Abstract
Discharged hospital wastewater contains various pathogenic microorganisms, antibiotic groups, toxic organic compounds, radioactive elements, and ionic pollutants. These contaminants harm the environment and human health causing the spread of disease. Thus, effective treatment of hospital wastewater is an urgent task for sustainable development. Membranes, with controllable porous and nonporous structures, have been rapidly developed for molecular separations. In particular, membrane bioreactor (MBR) technology demonstrated high removal efficiency toward organic compounds and low waste sludge production. To further enhance the separation efficiency and achieve material recovery from hospital waste streams, novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes (non hydrophilic ultrafiltration/microfiltration) into the MBR units (hybrid MBRs) or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step (integrated MBR-membrane systems). However, there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment, and analysis on its major challenges and future trends. This review started with an overview of main pollutants in common hospital waste-water, followed by an understanding on the key performance indicators/criteria in MBR membranes (i.e., solute selectivity) and processes (e.g., fouling). Then, an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts, and applications correlated with wastewater sources, with a particular focus on hospital wastewaters. It is anticipated that this review will shed light on the knowledge gaps in the field, highlighting the potential contribution of hybrid MBRs and integrated MBR-membrane systems toward global epidemic prevention.
Keywords: membrane technology, membrane bioreactor, hospital wastewater, hybrid MBR, integrated MBR-membrane system
Acknowledgements
Yan Zhao would like to acknowledge the support provided by the China Scholarship Council (CSC) of the Ministry of Education, China (CSC No. 201708330281).
Contributor Information
Jiahui Shao, Email: jhshao@sjtu.edu.cn.
Xing Yang, Email: xing.yang@kuleuven.be.
Bart van der Bruggen, Email: Bart.VanderBruggen@kuleuven.be.
References
- 1.Wolfel R, Corman V M, Guggemos W, Seilmaier M, Zange S, Muller M A, Niemeyer D, Jones T C, Vollmar P, Rothe C, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465–469. doi: 10.1038/s41586-020-2196-x. [DOI] [PubMed] [Google Scholar]
- 2.Wu F, Zhao S, Yu B, Chen Y M, Wang W, Song Z G, Hu Y, Tao Z W, Tian J H, Pei Y Y, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. doi: 10.1038/s41586-020-2008-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Wu J T, Leung K, Bushman M, Kishore N, Niehus R, de Salazar P M, Cowling B J, Lipsitch M, Leung G M. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nature Medicine. 2020;26(4):506–510. doi: 10.1038/s41591-020-0822-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Qu G, Li X, Hu L, Jiang G. An imperative need for research on the role of environmental factors in transmission of novel coronavirus (COVID-19) Environmental Science & Technology. 2020;54(7):3730–3732. doi: 10.1021/acs.est.0c01102. [DOI] [PubMed] [Google Scholar]
- 5.Liu Y, Gu P, Yang Y, Jia L, Zhang M, Zhang G. Removal of radioactive iodide from simulated liquid waste in an integrated precipitation reactor and membrane separator (PR-MS) system. Separation and Purification Technology. 2016;171:221–228. doi: 10.1016/j.seppur.2016.07.034. [DOI] [Google Scholar]
- 6.Feng X, Zong Z, Elsaidi S K, Jasinski J B, Krishna R, Thallapally P K, Carreon M A. Kr/Xe separation over a chabazite zeolite membrane. Journal of the American Chemical Society. 2016;138(31):9791–9794. doi: 10.1021/jacs.6b06515. [DOI] [PubMed] [Google Scholar]
- 7.Liu Y J, Lo S L, Liou Y H, Hu C Y. Removal of nonsteroidal anti-inflammatory drugs (NSAIDs) by electrocoagulation-flotation with a cationic surfactant. Separation and Purification Technology. 2015;152:148–154. doi: 10.1016/j.seppur.2015.08.015. [DOI] [Google Scholar]
- 8.Xu Y, Li X, Zhu B, Liang H, Fang C, Gong Y, Guo Q, Sun X, Zhao D, Shen J, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nature Medicine. 2020;26(4):502–505. doi: 10.1038/s41591-020-0817-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Luo Y, Feng L, Liu Y, Zhang L. Disinfection by-products formation and acute toxicity variation of hospital wastewater under different disinfection processes. Separation and Purification Technology. 2020;238:116405. doi: 10.1016/j.seppur.2019.116405. [DOI] [Google Scholar]
- 10.Liu Q, Zhou Y, Chen L, Zheng X. Application of MBR for hospital wastewater treatment in China. Desalination. 2010;250(2):605–608. doi: 10.1016/j.desal.2009.09.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Gautam A K, Kumar S, Sabumon P C. Preliminary study of physico-chemical treatment options for hospital wastewater. Journal of Environmental Management. 2007;83(3):298–306. doi: 10.1016/j.jenvman.2006.03.009. [DOI] [PubMed] [Google Scholar]
- 12.Watson K, Shaw G, Leusch F D, Knight N L. Chlorine disinfection by-products in wastewater effluent: bioassay-based assessment of toxicological impact. Water Research. 2012;46(18):6069–6083. doi: 10.1016/j.watres.2012.08.026. [DOI] [PubMed] [Google Scholar]
- 13.Chen W, Su Y, Peng J, Zhao X, Jiang Z, Dong Y, Zhang Y, Liang Y, Liu J. Efficient wastewater treatment by membranes through constructing tunable antifouling membrane surfaces. Environmental Science & Technology. 2011;45(15):6545–6552. doi: 10.1021/es200994n. [DOI] [PubMed] [Google Scholar]
- 14.Zhao Y, Liu Y, Wang C, Ortega E, Wang X, Xie Y F, Shen J, Gao C, Van der Bruggen B. Electric field-based ionic control of selective separation layers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability. 2020;8(8):4244–4251. doi: 10.1039/C9TA13247C. [DOI] [Google Scholar]
- 15.Tang Y P, Luo L, Thong Z, Chung T S. Recent advances in membrane materials and technologies for boron removal. Journal of Membrane Science. 2017;541:434–446. doi: 10.1016/j.memsci.2017.07.015. [DOI] [Google Scholar]
- 16.Nunes S P, Culfaz-Emecen P Z, Ramon G Z, Visser T, Koops G H, Jin W, Ulbricht M. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science. 2020;598:117761. doi: 10.1016/j.memsci.2019.117761. [DOI] [Google Scholar]
- 17.Li X, Mo Y, Qing W, Shao S, Tang C Y, Li J. Membrane-based technologies for lithium recovery from water lithium resources: a review. Journal of Membrane Science. 2019;591:117317. doi: 10.1016/j.memsci.2019.117317. [DOI] [Google Scholar]
- 18.Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, Wang J, Wang S. Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science. 2015;495:130–168. doi: 10.1016/j.memsci.2015.08.010. [DOI] [Google Scholar]
- 19.Uliana A A, Bui N T, Kamcev J, Taylor M K, Urban J J, Long J R. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science. 2021;372(6539):296–299. doi: 10.1126/science.abf5991. [DOI] [PubMed] [Google Scholar]
- 20.Chaudhry R M, Nelson K L, Drewes J E. Mechanisms of pathogenic virus removal in a full-scale membrane bioreactor. Environmental Science & Technology. 2015;49(5):2815–2822. doi: 10.1021/es505332n. [DOI] [PubMed] [Google Scholar]
- 21.Bodzek M, Konieczny K, Rajca M. Membranes in water and wastewater disinfection—review. Archives of Environmental Protection. 2019;45:3–18. [Google Scholar]
- 22.Vieira W T, de Farias M B, Spaolonzi M P, Carlos da Silva M G, Adeodato Vieira M G. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environmental Chemistry Letters. 2020;18(4):1113–1143. doi: 10.1007/s10311-020-01000-1. [DOI] [Google Scholar]
- 23.Bradshaw J L, Ashoori N, Osorio M, Luthy R G. Modelingcost, energy, and total organic carbon trade-offs for stormwater spreading basin systems receiving recycled water produced using membrane-based, ozone-based, and hybrid advanced treatment trains. Environmental Science & Technology. 2019;53(6):3128–3139. doi: 10.1021/acs.est.9b00184. [DOI] [PubMed] [Google Scholar]
- 24.Carolin C F, Kumar P S, Joshiba G J, Kumar V V. Analysis and removal of pharmaceutical residues from wastewater using membrane bioreactors: a review. Environmental Chemistry Letters. 2021;19(1):329–343. doi: 10.1007/s10311-020-01068-9. [DOI] [Google Scholar]
- 25.Yin X, Li J, Li X, Hua Z, Wang X, Ren Y. Self-generated electric field to suppress sludge production and fouling development in a membrane bioreactor for wastewater treatment. Chemosphere. 2020;261:128046. doi: 10.1016/j.chemosphere.2020.128046. [DOI] [PubMed] [Google Scholar]
- 26.Hu Y, Cheng H, Ji J, Li Y Y. A review of anaerobic membrane bioreactors for municipal wastewater treatment with a focus on multicomponent biogas and membrane fouling control. Environmental Science. Water Research & Technology. 2020;6(10):2641–2663. doi: 10.1039/D0EW00528B. [DOI] [Google Scholar]
- 27.Tiwari B, Sellamuthu B, Piche-Choquette S, Drogui P, Tyagi R D, Vaudreuil M A, Sauve S, Buelna G, Dube R. Acclimatization of microbial community of submerged membrane bioreactor treating hospital wastewater. Bioresource Technology. 2021;319:124223. doi: 10.1016/j.biortech.2020.124223. [DOI] [PubMed] [Google Scholar]
- 28.Taoufik N, Boumya W, Janani F Z, Elhalil A, Mahjoubi F Z, Barka N. Removal of emerging pharmaceutical pollutants: a systematic mapping study review. Journal of Environmental Chemical Engineering. 2020;8(5):104251. doi: 10.1016/j.jece.2020.104251. [DOI] [Google Scholar]
- 29.Qin L, Gao M, Zhang M, Feng L, Liu Q, Zhang G. Application of encapsulated algae into MBR for high-ammonia nitrogen waste-water treatment and biofouling control. Water Research. 2020;187:116430. doi: 10.1016/j.watres.2020.116430. [DOI] [PubMed] [Google Scholar]
- 30.Xu Z, Song X, Xie M, Wang Y, Huda N, Li G, Luo W. Effects of surfactant addition to draw solution on the performance of osmotic membrane bioreactor. Journal of Membrane Science. 2021;618:118634. doi: 10.1016/j.memsci.2020.118634. [DOI] [Google Scholar]
- 31.Wang S, Chew J W, Liu Y. Development of an integrated aerobic granular sludge MBR and reverse osmosis process for municipal wastewater reclamation. Science of the Total Environment. 2020;748:141309. doi: 10.1016/j.scitotenv.2020.141309. [DOI] [PubMed] [Google Scholar]
- 32.Song W, Xu D, Bi X, Ng H Y, Shi X. Intertidal wetland sediment as a novel inoculation source for developing aerobic granular sludge in membrane bioreactor treating high-salinity antibiotic manufacturing wastewater. Bioresource Technology. 2020;314:123715. doi: 10.1016/j.biortech.2020.123715. [DOI] [PubMed] [Google Scholar]
- 33.Pervez M N, Balakrishnan M, Hasan S W, Choo K H, Zhao Y, Cai Y, Zarra T, Belgiorno V, Naddeo V. A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment. npj Clean Water. 2020;3:43. doi: 10.1038/s41545-020-00090-2. [DOI] [Google Scholar]
- 34.Verlicchi P, Galletti A, Petrovic M, Barceló D. Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. Journal of Hydrology. 2010;389(3–4):416–428. doi: 10.1016/j.jhydrol.2010.06.005. [DOI] [Google Scholar]
- 35.Wiedenheft B, Sternberg S H, Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482(7385):331–338. doi: 10.1038/nature10886. [DOI] [PubMed] [Google Scholar]
- 36.Paez-Espino D, Eloe-Fadrosh E A, Pavlopoulos G A, Thomas A D, Huntemann M, Mikhailova N, Rubin E, Ivanova N N, Kyrpides N C. Uncovering Earth’s virome. Nature. 2016;536(7617):425–430. doi: 10.1038/nature19094. [DOI] [PubMed] [Google Scholar]
- 37.Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh D A, Denef V J, McMahon K D, Konstantinidis K T, Eloe-Fadrosh E A, Kyrpides N C, et al. Giant virus diversity and host interactions through global metagenomics. Nature. 2020;578(7795):432–436. doi: 10.1038/s41586-020-1957-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Casanova L, Rutala W A, Weber D J, Sobsey M D. Survival of surrogate coronaviruses in water. Water Research. 2009;43(7):1893–1898. doi: 10.1016/j.watres.2009.02.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Carraro E, Bonetta S, Bertino C, Lorenzi E, Bonetta S, Gilli G. Hospital effluents management: chemical, physical, microbiological risks and legislation in different countries. Journal of Environmental Management. 2016;168:185–199. doi: 10.1016/j.jenvman.2015.11.021. [DOI] [PubMed] [Google Scholar]
- 40.Hai F, Riley T, Shawkat S, Magram S, Yamamoto K. Removal of pathogens by membrane bioreactors: a review of the mechanisms, influencing factors and reduction in chemical disinfectant dosing. Water. 2014;6(12):3603–3630. doi: 10.3390/w6123603. [DOI] [Google Scholar]
- 41.Yates M V. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Adenovirus; pp. 471–477. [Google Scholar]
- 42.Elmahdy E M, Ahmed N I, Shaheen M N F, Mohamed E C B, Loutfy S A. Molecular detection of human adenovirus in urban wastewater in Egypt and among children suffering from acute gastroenteritis. Journal of Water and Health. 2019;17(2):287–294. doi: 10.2166/wh.2019.303. [DOI] [PubMed] [Google Scholar]
- 43.Yates M V. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Astroviruses; pp. 479–491. [Google Scholar]
- 44.He X Q, Cheng L, Zhang D Y, Xie X M, Wang D H, Wang Z. One-year monthly survey of rotavirus, astrovirus and norovirus in three sewage treatment plants in Beijing, China and associated health risk assessment. Water Science and Technology. 2011;63(1):191–198. doi: 10.2166/wst.2011.032. [DOI] [PubMed] [Google Scholar]
- 45.Wathore R, Gupta A, Bherwani H, Labhasetwar N. Understanding air and water borne transmission and survival of coronavirus: insights and way forward for SARS-CoV-2. Science of the Total Environment. 2020;749:141486. doi: 10.1016/j.scitotenv.2020.141486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Kataki S, Chatterjee S, Vairale M G, Sharma S, Dwivedi S K. Concerns and strategies for wastewater treatment during COVID-19 pandemic to stop plausible transmission. Resources, Conservation and Recycling. 2021;164:105156. doi: 10.1016/j.resconrec.2020.105156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Yates M V. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Enterovirus; pp. 493–504. [Google Scholar]
- 48.La Rosa G, Pourshaban M, Iaconelli M, Muscillo M. Quantitative real-time PCR of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy. Environmental Issues of Health Concern. 2010;46:266–273. doi: 10.4415/ANN_10_03_07. [DOI] [PubMed] [Google Scholar]
- 49.Yates M V. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Hepatitis A Virus (HAV) pp. 505–513. [Google Scholar]
- 50.Yates M V. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Norovirus; pp. 515–522. [Google Scholar]
- 51.Okoh A I, Sibanda T, Gusha S S. Inadequately treated wastewater as a source of human enteric viruses in the environment. International Journal of Environmental Research and Public Health. 2010;7(6):2620–2637. doi: 10.3390/ijerph7062620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Yates M V. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Emerging Viruses; pp. 529–533. [Google Scholar]
- 53.Ibrahim C, Hammami S, Chérif N, Mejri S, Pothier P, Hassen A. Detection of sapoviruses in two biological lines of Tunisian hospital wastewater treatment. International Journal of Environmental Research and Public Health. 2019;29(4):400–413. doi: 10.1080/09603123.2018.1546835. [DOI] [PubMed] [Google Scholar]
- 54.Chalmers R M. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Cryptosporidium; pp. 287–326. [Google Scholar]
- 55.Jiang W, Roellig D M, Li N, Wang L, Guo Y, Feng Y, Xiao L. Contribution of hospitals to the occurrence of enteric protists in urban wastewater. Parasitology Research. 2020;119(9):3033–3040. doi: 10.1007/s00436-020-06834-w. [DOI] [PubMed] [Google Scholar]
- 56.Chalmers R M. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Entamoeba histolytica; pp. 355–373. [Google Scholar]
- 57.Berglund B, Dienus O, Sokolova E, Berglind E, Matussek A, Pettersson T, Lindgren P E. Occurrence and removal efficiency of parasitic protozoa in Swedish wastewater treatment plants. Science of the Total Environment. 2017;598:821–827. doi: 10.1016/j.scitotenv.2017.04.015. [DOI] [PubMed] [Google Scholar]
- 58.Robertson L J. Microbiology of Water-borne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Giardia duodenalis; pp. 375–405. [Google Scholar]
- 59.Percival S L, Williams D W. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Campylobacter; pp. 65–78. [Google Scholar]
- 60.Rinsoz T, Hilfiker S, Oppliger A. Quantification of thermotolerant campylobacter in Swiss water treatment plants, by real-time quantitative polymerase chain reaction. Water Environment Research. 2009;81(9):929–933. doi: 10.2175/106143009X407429. [DOI] [PubMed] [Google Scholar]
- 61.Percival S L, Williams D W. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Escherichia coli; pp. 89–117. [Google Scholar]
- 62.Kristanto G A, Koven W. Preliminary study of antibiotic resistant Escherichia coli in hospital wastewater treatment plants in Indonesia. International Journal of Technology. 2019;10(4):765. doi: 10.14716/ijtech.v10i4.776. [DOI] [Google Scholar]
- 63.Percival S L, Williams D W. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Legionella; pp. 155–175. [Google Scholar]
- 64.Huang S W, Hsu B M, Ma P H, Chien K T. Legionella prevalence in wastewater treatment plants of Taiwan. Water Science and Technology. 2009;60(5):1303–1310. doi: 10.2166/wst.2009.410. [DOI] [PubMed] [Google Scholar]
- 65.Nuñez L, Moretton J. Disinfectant-resistant bacteria in Buenos Aires city hospital wastewater. Brazilian Journal of Microbiology. 2007;38(4):644–648. doi: 10.1590/S1517-83822007000400012. [DOI] [Google Scholar]
- 66.Percival S L, Williams D W. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Salmonella; pp. 209–222. [Google Scholar]
- 67.Fekadu S, Merid Y, Beyene H, Teshome W, Gebre-Selassie S. Assessment of antibiotic- and disinfectant-resistant bacteria in hospital wastewater, south Ethiopia: a cross-sectional study. Journal of Infection in Developing Countries. 2015;9(02):149–156. doi: 10.3855/jidc.4808. [DOI] [PubMed] [Google Scholar]
- 68.Tsai C T, Lai J S, Lin S T. Quantification of pathogenic microorganisms in the sludge from treated hospital wastewater. Journal of Applied Microbiology. 1998;85(1):171–176. doi: 10.1046/j.1365-2672.1998.00491.x. [DOI] [PubMed] [Google Scholar]
- 69.Percival S L, Williams D W. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Shigella; pp. 223–236. [Google Scholar]
- 70.Percival S L, Williams D W. Microbiology of Waterborne Diseases. 2nd ed. Amsterdam: Elsevier; 2014. Vibrio; pp. 237–248. [Google Scholar]
- 71.Nongogo V, Okoh A. Occurrence of vibrio pathotypes in the final effluents of five waste water treatment plants in Amathole and Chris Hani District Municipalities in South Africa. International Journal of Environmental Research and Public Health. 2014;11(8):7755–7766. doi: 10.3390/ijerph110807755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Leekha S, Terrell C L, Edson R S. General principles of antimicrobial therapy. Mayo Clinic Proceedings. 2011;86(2):156–167. doi: 10.4065/mcp.2010.0639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Singer A C, Jarhult J D, Grabic R, Khan G A, Lindberg R H, Fedorova G, Fick J, Bowes M J, Olsen B, Soderstrom H. Intra- and inter-pandemic variations of antiviral, antibiotics and decongestants in wastewater treatment plants and receiving rivers. PLoS One. 2014;9(9):108621. doi: 10.1371/journal.pone.0108621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Senta I, Kostanjevecki P, Krizman-Matasic I, Terzic S, Ahel M. Occurrence and behavior of macrolide antibiotics in municipal wastewater treatment: possible importance of metabolites, synthesis byproducts, and transformation products. Environmental Science & Technology. 2019;53(13):7463–7472. doi: 10.1021/acs.est.9b01420. [DOI] [PubMed] [Google Scholar]
- 75.Zhang H C, Zhang M Q, Yuan L, Zhang X, Sheng G P. Synergistic effect of permanganate and in situ synthesized hydrated manganese oxide for removing antibiotic resistance genes from wastewater treatment plant effluent. Environmental Science & Technology. 2019;53(22):13374–13381. doi: 10.1021/acs.est.9b05250. [DOI] [PubMed] [Google Scholar]
- 76.Nannou C, Ofrydopoulou A, Evgenidou E, David H, Heath E, Lambropoulou D. Antiviral drugs in aquatic environment and wastewater treatment plants: a review on occurrence, fate, removal and ecotoxicity. Science of the Total Environment. 2020;699:134322. doi: 10.1016/j.scitotenv.2019.134322. [DOI] [PubMed] [Google Scholar]
- 77.Frederic O, Yves P. Pharmaceuticals in hospital wastewater: their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere. 2014;115:31–39. doi: 10.1016/j.chemosphere.2014.01.016. [DOI] [PubMed] [Google Scholar]
- 78.Prasse C, Schlusener M P, Ralf S, Ternes T A. Antiviral drugs in wastewater and surface waters: a new pharmaceutical class of environmental relevance? Environmental Science & Technology. 2010;44(5):1728–1735. doi: 10.1021/es903216p. [DOI] [PubMed] [Google Scholar]
- 79.Accinelli C, Sacca M L, Batisson I, Fick J, Mencarelli M, Grabic R. Removal of oseltamivir (Tamiflu) and other selected pharmaceuticals from wastewater using a granular bioplastic formulation entrapping propagules of Phanerochaete chrysosporium. Chemosphere. 2010;81(3):436–443. doi: 10.1016/j.chemosphere.2010.06.074. [DOI] [PubMed] [Google Scholar]
- 80.Slater F R, Singer A C, Turner S, Barr J J, Bond P L. Pandemic pharmaceutical dosing effects on wastewater treatment: no adaptation of activated sludge bacteria to degrade the antiviral drug oseltamivir (Tamiflu(R)) and loss of nutrient removal performance. FEMS Microbiology Letters. 2011;315(1):17–22. doi: 10.1111/j.1574-6968.2010.02163.x. [DOI] [PubMed] [Google Scholar]
- 81.Fugere V, Hebert M P, da Costa N B, Xu C C Y, Barrett R D H, Beisner B E, Bell G, Fussmann G F, Shapiro B J, Yargeau V, Gonzalez A. Community rescue in experimental phytoplankton communities facing severe herbicide pollution. Nature Ecology & Evolution. 2020;4(4):578–588. doi: 10.1038/s41559-020-1134-5. [DOI] [PubMed] [Google Scholar]
- 82.Berendonk T U, Manaia C M, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Burgmann H, Sorum H, Norstrom M, Pons M N, et al. Tackling antibiotic resistance: the environmental framework. Nature Reviews. Microbiology. 2015;13(5):310–317. doi: 10.1038/nrmicro3439. [DOI] [PubMed] [Google Scholar]
- 83.Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, Borrego C M, Barceló D, Balcázar J L. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research. 2015;69:234–242. doi: 10.1016/j.watres.2014.11.021. [DOI] [PubMed] [Google Scholar]
- 84.Wang Y, Wang X, Li M, Dong J, Sun C, Chen G. Removal of pharmaceutical and personal care products (PPCPs) from municipal waste water with integrated membrane systems, MBR-RO/NF. International Journal of Environmental Research and Public Health. 2018;15(2):269. doi: 10.3390/ijerph15020269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Lien L, Hoa N, Chuc N, Thoa N, Phuc H, Diwan V, Dat N, Tamhankar A, Lundborg C. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-A one year study from Vietnam. International Journal of Environmental Research and Public Health. 2016;13(6):588. doi: 10.3390/ijerph13060588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Kümmerer K. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources: a review. Chemosphere. 2001;45(6–7):957–969. doi: 10.1016/S0045-6535(01)00144-8. [DOI] [PubMed] [Google Scholar]
- 87.Kovalova L, Siegrist H, Singer H, Wittmer A, Mcardell C S. Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environmental Science & Technology. 2012;46(3):1536–1545. doi: 10.1021/es203495d. [DOI] [PubMed] [Google Scholar]
- 88.Moradali M F, Rehm B H A. Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews. Microbiology. 2020;18(4):195–210. doi: 10.1038/s41579-019-0313-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Reurink D M, Te Brinke E, Achterhuis I, Roesink H D W, de Vos W M. Nafion-based low-hydration polyelectrolyte multilayer membranes for enhanced water purification. ACS Applied Polymer Materials. 2019;1(9):2543–2551. doi: 10.1021/acsapm.9b00689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Amaral-Zettler L A, Zettler E R, Mincer T J. Ecology of the plastisphere. Nature Reviews. Microbiology. 2020;18(3):139–151. doi: 10.1038/s41579-019-0308-0. [DOI] [PubMed] [Google Scholar]
- 91.Barry M C, Hristovski K, Westerhoff P. Membrane fouling by vesicles and prevention through ozonation. Environmental Science & Technology. 2014;48(13):7349–7356. doi: 10.1021/es500435e. [DOI] [PubMed] [Google Scholar]
- 92.Wang L, Li Y, Ben W, Hu J, Cui Z, Qu K, Qiang Z. In-situ sludge ozone-reduction process for effective removal of fluoroquinolone antibiotics in wastewater treatment plants. Separation and Purification Technology. 2019;213:419–425. doi: 10.1016/j.seppur.2018.12.062. [DOI] [Google Scholar]
- 93.Loeb S K, Alvarez P J J, Brame J A, Cates E L, Choi W, Crittenden J, Dionysiou D D, Li Q, Li-Puma G, Quan X, et al. The Technology horizon for photocatalytic water treatment: sunrise or sunset? Environmental Science & Technology. 2019;53(6):2937–2947. doi: 10.1021/acs.est.8b05041. [DOI] [PubMed] [Google Scholar]
- 94.Lienert J, Koller M, Konrad J, McArdell C S, Schuwirth N. Multiple-criteria decision analysis reveals high stakeholder preference to remove pharmaceuticals from hospital wastewater. Environmental Science & Technology. 2011;45(9):3848–3857. doi: 10.1021/es1031294. [DOI] [PubMed] [Google Scholar]
- 95.Kosma C I, Lambropoulou D A, Albanis T A. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. Journal of Hazardous Materials. 2010;179(1–3):804–817. doi: 10.1016/j.jhazmat.2010.03.075. [DOI] [PubMed] [Google Scholar]
- 96.Gurung K, Ncibi M C, Thangaraj S K, Jänis J, Seyedsalehi M, Sillanpää M. Removal of pharmaceutically active compounds (PhACs) from real membrane bioreactor (MBR) effluents by photocatalytic degradation using composite Ag2O/P-25 photo-catalyst. Separation and Purification Technology. 2019;215:317–328. doi: 10.1016/j.seppur.2018.12.069. [DOI] [Google Scholar]
- 97.Dong X, Ge Q. Metal ion-bridged forward osmosis membranes for efficient pharmaceutical wastewater reclamation. ACS Applied Materials & Interfaces. 2019;11(40):37163–37171. doi: 10.1021/acsami.9b14162. [DOI] [PubMed] [Google Scholar]
- 98.Kramer M, Scifoni E, Schuy C, Rovituso M, Tinganelli W, Maier A, Kaderka R, Kraft-Weyrather W, Brons S, Tessonnier T, et al. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality. Medical Physics. 2016;43(4):1995–2004. doi: 10.1118/1.4944593. [DOI] [PubMed] [Google Scholar]
- 99.Soyekwo F, Liu C, Zhao L, Wen H, Huang W, Cai C, Kanagaraj P, Hu Y. Nanofiltration membranes with metal cation-immobilized aminophosphonate networks for efficient heavy metal ion removal and organic dye degradation. ACS Applied Materials & Interfaces. 2019;11(33):30317–30331. doi: 10.1021/acsami.9b10208. [DOI] [PubMed] [Google Scholar]
- 100.Sepehr M N, Nasseri S, Zarrabi M, Samarghandi M R, Amrane A. Removal of Cr(III) from tanning effluent by Aspergillus niger in airlift bioreactor. Separation and Purification Technology. 2012;96:256–262. doi: 10.1016/j.seppur.2012.06.013. [DOI] [Google Scholar]
- 101.Saitoh T, Shibata K, Fujimori K, Ohtani Y. Rapid removal of tetracycline antibiotics from water by coagulation-flotation of sodium dodecyl sulfate and poly(allylamine hydrochloride) in the presence of Al(III) ions. Separation and Purification Technology. 2017;187:76–83. doi: 10.1016/j.seppur.2017.06.036. [DOI] [Google Scholar]
- 102.Zhao Y, Zhou C, Wang J, Liu H, Xu Y, Seo J W, Shen J, Gao C, Van der Bruggen B. Formation of morphologically confined nanospaces via self-assembly of graphene and nanospheres for selective separation of lithium. Journal of Materials Chemistry. A, Materials for Energy and Sustainability. 2018;6(39):18859–18864. doi: 10.1039/C8TA06945J. [DOI] [Google Scholar]
- 103.Zhao Y, Qiu Y, Mai Z, Ortega E, Shen J, Gao C, van der Bruggen B. Symmetrically recombined nanofibers in a high-selectivity membrane for cation separation in high temperature and organic solvent. Journal of Materials Chemistry. A, Materials for Energy and Sustainability. 2019;7(34):20006–20012. doi: 10.1039/C9TA07416C. [DOI] [Google Scholar]
- 104.Zhao Y, Tang K, Liu H, van der Bruggen B, Sotto Díaz A, Shen J, Gao C. An anion exchange membrane modified by alternate electro-deposition layers with enhanced monovalent selectivity. Journal of Membrane Science. 2016;520:262–271. doi: 10.1016/j.memsci.2016.07.026. [DOI] [Google Scholar]
- 105.Helmi A, Gallucci F. Latest developments in membrane (bio) reactors. Processes (Basel, Switzerland) 2020;8(10):1239. [Google Scholar]
- 106.Gunder B, Krauth K. Replacement of secondary clarification by membrane separation-results with plate and hollow fibre modules. Water Science and Technology. 1998;40(4–5):311–320. [Google Scholar]
- 107.Lv W, Xiang Z, Min Y, Yu Z, Ying L, Liu J. Virus removal performance and mechanism of a submerged membrane bioreactor. Process Biochemistry. 2006;41(2):299–304. doi: 10.1016/j.procbio.2005.06.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Stuckey D C. Recent developments in anaerobic membrane reactors. Bioresource Technology. 2012;122:137–148. doi: 10.1016/j.biortech.2012.05.138. [DOI] [PubMed] [Google Scholar]
- 109.Ahmad A L, Abdulkarim A A, Ooi B S, Ismail S. Recent development in additives modifications of polyethersulfone membrane for flux enhancement. Chemical Engineering Journal. 2013;223:246–267. doi: 10.1016/j.cej.2013.02.130. [DOI] [Google Scholar]
- 110.Meng F, Chae S R, Drews A, Kraume M, Shin H S, Yang F. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Research. 2009;43(6):1489–1512. doi: 10.1016/j.watres.2008.12.044. [DOI] [PubMed] [Google Scholar]
- 111.Samaei S M, Gato-Trinidad S, Ali A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters: a review. Separation and Purification Technology. 2018;200:198–220. doi: 10.1016/j.seppur.2018.02.041. [DOI] [Google Scholar]
- 112.Mbaab C, Zzab C. Ceramic membrane technology for water and wastewater treatment: a critical review of performance, full-scale applications, membrane fouling and prospects. Chemical Engineering Journal. 2021;418:129418. [Google Scholar]
- 113.Zhang S, Qu Y, Liu Y, Yang F, Yamada Y. Experimental study of domestic sewage treatment with a metal membrane bioreactor. Desalination. 2005;177(1–3):83–93. doi: 10.1016/j.desal.2004.10.034. [DOI] [Google Scholar]
- 114.Xie Y H, Zhu T, Xu C H, Nozaki T, Furukawa K. Treatment of domestic sewage by a metal membrane bioreactor. Water Science and Technology. 2012;65(6):1102–1108. doi: 10.2166/wst.2012.422. [DOI] [PubMed] [Google Scholar]
- 115.Dumée L, Li H, Bao L, Ailloux F M, Kong L. The fabrication and surface functionalization of porous metal frameworks—a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability. 2013;1(48):15185. doi: 10.1039/c3ta13240d. [DOI] [Google Scholar]
- 116.Dlamini D S, Li J, Mamba B B. Critical review of montmorillonite/polymer mixed-matrix filtration membranes: possibilities and challenges. Applied Clay Science. 2019;168:21–30. doi: 10.1016/j.clay.2018.10.016. [DOI] [Google Scholar]
- 117.Bilad M R, Marbelia L, Laine C, Vankelecom I. A PVC-silica mixed-matrix membrane (MMM) as novel type of membrane bioreactor (MBR) membrane. Journal of Membrane Science. 2015;493:19–27. doi: 10.1016/j.memsci.2015.05.074. [DOI] [Google Scholar]
- 118.Mathioudakis V L, Soares A, Briers H, Martin-Garcia I, Jefferson B. Treatment and energy efficiency of a granular sludge anaerobic membrane reactor handling domestic sewage. Procedia Engineering. 2012;44:1977–1979. doi: 10.1016/j.proeng.2012.09.013. [DOI] [Google Scholar]
- 119.Lin H J, Xie K, Mahendran B, Ba Gley D M, Leung K T, Liss S N, Liao B Q. Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs) Water Research. 2009;43(15):3827–3837. doi: 10.1016/j.watres.2009.05.025. [DOI] [PubMed] [Google Scholar]
- 120.Lin H, Chen J, Wang F, Ding L, Hong H. Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment. Desalination. 2011;280(1–3):120–126. doi: 10.1016/j.desal.2011.06.058. [DOI] [Google Scholar]
- 121.Chen R, Nie Y, Kato H, Wu J, Utashiro T, Lu J, Yue S, Jiang H, Zhang L, Li Y Y. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature. Bioresource Technology. 2017;228:69–76. doi: 10.1016/j.biortech.2016.12.089. [DOI] [PubMed] [Google Scholar]
- 122.Nie Y, Kato H, Sugo T, Hojo T, Tian X, Li Y Y. Effect of anionic surfactant inhibition on sewage treatment by a submerged anaerobic membrane bioreactor: efficiency, sludge activity and methane recovery. Chemical Engineering Journal. 2017;315:83–91. doi: 10.1016/j.cej.2017.01.022. [DOI] [Google Scholar]
- 123.Hui C, Yutaka H, Toshimasa H, Li Y Y. Upgrading methane fermentation of food waste by using a hollow fiber type anaerobic membrane bioreactor. Bioresource Technology. 2018;267:386–394. doi: 10.1016/j.biortech.2018.07.045. [DOI] [PubMed] [Google Scholar]
- 124.Trzcinski A P, Stuckey D C. Continuous treatment of the organic fraction of municipal solid waste in an anaerobic two-stage membrane process with liquid recycle. Water Research. 2009;43(9):2449–2462. doi: 10.1016/j.watres.2009.03.030. [DOI] [PubMed] [Google Scholar]
- 125.Akram A, Stuckey D C. Flux and performance improvement in a submerged anaerobic membrane bioreactor (SAMBR) using powdered activated carbon (PAC) Process Biochemistry. 2008;43(1):93–102. doi: 10.1016/j.procbio.2007.10.020. [DOI] [Google Scholar]
- 126.Nie Y, Chen R, Tian X, Li Y Y. Impact of water characteristics on the bioenergy recovery from sewage treatment by anaerobic membrane bioreactor via a comprehensive study on the response of microbial community and methanogenic activity. Energy. 2017;139(15):459–467. doi: 10.1016/j.energy.2017.07.168. [DOI] [Google Scholar]
- 127.Jang D, Hwang Y, Shin H, Lee W. Effects of salinity on the characteristics of biomass and membrane fouling in membrane bioreactors. Bioresource Technology. 2013;141:50–56. doi: 10.1016/j.biortech.2013.02.062. [DOI] [PubMed] [Google Scholar]
- 128.Tan S, Cui C, Chen X, Li W. Effect of bioflocculation on fouling-related biofoulants in a membrane bioreactor during saline wastewater treatments. Bioresource Technology. 2017;224:285–291. doi: 10.1016/j.biortech.2016.10.066. [DOI] [PubMed] [Google Scholar]
- 129.Biesheuvel P M, Verweij H. Design of ceramic membrane supports: permeability, tensile strength and stress. Journal of Membrane Science. 1999;156(1):141–152. doi: 10.1016/S0376-7388(98)00335-4. [DOI] [Google Scholar]
- 130.Sownya S A, Madhu G M, Raizada A, Madhusoodana C D. Studies on effective treatment of waste water using submerged ceramic membrane bioreactor. Materials Today: Proceedings. 2020;24:1251–1262. [Google Scholar]
- 131.Trouve E, Urbain V, Manem J. Treatment of municipal wastewater by a membrane bioreactor: results of a semi-industrial pilot-scale study. Water Science and Technology. 1994;30(4):151–157. doi: 10.2166/wst.1994.0180. [DOI] [Google Scholar]
- 132.Zhang S, Yang F, Liu Y, Zhang X, Yamada Y, Furukawa K. Performance of a metallic membrane bioreactor treating simulated distillery wastewater at temperatures of 30 to 45 °C. Desalination. 2006;194(1–3):146–155. doi: 10.1016/j.desal.2005.10.029. [DOI] [Google Scholar]
- 133.Reif R, Besancon A, Le Corre K, Jefferson B, Lema J M, Omil F. Comparison of PPCPs removal on a parallel-operated MBR and AS system and evaluation of effluent post-treatment on vertical flow reed beds. Water ence & Technology. 2011;63:2411–2417. doi: 10.2166/wst.2011.123. [DOI] [PubMed] [Google Scholar]
- 134.Wang J, Wang S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. Journal of Environmental Management. 2016;182:620–640. doi: 10.1016/j.jenvman.2016.07.049. [DOI] [PubMed] [Google Scholar]
- 135.Ng A, Kim A S. A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters. Desalination. 2007;212(1–3):261–281. doi: 10.1016/j.desal.2006.10.013. [DOI] [Google Scholar]
- 136.Yurtsever A, Sahinkaya E, Akta Z, Uar D, Wang Z. Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater. Bioresource Technology. 2015;192:564–573. doi: 10.1016/j.biortech.2015.06.024. [DOI] [PubMed] [Google Scholar]
- 137.Smith A L, Stadler L B, Cao L, Love N G, Raskin L, Skerlos S J. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environmental Science & Technology. 2014;48(10):5972–5981. doi: 10.1021/es5006169. [DOI] [PubMed] [Google Scholar]
- 138.Liu W, Song X, Huda N, Xie M, Li G, Luo W. Comparison between aerobic and anaerobic membrane bioreactors for trace organic contaminant removal in wastewater treatment. Environmental Technology & Innovation. 2020;17:100564. doi: 10.1016/j.eti.2019.100564. [DOI] [Google Scholar]
- 139.Monteoliva-Garcia A, Martin-Pascual J, Munio M M, Poyatos J M. Effects of carrier addition on water quality and pharmaceutical removal capacity of a membrane bioreactor—advanced oxidation process combined treatment. Science of the Total Environment. 2020;708:135104. doi: 10.1016/j.scitotenv.2019.135104. [DOI] [PubMed] [Google Scholar]
- 140.Xiao K, Liang S, Wang X, Chen C, Huang X. Current state and challenges of full-scale membrane bioreactor applications: a critical review. Bioresource Technology. 2019;271:473–481. doi: 10.1016/j.biortech.2018.09.061. [DOI] [PubMed] [Google Scholar]
- 141.Blandin G, Gautier C, Sauchelli Toran M, Monclús H, Rodriguez-Roda I, Comas J. Retrofitting membrane bioreactor (MBR) into osmotic membrane bioreactor (OMBR): a pilot scale study. Chemical Engineering Journal. 2018;339:268–277. doi: 10.1016/j.cej.2018.01.103. [DOI] [Google Scholar]
- 142.Li X, Liu Y, Wang J, Gascon J, Li J, van der Bruggen B. Metal-organic frameworks based membranes for liquid separation. Chemical Society Reviews. 2017;46(23):7124–7144. doi: 10.1039/C7CS00575J. [DOI] [PubMed] [Google Scholar]
- 143.Chen X, Selloni A. Introduction: titanium dioxide (TiO2) nanomaterials. Chemical Reviews. 2014;114(19):9281–9282. doi: 10.1021/cr500422r. [DOI] [PubMed] [Google Scholar]
- 144.Tiwari J N, Tiwari R N, Kim K S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science. 2012;57(4):724–803. doi: 10.1016/j.pmatsci.2011.08.003. [DOI] [Google Scholar]
- 145.Sutisna B, Musteata V, Pulido B, Puspasari T, Smilgies D M, Hadjichristidis N, Nunes S P. High flux membranes, based on self-assembled and H-bond linked triblock copolymer nanospheres. Journal of Membrane Science. 2019;585:10–18. doi: 10.1016/j.memsci.2019.04.045. [DOI] [Google Scholar]
- 146.Yan W, Shi M, Wang Z, Zhou Y, Liu L, Zhao S, Ji Y, Wang J, Gao C. Amino-modified hollow mesoporous silica nanospheres-incorporated reverse osmosis membrane with high performance. Journal of Membrane Science. 2019;581:168–177. doi: 10.1016/j.memsci.2019.03.042. [DOI] [Google Scholar]
- 147.Zou D, Chen X, Drioli E, Ke X, Qiu M, Fan Y. Facile co-sintering process to fabricate sustainable antifouling silver nanoparticles (AgNPs)-enhanced tight ceramic ultrafiltration membranes for protein separation. Journal of Membrane Science. 2020;593:117402. doi: 10.1016/j.memsci.2019.117402. [DOI] [Google Scholar]
- 148.Hinds B J, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas L G. Aligned multiwalled carbon nanotube membranes. Science. 2004;303(5654):62–65. doi: 10.1126/science.1092048. [DOI] [PubMed] [Google Scholar]
- 149.Sholl D S, Johnson J K. Making high-flux membranes with carbon nanotubes. Science. 2006;312(5776):1003–1004. doi: 10.1126/science.1127261. [DOI] [PubMed] [Google Scholar]
- 150.Zhao X, Cheng L, Wang R, Jia N, Liu L, Gao C. Bioinspired synthesis of polyzwitterion/titania functionalized carbon nanotube membrane with superwetting property for efficient oil-in-water emulsion separation. Journal of Membrane Science. 2019;589:117257. doi: 10.1016/j.memsci.2019.117257. [DOI] [Google Scholar]
- 151.Li J, Li X, van der Bruggen B. An MXene-based membrane for molecular separation. Environmental Science. Nano. 2020;7(5):1289–1304. doi: 10.1039/C9EN01478K. [DOI] [Google Scholar]
- 152.Zhao Y, Wu M, Guo Y, Mamrol N, Yang X, Gao C, van der Bruggen B. Metal-organic framework based membranes for selective separation of target ions. Journal of Membrane Science. 2021;634:119407. doi: 10.1016/j.memsci.2021.119407. [DOI] [Google Scholar]
- 153.Yang H, Yang L, Wang H, Xu Z, Zhao Y, Luo Y, Nasir N, Song Y, Wu H, Pan F, Jiang Z. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nature Communications. 2019;10(1):2101. doi: 10.1038/s41467-019-10157-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Gao Z F, Feng Y, Ma D, Chung T S. Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH2 for organic solvent nanofiltration. Journal of Membrane Science. 2019;574:124–135. doi: 10.1016/j.memsci.2018.12.064. [DOI] [Google Scholar]
- 155.Gao Z F, Naderi A, Wei W, Chung T S. Selection of crosslinkers and control of microstructure of vapor-phase crosslinked composite membranes for organic solvent nanofiltration. Journal of Membrane Science. 2020;616:118582. doi: 10.1016/j.memsci.2020.118582. [DOI] [Google Scholar]
- 156.Lee T H, Oh J Y, Hong S P, Lee J M, Roh S M, Kim S H, Park H B. ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: importance of particle deposition. Journal of Membrane Science. 2019;570–571:23–33. doi: 10.1016/j.memsci.2018.10.015. [DOI] [Google Scholar]
- 157.Zhao D L, Zhao Q, Chung T S. Fabrication of defect-free thin-film nanocomposite (TFN) membranes for reverse osmosis desalination. Desalination. 2021;516:115230. doi: 10.1016/j.desal.2021.115230. [DOI] [Google Scholar]
- 158.Zhang Z, Li P, Kong X Y, Xie G, Qian Y, Wang Z, Tian Y, Wen L, Jiang L. Bioinspired heterogeneous ion pump membranes: unidirectional selective pumping and controllable gating properties stemming from asymmetric ionic group distribution. Journal of the American Chemical Society. 2018;140(3):1083–1090. doi: 10.1021/jacs.7b11472. [DOI] [PubMed] [Google Scholar]
- 159.Yan S, Luan S, Shi H, Xu X, Zhang J, Yuan S, Yang Y, Yin J. Hierarchical polymer brushes with dominant antibacterial mechanisms switching from bactericidal to bacteria repellent. Biomacromolecules. 2016;17(5):1696–1704. doi: 10.1021/acs.biomac.6b00115. [DOI] [PubMed] [Google Scholar]
- 160.Shahid M K, Choi Y G. The comparative study for scale inhibition on surface of RO membranes in wastewater reclamation: CO2 purging versus three different antiscalants. Journal of Membrane Science. 2018;546:61–69. doi: 10.1016/j.memsci.2017.09.087. [DOI] [Google Scholar]
- 161.Wang Z, Wu Z, Yin X, Tian L. Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: membrane foulant and gel layer characterization. Journal of Membrane Science. 2008;325(1):238–244. doi: 10.1016/j.memsci.2008.07.035. [DOI] [Google Scholar]
- 162.Mikhaylin S, Bazinet L. Fouling on ion-exchange membranes: classification, characterization and strategies of prevention and control. Advances in Colloid and Interface Science. 2016;229:34–56. doi: 10.1016/j.cis.2015.12.006. [DOI] [PubMed] [Google Scholar]
- 163.Firouzjaei M D, Seyedpour S F, Aktij S A, Giagnorio M, Bazrafshan N, Mollahosseini A, Samadi F, Ahmadalipour S, Firouzjaei F D, Esfahani M R, et al. Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. Journal of Membrane Science. 2020;596:117604. doi: 10.1016/j.memsci.2019.117604. [DOI] [Google Scholar]
- 164.Malaeb L, Le-Clech P, Vrouwenvelder J S, Ayoub G M, Saikaly P E. Do biological-based strategies hold promise to biofouling control in MBRs? Water Research. 2013;47(15):5447–5463. doi: 10.1016/j.watres.2013.06.033. [DOI] [PubMed] [Google Scholar]
- 165.Bogler A, Lin S, Bar-Zeev E. Biofouling of membrane distillation, forward osmosis and pressure retarded osmosis: principles, impacts and future directions. Journal of Membrane Science. 2017;542:378–398. doi: 10.1016/j.memsci.2017.08.001. [DOI] [Google Scholar]
- 166.Sánchez O. Microbial diversity in biofilms from reverse osmosis membranes: a short review. Journal of Membrane Science. 2018;545:240–249. doi: 10.1016/j.memsci.2017.09.082. [DOI] [Google Scholar]
- 167.Bar-Zeev E, Passow U, Castrillon S R, Elimelech M. Transparent exopolymer particles: from aquatic environments and engineered systems to membrane biofouling. Environmental Science & Technology. 2015;49(2):691–707. doi: 10.1021/es5041738. [DOI] [PubMed] [Google Scholar]
- 168.Oh H S, Lee C H. Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment. Journal of Membrane Science. 2018;554:331–345. doi: 10.1016/j.memsci.2018.03.019. [DOI] [Google Scholar]
- 169.Ridgway H F, Orbell J, Gray S. Molecular simulations of polyamide membrane materials used in desalination and water reuse applications: recent developments and future prospects. Journal of Membrane Science. 2017;524:436–448. doi: 10.1016/j.memsci.2016.11.061. [DOI] [Google Scholar]
- 170.Kochkodan V, Johnson D J, Hilal N. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling. Advances in Colloid and Interface Science. 2014;206:116–140. doi: 10.1016/j.cis.2013.05.005. [DOI] [PubMed] [Google Scholar]
- 171.Dickhout J M, Moreno J, Biesheuvel P M, Boels L, Lammertink R G H, de Vos W M. Produced water treatment by membranes: a review from a colloidal perspective. Journal of Colloid and Interface Science. 2017;487:523–534. doi: 10.1016/j.jcis.2016.10.013. [DOI] [PubMed] [Google Scholar]
- 172.Al Mamun M A, Sadrzadeh M, Chatterjee R, Bhattacharjee S, De S. Colloidal fouling of nanofiltration membranes: a novel transient electrokinetic model and experimental study. Chemical Engineering Science. 2015;138:153–163. doi: 10.1016/j.ces.2015.08.022. [DOI] [Google Scholar]
- 173.Dersoir B, Schofield A B, de Saint Vincent M R, Tabuteau H. Dynamics of pore fouling by colloidal particles at the particle level. Journal of Membrane Science. 2019;573:411–424. doi: 10.1016/j.memsci.2018.12.025. [DOI] [Google Scholar]
- 174.Lohaus J, Perez Y M, Wessling M. What are the microscopic events of colloidal membrane fouling? Journal of Membrane Science. 2018;553:90–98. doi: 10.1016/j.memsci.2018.02.023. [DOI] [Google Scholar]
- 175.Haddad M, Bazinet L, Savadogo O, Paris J. Electrochemical acidification of Kraft black liquor: impacts of pulsed electric field application on bipolar membrane colloidal fouling and process intensification. Journal of Membrane Science. 2017;524:482–492. doi: 10.1016/j.memsci.2016.10.043. [DOI] [Google Scholar]
- 176.Lin Y L. Effects of organic, biological and colloidal fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. Journal of Membrane Science. 2017;542:342–351. doi: 10.1016/j.memsci.2017.08.023. [DOI] [Google Scholar]
- 177.Mi B, Elimelech M. Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science. 2010;348(1–2):337–345. doi: 10.1016/j.memsci.2009.11.021. [DOI] [Google Scholar]
- 178.Wang X M, Waite T D. Role of gelling soluble and colloidal microbial products in membrane fouling. Environmental Science & Technology. 2009;43(24):9341–9347. doi: 10.1021/es9013129. [DOI] [PubMed] [Google Scholar]
- 179.Wang Q, Wang Z, Wu Z, Ma J, Jiang Z. Insights into membrane fouling of submerged membrane bioreactors by characterizing different fouling layers formed on membrane surfaces. Chemical Engineering Journal. 2012;179:169–177. doi: 10.1016/j.cej.2011.10.074. [DOI] [Google Scholar]
- 180.Zhao Y, Liu H, Tang K, Jin Y, Pan J, Van der Bruggen B, Shen J, Gao C. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane. Scientific Reports. 2016;6(1):37285. doi: 10.1038/srep37285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181.Amy G. Fundamental understanding of organic matter fouling of membranes. Desalination. 2008;231(1–3):44–51. doi: 10.1016/j.desal.2007.11.037. [DOI] [Google Scholar]
- 182.Tong T, Wallace A F, Zhao S, Wang Z. Mineral scaling in membrane desalination: mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes. Journal of Membrane Science. 2019;579:52–69. doi: 10.1016/j.memsci.2019.02.049. [DOI] [Google Scholar]
- 183.Zhao Y, Yao M, Shen P, Uytterhoeven C, Marmrol N, Shen J, Gao C, Van der Bruggen B. Composite anti-scaling membrane made of interpenetrating networks of nanofibers for selective separation of lithium. Journal of Membrane Science. 2021;618:118668. doi: 10.1016/j.memsci.2020.118668. [DOI] [Google Scholar]
- 184.Tinggang L I, Liu J, Bai R, Wong F S. Membrane-aerated biofilm reactor for the treatment of acetonitrile wastewater. Environmental Science & Technology. 2008;42(6):2099–2104. doi: 10.1021/es702150f. [DOI] [PubMed] [Google Scholar]
- 185.Tian H, Hu Y, Xu X, Hui M, Li B. Enhanced wastewater treatment with high o-aminophenol concentration by two-stage MABR and its biodegradation mechanism. Bioresource Technology. 2019;289:121649. doi: 10.1016/j.biortech.2019.121649. [DOI] [PubMed] [Google Scholar]
- 186.Tian H, Xu X, Qu J, Li H, Hu Y, Huang L, He W, Li B. Biodegradation of phenolic compounds in high saline wastewater by biofilms adhering on aerated membranes. Journal of Hazardous Materials. 2020;392:122463. doi: 10.1016/j.jhazmat.2020.122463. [DOI] [PubMed] [Google Scholar]
- 187.Livingston A G. Extractive membrane bioreactors: a new process technology for detoxifying chemical industry wastewaters. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) 1994;60(2):117–124. doi: 10.1002/jctb.280600202. [DOI] [PubMed] [Google Scholar]
- 188.Yeo B J, Goh S, Livingston A G, Fane A G. Controlling biofilm development in the extractive membrane bioreactor. Separation and Purification Technology. 2017;52:113–121. [Google Scholar]
- 189.Skouteris G, Saroj D, Melidis P, Hai F I, Ouki S. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation—A critical review. Bioresource Technology. 2015;185:399–410. doi: 10.1016/j.biortech.2015.03.010. [DOI] [PubMed] [Google Scholar]
- 190.Yeo B J, Goh S, Zhang J, Livingston A G, Fane A G. Novel MBRs for the removal of organic priority pollutants from industrial wastewaters: a review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) 2015;90(11):1949–1967. doi: 10.1002/jctb.4782. [DOI] [Google Scholar]
- 191.Busca G, Berardinelli S, Resini C, Arrighi L. Technologies for the removal of phenol from fluid streams: a short review of recent developments. Journal of Hazardous Materials. 2008;160(2–3):265–288. doi: 10.1016/j.jhazmat.2008.03.045. [DOI] [PubMed] [Google Scholar]
- 192.Livingston A G, Arcangeli J P, Boam AT, Zhang S, Marangon M, Santos L M F D. Extractive membrane bioreactors for detoxification of chemical industry wastes: process development. Journal of Membrane Science. 1998;151(1):29–44. doi: 10.1016/S0376-7388(98)00237-3. [DOI] [Google Scholar]
- 193.Livingston A G. A novel membrane bioreactor for detoxifying industrial wastewater: I. Biodegradation of phenol in a synthetically concocted wastewater. Biotechnology and Bioengineering. 1993;41(10):915–926. doi: 10.1002/bit.260411002. [DOI] [PubMed] [Google Scholar]
- 194.Xiao M, Zhou J, Tan Y, Zhang A, Xia Y, Ji L. Treatment of highly-concentrated phenol wastewater with an extractive membrane reactor using silicone rubber. Desalination. 2006;195(1–3):281–293. doi: 10.1016/j.desal.2005.12.006. [DOI] [Google Scholar]
- 195.Ren L F, Adeel M, Li J, Xu C, Xu Z, Zhang X, Shao J, He Y. Phenol separation from phenol-laden saline wastewater by membrane aromatic recovery system-like membrane contactor using superhydrophobic/organophilic electrospun PDMS/PMMA membrane. Water Research. 2018;135:31–43. doi: 10.1016/j.watres.2018.02.011. [DOI] [PubMed] [Google Scholar]
- 196.Ren L F, Ngo H H, Bu C, Ge C, Ni S Q, Shao J, He Y. Novel external extractive membrane bioreactor (EMBR) using electrospun polydimethylsiloxane/polymethyl methacrylate membrane for phenol-laden saline wastewater. Chemical Engineering Journal. 2020;383:123179. doi: 10.1016/j.cej.2019.123179. [DOI] [Google Scholar]
- 197.Liao Y, Goh S, Tian M, Wang R, Fane A G. Design, development and evaluation of nanofibrous composite membranes with opposing membrane wetting properties for extractive membrane bioreactors. Journal of Membrane Science. 2018;551:55–65. doi: 10.1016/j.memsci.2018.01.029. [DOI] [Google Scholar]
- 198.Jin M Y, Liao Y, Loh C H, Tan C H, Wang R. Preparation of polydimethylsiloxane-polyvinylidene fluoride composite membranes for phenol removal in extractive membrane bioreactor. Industrial & Engineering Chemistry Research. 2017;56(12):3436–3445. doi: 10.1021/acs.iecr.7b00191. [DOI] [Google Scholar]
- 199.Freitas Santos L M D, Hömmerich U, Livingston A G. Dichloroethane removal from gas streams by an extractive membrane bioreactor. Biotechnology Progress. 1995;11(2):194–201. doi: 10.1021/bp00032a011. [DOI] [Google Scholar]
- 200.Dos Santos L F, Biundo G L. Treatment of pharmaceutical industry process wastewater using the extractive membrane bioreactor. Environment and Progress. 1999;18(1):34–39. doi: 10.1002/ep.670180118. [DOI] [Google Scholar]
- 201.Chuichulcherm S, Nagpal S, Peeva L, Livingston A. Treatment of metal—containing wastewaters with a novel extractive membrane reactor using sulfate—reducing bacteria. Environmental & Clean Technology. 2001;76(1):61–68. [Google Scholar]
- 202.Luo W, Hai F I, Price W E, Guo W, Ngo H H, Yamamoto K, Nghiem L D. High retention membrane bioreactors: challenges and opportunities. Bioresource Technology. 2014;167:539–546. doi: 10.1016/j.biortech.2014.06.016. [DOI] [PubMed] [Google Scholar]
- 203.Liu Y L, Wang X M, Yang H W, Xie Y F, Huang X. Preparation of nanofiltration membranes for high rejection of organic micropollutants and low rejection of divalent cations. Journal of Membrane Science. 2019;572(15):152–160. doi: 10.1016/j.memsci.2018.11.013. [DOI] [Google Scholar]
- 204.Choi J H, Fukushi K, Yamamoto K. A submerged nanofiltration membrane bioreactor for domestic wastewater treatment: the performance of cellulose acetate nanofiltration membranes for long-term operation. Separation and Purification Technology. 2007;52(3):470–477. doi: 10.1016/j.seppur.2006.05.027. [DOI] [Google Scholar]
- 205.Zaviska F, Drogui P, Grasmick A, Azais A, Héran M. Nanofiltration membrane bioreactor for removing pharmaceutical compounds. Journal of Membrane Science. 2013;429:121–129. doi: 10.1016/j.memsci.2012.11.022. [DOI] [Google Scholar]
- 206.Li D, Wang H. Recent developments in reverse osmosis desalination membranes. Journal of Materials Chemistry. 2010;20(22):4551–4566. doi: 10.1039/b924553g. [DOI] [Google Scholar]
- 207.Ming F T, Lee S, Xu H, Jeong K, Chong T H. Impact of salt accumulation in the bioreactor on the performance of nanofiltration membrane bioreactor (NF-MBR) + reverse osmosis (RO) process for water reclamation. Water Research. 2019;170:115352. doi: 10.1016/j.watres.2019.115352. [DOI] [PubMed] [Google Scholar]
- 208.Waszak M, Markowska-Szczupak A, Gryta M. Application of nanofiltration for production of 1,3-propanediol in membrane bioreactor. Catalysis Today. 2016;268(15):164–170. doi: 10.1016/j.cattod.2016.02.024. [DOI] [Google Scholar]
- 209.Snowdon J, Singh K S, Zanatta G. Optimization of an external nanofiltration anaerobic membrane bioreactor treating a high-strength starch-based wastewater. Journal of Environmental Engineering. 2018;144(6):04018032. doi: 10.1061/(ASCE)EE.1943-7870.0001376. [DOI] [Google Scholar]
- 210.Cornelissen E R, Harmsen D, Korte K, Ruiken C J, Qin J J, Oo H, Wessels L P. Membrane fouling and process performance of forward osmosis membranes on activated sludge. Journal of Membrane Science. 2008;319(1–2):158–168. doi: 10.1016/j.memsci.2008.03.048. [DOI] [Google Scholar]
- 211.Holloway R W, Achilli A, Cath T Y. The osmotic membrane bioreactor: a critical review. Environmental Science & Technology. 2015;1:581–605. [Google Scholar]
- 212.Wang X, Chang V, Tang C Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future. Journal of Membrane Science. 2016;504:113–132. doi: 10.1016/j.memsci.2016.01.010. [DOI] [Google Scholar]
- 213.Achilli A, Cath T Y, Marchand E A, Childress A E. The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination. 2009;239(1–3):10–21. doi: 10.1016/j.desal.2008.02.022. [DOI] [Google Scholar]
- 214.Wei J Y, Zhang J, Lay W, Cao B, Fane A G, Yu L. State of the art of osmotic membrane bioreactors for water reclamation. Bioresource Technology. 2012;122:217–222. doi: 10.1016/j.biortech.2012.03.060. [DOI] [PubMed] [Google Scholar]
- 215.Lay W C L, Zhang Q, Zhang J, McDougald D, Tang C, Wang R, Liu Y, Fane A G. Effect of pharmaceuticals on the performance of a novel osmotic membrane bioreactor (OMBR) Separation Science and Technology. 2012;47(4):543–554. doi: 10.1080/01496395.2011.630249. [DOI] [Google Scholar]
- 216.Alturki A, Mcdonald J, Khan S J, Hai F I, Long D N. Performance of a novel osmotic membrane bioreactor (OMBR) system: flux stability and removal of trace organics. Bioresource Technology. 2012;113:201–206. doi: 10.1016/j.biortech.2012.01.082. [DOI] [PubMed] [Google Scholar]
- 217.Kwon D, Kwon S J, Kim J, Lee J H. Feasibility of the highly-permselective forward osmosis membrane process for the post-treatment of the anaerobic fluidized bed bioreactor effluent. Desalination. 2020;485:114451. doi: 10.1016/j.desal.2020.114451. [DOI] [Google Scholar]
- 218.Tan S, Acquah I, Li W. Cultivation of marine activated sludge to treat saline wastewater. Fresenius Environmental Bulletin. 2016;25:3134–3141. [Google Scholar]
- 219.Lu Y, He Z. Mitigation of salinity buildup and recovery of wasted salts in a hybrid osmotic membrane bioreactor-electrodialysis system. Environmental Science & Technology. 2015;49(17):10529–10535. doi: 10.1021/acs.est.5b01243. [DOI] [PubMed] [Google Scholar]
- 220.Viet N D, Cho J, Yoon Y, Jang A. Enhancing the removal efficiency of osmotic membrane bioreactors: a comprehensive review of influencing parameters and hybrid configurations. Chemosphere. 2019;236:124363. doi: 10.1016/j.chemosphere.2019.124363. [DOI] [PubMed] [Google Scholar]
- 221.Geng Y K, Wang Y, Pan X R, Sheng G P. Electricity generation and in situ phosphate recovery from enhanced biological phosphorus removal sludge by electrodialysis membrane bioreactor. Bioresource Technology. 2018;247:471–476. doi: 10.1016/j.biortech.2017.09.118. [DOI] [PubMed] [Google Scholar]
- 222.Wang Y K, Geng Y K, Pan X R, Sheng G P. In situ utilization of generated electricity for nutrient recovery in urine treatment using a selective electrodialysis membrane bioreactor. Chemical Engineering Science. 2017;171(2):451–458. doi: 10.1016/j.ces.2017.06.002. [DOI] [Google Scholar]
- 223.Mamo J, García-Galán M J, Stefani M, Rodríguez-Mozaz S, Barceló D, Monclús H, Rodriguez-Roda I, Comas J. Fate of pharmaceuticals and their transformation products in integrated membrane systems for wastewater reclamation. Chemical Engineering Journal. 2018;331:450–461. doi: 10.1016/j.cej.2017.08.050. [DOI] [Google Scholar]
- 224.Racar M, Dolar D, Karadakić K, Čavarović N, Glumac N, Ašperger D, Košutić K. Challenges of municipal wastewater reclamation for irrigation by MBR and NF/RO: physico-chemical and microbiological parameters, and emerging contaminants. Science of the Total Environment. 2020;722:137959. doi: 10.1016/j.scitotenv.2020.137959. [DOI] [PubMed] [Google Scholar]
- 225.Díaz O, Gonzalez E, Vera L, Porlán L, Rodríguez-Sevilla J, Afonso-Olivares C, Ferrera Z, Santana Rodriguez J J. Nanofiltration/reverse osmosis as pretreatment technique for water reuse: ultrafiltration versus tertiary membrane reactor. Clean (Weinheim) 2017;45(5):1600014. [Google Scholar]
- 226.Dhangar K, Kumar M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: a review. Science of the Total Environment. 2020;738:140320. doi: 10.1016/j.scitotenv.2020.140320. [DOI] [PubMed] [Google Scholar]
- 227.Beier S, Köster S, Veltmann K, Schröder H, Pinnekamp J. Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis. Water Science and Technology. 2010;61(7):1691–1698. doi: 10.2166/wst.2010.119. [DOI] [PubMed] [Google Scholar]
- 228.Tam L S, Tang T W, Lau G N, Sharma K R, Chen G H. A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems. Desalination. 2007;202(1–3):106–113. doi: 10.1016/j.desal.2005.12.045. [DOI] [Google Scholar]
- 229.Comerton A M, Andrews R C, Bagley D M. Evaluation of an MBR-RO system to produce high quality reuse water: microbial control, DBP formation and nitrate. Water Research. 2005;39(16):3982–3990. doi: 10.1016/j.watres.2005.07.014. [DOI] [PubMed] [Google Scholar]
- 230.Prado T, De Castro Bruni A, Barbosa M R F, Garcia S C, De Jesus Melo A M, Sato M I Z. Performance of wastewater reclamation systems in enteric virus removal. Science of the Total Environment. 2019;678:33–42. doi: 10.1016/j.scitotenv.2019.04.435. [DOI] [PubMed] [Google Scholar]
- 231.Prado T, De Castro Bruni A, Barbosa M R F, Garcia S C, Moreno L Z, Sato M I Z. Noroviruses in raw sewage, secondary effluents and reclaimed water produced by sand-anthracite filters and membrane bioreactor/reverse osmosis system. Science of the Total Environment. 2019;646:427–437. doi: 10.1016/j.scitotenv.2018.07.301. [DOI] [PubMed] [Google Scholar]
- 232.Plevri A, Noutsopoulos C, Mamais D, Makropoulos C, Andreadakis A, Lytras E, Samios S. Priority pollutants and other micropollutants removal in an MBR-RO wastewater treatment system. Desalination and Water Treatment. 2018;127:121–131. doi: 10.5004/dwt.2018.22857. [DOI] [Google Scholar]
- 233.Plevri A, Mamais D, Noutsopoulos C, Makropoulos C, Andreadakis A, Rippis K, Smeti E, Lytras E, Lioumis C. Promoting on-site urban wastewater reuse through MBR-RO treatment. Desalination and Water Treatment. 2017;91:2–11. doi: 10.5004/dwt.2017.20804. [DOI] [Google Scholar]
- 234.Li C, Cabassud C, Guigui C. Evaluation of membrane bioreactor on removal of pharmaceutical micropollutants: a review. Desalination and Water Treatment. 2014;55(4):845–858. doi: 10.1080/19443994.2014.926839. [DOI] [Google Scholar]
- 235.Sahar E, David I, Gelman Y, Chikurel H, Aharoni A, Messalem R, Brenner A. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination. 2011;273(1):142–147. doi: 10.1016/j.desal.2010.11.004. [DOI] [Google Scholar]
- 236.Dolar D, Gros M, Rodriguez-Mozaz S, Moreno J, Comas J, Rodriguez-Roda I, Barceló D. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. Journal of Hazardous Materials. 2012;239–240:64–69. doi: 10.1016/j.jhazmat.2012.03.029. [DOI] [PubMed] [Google Scholar]
- 237.Aziz M, Ojumu T. Exclusion of estrogenic and androgenic steroid hormones from municipal membrane bioreactor wastewater using UF/NF/RO membranes for water reuse application. Membranes. 2020;10(3):37. doi: 10.3390/membranes10030037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 238.Wu B, Kitade T, Chong T H, Uemura T, Fane A G. Impact of membrane bioreactor operating conditions on fouling behavior of reverse osmosis membranes in MBR-RO processes. Desalination. 2013;311(15):37–45. doi: 10.1016/j.desal.2012.11.020. [DOI] [Google Scholar]
- 239.Wang G, Fan Z, Wu D, Qin L, Zhang G, Gao C, Meng Q. Anoxic/aerobic granular active carbon assisted MBR integrated with nanofiltration and reverse osmosis for advanced treatment of municipal landfill leachate. Desalination. 2014;349:136–144. doi: 10.1016/j.desal.2014.06.030. [DOI] [Google Scholar]
- 240.Wang J, Li K, Wei Y, Cheng Y, Wei D, Li M. Performance and fate of organics in a pilot MBR-NF for treating antibiotic production wastewater with recycling NF concentrate. Chemosphere. 2015;121:92–100. doi: 10.1016/j.chemosphere.2014.11.034. [DOI] [PubMed] [Google Scholar]
- 241.Hacifazlıoğlu M C, Parlar İ, Pek T Ö, Kabay N. Evaluation of chemical cleaning to control fouling on nanofiltration and reverse osmosis membranes after desalination of MBR effluent. Desalination. 2019;466:44–51. doi: 10.1016/j.desal.2019.05.003. [DOI] [Google Scholar]
- 242.Rautenbach R, Mellis R. Waste water treatment by a combination of bioreactor and nanofiltration. Desalination. 1994;95(2):171–188. doi: 10.1016/0011-9164(94)00012-3. [DOI] [Google Scholar]
- 243.Tran T, Nguyen T, Ho H, Le D, Lam T, Nguyen D, Hoang A, Do T, Hoang L, Nguyen T, et al. Integration of membrane bioreactor and nanofiltration for the treatment process of real hospital wastewater in Ho Chi Minh City, Vietnam. Processes (Basel, Switzerland) 2019;7(3):123. [Google Scholar]
- 244.Parlar I, Hacifazlıoğlu M, Kabay N, Pek T Ö, Yüksel M. Performance comparison of reverse osmosis (RO) with integrated nanofiltration (NF) and reverse osmosis process for desalination of MBR effluent. Journal of Water Process Engineering. 2019;29:100640. doi: 10.1016/j.jwpe.2018.06.002. [DOI] [Google Scholar]
- 245.Lan Y, Groenen-Serrano K, Coetsier C, Causserand C. Fouling control using critical, threshold and limiting fluxes concepts for cross-flow NF of a complex matrix: membrane bioreactor effluent. Journal of Membrane Science. 2017;524:288–298. doi: 10.1016/j.memsci.2016.11.001. [DOI] [Google Scholar]
- 246.Lan Y, Groenen-Serrano K, Coetsier C, Causserand C. Nanofiltration performances after membrane bioreactor for hospital waste-water treatment: fouling mechanisms and the quantitative link between stable fluxes and the water matrix. Water Research. 2018;146:77–87. doi: 10.1016/j.watres.2018.09.004. [DOI] [PubMed] [Google Scholar]
- 247.Geoswami L, Kumar R V, Borah S N, Manikandan N A, Pakshirajan K, Pugazhenthi G. Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: A review. Journal of Water Process Engineering. 2018;26:314–328. doi: 10.1016/j.jwpe.2018.10.024. [DOI] [Google Scholar]
- 248.Arola K, Hatakka H, Mänttäri M, Kallioinen M. Novel process concept alternatives for improved removal of micropollutants in wastewater treatment. Separation and Purification Technology. 2017;186:333–341. doi: 10.1016/j.seppur.2017.06.019. [DOI] [Google Scholar]
- 249.Alturki A A, Tadkaew N, Mcdonald J A, Khan S J, Price W E, Nghiem L D. Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. Journal of Membrane Science. 2010;365(1–2):206–215. doi: 10.1016/j.memsci.2010.09.008. [DOI] [Google Scholar]
- 250.Chon K, Sarp S, Lee S, Lee J H, Lopez-Ramirez J A, Cho J. Evaluation of a membrane bioreactor and nanofiltration for municipal wastewater reclamation: trace contaminant control and fouling mitigation. Desalination. 2011;272(1–3):128–134. doi: 10.1016/j.desal.2011.01.002. [DOI] [Google Scholar]