac disease. Relevant to CKD pathology, feline hypertrophic cardiomyopathy is characterized by significant interstitial fibrosis and arteriosclerosis (Fox, 2003). In a small study of hypertrophic cardiomyopathy in Maine Coons, four of 13 treated cats developed severe ulcerative facial dermatitis approximately 2.5 months into treatment which the authors attributed to spironolactone (MacDonald & Kittleson, 2008). The dosage used in this study (2 mg\kg twice daily) was twice the recommended dosage in dogs (Guyonnet, Elliott, & Kaltsatos, 2010), and feline herpesvirus was not sufficiently ruled out as a possible cause. One cat also developed myelodysplasia. Cutaneous drug reactions are sporadically reported in people receiving spironolactone (Gupta, Knowles, & Shear, 1994) and spironolactone‐induced agranulocytosis, and aplastic anaemia is also recognized (Ibáñez, Vidal, Ballarín, & Laporte, 2005). A second study reported no dermatological adverse effects of spironolactone (1.7–3.3 mg\kg once daily) over a 15‐month treatment period, and the prevalence of adverse events was similar between the treatment and placebo groups (James et al., 2018). The risk of hyperkalaemia with ACEI and spironolactone co‐therapy is emphasized in veterinary medicine, although combination therapy appears well‐tolerated in cats and dogs with heart failure (James et al., 2018; Lefebvre et al., 2013). Cats with mild–moderate CKD tend to have lower than normal plasma potassium concentrations, with a 12%–20% prevalence of hypokalaemia (Elliott & Barber, 1998; King et al., 2007; Ross et al., 2006). MRA therapy reduces hypokalaemia risk in people (Pisoni et al., 2012; Pitt et al., 2003), a potentially beneficial effect in feline patients.

7. CONCLUSIONS

Given the expanding evidence base from in vitro and in vivo experimental studies and from human medicine, it seems likely that aldosterone and MR activation is an important player in the pathogenesis of feline CKD. It must be noted, however, that experimental models may not be directly translatable to the clinical situation and that differences in CKD pathogenesis exist between humans and cats. Furthermore, there is a need for human studies evaluating the effect of MRAs on mortality and CKD progression as primary end points. MR blockade may protect the kidney from ischaemia, repeated bouts of which may be responsible for the loss of functioning renal tissue in the cat. Secondly, MRAs reduce proteinuria in other species, and as proteinuria is associated with renal fibrosis and disease progression in the cat, therapy may have beneficial effects on survival. Additionally, MR activation appears to contribute to hypertension in cats with CKD, and MRAs may reduce blood pressure and the subsequent risk of proteinuria and further ischaemic renal damage. Finally, disturbances in mineral and bone metabolism occur in feline CKD and MR blockade may prove beneficial in reducing secondary vascular and soft tissue mineralization, as has been shown experimentally. Field studies investigating aldosterone breakthrough and the use of MRAs in naturally occurring feline CKD, where the goal remains to slow disease progression, are indicated.

CONFLICT OF INTEREST

JE is a member of the International Renal Interest Society, which is sponsored by Elanco Animal Health Ltd. JE has acted as a paid consultant for CEVA Animal Health, Boehringer Ingelheim Ltd., Kindred Bio Inc., Orion Ltd., Royal Canin Ltd., Idexx Laboratories Ltd. and Waltham Ltd. JE is in receipt of grant funding from Royal Canin Ltd., Elanco Animal Health Ltd. and Idexx Laboratories Ltd. None of the authors has any other financial or personal relationships that could inappropriately influence or bias the content of the paper. CEVA Animal Health, who market spironolactone for the treatment of canine congestive heart failure caused by valvular regurgitation, played no role in the preparation of this manuscript.

AUTHOR CONTRIBUTION

SS, CWJ and JE were responsible for the writing of this manuscript and have read and approved the final manuscript.

ACKNOWLEDGMENTS

This work was supported by the Biotechnology and Biological Sciences Research Council [grant number BB\M009513\1]. SS is in receipt of a CASE studentship co‐funded by the BBSRC and CEVA Animal Health.

Spencer S, Wheeler‐Jones C, Elliott J. Aldosterone and the mineralocorticoid receptor in renal injury: A potential therapeutic target in feline chronic kidney disease. J vet Pharmacol Therap. 2020;43:243–267. 10.1111/jvp.12848

REFERENCES

  1. Acierno, M. J. , Brown, S. , Coleman, A. E. , Jepson, R. E. , Papich, M. , Stepien, R. L. , & Syme, H. M. (2018). ACVIM consensus statement: Guidelines for the identification, evaluation, and management of systemic hypertension in dogs and cats. Journal of Veterinary Internal Medicine, 32(6), 1803–1822. 10.1111/jvim.15331 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aldigier, J. C. , Kanjanbuch, T. , Ma, L. , Brown, N. J. , & Fogo, A. B. (2005). Regression of existing glomerulosclerosis by inhibition of aldosterone. Journal of the American Society of Nephrology, 16, 3306–3314. 10.1681/ASN.2004090804 [DOI] [PubMed] [Google Scholar]
  3. Amador, C. A. , Bertocchio, J.‐P. , Andre‐Gregoire, G. , Placier, S. , Duong Van Huyen, J.‐P. , El Moghrabi, S. , … Jaisser, F. (2016). Deletion of mineralocorticoid receptors in smooth muscle cells blunts renal vascular resistance following acute cyclosporine administration. Kidney International, 89(2), 354–362. 10.1038/ki.2015.312 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ames, M. K. , Atkins, C. E. , Eriksson, A. , & Hess, A. M. (2017). Aldosterone breakthrough in dogs with naturally occurring myxomatous mitral valve disease. Journal of Veterinary Cardiology, 19(3), 218–227. 10.1016/j.jvc.2017.03.001 [DOI] [PubMed] [Google Scholar]
  5. Ames, M. K. , Atkins, C. E. , Lantis, A. C. , & Zum Brunnen, J. (2016). Evaluation of subacute change in RAAS activity (as indicated by urinary aldosterone: Creatinine, after pharmacologic provocation) and the response to ACE inhibition. Journal of the Renin‐Angiotensin‐Aldosterone System, 17(1), 1–12. 10.1177/1470320316633897 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ames, M. K. , Atkins, C. E. , Lee, S. , Lantis, A. C. , & Zumbrunnen, J. R. (2015). Effects of high doses of enalapril and benazepril on the pharmacologically activated renin‐angiotensin‐aldosterone system in clinically normal dogs. American Journal of Veterinary Research, 76(12), 1041–1050. 10.2460/ajvr.76.12.1041 [DOI] [PubMed] [Google Scholar]
  7. Ames, M. K. , Atkins, C. E. , & Pitt, B. (2019). The renin‐angiotensin‐aldosterone system and its suppression. Journal of Veterinary Internal Medicine, 33(2), 363–382. 10.1111/jvim.15454 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ando, K. , Ohtsu, H. , Uchida, S. , Kaname, S. , Arakawa, Y. , & Fujita, T. (2014). Anti‐albuminuric effect of the aldosterone blocker eplerenone in non‐diabetic hypertensive patients with albuminuria: A double‐blind, randomised, placebo‐controlled trial. Lancet Diabetes Endocrinology, 2(12), 944–953. 10.1016/S2213-8587(14)70194-9 [DOI] [PubMed] [Google Scholar]
  9. Arima, S. , Kohagura, K. , Xu, H. L. , & Sugawara, A. (2003). Nongenomic vascular action of aldosterone in the glomerular microcirculation. Journal of the American Society of Nephrology, 14(9), 2253–2260. 10.1097/01.ASN.0000083982.74108.54 [DOI] [PubMed] [Google Scholar]
  10. Arima, S. , Kohagura, K. , Xu, H.‐L. , Sugawara, A. , Uruno, A. , Satoh, F. , … Ito, S. (2004). Endothelium‐derived nitric oxide modulates vascular action of aldosterone in renal arteriole. Hypertension, 43(2), 352–357. 10.1161/01.HYP.0000111138.78714.1a [DOI] [PubMed] [Google Scholar]
  11. Asai, M. , Monkawa, T. , Marumo, T. , Fukuda, S. , Tsuji, M. , Yoshino, J. , … Saruta, T. (2005). Spironolactone in combination with cilazapril ameliorates proteinuria and renal interstitial fibrosis in rats with anti‐Thy‐1 irreversible nephritis. Hypertension Research, 27(12), 971–978. 10.1291/hypres.27.971 [DOI] [PubMed] [Google Scholar]
  12. Ash, R. A. , Harvey, A. M. , & Tasker, S. (2005). Primary hyperaldosteronism in the cat: A series of 13 cases. Journal of Feline Medicine & Surgery, 7(3), 173–182. 10.1016/j.jfms.2004.08.007 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Atarashi, K. , Matsuoka, H. , Takagi, M. , & Sugimoto, T. (1989). Magnesium ion: A possible physiological regulator of aldosterone production. Life Sciences, 44(20), 1483–1489. 10.1016/0024-3205(89)90327-5 [DOI] [PubMed] [Google Scholar]
  14. Bakris, G. L. , Agarwal, R. , Chan, J. C. , Cooper, M. E. , Gansevoort, R. T. , Haller, H. , … Ruilope, L. M. (2015). Effect of finerenone on albuminuria in patients with diabetic nephropathy a randomized clinical trial. Journal of the American Medical Association, 314(9), 884–894. 10.1001/jama.2015.10081 [DOI] [PubMed] [Google Scholar]
  15. Bamberg, K. , Johansson, U. , Edman, K. , William‐Olsson, L. , Myhre, S. , Gunnarsson, A. , … Hartleib‐Geschwindner, J. (2018). Preclinical pharmacology of AZD9977: A novel mineralocorticoid receptor modulator separating organ protection from effects on electrolyte excretion. PLoS ONE, 13, e0193380. 10.1371/journal.pone.0193380 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Barr, C. S. , Lang, C. C. , Hanson, J. , Arnott, M. , Kennedy, N. , & Struthers, A. D. (1995). Effects of adding spironolactone to an angiotensin‐converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease. The American Journal of Cardiology, 76(17), 1259–1265. 10.1016/S0002-9149(99)80353-1 [DOI] [PubMed] [Google Scholar]
  17. Barrera‐Chimal, J. , Pérez‐Villalva, R. , Ortega, J. A. , Sánchez, A. , Rodríguez‐Romo, R. , Durand, M. , … Bobadilla, N. A. (2015). Mild ischemic injury leads to long‐term alterations in the kidney: Amelioration by spironolactone administration. International Journal of Biological Sciences, 11(8), 892–900. 10.7150/ijbs.11729 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Barrera‐Chimal, J. , Pérez‐Villalva, R. , Rodríguez‐Romo, R. , Reyna, J. , Uribe, N. , Gamba, G. , & Bobadilla, N. A. (2013). Spironolactone prevents chronic kidney disease caused by ischemic acute kidney injury. Kidney International, 83(1), 93–103. 10.1038/ki.2012.352 [DOI] [PubMed] [Google Scholar]
  19. Barrera‐Chimal, J. , Prince, S. , Fadel, F. , El Moghrabi, S. , Warnock, D. G. , Kolkhof, P. , & Jaisser, F. (2016). Sulfenic acid modification of endothelin B receptor is responsible for the benefit of a nonsteroidal mineralocorticoid receptor antagonist in renal ischemia. Journal of the American Society of Nephrology, 27(2), 10.1681/ASN.2014121216 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Barrera‐Chimal, J. , Rocha, L. , Isabel, A.‐M. , Rosalba, P.‐V. , González, R. , Cesar, C.‐G. , Bobadilla, N. A. (2019). Delayed spironolactone administration prevents the transition from acute kidney injury to chronic kidney disease through improving renal inflammation. Nephrology Dialysis Transplantation, 34(5), 794–801. 10.1093/ndt/gfy246 [DOI] [PubMed] [Google Scholar]
  21. Bauersachs, J. , Jaisser, F. , & Toto, R. (2015). Mineralocorticoid receptor activation and mineralocorticoid receptor antagonist treatment in cardiac and renal diseases. Hypertension, 65(2), 257–263. 10.1161/HYPERTENSIONAHA.114.04488 [DOI] [PubMed] [Google Scholar]
  22. Bene, N. C. , Alcaide, P. , Wortis, H. H. , & Jaffe, I. Z. (2014). Mineralocorticoid receptors in immune cells: Emerging role in cardiovascular disease. Steroids, 91, 38–45. 10.1016/j.steroids.2014.04.005 [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bertocchio, J.‐P. , Warnock, D. G. , & Jaisser, F. (2011). Mineralocorticoid receptor activation and blockade: An emerging paradigm in chronic kidney disease. Kidney International, 79(10), 1051–1060. 10.1038/ki.2011.48 [DOI] [PubMed] [Google Scholar]
  24. Beuschlein, F. (2013). Regulation of aldosterone secretion: From physiology to disease. European Journal of Endocrinology, 168(6), R85–93. 10.1530/EJE-13-0263 [DOI] [PubMed] [Google Scholar]
  25. Bianchi, S. , Bigazzi, R. , & Campese, V. M. (2006). Long‐term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney International, 70, 2116–2123. 10.1038/sj.ki.5001854 [DOI] [PubMed] [Google Scholar]
  26. Blasi, E. R. , Rocha, R. , Rudolph, A. E. , Blomme, E. A. , Polly, M. L. , & McMahon, E. G. (2003). Aldosterone\salt induces renal inflammation and fibrosis in hypertensive rats. Kidney International, 63(5), 1791–1800. 10.1046/j.1523-1755.2003.00929.x [DOI] [PubMed] [Google Scholar]
  27. Bobadilla, N. A. , & Gamba, G. (2007). New insights into the pathophysiology of cyclosporine nephrotoxicity: A role of aldosterone. American Journal of Physiology Renal Physiology, 293, 2–9. 10.1152/ajprenal.00072.2007 [DOI] [PubMed] [Google Scholar]
  28. Boesby, L. , Elung‐Jensen, T. , Strandgaard, S. , & Kamper, A. L. (2013). Eplerenone attenuates pulse wave reflection in chronic kidney disease stage 3–4 ‐ A randomized controlled study. PLoS ONE, 8, e64549. 10.1371/journal.pone.0064549 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Bolignano, D. , Palmer, S. C. , Navaneethan, S. D. , & Strippoli, G. F. M. (2014). Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database of Systematic Reviews, 4(4), CD007004. 10.1002/14651858.cd007004.pub3 [DOI] [PubMed] [Google Scholar]
  30. Bomback, A. S. , Kshirsagar, A. V. , Amamoo, M. A. , & Klemmer, P. J. (2008). Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: A systematic review. American Journal of Kidney Diseases, 51(2), 199–211. 10.1053/j.ajkd.2007.10.040 [DOI] [PubMed] [Google Scholar]
  31. Bonnard, B. , Pieronne‐Deperrois, M. , Djerada, Z. , Elmoghrabi, S. , Kolkhof, P. , Ouvrard‐Pascaud, A. , … Messaoudi, S. (2018). Mineralocorticoid receptor antagonism improves diastolic dysfunction in chronic kidney disease in mice. Journal of Molecular and Cellular Cardiology, 121, 124–133. 10.1016/j.yjmcc.2018.06.008 [DOI] [PubMed] [Google Scholar]
  32. Boyd, L. M. , Langston, C. , Thompson, K. , Zivin, K. , & Imanishi, M. (2008). Survival in cats with naturally occurring chronic kidney disease (2000–2002). Journal of Veterinary Internal Medicine, 22(5), 1111–1117. 10.1111/j.1939-1676.2008.0163.x [DOI] [PubMed] [Google Scholar]
  33. Brown, C. A. , Rissi, D. R. , Dickerson, V. M. , Davis, A. M. , Brown, S. A. , & Schmiedt, C. W. (2019). Chronic renal changes after a single ischemic event in an experimental model of feline chronic kidney disease. Veterinary Pathology, 56(4), 536–543. 10.1177/0300985819837721 [DOI] [PubMed] [Google Scholar]
  34. Brown, N. J. , Kim, K. S. , Chen, Y. Q. , Blevins, L. S. , Nadeau, J. H. , Meranze, S. G. , & Vaughan, D. E. (2000). Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator inhibitor‐1 production. Journal of Clinical Endocrinology and Metabolism, 85(1), 336–344. 10.1210/jcem.85.1.6305 [DOI] [PubMed] [Google Scholar]
  35. Brown, N. J. , Nakamura, S. , Ma, L. , Nakamura, I. , Donnert, E. , Freeman, M. , … Fogo, A. B. (2000). Aldosterone modulates plasminogen activator inhibitor‐1 and glomerulosclerosis in vivo. Kidney International, 58(3), 1219–1227. 10.1046/j.1523-1755.2000.00277.x [DOI] [PubMed] [Google Scholar]
  36. Brown, S. A. , Brown, C. A. , Jacobs, G. , Stiles, J. , Hendi, R. S. , & Wilson, R. S. (2001). Effects of the angiotensin converting enzyme inhibitor benazepril in cats with induced renal insufficiency. American Journal of Veterinary Research, 62, 375–383. 10.2460/ajvr.2001.62.375 [DOI] [PubMed] [Google Scholar]
  37. Brown, J. M. , Underwood, P. C. , Ferri, C. , Hopkins, P. N. , Williams, G. H. , Adler, G. K. , & Vaidya, A. (2014). Aldosterone dysregulation with aging predicts renal vascular function and cardiovascular risk. Hypertension, 63(6), 1205–1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Buglioni, A. , Cannone, V. , Cataliotti, A. , Sangaralingham, S. J. , Heublein, D. M. , Scott, C. G. , … Burnett, J. C. (2015). Circulating aldosterone and natriuretic peptides in the general community relationship to cardiorenal and metabolic disease. Hypertension, 65, 45–53. 10.1161/HYPERTENSIONAHA.114.03936 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Buranakarl, C. , Mathur, S. , & Brown, S. A. (2004). Effects of dietary sodium chloride intake on renal function and blood pressure in cats with normal and reduced renal function. American Journal of Veterinary Research, 65, 620–627. 10.2460/ajvr.2004.65.620 [DOI] [PubMed] [Google Scholar]
  40. Caprio, M. , Newfell, B. G. , la Sala, A. , Baur, W. , Fabbri, A. , Rosano, G. , … Jaffe, I. Z. (2008). Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule‐1 expression and promote leukocyte adhesion. Circulation Research, 102, 1359–1367. 10.1161/CIRCRESAHA.108.174235 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Catena, C. , Colussi, G. L. , Nadalini, E. , Chiuch, A. , Baroselli, S. , Lapenna, R. , & Sechi, L. A. (2007). Relationships of plasma renin levels with renal function in patients with primary aldosteronism. Clinical Journal of the American Society of Nephrology, 2, 722–731. 10.2215/CJN.00050107 [DOI] [PubMed] [Google Scholar]
  42. Chakrabarti, S. , Syme, H. M. , Brown, C. A. , & Elliott, J. (2013). Histomorphometry of feline chronic kidney disease and correlation with markers of renal dysfunction. Veterinary Pathology, 50(1), 147–155. 10.1177/0300985812453176 [DOI] [PubMed] [Google Scholar]
  43. Chakrabarti, S. , Syme, H. M. , & Elliott, J. (2012). Clinicopathological variables predicting progression of azotemia in cats with chronic kidney disease. Journal of Veterinary Internal Medicine, 26, 275–281. 10.1111/j.1939-1676.2011.00874.x [DOI] [PubMed] [Google Scholar]
  44. Charytan, D. M. , Himmelfarb, J. , Ikizler, T. A. , Raj, D. S. , Hsu, J. Y. , Landis, J. R. , … Kusek, J. (2019). Safety and cardiovascular efficacy of spironolactone in dialysis‐dependent ESRD (SPin‐D): A randomized, placebo‐controlled, multiple dosage trial. Kidney International, 95(4), 973–982. 10.1016/j.kint.2018.08.034 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Chen, D. , Chen, Z. , Park, C. , Centrella, M. , McCarthy, T. , Chen, L. I. , … Moeckel, G. W. (2013). Aldosterone stimulates fibronectin synthesis in renal fibroblasts through mineralocorticoid receptor‐dependent and independent mechanisms. Gene, 531, 23–30. 10.1016/j.gene.2013.08.047 [DOI] [PubMed] [Google Scholar]
  46. Chrysostomou, A. , Pedagogos, E. , MacGregor, L. , & Becker, G. J. (2006). Double‐blind, placebo‐controlled study on the effect of the aldosterone receptor antagonist spironolactone in patients who have persistent proteinuria and are on long‐term angiotensin‐converting enzyme inhibitor therapy, with or without an angiotensin II. Clinical Journal of the American Society of Nephrology, 1, 256–262. 10.2215/CJN.01040905 [DOI] [PubMed] [Google Scholar]
  47. Coleman, A. E. , Brown, S. A. , Traas, A. M. , Bryson, L. , Zimmering, T. , & Zimmerman, A. (2019). Safety and efficacy of orally administered telmisartan for the treatment of systemic hypertension in cats: Results of a double‐blind, placebo‐controlled, randomized clinical trial. Journal of Veterinary Internal Medicine, 33(2), 478–488. 10.1111/jvim.15429 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Cowgill, L. D. , Polzin, D. J. , Elliott, J. , Nabity, M. B. , Segev, G. , Grauer, G. F. , … van Dongen, A. M. (2016). Is progressive chronic kidney disease a slow acute kidney injury? Veterinary Clinics of North America, 46, 995–1013. 10.1016/j.cvsm.2016.06.001 [DOI] [PubMed] [Google Scholar]
  49. Currie, G. , Taylor, A. H. M. , Fujita, T. , Ohtsu, H. , Lindhardt, M. , Rossing, P. , … Mark, P. B. (2016). Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: A systematic review and meta‐analysis. BMC Nephrology, 17(1), 127. 10.1186/s12882-016-0337-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Diah, S. , Zhang, G.‐X. , Nagai, Y. , Zhang, W. , Gang, L. , Kimura, S. , … Hitomi, H. (2008). Aldosterone induces myofibroblastic transdifferentiation and collagen gene expression through the Rho‐kinase dependent signaling pathway in rat mesangial cells. Experimental Cell Research, 314(20), 3654–3662. 10.1016/j.yexcr.2008.09.018 [DOI] [PubMed] [Google Scholar]
  51. Du, J. , Fan, Y.‐Y. , Hitomi, H. , Kiyomoto, H. , Kimura, S. , Kong, C.‐Z. , … Nakano, D. (2009). Mineralocorticoid receptor blockade and calcium channel blockade have different renoprotective effects on glomerular and interstitial injury in rats. American Journal of Physiology Renal Physiology, 297, F802–808. 10.1152/ajprenal.00197.2009 [DOI] [PubMed] [Google Scholar]
  52. Duffy, S. J. , Biegelsen, E. S. , Eberhardt, R. T. , Kahn, D. F. , Kingwell, B. A. , & Vita, J. A. (2005). Low‐renin hypertension with relative aldosterone excess is associated with impaired NO‐mediated vasodilation. Hypertension, 46(4), 707–713. 10.1161/01.HYP.0000184231.84465.62 [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Duprez, D. A. (2007). Aldosterone and the vasculature: Mechanisms mediating resistant hypertension. Journal of Clinical Hypertension, 9(s1), 13–18. 10.1111/j.1524-6175.2007.06367.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Duprez, D. A. , Buyzere, D. M. L. , Rietzschel, E. R. , Taes, Y. , Clement, D. L. , Morgan, D. , & Cohn, J. N. (1998). Inverse relationship between aldosterone and large artery compliance in chronically treated heart failure patients. European Heart Journal, 19(9), 1371–1376. 10.1053/euhj.1998.1099 [DOI] [PubMed] [Google Scholar]
  55. Eddy, A. A. (1996). Molecular insights into renal interstitial fibrosis. Journal of the American Society of Nephrology, 7, 2495–2508. [DOI] [PubMed] [Google Scholar]
  56. Edwards, N. C. , Ferro, C. J. , Kirkwood, H. , Chue, C. D. , Young, A. A. , Stewart, P. M. , … Townend, J. N. (2010). Effect of spironolactone on left ventricular systolic and diastolic function in patients with early stage chronic kidney disease. American Journal of Cardiology, 106(10), 1505–1511. 10.1016/j.amjcard.2010.07.018 [DOI] [PubMed] [Google Scholar]
  57. Edwards, N. C. , Steeds, R. P. , Stewart, P. M. , Ferro, C. J. , & Townend, J. N. (2009). Effect of spironolactone on left ventricular mass and aortic stiffness in early‐stage chronic kidney disease. A randomized controlled trial. Journal of the American College of Cardiology, 54(6), 505–512. 10.1016/j.jacc.2009.03.066 [DOI] [PubMed] [Google Scholar]
  58. Elliott, J. , & Barber, P. J. (1998). Feline chronic renal failure: Clinical findings in 80 cases diagnosed between 1992 and 1995. Journal of Small Animal Practice, 39, 78–85. 10.1111/j.1748-5827.1998.tb03598.x [DOI] [PubMed] [Google Scholar]
  59. Elliott, J. , Rawlings, J. M. , Markwell, P. J. , & Barber, P. J. (2000). Survival of cats with naturally occurring chronic renal failure: Effect of dietary management. Journal of Small Animal Practice, 41, 235–242. 10.1111/j.1748-5827.2000.tb03932.x [DOI] [PubMed] [Google Scholar]
  60. Epstein, M. , Williams, G. H. , Weinberger, M. , Lewin, A. , Krause, S. , Mukherjee, R. , … Beckerman, B. (2006). Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clinical Journal of the American Society of Nephrology, 1(5), 940–951. 10.2215/CJN.00240106 [DOI] [PubMed] [Google Scholar]
  61. Eschalier, R. , McMurray, J. J. V. , Swedberg, K. , van Veldhuisen, D. J. , Krum, H. , Pocock, S. J. , … Pitt, B. (2013). Safety and efficacy of eplerenone in patients at high risk for hyperkalemia and\or worsening renal function: Analyses of the EMPHASIS‐HF study subgroups (eplerenone in mild patients hospitalization and survival study in heart failure). Journal of the American College of Cardiology, 62(17), 1594–1595. 10.1016/j.jacc.2013.04.086 [DOI] [PubMed] [Google Scholar]
  62. Esteghamati, A. , Noshad, S. , Jarrah, S. , Mousavizadeh, M. , Khoee, S. H. , & Nakhjavani, M. (2013). Long‐term effects of addition of mineralocorticoid receptor antagonist to angiotensin II receptor blocker in patients with diabetic nephropathy: A randomized clinical trial. Nephrology Dialysis Transplantation, 28(11), 2823–2833. 10.1093/ndt/gft281 [DOI] [PubMed] [Google Scholar]
  63. Farquharson, C. A. J. , & Struthers, A. D. (2002). Aldosterone induces acute endothelial dysfunction in vivo in humans: Evidence for an aldosterone‐induced vasculopathy. Clinical Science, 103(4), 425–431. 10.1042/cs1030425 [DOI] [PubMed] [Google Scholar]
  64. Feria, I. , Pichardo, I. , Juárez, P. , Ramírez, V. , González, M. A. , Uribe, N. , … Bobadilla, N. A. (2003). Therapeutic benefit of spironolactone in experimental chronic cyclosporine A nephrotoxicity. Kidney International, 63(1), 43–52. 10.1046/j.1523-1755.2003.00707.x [DOI] [PubMed] [Google Scholar]
  65. Finch, N. C. , Syme, H. M. , & Eliott, J. (2016). Risk factors for development of chronic kidney disease in cats. Journal of Veterinary Internal Medicine, 30, 602–610. 10.1111/jvim.13917 [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Fox, P. R. (2003). HCM: Clinical and pathologic correlates. Journal of Veterinary Cardiology, 5(2), 39–45. [DOI] [PubMed] [Google Scholar]
  67. Fujimura, N. , Noma, K. , Hata, T. , Soga, J. , Hidaka, T. , Idei, N. , … Higashi, Y. (2012). Mineralocorticoid receptor blocker eplerenone improves endothelial function and inhibits Rho‐associated kinase activity in patients with hypertension. Clinical Pharmacology and Therapeutics, 91(2), 289–297. 10.1038/clpt.2011.227 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Fujisawa, G. , Okada, K. , Muto, S. , Fujita, N. , Itabsahi, N. , Kusano, E. , & Ishibashi, S. (2004). Spironolactone prevents early renal injury in streptozotocin‐induced diabetic rats. Kidney International, 66, 1492–1502. 10.1111/j.1523-1755.2004.00913.x [DOI] [PubMed] [Google Scholar]
  69. Fujita, M. , Minamino, T. , Asanuma, H. , Sanada, S. , Hirata, A. , Wakeno, M. , … Kitakaze, M. (2005). Aldosterone nongenomically worsens ischemia via protein kinase C‐dependent pathways in hypoperfused canine hearts. Hypertension, 46(1), 113–117. 10.1161/01.HYP.0000171184.84077.80 [DOI] [PubMed] [Google Scholar]
  70. Furumatsu, Y. , Nagasawa, Y. , Tomida, K. , Mikami, S. , Kaneko, T. , Okada, N. , … Shoji, T. (2008). Effect of renin‐angiotensin‐aldosterone system triple blockade on non‐diabetic renal disease: Addition of an aldosterone blocker, spironolactone, to combination treatment with an angiotensin‐converting enzyme inhibitor and angiotensin II receptor blocker. Hypertension, 31(1), 59–67. [DOI] [PubMed] [Google Scholar]
  71. Geddes, R. F. , Elliott, J. , & Syme, H. M. (2015). Relationship between plasma fibroblast growth factor‐23 concentration and survival time in cats with chronic kidney disease. Journal of Veterinary Internal Medicine, 29, 1494–1501. 10.1111/jvim.13625 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Glaus, T. M. , Elliott, J. , Herberich, E. , Zimmering, T. , & Albrecht, B. (2019). Efficacy of long‐term oral telmisartan treatment in cats with hypertension: Results of a prospective European clinical trial. Journal of Veterinary Internal Medicine, 33(2), 413–422. 10.1111/jvim.15394 [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Goligorsky, M. S. , Brodsky, S. V. , & Noiri, E. (2004). NO bioavailability, endothelial dysfunction, and acute renal failure: New insights into pathophysiology. Seminars in Nephrology, 24(4), 316–323. 10.1016/j.semnephrol.2004.04.003 [DOI] [PubMed] [Google Scholar]
  74. Gonzales Monte, E. , Andres, A. , Polanco, N. , Toribio, M. , Santana, R. , Gutiérrez, E. , … Morales, J. M. (2010). Addition of spironolactone to dual blockade of renin angiotensin system dramatically reduces severe proteinuria in renal transplant patients: An uncontrolled pilot study at 6 months. Renal Transplantation, 48(2), 2899–2901. [DOI] [PubMed] [Google Scholar]
  75. Greene, J. P. , Lefebvre, S. L. , Wang, M. , Yang, M. , Lund, E. M. , & Polzin, D. J. (2014). Risk factors associated with the development of chronic kidney disease in cats evaluated at primary care veterinary hospitals. Journal of the American Veterinary Medical Association, 244, 320–370. 10.2460/javma.244.3.320 [DOI] [PubMed] [Google Scholar]
  76. Gromotowicz, A. , Szemraj, J. , Stankiewicz, A. , Zakrzeska, A. , Mantur, M. , Jaroszewicz, E. , … Chabielska, E. (2011). Study of the mechanisms of aldosterone prothrombotic effect in rats. Journal of the Renin‐Angiotensin‐Aldosterone System, 12, 430–439. 10.1177/1470320310397405 [DOI] [PubMed] [Google Scholar]
  77. Gros, R. , Ding, Q. , Armstrong, S. , O’Neil, C. , Pickering, J. G. , & Feldman, R. D. (2007). Rapid effects of aldosterone on clonal human vascular smooth muscle cells. American Journal of Physiology Cellular Physiology, 292(2), C788–C794. 10.1152/ajpcell.00407.2006 [DOI] [PubMed] [Google Scholar]
  78. Gros, R. , Ding, Q. , Liu, B. , Chorazyczewski, J. , & Feldman, R. D. (2013). Aldosterone mediates its rapid effects in vascular endothelial cells through GPER activation. American Journal of Physiology‐Cell Physiology, 304(6), C532–C540. 10.1152/ajpcell.00203.2012 [DOI] [PubMed] [Google Scholar]
  79. Gullulu, M. , Akdag, I. , Kahvecioglu, S. , Filiz, G. , & Savci, V. (2006). Aldosterone blockage in proliferative glomerulonephritis prevents not only fibrosis, but proliferation as well. Renal Failure, 28(6), 509–514. 10.1080/08860220600779033 [DOI] [PubMed] [Google Scholar]
  80. Gumz, M. L. , Popp, M. P. , Wingo, C. S. , & Cain, B. D. (2003). Early transcriptional effects of aldosterone in a mouse inner medullary collecting duct cell line. American Journal of Physiology Renal Physiology, 285, F664–F673. 10.1152/ajprenal.00353.2002 [DOI] [PubMed] [Google Scholar]
  81. Guney, I. , Selcuk, N. Y. , Altintepe, L. , Atalay, H. , Başarali, K. , & Büyükbaş, M. (2009). Antifibrotic effects of aldosterone receptor blocker (spironolactone) in patients with chronic kidney disease. Renal Failure, 31(9), 779–784. 10.3109/08860220903150312 [DOI] [PubMed] [Google Scholar]
  82. Guo, C. , Martinez‐Vasquez, D. , Mendez, G. P. , Toniolo, M. F. , Yao, T. M. , Oestreicher, E. M. , … Adler, G. K. (2006). Mineralocorticoid receptor antagonist reduces renal injury in rodent models of types 1 and 2 diabetes mellitus. Endocrinology, 147, 5363–5373. 10.1210/en.2006-0944 [DOI] [PubMed] [Google Scholar]
  83. Gupta, A. K. , Knowles, S. R. , & Shear, N. H. (1994). Spironolactone‐associated cutaneous effects. Dermatology, 189(4), 402–405. 10.1159/000246889 [DOI] [PubMed] [Google Scholar]
  84. Guyonnet, J. , Elliott, J. , & Kaltsatos, V. (2010). A preclinical pharmacokinetic and pharmacodynamic approach to determine a dose of spironolactone for treatment of congestive heart failure in dog. Journal of Veterinary Pharmacology and Therapeutics, 33(3), 260–267. 10.1111/j.1365-2885.2009.01130.x [DOI] [PubMed] [Google Scholar]
  85. Hammer, F. , Malzahn, U. , Donhauser, J. , Betz, C. , Schneider, M. P. , Grupp, C. , … Zimmermann, J. (2019). A randomized controlled trial of the effect of spironolactone on left ventricular mass in hemodialysis patients. Kidney International, 95(4), 983–991. 10.1016/j.kint.2018.11.025 [DOI] [PubMed] [Google Scholar]
  86. Hannemann, A. , Wallaschofski, H. , Lüdemann, J. , Völzke, H. , Markus, M. R. , Rettig, R. , … Dörr, M. (2011). Plasma aldosterone levels and aldosterone‐to‐renin ratios are associated with endothelial dysfunction in young to middle‐aged subjects. Atherosclerosis, 219(2), 875–879. 10.1016/j.atherosclerosis.2011.09.008 [DOI] [PubMed] [Google Scholar]
  87. Hargovan, M. , & Ferro, A. (2014). Aldosterone synthase inhibitors in hypertension: Current status and future possibilities. JRSM Cardiovascular Disease, 3, 1–10. 10.1177/2048004014522440 [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Hatakeyama, H. , Miyamori, I. , Fujita, T. , Takeda, Y. , Takeda, R. , & Yamamoto, H. (1994). Vascular aldosterone. Biosynthesis and a link to angiotensin II‐induced hypertrophy of vascular smooth muscle cells. Journal of Biological Chemistry, 269, 24316–24320. [PubMed] [Google Scholar]
  89. Heerspink, H. J. , Kröpelin, T. F. , Hoekman, J. , & de Zeeuw, D. (2015). Drug‐induced reduction in albuminuria is associated with subsequent renoprotection: A meta‐analysis. Journal of the American Society of Nephrology, 26(8), 2055–2064. 10.1681/asn.2014070688 [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Heitzer, T. , Schlinzig, T. , Krohn, K. , Meinertz, T. , & Münzel, T. (2001). Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation, 104(22), 2673–2678. 10.1161/hc4601.099485 [DOI] [PubMed] [Google Scholar]
  91. Hermidorff, M. M. , de Assis, L. V. M. , & Isoldi, M. C. (2017). Genomic and rapid effects of aldosterone: What we know and do not know thus far. Heart Failure Reviews, 22(1), 65–89. 10.1007/s10741-016-9591-2 [DOI] [PubMed] [Google Scholar]
  92. Hollenberg, N. K. (2004). Aldosterone in the development and progression of renal injury. Kidney International, 66, 1–9. 10.1111/j.1523-1755.2004.00701.x [DOI] [PubMed] [Google Scholar]
  93. Hou, J. , Xiong, W. , Cao, L. , Wen, X. , & Li, A. (2015). Spironolactone add‐on for preventing or slowing the progression of diabetic nephropathy: A meta‐analysis. Clinical Therapeutics, 37(9), 2086–2103. 10.1016/j.clinthera.2015.05.508 [DOI] [PubMed] [Google Scholar]
  94. Hruby, Z. , Smolska, D. , Filipowski, H. , Ski, R. , Lar, C. E. , Kopec, W. , & Dulawa, J. (1998). The importance of tubulointerstitial injury in the early phase of primary glomerular disease. Journal of Internal Medicine, 243, 215–222. 10.1046/j.1365-2796.1998.00277.x [DOI] [PubMed] [Google Scholar]
  95. Huang, L. L. , Nikolic‐Paterson, D. J. , Ma, F. Y. , & Tesch, G. H. (2012). Aldosterone induces kidney fibroblast proliferation via activation of growth factor receptors and PI3K\MAPK signalling. Nephron ‐ Experimental Nephrology, 120(4), e115–e122. 10.1159/000339500 [DOI] [PubMed] [Google Scholar]
  96. Ibáñez, L. , Vidal, X. , Ballarín, E. , & Laporte, J.‐R. (2005). Population‐based drug‐induced agranulocytosis. Archives of Internal Medicine, 165(8), 869–874. 10.1001/archinte.165.8.869 [DOI] [PubMed] [Google Scholar]
  97. Ibrahim, H. N. , & Hostetter, T. H. (1998). The renin‐aldosterone axis in two models of reduced renal mass in the rat. Journal of the American Society of Nephrology, 9, 72–76. [DOI] [PubMed] [Google Scholar]
  98. Ikeda, U. , Kanbe, T. , Nakayama, I. , Kawahara, Y. , Yokoyama, M. , & Shimada, K. (1995). Aldosterone inhibits nitric oxide synthesis in rat vascular smooth muscle cells induced by interleukin‐1 beta. European Journal of Pharmacology, 290(2), 69–73. [DOI] [PubMed] [Google Scholar]
  99. Irita, J. , Okura, T. , Jotoku, M. , Nagao, T. , Enomoto, D. , Kurata, M. , … Higaki, J. (2011). Osteopontin deficiency protects against aldosterone‐induced inflammation, oxidative stress, and interstitial fibrosis in the kidney. American Journal of Physiology ‐ Renal Physiology, 301, F833–F844. 10.1152/ajprenal.00557.2010 [DOI] [PubMed] [Google Scholar]
  100. Irita, J. , Okura, T. , Kurata, M. , Miyoshi, K. I. , Fukuoka, T. , & Higaki, J. (2008). Osteopontin in rat renal fibroblasts: Functional properties and transcriptional regulation by aldosterone. Hypertension, 51(2), 507–513. 10.1161/HYPERTENSIONAHA.107.102640 [DOI] [PubMed] [Google Scholar]
  101. Jaffe, I. Z. , & Mendelsohn, M. E. (2005). Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circulation Research, 96(6), 643–650. 10.1161/01.RES.0000159937.05502.d1 [DOI] [PubMed] [Google Scholar]
  102. Jaisser, F. , & Farman, N. (2016). Emerging roles of the mineralocorticoid receptor in pathology: Toward new paradigms in clinical pharmacology. Pharmacological Reviews, 68(1), 49–75. 10.1124/pr.115.011106 [DOI] [PubMed] [Google Scholar]
  103. Jamerson, K. A. , & Townsend, R. R. (2011). The attributable burden of hypertension: Focus on CKD. Advances in Chronic Kidney Disease, 18(1), 6–10. 10.1053/j.ackd.2010.11.006 [DOI] [PubMed] [Google Scholar]
  104. James, R. , Guillot, E. , Garelli‐Paar, C. , Huxley, J. , Grassi, V. , & Cobb, M. (2018). The SEISICAT study: A pilot study assessing efficacy and safety of spironolactone in cats with congestive heart failure secondary to cardiomyopathy. Journal of Veterinary Cardiology, 20(1), 1–12. 10.1016/j.jvc.2017.11.001 [DOI] [PubMed] [Google Scholar]
  105. Javadi, S. , Djajadiningrat‐Laanen, S. C. , Kooistra, H. S. , van Dongen, A. M. , Voorhout, G. , van Sluijs, F. J. , … Rijnberk, A. (2005). Primary hyperaldosteronism, a mediator of progressive renal disease in cats. Domestic Animal Endocrinology, 28, 85–104. 10.1016/j.domaniend.2004.06.010 [DOI] [PubMed] [Google Scholar]
  106. Jensen, J. , Henik, R. A. , & Brownfield, M. (1997). Plasma renin activity and angiotensin I and aldosterone concentrations in cats with hypertension associated with chronic renal disease. American Journal of Veterinary Research, 58, 535–540. [PubMed] [Google Scholar]
  107. Jepson, R. E. (2016). Current understanding of the pathogenesis of progressive chronic kidney disease in cats. Veterinary Clinics of North America, 46(6), 1015–1048. 10.1016/j.cvsm.2016.06.002 [DOI] [PubMed] [Google Scholar]
  108. Jepson, R. E. , Brodbelt, D. , Vallance, C. , Syme, H. M. , & Elliott, J. (2009). Evaluation of predictors of the development of azotemia in cats. Journal of Veterinary Internal Medicine, 23(4), 806–813. 10.1111/j.1939-1676.2009.0339.x [DOI] [PubMed] [Google Scholar]
  109. Jepson, R. E. , Syme, H. M. , & Elliott, J. (2014). Plasma renin activity and aldosterone concentrations in hypertensive cats with and without azotemia and in response to treatment with amlodipine besylate. Journal of Veterinary Internal Medicine, 28, 144–153. 10.1111/jvim.12240 [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Jepson, R. E. , Syme, H. M. , Vallance, C. , & Elliott, J. (2008). Plasma asymmetric dimethylarginine, symmetric dimethylarginine, l arginine, and nitrite\nitrate concentrations in cats with chronic kidney disease and hypertension. Journal of Veterinary Internal Medicine, 22(2), 317–324. 10.1111/j.1939-1676.2008.0075.x [DOI] [PubMed] [Google Scholar]
  111. Jha, V. , Garcia‐Garcia, G. , Iseki, K. , Li, Z. , Naicker, S. , Plattner, B. , … Yang, C.‐W. (2013). Chronic kidney disease: Global dimension and perspectives. The Lancet, 382, 260–272. 10.1016/S0140-6736(13)60687-X [DOI] [PubMed] [Google Scholar]
  112. Kadoya, H. , Satoh, M. , Sasaki, T. , Taniguchi, S. , Takahashi, M. , & Kashihara, N. (2015). Excess aldosterone is a critical danger signal for inflammasome activation in the development of renal fibrosis in mice. The FASEB Journal, 29, 3899–3910. 10.1096/fj.15-271734 [DOI] [PubMed] [Google Scholar]
  113. Kang, Y. S. , Ko, G. J. , Lee, M. H. , Song, H. K. , Han, S. Y. , Han, K. H. , … Cha, D. R. (2009). Effect of eplerenone, enalapril and their combination treatment on diabetic nephropathy in type II diabetic rats. Nephrology Dialysis Transplantation, 24(1), 73–84. 10.1093/ndt/gfn448 [DOI] [PubMed] [Google Scholar]
  114. King, J. N. , Gunn‐Moore, D. A. , Tasker, S. , Gleadhill, A. , & Strehlau, G. (2006). Tolerability and efficacy of benazepril in cats with chronic kidney disease. Journal of Veterinary Internal Medicine, 20(5), 1054–1064. 10.1111/j.1939-1676.2006.tb00702.x [DOI] [PubMed] [Google Scholar]
  115. King, J. N. , Tasker, S. , Gunn‐Moore, D. A. , Gleadhill, A. , & Strehlau, G. (2007). Prognostic factors in cats with chronic kidney disease. Journal of Veterinary Internal Medicine, 20, 1054–1064. 10.1111/j.1939-1676.2007.tb03042.x [DOI] [PubMed] [Google Scholar]
  116. Kitada, K. , Nakano, D. , Liu, Y. A. , Fujisawa, Y. , Hitomi, H. , Shibayama, Y. , … Nishiyama, A. (2012). Oxidative stress‐induced glomerular mineralocorticoid receptor activation limits the benefit of salt reduction in Dahl salt‐sensitive rats. PLoS ONE, 7(7), 41896. 10.1371/journal.pone.0041896 [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Kobayashi, N. , Fukushima, H. , Takeshima, H. , & Ishimitsu, T. (2010). Characterization of renal aldosterone receptors in genetically hypertensive rats. American Journal of Physiology Renal Physiology, 23(9), 1007–1013. [Google Scholar]
  118. Kobayashi, N. , Fukushima, H. , Takeshima, H. , Koguchi, W. , Mamada, Y. , Hirata, H. , … Ishimitsu, T. (2010). Effect of eplerenone on endothelial progenitor cells and oxidative stress in ischemic hindlimb. American Journal of Hypertension, 23(9), 1007–1013. 10.1038/ajh.2010.91 [DOI] [PubMed] [Google Scholar]
  119. Kobayashi, N. , Hara, K. , Tojo, A. , Onozato, M. L. , Honda, T. , Yoshida, K. , … Matsuoka, H. (2005). Eplerenone shows renoprotective effect by reducing LOX‐1‐mediated adhesion molecule, PK‐Cepsilon‐MAPK‐p90RSK, and Rho‐kinase pathway. Hypertension, 45(4), 538–544. 10.1161/01.HYP.0000157408.43807.5a [DOI] [PubMed] [Google Scholar]
  120. Kolkhof, P. , & Borden, S. A. (2012). Molecular pharmacology of the mineralocorticoid receptor: Prospects for novel therapeutics. Molecular and Cellular Endocrinology, 350(2), 310–317. 10.1016/j.mce.2011.06.025 [DOI] [PubMed] [Google Scholar]
  121. Kolkhof, P. , Nowack, C. , & Eitner, F. (2015). Nonsteroidal antagonists of the mineralocorticoid receptor. Current Opinion in Nephrology and Hypertension, 24(5), 417–424. 10.1097/MNH.0000000000000147 [DOI] [PubMed] [Google Scholar]
  122. Konta, M. , Nagakawa, M. , Sakatani, A. , Akabane, R. , Miyagawa, Y. , & Takemura, N. (2018). Evaluation of the inhibitory effects of telmisartan on drug‐induced renin‐angiotensin‐aldosterone system activation in normal dogs. Journal of Veterinary Cardiology, 20, 376–383. 10.1016/j.jvc.2018.07.009 [DOI] [PubMed] [Google Scholar]
  123. Krug, A. W. , Grossmann, C. , Schuster, C. , Freudinger, R. , Mildenberger, S. , Govindan, M. V. , & Gekle, M. (2003). Aldosterone stimulates epidermal growth factor receptor expression. Journal of Biological Chemistry, 278, 43060–43066. 10.1074/jbc.M308134200 [DOI] [PubMed] [Google Scholar]
  124. Kuwahara, Y. , Ohba, Y. , Kitoh, K. , Kuwahara, N. , & Kitagawa, H. (2006). Association of laboratory data and death within one month in cats with chronic renal failure. Journal of Small Animal Practice, 47, 446–450. 10.1111/j.1748-5827.2006.00200.x [DOI] [PubMed] [Google Scholar]
  125. Lachaux, M. , Barrera‐Chimal, J. , Nicol, L. , Rémy‐Jouet, I. , Renet, S. , Dumesnil, A. , … Mulder, P. (2018). Short‐ and long‐term administration of the non‐steroidal mineralocorticoid receptor antagonist finerenone opposes metabolic syndrome‐related cardio‐renal dysfunction. Diabetes, Obesity and Metabolism, 20, 2399–2407. 10.1111/dom.13393 [DOI] [PubMed] [Google Scholar]
  126. Lai, L. , Chen, J. , Hao, C. M. , Lin, S. , & Gu, Y. (2006). Aldosterone promotes fibronectin production through a Smad2‐dependent TGF‐β1 pathway in mesangial cells. Biochemical and Biophysical Research Communications, 348, 70–75. 10.1016/j.bbrc.2006.07.057 [DOI] [PubMed] [Google Scholar]
  127. Lantis, A. C. , Ames, M. K. , Atkins, C. E. , Defrancesco, T. C. , Keene, B. W. , & Werre, S. R. (2015). Aldosterone breakthrough with benazepril in furosemide‐activated renin‐angiotensin‐aldosterone system in normal dogs. Journal of Veterinary Pharmacology and Therapeutics, 38, 65–73. 10.1111/jvp.12154 [DOI] [PubMed] [Google Scholar]
  128. Lantis, A. C. , Ames, M. K. , Werre, S. , & Atkins, C. E. (2015). The effect of enalapril on furosemide‐activated renin‐angiotensin‐aldosterone system in healthy dogs. Journal of Veterinary Pharmacology and Therapeutics, 10.1111/jvp.12216 [DOI] [PubMed] [Google Scholar]
  129. Lattenist, L. , Lechner, S. M. , Messaoudi, S. , Le Mercier, A. , El Moghrabi, S. , Prince, S. , … Barrera‐Chimal, J. (2017). Nonsteroidal mineralocorticoid receptor antagonist finerenone protects against acute kidney injury‐mediated chronic kidney disease: Role of oxidative stress. Hypertension, 10.1161/HYPERTENSIONAHA.116.08526 [DOI] [PubMed] [Google Scholar]
  130. Laursen, S. B. , Finsen, S. , Marcussen, N. , Quaggin, S. E. , Hansen, P. B. L. , & Dimke, H. (2018). Endothelial mineralocorticoid receptor ablation does not alter blood pressure, kidney function or renal vessel contractility. PLoS ONE, 13(2), e0193032. 10.1371/journal.pone.0193032 [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Lee, S. H. , Yoo, T.‐H. , Nam, B.‐Y. , Kim, D. K. , Li, J. J. , Jung, D.‐S. , … Kang, S.‐W. (2009). Activation of local aldosterone system within podocytes is involved in apoptosis under diabetic conditions. American Journal of Physiology Renal Physiology, 297(5), F1381–1390. 10.1152/ajprenal.00101.2009 [DOI] [PubMed] [Google Scholar]
  132. Lefebvre, H. P. , Ollivier, E. , Atkins, C. E. , Combes, B. , Concordet, D. , Kaltsatos, V. , & Baduel, L. (2013). Safety of spironolactone in dogs with chronic heart failure because of degenerative valvular disease: A population‐based, longitudinal study. Journal of Veterinary Internal Medicine, 27(5), 1083–1091. 10.1111/jvim.12141 [DOI] [PubMed] [Google Scholar]
  133. Leopold, J. A. , Dam, A. , Maron, B. A. , Scribner, A. W. , Liao, R. , Handy, D. E. , … Loscalzo, J. (2007). Aldosterone impairs vascular reactivity by decreasing glucose‐6‐phosphate dehydrogenase activity. Nature Medicine, 13(2), 189–197. 10.1038/nm1545 [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Liu, S. L. , Schmuck, S. , Chorazcyzewski, J. Z. , Gros, R. , & Feldman, R. D. (2003). Aldosterone regulates vascular reactivity: Short‐term effects mediated by phosphatidylinositol 3‐kinase‐dependent nitric oxide synthase activation. Circulation, 108(19), 2400–2406. 10.1161/01.CIR.0000093188.53554.44 [DOI] [PubMed] [Google Scholar]
  135. Lombès, M. , Oblin, M. E. , Gasc, J. M. , Baulieu, E. E. , Farman, N. , & Bonvalet, J. P. (1992). Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circulation Research, 71(3), 503–510. 10.1161/01.RES.71.3.503 [DOI] [PubMed] [Google Scholar]
  136. Luther, J. M. , Luo, P. , Wang, Z. , Cohen, S. E. , Kim, H. S. , Fogo, A. B. , & Brown, N. J. (2012). Aldosterone deficiency and mineralocorticoid receptor antagonism prevent angiotensin II–induced cardiac, renal, and vascular injury. Kidney International, 82, 643–651. 10.1038/ki.2012.170 [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Macdonald, J. E. , Kennedy, N. , & Struthers, A. D. (2004). Effects of spironolactone on endothelial function, vascular angiotensin converting enzyme activity, and other prognostic markers in patients with mild heart failure already taking optimal treatment. Heart, 90(7), 765–770. 10.1136/hrt.2003.017368 [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. MacDonald, K. A. , Kittleson, M. D. , & Kass, P. H. (2008). Effect of spironolactone on diastolic function and left ventricular mass in Maine Coon cats with familial hypertrophic cardiomyopathy. Journal of Veterinary Internal Medicine, 22(2), 335–341. 10.1111/j.1939-1676.2008.0049.x [DOI] [PubMed] [Google Scholar]
  139. MacKenzie, S. M. , Clark, C. J. , Fraser, R. , Gómez‐Sánchez, C. E. , Connell, J. M. C. , & Davies, E. (2000). Expression of 11β‐hydroxylase and aldosterone synthase genes in the rat brain. Journal of Molecular Endocrinology, 24(3), 321–328. 10.1677/jme.0.0240321 [DOI] [PubMed] [Google Scholar]
  140. Maggioni, A. P. , Anker, S. D. , Dahlström, U. , Filippatos, G. , Ponikowski, P. , Zannad, F. , … Tavazzi, L. (2013). Are hospitalized or ambulatory patients with heart failure treated in accordance with European Society of Cardiology guidelines? Evidence from 12 440 patients of the ESC Heart Failure Long‐Term Registry. European Journal of Heart Failure, 15, 1173–1184. 10.1093/eurjhf/hft134 [DOI] [PubMed] [Google Scholar]
  141. Malyszko, J. (2010). Mechanism of endothelial dysfunction in chronic kidney disease. Clinica Chimica Acta, 411, 1412–1420. 10.1016/j.cca.2010.06.019 [DOI] [PubMed] [Google Scholar]
  142. Maron, B. A. , Zhang, Y.‐Y. , Handy, D. E. , Beuve, A. , Tang, S.‐S. , Loscalzo, J. , & Leopold, J. A. (2009). Aldosterone increases oxidant stress to impair guanylyl cyclase activity by cysteinyl thiol oxidation in vascular smooth muscle cells. The Journal of Biological Chemistry, 284(12), 7665–7672. 10.1074/jbc.M809460200 [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Martín‐Fernández, B. , Rubio‐Navarro, A. , Cortegano, I. , Ballesteros, S. , Alía, M. , Cannata‐Ortiz, P. , … Moreno, J. A. (2016). Aldosterone induces renal fibrosis and inflammatory M1‐macrophage subtype via mineralocorticoid receptor in rats. PLoS ONE, 11(1), e0145946. 10.1371/journal.pone.0145946 [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Mathur, S. , Brown, C. A. , Dietrich, U. M. , Munday, J. S. , Newell, M. A. , Sheldon, S. E. , … Brown, S. A. (2004). Evaluation of a technique of inducing hypertensive renal insufficiency in cats. American Journal of Veterinary Research, 65, 1006–1013. 10.2460/ajvr.2004.65.1006 [DOI] [PubMed] [Google Scholar]
  145. Matsumoto, Y. , Mori, Y. , Kageyama, S. , Arihara, K. , Sugiyama, T. , Ohmura, H. , … Shio, N. (2014). Spironolactone reduces cardiovascular and cerebrovascular morbidity and mortality in hemodialysis patients. Journal of the American College of Cardiology, 63(6), 528–536. 10.1016/j.jacc.2013.09.056 [DOI] [PubMed] [Google Scholar]
  146. McCormick, J. A. , Bhalla, V. , Pao, A. C. , & Pearce, D. (2005). SGK1: A rapid aldosterone‐induced regulator of renal sodium reabsorption. Physiology, 20(2), 134–139. 10.1152/physiol.00053.2004 [DOI] [PubMed] [Google Scholar]
  147. McLeland, S. M. , Cianciolo, R. E. , Duncan, C. G. , & Quimby, J. M. (2015). A comparison of biochemical and histopathologic staging in cats with chronic kidney disease. Veterinary Pathology, 52(3), 524–534. 10.1177/0300985814561095 [DOI] [PubMed] [Google Scholar]
  148. Medeiros, M. , Velásquez‐Jones, L. , Hernández, A. M. , Ramón‐García, G. , Valverde, S. , Fuentes, Y. , … Bobadilla, N. A. (2017). Randomized controlled trial of mineralocorticoid receptor blockade in children with chronic kidney allograft nephropathy. Clinical Journal of the American Society of Nephrology, 12(8), 1291–1300. 10.2215/CJN.05300516 [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Mejía‐Villet, J. M. , Ramírez, V. , Cruz, C. , Uribe, M. , Gamba, G. , & Bobadilla, N. A. (2007). Renal ischemia\reperfusion injury is prevented by the mineralocorticoid receptor blocker spironolactone. American Journal of Physiology Renal Physiology, 293(1), F78–86. 10.1152/ajprenal.00077.2007 [DOI] [PubMed] [Google Scholar]
  150. Michea, L. , Delpiano, A. M. , Hitschfeld, C. , Lobos, L. , Lavendero, S. , & Marusic, E. T. (2005). Eplerenone blocks nongenomic effects of aldosterone on the Na+\H+ exchanger, intracellular Ca2+ levels, and vasoconstriction in mesenteric resistance vessels. Endocrinology, 146(3), 973–980. [DOI] [PubMed] [Google Scholar]
  151. Michea, L. , Villagrán, A. , Urzúa, A. , Kuntsmann, S. , Venegas, P. , Carrasco, L. , … Marusic, E. T. (2008). Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and prevents oxidative stress in uremic rats. Hypertension, 52(2), 295–300. 10.1161/HYPERTENSIONAHA.107.109645 [DOI] [PubMed] [Google Scholar]
  152. Mihailidou, A. S. , Le, L. T. Y. , Mardini, M. , & Funder, J. W. (2009). Glucocorticoids activate cardiac mineralocorticoid receptors during experimental myocardial infarction. Hypertension, 54(6), 1306–1312. 10.1161/HYPERTENSIONAHA.109.136242 [DOI] [PubMed] [Google Scholar]
  153. Mishina, M. , Watanabe, T. , Fuji, K. , Maeda, H. , Wakao, Y. , & Takahashi, M. (1998). Non‐invasive blood pressure measurements in cats: Clinical significance of hypertension associated with chronic renal failure. Journal of Veterinary Medical Science, 60(7), 805–808. 10.1292/jvms.60.805 [DOI] [PubMed] [Google Scholar]
  154. Mitani, S. , Yabuki, A. , Sawa, M. , Chang, H. S. , & Yamato, C. (2013). Intrarenal distributions and changes of angiotensin‐converting enzyme and angiotensin‐converting enzyme 2 in feline and canine chronic kidney disease. Journal of Veterinary Medical Science, 76(1), 45–50. 10.1292/jvms.13-0314 [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Mitani, S. , Yabuki, A. , Taniguchi, K. , & Yamato, O. (2013). Association between the intrarenal renin‐angiotensin system and renal injury in chronic kidney disease of dogs and cats. Journal of Veterinary Medical Science, 7(2), 127–133. 10.1292/jvms.12-0314 [DOI] [PubMed] [Google Scholar]
  156. Nagai, Y. , Miyata, K. , Sun, G.‐P. , Rahman, M. , Kimura, S. , Miyatake, A. , … Nishiyama, A. (2005). Aldosterone stimulates collagen gene expression and synthesis via activation of ERK1\2 in rat renal fibroblasts. Hypertension, 46(4), 1039–1045. 10.1161/01.HYP.0000174593.88899.68 [DOI] [PubMed] [Google Scholar]
  157. Nagase, M. , Matsui, H. , Shibata, S. , Gotoda, T. , & Fujita, T. (2007). Salt‐induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: Role of oxidative stress. Hypertension, 50(5), 877–883. 10.1161/HYPERTENSIONAHA.107.091058 [DOI] [PubMed] [Google Scholar]
  158. Nagase, M. , Yoshida, S. , Shibata, S. , Nagase, T. , Gotoda, T. , Ando, K. , & Fujita, T. (2006). Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: Possible contribution of fat‐derived factors. Journal of the American Society of Nephrology, 17(12), 3438–3446. 10.1681/ASN.2006080944 [DOI] [PubMed] [Google Scholar]
  159. Nagata, D. , Takahashi, M. , Sawai, K. , Tagami, T. , Usui, T. , Shimatsu, A. , … Naruse, M. (2006). Molecular mechanism of the inhibitory effect of aldosterone on endothelial NO synthase activity. Hypertension, 48(1), 165–167. 10.1161/01.HYP.0000226054.53527.bb [DOI] [PubMed] [Google Scholar]
  160. Nangaku, M. (2006). Chronic hypoxia and tubulointerstitial injury: A final common pathway to end‐stage renal failure. Journal of the American Society of Nephrology, 17, 17–25. 10.1681/ASN.2005070757 [DOI] [PubMed] [Google Scholar]
  161. Nath, K. A. (1992). Tubulointerstitial changes as a major determinant in the progression of renal damage. American Journal of Kidney Diseases, 20(1), 1–17. 10.1016/S0272-6386(12)80312-X [DOI] [PubMed] [Google Scholar]
  162. Nguyen Dahn Cat, A. , Griol‐Charhbili, V. , Loufrani, L. , Labat, C. , Benjamin, L. , Farman, N. , … Jaisser, F. (2010). The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. The FASEB Journal, 24, 2454–2463. 10.1096/fj.09-147926 [DOI] [PubMed] [Google Scholar]
  163. Nielsen, F. T. , Jensen, B. L. , Hansen, P. B. L. , Marcussen, N. , & Bie, P. (2013). The mineralocorticoid receptor antagonist eplerenone reduces renal interstitial fibrosis after long‐term cyclosporine treatment in rat: Antagonizing cyclosporine nephrotoxicity. BMC Nephrology, 14(42), 10.1186/1471-2369-14-42 [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Nielsen, F. T. , Jensen, B. L. , Marcussen, N. , Skøtt, O. , & Bie, P. (2008). Inhibition of mineralocorticoid receptors with eplerenone alleviates short‐term cyclosporin a nephrotoxicity in conscious rats. Nephrology Dialysis Transplantation, 23, 2777–2783. 10.1093/ndt/gfn204 [DOI] [PubMed] [Google Scholar]
  165. Nishiyama, A. , & Abe, Y. (2006). Molecular mechanisms and therapeutic strategies of chronic renal injury: Renoprotective effects of aldosterone blockade. Journal of Pharmacological Sciences, 100, 9–16. 10.1254/jphs.FMJ05003X3 [DOI] [PubMed] [Google Scholar]
  166. Nishiyama, A. , & Kobori, H. (2018). Independent regulation of renin‐angiotensin‐aldosterone system in the kidney. Clinical and Experimental Nephrology, 22(6), 1231–1239. 10.1007/s10157-018-1567-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Nishiyama, A. , Kobori, H. , Konishi, Y. , Morikawa, T. , Maeda, I. , Okumura, M. , … Imanishi, M. (2010). Mineralocorticoid receptor blockade enhances the antiproteinuric effect of an angiotensin II blocker through inhibiting podocyte injury in type 2 diabetic rats. Journal of Pharmacology and Experimental Therapeutics, 332, 1072–1080. 10.1124/jpet.109.158113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Nishiyama, A. , Yao, L. I. , Fan, Y. , Kyaw, M. , Kataoka, N. , Hashimoto, K. , … Abe, Y. (2005). Involvement of aldosterone and mineralocorticoid receptors in rat mesangial cell proliferation and deformability. Hypertension, 45(4), 710–716. 10.1161/01.HYP.0000154681.38944.9a [DOI] [PubMed] [Google Scholar]
  169. Nishiyama, A. , Yao, L. I. , Nagai, Y. , Miyata, K. , Yoshizumi, M. , Kagami, S. , … Abe, Y. (2004). Possible contributions of reactive oxygen species and mitogen‐activated protein kinase to renal injury in aldosterone\salt‐induced hypertensive rats. Hypertension, 43(4), 841–848. 10.1161/01.HYP.0000118519.66430.22 [DOI] [PubMed] [Google Scholar]
  170. Nishizaka, M. K. , Zaman, M. A. , Green, S. A. , Renfroe, K. Y. , & Calhoun, D. A. (2004). Impaired endothelium‐dependent flow‐mediated vasodilation in hypertensive subjects with hyperaldosteronism. Circulation, 109(23), 2857–2861. 10.1161/01.CIR.0000129307.26791.8E [DOI] [PubMed] [Google Scholar]
  171. O’Neill, D. G. , Church, D. B. , McGreevy, P. D. , Thomson, P. C. , & Brodbelt, D. C. (2015). Longevity and mortality of cats attending primary care veterinary practices in England. Journal of Feline Medicine & Surgery, 17(2), 125–133. 10.1177/1098612X14536176 [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Oberleithner, H. , Ludwig, T. , Riethmüller, C. , Hillebrand, U. , Albermann, L. , Schäfer, C. , … Schillers, H. (2004). Human endothelium: Target for aldosterone. Hypertension, 43(5), 952–956. 10.1161/01.HYP.0000123572.45556.a5 [DOI] [PubMed] [Google Scholar]
  173. Odermatt, A. , & Kratschmar, D. V. (2012). Tissue‐specific modulation of mineralocorticoid receptor function by 11β‐hydroxysteroid dehydrogenases: An overview. Molecular and Cellular Endocrinology, 350(2), 168–186. 10.1016/j.mce.2011.07.020 [DOI] [PubMed] [Google Scholar]
  174. Ohtake, M. , Hattori, T. , Murase, T. , Takatsu, M. , Miyachi, M. , Watanabe, S. , … Nagata, K. (2014). Glucocorticoids activate cardiac mineralocorticoid receptors in adrenalectomized Dahl salt‐sensitive rats. Nagoya Journal of Medical Science, 76(1–2), 59–72. [PMC free article] [PubMed] [Google Scholar]
  175. Ojeda‐Cervantes, M. , Barrera‐Chimal, J. , Alberú, J. , Pérez‐Villalva, R. , Morales‐Buenrostro, L. , & Bobadilla, N. A. (2013). Mineralocorticoid receptor blockade reduced oxidative stress in renal transplant recipients: A double‐blind, randomized pilot study. American Journal of Nephrology, 37(5), 481–490. 10.1159/000350539 [DOI] [PubMed] [Google Scholar]
  176. Oyamada, N. , Sone, M. , Miyashita, K. , Park, K. , Taura, D. , Inuzuka, M. , … Nakao, K. (2008). The role of mineralocorticoid receptor expression in brain remodeling after cerebral ischemia. Endocrinology, 149, 3764–3777. 10.1210/en.2007-1770 [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Ozacmak, H. S. , Ozacmak, V. H. , Barut, F. , Arasli, M. , & Ucan, B. H. (2014). Pretreatment with mineralocorticoid receptor blocker reduces intestinal injury induced by ischemia and reperfusion: Involvement of inhibition of inflammatory response, oxidative stress, nuclear factor κb, and inducible nitric oxide synthase. Journal of Surgical Research, 191, 350–361. 10.1016/j.jss.2014.04.040 [DOI] [PubMed] [Google Scholar]
  178. Pérez‐Rojas, J. , Blanco, J. A. , Cruz, C. , Trujillo, J. , Vaidya, V. S. , Uribe, N. , … Bobadilla, N. A. (2007). Mineralocorticoid receptor blockade confers renoprotection in preexisting chronic cyclosporine nephrotoxicity. American Journal of Physiology‐Renal Physiology, 292(1), F131–F139. 10.1152/ajprenal.00147.2006 [DOI] [PubMed] [Google Scholar]
  179. Pérez‐Rojas, J. M. , Derive, S. , Blanco, J. A. , Cruz, C. , de la Maza, L. , Gamba, G. , & Bobadilla, N. A. (2005). Renocortical mRNA expression of vasoactive factors during spironolactone protective effect in chronic cyclosporine nephrotoxicity. American Journal of Physiology Renal Physiology, 289(5), F1020–F1030. 10.1152/ajprenal.00166.2005 [DOI] [PubMed] [Google Scholar]
  180. Perticone, F. , Ceravolo, R. , Pujia, A. , Ventura, G. , Iacopino, S. , Scozzafava, A. , … Schillaci, G. (2001). Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation, 104(2), 191–196. 10.1161/01.CIR.104.2.191 [DOI] [PubMed] [Google Scholar]
  181. Pisoni, R. , Acelajado, M. C. , Cartmill, F. R. , Dudenbostel, T. , Dell'Italia, L. J. , Cofield, S. S. , … Calhoun, D. A. (2012). Long‐term effects of aldosterone blockade in resistant hypertension associated with chronic kidney disease. Journal of Human Hypertension, 26, 502–506. 10.1038/jhh.2011.60 [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Pitt, B. , Kober, L. , Ponikowski, P. , Gheorghiade, M. , Filippatos, G. , Krum, H. , … Zannad, F. (2013). Safety and tolerability of the novel non‐steroidal mineralocorticoid receptor antagonist BAY 94–8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: A randomised double‐blind trial. European Heart Journal, 34, 2453–2463. 10.1093/eurheartj/eht187 [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Pitt, B. , Remme, W. , Zannad, F. , Neaton, J. , Martinez, F. , Roniker, B. , … Gatlin, M. (2003). Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. New England Journal of Medicine, 348(14), 1309–1321. 10.1056/NEJMoa030207 [DOI] [PubMed] [Google Scholar]
  184. Pitt, B. , Zannad, F. , Remme, W. J. , Cody, R. , Castaigne, A. , Perez, A. , … Wittes, J. (1999). The effect of spironolactone on morbidity and mortality in patients with severe heart failure. New England Journal of Medicine, 341(10), 709–717. 10.1056/NEJM199909023411001 [DOI] [PubMed] [Google Scholar]
  185. Ponda, M. P. , & Hostetter, T. H. (2006). Aldosterone antagonism in chronic kidney disease. Clinical Journal of the American Society of Nephrology, 1(4), 668–677. 10.2215/CJN.00120106 [DOI] [PubMed] [Google Scholar]
  186. Ponikowski, P. , A. Voors, A. , D. Anker, S. , Bueno, H. , G. F. Cleland, J. , J. S. Coats, A. , … Van der Meer, P. (2016). 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC): Developed with the special contribution. European Journal of Heart Failure, 18(8), 891–975. 10.15829/1560-4071-2017-1-7-81 [DOI] [PubMed] [Google Scholar]
  187. Poulsen, S. B. , Limbutara, K. , Fenton, R. A. , Pisitkun, T. , & Christensen, B. M. (2018). RNA sequencing of kidney distal tubule cells reveals multiple mediators of chronic aldosterone action. Physiological Genomics, 50, 343–354. 10.1152/physiolgenomics.00084.2017 [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Pu, Q. , Neves, M. F. , Virdis, A. , Touyz, R. M. , & Schiffrin, E. L. (2003). Endothelin antagonism on aldosterone‐induced oxidative stress and vascular remodeling. Hypertension, 42(1), 49–55. 10.1161/01.HYP.0000078357.92682.EC [DOI] [PubMed] [Google Scholar]
  189. Quach, K. , Lvtvyn, L. , Baigent, C. , Bueti, J. , Garg, A. X. , Hawley, C. , … Walsh, M. (2016). The safety and efficacy of mineralocorticoid receptor antagonists in patients who require dialysis: A systematic review and meta‐analysis. American Journal of Kidney Diseases, 68(4), 591–598. 10.1053/j.ajkd.2016.04.011 [DOI] [PubMed] [Google Scholar]
  190. Queisser, N. , Amann, K. , Hey, V. , Habib, S. L. , & Schupp, N. (2013). Blood pressure has only minor influence on aldosterone‐induced oxidative stress and DNA damage in vivo. Free Radical Biology and Medicine, 54, 17–25. 10.1016/j.freeradbiomed.2012.10.549 [DOI] [PubMed] [Google Scholar]
  191. Quinkler, M. , Zehnder, D. , Eardley, K. S. , Lepenies, J. , Howie, A. J. , Hughes, S. V. , … Stewart, P. M. (2005). Increased expression of mineralocorticoid effector mechanisms in kidney biopsies of patients with heavy proteinuria. Circulation, 112(10), 1435–1443. 10.1161/CIRCULATIONAHA.105.539122 [DOI] [PubMed] [Google Scholar]
  192. Rachmani, R. , Slavachevsky, I. , Amit, M. , Levi, Z. , Berla, K. M. , & Ravid, M. (2004). The effect of spironolactone, cilazapril and their combination on albuminuria in patients with hypertension and diabetic nephropathy is independent of blood pressure reduction: A randomised controlled study. Diabetic Medicine, 21, 471–475. [DOI] [PubMed] [Google Scholar]
  193. Rafiq, K. , Hitomi, H. , Nakano, D. , & Nishiyama, A. (2010). Pathophysiological roles of aldosterone and mineralocorticoid receptor in the kidney. Journal of Pharmacological Sciences, 115, 1–7. 10.1254/jphs.10R07CR [DOI] [PubMed] [Google Scholar]
  194. Ramírez, V. , Trujillo, J. , Valdes, R. , Uribe, N. , Cruz, C. , Gamba, G. , & Bobadilla, N. A. (2009). Adrenalectomy prevents renal ischemia‐reperfusion injury. American Journal of Physiology Renal Physiology, 297(4), F932–F934. 10.1152/ajprenal.00252.2009 [DOI] [PubMed] [Google Scholar]
  195. Rigsby, C. , Pollock, D. M. , & Dorrance, A. M. (2007). Spironolactone improves structure and increases tone in the cerebral vasculature of male spontaneously hypertensive stroke‐prone rats. Microvascular Research, 73(3), 198–205. 10.1016/j.mvr.2006.12.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Rocha, R. , Stier, C. T. , Kifor, I. , Ochoa‐Maya, M. R. , Rennke, H. G. , Williams, G. H. , & Adler, G. K. (2000). Aldosterone: A mediator of myocardial necrosis and renal arteriopathy. Endocrinology, 141(10), 3871–3878. 10.1210/endo.141.10.7711 [DOI] [PubMed] [Google Scholar]
  197. Ross, L. A. , Finco, D. R. , & Crowell, W. A. (1982). Effect of dietary phosphorus restriction on the kidneys of cats with reduced renal mass. American Journal of Veterinary Research, 43(6), 1023–1026. [PubMed] [Google Scholar]
  198. Ross, S. J. , Osborne, C. A. , Kirk, C. A. , Lowry, S. R. , Koehler, L. A. , & Polzin, D. J. (2006). Clinical evaluation of dietary modification for treatment of spontaneous chronic kidney disease in cats. Journal of the American Veterinary Medical Association, 229(6), 949–957. 10.2460/javma.229.6.949 [DOI] [PubMed] [Google Scholar]
  199. Rusai, K. , Wagner, B. , Roos, M. , Schmaderer, C. , Strobl, M. , Boini, K. M. , … Lutz, J. (2009). The serum and glucocorticoid‐regulated kinase 1 in hypoxic renal injury. Cellular Physiology and Biochemistry, 24(5–6), 577–584. 10.1159/000257527 [DOI] [PubMed] [Google Scholar]
  200. Sánchez‐Pozos, K. , Barrera‐Chimal, J. , Garzón‐Muvdi, J. , Pérez‐Villalva, R. , Rodríguez‐Romo, R. C. , Cruz, N. , … Bobadilla, N. A. (2012). Recovery from ischemic acute kidney injury by spironolactone administration. Nephrology Dialysis Transplantation, 27, 3160–3169. 10.1093/ndt/gfs014 [DOI] [PubMed] [Google Scholar]
  201. Sansom, J. , Rogers, K. , & Wood, J. L. (2004). Blood pressure assessment in healthy cats and cats with hypertensive retinopathy. American Journal of Veterinary Research, 65, 245–252. 10.2460/ajvr.2004.65.245 [DOI] [PubMed] [Google Scholar]
  202. Sanz‐Rosa, D. , Oubiña, M. P. , Cediel, E. , Heras, N. D. L. , Aragoncillo, P. , Balfagón, G. , … Lahera, V. (2005). Eplerenone reduces oxidative stress and enhances eNOS in SHR: Vascular functional and structural consequences. Antioxidants and Redox Signaling, 7(9), 1294–1301. 10.1089/ars.2005.7.1294 [DOI] [PubMed] [Google Scholar]
  203. Sato, A. , Hayashi, K. , Naruse, M. , & Saruta, T. (2003). Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension, 41, 64–68. 10.1161/01.HYP.0000044937.95080.E9 [DOI] [PubMed] [Google Scholar]
  204. Sato, A. , Hayashi, K. , & Saruta, T. (2005). Antiproteinuric effects of mineralocorticoid receptor blockade in patients with chronic renal disease. American Journal of Hypertension, 18(1), 44–49. 10.1016/j.amjhyper.2004.06.029 [DOI] [PubMed] [Google Scholar]
  205. Sawashima, K. , Mizuno, S. , Mizuno‐Horikawa, Y. , Shimada, A. , Kudo, T. , & Kurosawa, T. (2000). Expression of α‐smooth muscle actin and fibronectin in tubulointerstitial lesions of cats with chronic renal failure. American Journal of Veterinary Research, 61(9), 1080–1086. 10.2460/ajvr.2000.61.1080 [DOI] [PubMed] [Google Scholar]
  206. Schipper, L. , Spee, B. , Rothuizen, J. , Nijnanten, F. , & Fink‐Gremmels, J. (2004). Characterisation of 11β‐hydroxysteroid dehydrogenases in feline kidney and liver. Biochimica Et Biophysica Acta, 1688(1), 68–77. 10.1016/j.bbadis.2003.11.003 [DOI] [PubMed] [Google Scholar]
  207. Schjoedt, K. J. , Andersen, S. , Rossing, P. , Tarnow, L. , & Parving, H.‐H. (2004). Aldosterone escape during blockade of the renin–angiotensin–aldosterone system in diabetic nephropathy is associated with enhanced decline in glomerular filtration rate. Diabetologia, 47(11), 1936–1939. 10.1007/s00125-004-1542-0 [DOI] [PubMed] [Google Scholar]
  208. Schmidt, B. M. W. , Sammer, U. , Fleischmann, I. , Schlaich, M. , Delles, C. , & Schmieder, R. E. (2006). Rapid nongenomic effects of aldosterone on the renal vasculature in humans. Hypertension, 47(4), 650–655. 10.1161/01.HYP.0000205224.58715.cc [DOI] [PubMed] [Google Scholar]
  209. Schmiedt, C. W. , Brainard, B. M. , Hinson, W. , Brown, S. A. , & Brown, C. A. (2016). Unilateral renal ischemia as a model of acute kidney injury and renal fibrosis in cats. Veterinary Pathology, 53(1). 10.1177/0300985815600500 [DOI] [PubMed] [Google Scholar]
  210. Schmiedt, C. W. , Nelson, S. A. , Brainard, B. M. , Brown, C. A. , Vandenplas, M. , & Hurley, D. J. (2012). Bilateral renal ischemia as a model of acute kidney injury in cats. Research in Veterinary Science, 93(2), 950–959. 10.1016/j.rvsc.2011.12.004 [DOI] [PubMed] [Google Scholar]
  211. Schupp, N. , Queisser, N. , Wolf, M. , Kolkhof, P. , Bärfacker, L. , Schäfer, S. , … Stopper, H. (2010). Aldosterone causes DNA strand breaks and chromosomal damage in renal cells, which are prevented by mineralocorticoid receptor antagonists. Hormone and Metabolic Research, 42(6), 458–465. 10.1055/s-0029-1243253 [DOI] [PubMed] [Google Scholar]
  212. Sent, U. , Gössl, R. , Elliott, J. , Syme, H. M. , & Zimmering, T. (2015). Comparison of efficacy of long‐term oral treatment with telmisartan and benazepril in cats with chronic kidney disease. Journal of Veterinary Internal Medicine, 29(6), 1479–1486. 10.1111/jvim.13639 [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Shavit, L. , Lifschitz, M. , & Epstein, M. (2012). Aldosterone blockade and the mineralocorticoid receptor in the management of chronic kidney disease: Current concepts and emerging treatment paradigms. Kidney International, 81(10), 955–968. 10.1038/ki.2011.505 [DOI] [PubMed] [Google Scholar]
  214. Sheng, L. , Yang, M. , Ding, W. , Zhang, M. , Niu, J. , Qiao, Z. , & Gu, Y. (2016). Epidermal growth factor receptor signaling mediates aldosterone‐induced profibrotic responses in kidney. Experimental Cell Research, 346(1), 99–110. 10.1016/j.yexcr.2016.06.009 [DOI] [PubMed] [Google Scholar]
  215. Shibata, S. , Nagase, M. , Yoshida, S. , Kawachi, H. , & Fujita, T. (2007). Podocyte as the target for Aldosterone. Hypertension, 49(2), 355–364. 10.1161/01.HYP.0000255636.11931.a2 [DOI] [PubMed] [Google Scholar]
  216. Shibata, S. , Nagase, M. , Yoshida, S. , Kawarazaki, W. , Kurihara, H. , Tanaka, H. , … Fujita, T. (2008). Modification of mineralocorticoid receptor function by Rac1 GTPase: Implication in proteinuric kidney disease. Nature Medicine Medicine, 14(12), 1370–1376. 10.1038/nm.1879 [DOI] [PubMed] [Google Scholar]
  217. Sica, D. A. (2005). Pharmacokinetics and pharmacodynamics of mineralocorticoid blocking agents and their effects on potassium homeostasis. Heart Failure Reviews, 10(1), 23–29. 10.1007/s10741-005-2345-1 [DOI] [PubMed] [Google Scholar]
  218. Siragy, H. M. , & Carey, R. M. (2010). Role of the intrarenal renin‐angiotensin‐aldosterone system in chronic kidney disease. American Journal of Nephrology, 31, 541–550. 10.1159/000313363 [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Sogawa, Y. , Nagasu, H. , Itano, S. , Kidokoro, K. , Taniguchi, S. , Takahashi, M. , … Kashihara, N. (2018). The eNOS‐NO pathway attenuates kidney dysfunction via suppression of inflammasome activation in aldosterone‐induced renal injury model mice. PLoS ONE, 13(10), e0203823. 10.1371/journal.pone.0203823 [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Son, D. , Kojima, I. , Inagi, R. , Matsumoto, M. , Fujita, T. , & Nangaku, M. (2008). Chronic hypoxia aggravates renal injury via suppression of Cu\Zn‐SOD: A proteomic analysis. American Journal of Physiology Renal Physiology, 294(1), F62–72. 10.1152/ajprenal.00113.2007 [DOI] [PubMed] [Google Scholar]
  221. Stier, C. (2000). Antioxidants reduce aldosterone‐induced renal vascular injury in stroke‐prone spontaneously hypertensive rats [Abstract]. Proceedings of the International Society of Hypertension, P4.03. 18th Scientific Meeting of the International Society of Hypertension, Chicago, IL. 5, 5–75 [Google Scholar]
  222. Struthers, A. D. (2004). Aldosterone‐induced vasculopathy. Molecular and Cellular Endocrinology, 217, 239–241. 10.1016/j.mce.2003.10.024 [DOI] [PubMed] [Google Scholar]
  223. Sun, G.‐P. , Kohno, M. , Guo, P. , Nagai, Y. , Miyata, K. , Fan, Y.‐Y. , … Nishiyama, A. (2006). Involvements of Rho‐kinase and TGF‐β pathways in aldosterone‐induced renal injury. Journal of the American Society of Nephrology, 17(8), 2193–2201. 10.1681/ASN.2005121375 [DOI] [PubMed] [Google Scholar]
  224. Sun, Y. , Zhang, J. , Lu, L. , Chen, S. S. , Quinn, M. T. , & Weber, K. T. (2002). Aldosterone‐induced inflammation in the rat heart: Role of oxidative stress. American Journal of Pathology, 161(5), 1773–1781. 10.1016/S0002-9440(10)64454-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Sun, Y. , Zhang, J. , Zhang, J. Q. , & Ramires, F. J. (2000). Local angiotensin II and transforming growth factor‐beta1 in renal fibrosis of rats. Hypertension, 35(5), 1078–1084. [DOI] [PubMed] [Google Scholar]
  226. Syme, H. (2003). Studies of the epidemiology and aetiology of systemic hypertension in the cat. Doctoral thesis, Royal Veterinary College. [Google Scholar]
  227. Syme, H. M. , Barber, P. J. , Markwell, P. J. , & Elliott, J. (2002). Prevalence of systolic hypertension in cats with chronic renal failure at initial evaluation. Journal of the American Veterinary Medical Association, 220(12), 1799–1804. 10.2460/javma.2002.220.1799 [DOI] [PubMed] [Google Scholar]
  228. Syme, H. M. , Fletcher, M. G. R. , Bailey, S. R. , & Elliott, J. (2007). Measurement of aldosterone in feline, canine and human urine. Journal of Small Animal Practice, 48(4), 202–208. 10.1111/j.1748-5827.2006.00264.x [DOI] [PubMed] [Google Scholar]
  229. Syme, H. M. , Markwell, P. J. , & Elliott, J. (2002). Aldosterone and plasma renin activity in cats with hypertension and\or chronic renal failure [Abstract]. Journal of Veterinary Internal Medicine, 16, 354. [Google Scholar]
  230. Syme, H. M. , Markwell, P. J. , Pfeiffer, D. , & Elliott, J. (2006). Survival of Cats with Naturally Occurring Chronic Renal Failure Is Related to Severity of Proteinuria. Journal of Veterinary Internal Medicine, 20(3), 528–535. 10.1111/j.1939-1676.2006.tb02892.x [DOI] [PubMed] [Google Scholar]
  231. Taheri, S. , Mortazavi, M. , Shahidi, S. , Pourmoghadas, A. , Garakyaraghi, M. , Seirafian, S. , … Ghassami, M. (2009). Spironolactone in chronic hemodialysis patients improves cardiac function. Saudi Journal of Kidney Diseases and Transplantation, 20(3), 392–397. [PubMed] [Google Scholar]
  232. Takebayashi, K. , Matsumoto, S. , Aso, Y. , & Inukai, T. (2006). Aldosterone blockade attenuates urinary monocyte chemoattractant protein‐1 and oxidative stress in patients with type 2 diabetes complicated by diabetic nephropathy. Journal of Clinical Endocrinology and Metabolism, 91, 2214–2217. 10.1210/jc.2005-1718 [DOI] [PubMed] [Google Scholar]
  233. Takeda, Y. , Miyamori, I. , Yoneda, T. , Iki, K. , Hatakeyama, H. , Blair, I. A. , … Takeda, R. (1995). Production of aldosterone in isolated rat blood vessels. Hypertension, 27(170–3), 10.1161/01.hyp.25.2.170 [DOI] [PubMed] [Google Scholar]
  234. Taugner, F. , Baatz, G. , & Nobiling, R. (1996). The renin‐angiotensin system in cats with chronic renal failure. Journal of Comparative Pathology, 115(3), 239–252. 10.1016/S0021-9975(96)80082-X [DOI] [PubMed] [Google Scholar]
  235. Terada, Y. , Kobayashi, T. , Kuwana, H. , Tanaka, H. , Inoshita, S. , Kuwahara, M. , & Sasaki, S. (2005). Aldosterone stimulates proliferation of mesangial cells by activating mitogen‐activated protein kinase 1\2, cyclin D1, and cyclin A. Journal of the American Society of Nephrology, 16(2296–2305), 10.1681/ASN.2005020129 [DOI] [PubMed] [Google Scholar]
  236. Terada, Y. , Ueda, S. , Hamada, K. , Shimamura, Y. , Ogata, K. , Inoue, K. , … Takao, T. (2012). Aldosterone stimulates nuclear factor‐kappa B activity and transcription of intercellular adhesion molecule‐1 and connective tissue growth factor in rat mesangial cells via serum‐ and glucocorticoid‐inducible protein kinase‐1. Clinical and Experimental Nephrology, 16(1), 81–88. 10.1007/s10157-011-0498-x [DOI] [PubMed] [Google Scholar]
  237. Terata, S. , Kikuya, M. , Satoh, M. , Ohkubo, T. , Hashimoto, T. , Hara, A. , … Imai, Y. (2012). Plasma renin activity and the aldosterone‐to‐renin ratio are associated with the development of chronic kidney disease: The Ohasama Study. Journal of Hypertension, 30(8), 1632–1638. 10.1097/HJH.0b013e328354f65b [DOI] [PubMed] [Google Scholar]
  238. Toyonaga, J. , Tsuruya, K. , Ikeda, H. , Noguchi, H. , Yotsueda, H. , Fujisaki, K. , … Iida, M. (2011). Spironolactone inhibits hyperglycemia‐induced podocyte injury by attenuating ROS production. Nephrology Dialysis Transplantation, 26(8), 2475–2484. 10.1093/ndt/gfq750 [DOI] [PubMed] [Google Scholar]
  239. Tumlin, J. A. , Lea, J. P. , Swanson, C. E. , Smith, C. L. , Edge, S. S. , & Someren, J. S. (1997). Aldosterone and dexamethasone stimulate calcineurin activity through a transcription‐independent mechanism involving steroid receptor‐associated heat shock proteins. The Journal of Clinical Investigation, 99(6), 1217–1223. 10.1172/JCI119278 [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Tylicki, L. , Rutkowski, P. , Renke, M. , Larczyński, W. , Aleksandrowicz, E. , Lysiak‐Szydlowska, W. , & Rutkowski, B. (2008). Triple pharmacological blockade of the renin‐angiotensin‐aldosterone system in nondiabetic CKD: An open‐label crossover randomized controlled trial. American Journal of Kidney Diseases, 52(3), 486–493. 10.1053/j.ajkd.2008.02.297 [DOI] [PubMed] [Google Scholar]
  241. Uhrenholt, T. R. , Schjerning, J. , Rasmussen, L. E. , Hansen, P. B. , Nørregaard, R. , Jensen, B. L. , & Skøtt, O. (2004). Rapid non‐genomic effects of aldosterone on rodent vascular function. Acta Physiologica Scandinavia, 181(4), 415–419. 10.1111/j.1365-201X.2004.01313.x [DOI] [PubMed] [Google Scholar]
  242. Ullian, M. E. , Schelling, J. R. , & Linas, S. L. (1992). Aldosterone enhances angiotensin II receptor binding and inositol phosphate responses. Hypertension, 20(1), 67–73. 10.1161/01.HYP.20.1.67 [DOI] [PubMed] [Google Scholar]
  243. van den Broek, D. H. N. , Chang, Y. M. , Elliott, J. , & Jepson, R. E. (2018a). Prognostic importance of plasma total magnesium in a cohort of cats with azotemic chronic kidney disease. Journal of Veterinary Internal Medicine, 32(4), 1359–1371. 10.1111/jvim.15141 [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. van den Broek, D. H. N. , Chang, Y. M. , Elliott, J. , & Jepson, R. E. (2018b). Serum calcification propensity in cats with chronic kidney disease [Abstract]. Journal of Veterinary Internal Medicine, 32(6), 2273–2274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Virdis, A. , Neves, M. , Amiri, F. , Viel, E. , Touyz, R. M. , & Schiffrin, E. L. (2002). Spironolactone improves angiotensin‐induced vascular changes and oxidative stress. Hypertension, 40(4), 504–510. 10.1161/01.hyp.0000034738.79310.06 [DOI] [PubMed] [Google Scholar]
  246. Voelkl, J. , Alesutan, I. , Leibrock, C. B. , Quintanilla‐Martinez, L. , Kuhn, V. , Feger, M. , … Lang, F. (2013). Spironolactone ameliorates PIT1‐dependent vascular osteoinduction in klotho‐hypomorphic mice. The Journal of Clinical Investigation, 123(3), 812–822. 10.1172/JCI64093 [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Vukusich, A. , Kunstmann, S. , Varela, C. , Gainza, D. , Bravo, S. , Sepulveda, D. , … Marusic, E. T. (2010). A randomized, double‐blind, placebo‐controlled trial of spironolactone on carotid intima‐media thickness in nondiabetic hemodialysis patients. Clinical Journal of the American Society of Nephrology, 5, 1380–1387. 10.2215/CJN.09421209 [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Waanders, F. , Rienstra, H. , Boer, M. W. , Zandvoort, A. , Rozing, J. , Navis, G. , … Hillebrands, J.‐L. (2009). Spironolactone ameliorates transplant vasculopathy in renal chronic transplant dysfunction in rats. American Journal of Physiology Renal Physiology, 296(5), F1072–F1079. 10.1152/ajprenal.90643.2008 [DOI] [PubMed] [Google Scholar]
  249. Walker, D. J. , Elliott, J. , & Syme, H. M. (2009). Urinary cortisol\cortisone ratios in hypertensive and normotensive cats. Journal of Feline Medicine & Surgery, 11(6), 442–448. 10.1016/j.jfms.2008.10.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Watanabe, T. , & Mishina, M. (2007). Effects of benazepril hydrochloride in cats with experimentally induced or spontaneously occurring chronic renal failure. Journal of Veterinary Medical Science, 69(10), 1015–1023. 10.1292/jvms.69.1015 [DOI] [PubMed] [Google Scholar]
  251. Wehling, M. (2005). Effects of aldosterone and mineralocorticoid receptor blockade on intracellular electrolytes. Heart Failure Reviews, 10(1), 39–46. 10.1007/s10741-005-2347-z [DOI] [PubMed] [Google Scholar]
  252. Wehling, M. , Spes, C. H. , Win, N. , Janson, C. P. , Schmidt, B. M. , Theisen, K. , & Christ, M. (1998). Rapid cardiovascular action of aldosterone in man. Journal of Clinical Endocrinology and Metabolism, 83(10), 3517–3522. 10.1210/jcem.83.10.5203 [DOI] [PubMed] [Google Scholar]
  253. White, P. C. (2003). Aldosterone: Direct effects on and production by the heart. Journal of Clinical Endocrinology and Metabolism, 88(6), 2376–2383. 10.1210/jc.2003-030373 [DOI] [PubMed] [Google Scholar]
  254. White, W. B. , Duprez, D. , St Hillaire, R. , Krause, S. , Roniker, B. , Janice, K.‐H. , & Weber, M. A. (2003). Effects of the selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic hypertension. Hypertension, 41(5), 1021–1026. 10.1161/01.HYP.0000067463.13172.EA [DOI] [PubMed] [Google Scholar]
  255. Williams, T. L. , Elliott, J. , & Syme, H. M. (2013). Renin‐angiotensin‐aldosterone system activity in hyperthyroid cats with and without concurrent hypertension. Journal of Veterinary Internal Medicine, 27(522–529). 10.1111/jvim.12062 [DOI] [PubMed] [Google Scholar]
  256. Xue, C. , & Siragy, H. M. (2005). Local renal aldosterone system and its regulation by salt, diabetes, and angiotensin II type 1 receptor. Hypertension, 46(3), 584–590. 10.1161/01.HYP.0000175814.18550.c0 [DOI] [PubMed] [Google Scholar]
  257. Yabuki, A. , Mitani, S. , Fujiki, M. , Misumi, K. , Endo, Y. , Miyoshi, N. , & Yamato, O. (2010). Comparative study of chronic kidney disease in dogs and cats: Induction of myofibroblasts. Research in Veterinary Science, 88(2), 294–299. 10.1016/j.rvsc.2009.09.003 [DOI] [PubMed] [Google Scholar]
  258. Yu, S. , & Morris, J. G. (1998). Plasma aldosterone concentration of cats. The Veterinary Journal, 155, 63–68. 10.1016/S1090-0233(98)80039-7 [DOI] [PubMed] [Google Scholar]
  259. Zannad, F. , McMurray, J. J. V. , Krum, H. , van Veldhuisen, D. J. , Swedberg, K. , Shi, H. , … Pitt, B. (2011). Eplerenone in patients with systolic heart failure and mild symptoms. New England Journal of Medicine, 364(1), 11–21. 10.1056/NEJMoa1009492 [DOI] [PubMed] [Google Scholar]
  260. Zhang, A. , Jia, Z. , Guo, X. , & Yang, T. (2007). Aldosterone induces epithelial‐mesenchymal transition via ROS of mitochondrial origin. American Journal of Physiology Renal Physiology, 293(3), F723–F731. 10.1152/ajprenal.00480.2006 [DOI] [PubMed] [Google Scholar]
  261. Zhang, B. , Umbach, A. T. , Chen, H. , Yan, J. , Fakhri, H. , Fajol, A. , … Lang, F. (2016). Up‐regulation of FGF23 release by aldosterone. Biochemical and Biophysical Research Communications, 470(2), 384–390. 10.1016/j.bbrc.2016.01.034 [DOI] [PubMed] [Google Scholar]
  262. Zheng, X.‐J. , Liu, Y. , Zhang, W.‐C. , Liu, Y. , Li, C. , Sun, X.‐N. , … Duan, S.‐Z. (2019). Mineralocorticoid receptor negatively regulates angiogenesis through repression of STAT3 activity in endothelial cells. The Journal of Pathology, 248(4), 438–451. 10.1002/path.5269 [DOI] [PubMed] [Google Scholar]
  263. Zhou, G. , Kandala, J. C. , Tyagi, S. C. , Katwa, L. C. , & Weber, K. T. (1996). Effects of angiotensin II and aldosterone on collagen gene expression and protein turnover in cardiac fibroblasts. Molecular and Cellular Biochemistry, 154(2), 171–178. 10.1007/BF00226785 [DOI] [PubMed] [Google Scholar]
  264. Zhou, X. , Crook, M. F. , Sharif‐Rodriguez, W. , Zhu, Y. , Ruben, Z. , Pan, Y. I. , … Forrest, M. J. (2011). Chronic antagonism of the mineralocorticoid receptor ameliorates hypertension and end organ damage in a rodent model of salt‐sensitive hypertension. Clinical and Experimental Hypertension, 33(8), 538–547. 10.3109/10641963.2011.566956 [DOI] [PMC free article] [PubMed] [Google Scholar]
  265. Zini, E. , Benali, S. , Coppola, L. , Guscetti, F. , Ackermann, M. , Lutz, T. A. , … Aresu, L. (2014). Renal morphology in cats with diabetes mellitus. Veterinary Pathology, 51(6), 1143–1150. 10.1177/0300985813516645 [DOI] [PubMed] [Google Scholar]

Articles from Journal of Veterinary Pharmacology and Therapeutics are provided here courtesy of Wiley

RESOURCES