Skip to main content
Foods logoLink to Foods
. 2021 Oct 29;10(11):2625. doi: 10.3390/foods10112625

Screening for Innovative Sources of Carotenoids and Phenolic Antioxidants among Flowers

Antonio J Meléndez-Martínez 1, Ana Benítez 1, Mireia Corell 2,3, Dolores Hernanz 4,*, Paula Mapelli-Brahm 1, Carla Stinco 1, Elena Coyago-Cruz 5
Editors: Antonio De Haro Bailón, Fernando Cámara-Martos
PMCID: PMC8623576  PMID: 34828906

Abstract

Flowers have been used for centuries in decoration and traditional medicine, and as components of dishes. In this study, carotenoids and phenolics from 125 flowers were determined by liquid chromatography (RRLC and UHPLC). After comparing four different extractants, the carotenoids were extracted with acetone: methanol (2:1), which led to a recovery of 83%. The phenolic compounds were extracted with 0.1% acidified methanol. The petals of the edible flowers Renealmia alpinia and Lantana camara showed the highest values of theoretical vitamin A activity expressed as retinol activity equivalents (RAE), i.e., 19.1 and 4.1 RAE/g fresh weight, respectively. The sample with the highest total phenolic contents was Punica granatum orange (146.7 mg/g dry weight). It was concluded that in most cases, flowers with high carotenoid contents did not contain high phenolic content and vice versa. The results of this study can help to develop innovative concepts and products for the industry.

Keywords: antioxidants, edible flowers, functional foods, petals, phytochemicals, retinol activity equivalents

1. Introduction

Flowers have long held an important place in human societies. They have been used for ornamental purposes as well as in diverse dishes, mainly due to their appealing and diverse colors [1]. In addition, flowers have been used in traditional medicine [2]. More specifically, the use of flowers in the diet or as medicine dates back at least to 4000 BC, as documented in the Mesopotamic and Egyptian cultures [3]. Their traditional use in other cultures (Roman, Greek, Chinese, Indian, and European) is also well-known [4].

In recent years, there has been a growing interest in the study from different points of view of the health-promoting secondary metabolites present in flowers, including carotenoids and phenolics [5,6,7]. Indeed, the study of agronomic practices that can enhance the levels of these compounds in flowers or non-conventional technologies for their extraction are timely topics [8,9]. Carotenoids (carotenes and xanthophylls) are widespread and versatile compounds in nature, where they are important in processes including photosynthesis, the communication within and between species, the protection against oxidizing agents, and the modulation of membrane properties [10]. They are responsible for the red, yellow and orange colors of many flowers [11], which are important for pollination [12]. One of the main differences between carotenoids relative and other bioactive compounds is that some of them can be converted into vitamin A, which is an essential micronutrient. Apart from their key role in combating vitamin A deficiency and as natural food colors, carotenoids are important in health promotion. In fact, these compounds can help to enhance the immune system and reduce the risk of developing some diseases, including cancers (prostate, breast, cervical, ovarian, and colorectal), cardiovascular disease, bone, skin, and eye disorders. Although the possible health-promoting actions of carotenoids are commonly attributed to their antioxidant capacity, they can act through other mechanisms, such as the modulation of signaling pathways (with antioxidant, detoxifying and antiinflamatory effects), the enhancement of intercellular communication, or the protection against light [13]. Due to their versatility, carotenoids have applications not only in the food industry (colorants, ingredients, source of vitamin A), but also in cosmetics [14], feeds [15], pharmaceuticals [16], and even as textile dyes [17].

Phenolic compounds are, like carotenoids, widespread compounds in nature in general and in plants in particular. They can be categorized as extractable or non-extractable. Phenolic acids (benzoic and hydroxycynnamic acids), flavonoids (flavonols, flavones, flavanols, isoflavones, flavanones, and anthocyanidins), estilbenes, extractable proanthocyanidins, and hydrolyzed tannins belong to the first group. Non-extractable proanthocyanidins (or condensed tannins) and hydrolysable phenolics are groups of non-extractable phenolics [18]. These compounds also elicit great interest due to their health-promoting activities, which are usually attributed to antioxidant activity, although there is also evidence that they could exhibit antiviral, anticarcinogenic, antiinflamatory or antimicrobial activities, among others [19].

Depending on their fitness for human consumption, flowers are classified as edible or inedible, which depends on factors including the levels of inherent toxic compounds and/or those of fertilizers, herbicides or pesticides that can be dangerous for human health [20]. Edible flowers are normally used as flavor enhancers, relishes, vegetables, or dish decorations [21]. Common examples are roses (Rosa spp.) in Italy, dandelions (Taraxacum officinale) in Europe, and violets (Viola tricolor) in USA [22]. All in all, there is an increased market demand for edible flowers [1], increasing the need to further study the presence of compounds with nutritional interest in them. In this context, the objective of this study was to evaluate the carotenoids and phenolics of 125 flowers through liquid chromatography,

2. Materials and Methods

2.1. Reagents and Standards

The methanol, hexane, acetone, petroleum ether, dichloromethane, and hydrochloric acid were of analytical grade and were purchased from Labscan (Dublin, Ireland). The HPLC-grade methanol, HPLC-grade acetonitrile, HPLC–grade ethyl acetate, formic acid, sodium chloride, and potassium hydroxide were obtained from Panreac (Barcelona, Spain). The β-Carotene, all-trans-β-apo-8′-carotenal, α-carotene, phytoene, violaxanthin, lutein, β-cryptoxanthin, and lycopene were purchased from Sigma-Aldrich (Taufkirchen, Germany) and the antheraxanthin from DHI (Hørsholm, Denmark). The lutein epoxide, luteoxanthin, zeinoxanthin, 9-cis-antheraxanthin, 9-cis-violaxanthin, 13-cis-violaxanthin, and 9-cis-lutein were obtained as described elsewhere [23,24,25,26,27]. The gallic acid, p-hydroxybenzoic acid, syringic acid, caffeic acid, m-coumaric, p-coumaric, chlorogenic acid, ferulic acid, naringin, naringenin, ethyl galate, quercetin, kaempferol, crisin, vanillic acid, and myricetin were purchased from Sigma-Aldrich (Madrid, Spain). The quercitrin was obtained from Extrasynthese (Genay, France). All the aqueous solutions were prepared with purified water in a NANOpure DlamondTM system (Barnsted Inc., Dubuque, IO, USA).

2.2. Plant Materials

The petals of one hundred twenty-five fresh flowers from 52 different families and 102 species were collected from a botanical garden (Real Jardín Botánico de Córdoba, Córdoba, Spain) and local greenhouses in Madrid and Seville (Spain). These places ensure the traceability in the growth of the floral species by providing identification. After measuring the color of the petals, the samples were freeze-dried (Cryodos-80, Telstar, Terrasa, Spain) and the humidity was calculated.

2.3. Color Analysis

The colors were measured using a CM-700d colorimeter (Minollta, Japan). Illuminant D65 and 10° observer were considered as references. The color parameters corresponding to the uniform color space CIELAB were obtained. The categorization of the samples by color (white, yellow, orange, red, pink, lilac and blue) was performed considering clusters of points in the a*b* plane. Thus, the samples were separated into three groups. Group A included white, yellow, and orange flowers, group B contained red and pink flowers, and group C included lilac and blue flowers. The color of some flowers could not be assessed instrumentally because of their small sizes.

2.4. Analysis of Carotenoids

2.4.1. Extraction and Saponification

The micro-extractions were performed under dim light and in triplicate. The best extraction mixture was selected after evaluating different extraction mixtures (hexane: acetone (v/v) (1:1), methanol: acetone: dichloromethane (v/v/v) (1:1:2), acetone: methanol (v/v) (2:1), and ethyl acetate: methanol: petroleum ether (v/v/v) (1:1:1)). For this purpose, the petals of Calendula × hybrid were used. Approximately 20 mg of homogenized freeze-dried powder was mixed with 1 mL of the appropriate solvent mixture and then vortexed, sonicated for 2 min and centrifuged at 14,000× g for 3 min. After recovering the colored fraction, the extraction was repeated with aliquots of 500 μL of the solvent mixture until color exhaustion. The organic colored fractions were combined and evaporated to dryness in a vacuum concentrator at a temperature below 30 °C. Calendula × hybrid is known to possess high amounts of esterified carotenoids, so the extracts were de-esterified by saponification [28]. For this purpose, the dry extracts were re-dissolved in 500 μL of methanolic potassium hydroxide (30%, w/v) and the mixtures were stirred for one hour in a nitrogen atmosphere at 25 °C. Next, 500 μL of dichloromethane and 800 μL of 5% aqueous NaCl (w/v) were added. The samples were vortexed and centrifuged at 14,000× g for 3 min and then the aqueous phase was removed. The carotenoid-containing phase was washed with water until neutrality of the wastewater. The colored phase was evaporated to dryness in a vacuum concentrator at a temperature below 30 °C and stored in a nitrogen atmosphere at −20 °C until the analysis.

The extraction mixture leading to the highest recovery of carotenoids was selected for the extraction of carotenoids from all the samples. All-trans-β-apo-8´-carotenal was used as an internal standard.

2.4.2. Spectrophotometric Analysis

The total carotenoid contents (TCC) of petroleum ether extracts of each flower were quantified by spectrophotometry by considering the absorbance reading at 450 nm and the molar absorptivity value of β-carotene in the solvent (εmol = 2592). The results were reported as μg/g dry weight (DW) [29].

2.4.3. Rapid Resolution Liquid Chromatography (RRLC) Analysis

The dry extracts were re-dissolved in 20 μL of ethyl acetate prior to their analysis by RRLC. The analysis was carried out using the method reported by [30] on an Agilent 1260 system equipped with a diode-array detector and a C18 Poroshell 120 column (2.7 μm, 5 cm × 4.6 mm) (Agilent, Palo Alto, CA, USA). The injection volume was 5 μL, the flow rate was 1 mL/min, and the temperature of the column was set at 30 °C. A mobile phase consisting of acetonitrile, methanol, and ethyl acetate was used with a linear gradient elution [30]. The chromatograms were monitored at 285, 350, and 450 nm for the quantification of phytoene, phytofluene, and the rest of the carotenoids (lutein epoxide, luteoxanthin, antheraxanthin, violaxanthin, lutein, cis-antheraxanthin, lycopene, zeinoxanthin, β-cryptoxanthin, β-carotene, and α-carotene), respectively. UV–Vis spectra were recorded from 250 to 750 nm. The individual carotenoids were identified with their corresponding standards and quantified using external calibration curves made with them whenever possible. The limits of detection (LOD) and quantification (LOQ) were calculated as three and ten times, respectively; the relative standard deviation of the analytical blank values were calculated from the calibration curve, using Microcal Origin ver. 3.5 software (OriginLab Corporation, Northampton, MA, USA). The LODs and LOQs ranged from 0.002 µg in phytoene to 0.070 µg in lycopene and from 0.007 µg in phytoene to 0.232 µg in lycopene, respectively. The LOD and LOQ were established on the basis of signal to noise (S/N) ratio of 3 and 10, respectively. The samples were analyzed in duplicate with double sample injection. The concentrations were expressed in μg/g DW and the TCC contents were calculated by adding up all the individual carotenoids.

2.5. Analysis of Phenolic Compounds

2.5.1. Extraction

The protocol described by [31] was adapted for the extraction of smaller amounts of samples. Briefly, 1.5 mL of 0.1% acidified methanol was added to approximately 50 mg of freeze-dried petals, and the mixture was vortexed, sonicated for 2 min, and centrifuged at 4190× g for 7 min and at 4 °C; the supernatant was collected and the residue was submitted to the same extraction process twice with only 0.5 mL of the acidified methanol. The combined supernatant was stored at −20 °C until the analysis.

2.5.2. Spectrophotometric Analysis

The extract obtained was used for the determination of the total phenolic content (TPC) using the Folin–Ciocalteu assay, as described by [31], with slight modifications. Briefly, 50 μL of extract, 0.25 mL of Folin-Ciocalteu reagent, 0.75 mL of a solution of sodium carbonate (20%), and 3.95 mL of distilled water were mixed and left to stand for 2 h for the reaction to take place. Gallic acid was employed as a calibration standard and the absorbance was read at 765 nm with a Hewlett-Packard UV-vis HP8453 spectrophotometer (Palo Alto, CA, USA). The results were expressed as mg of equivalents of gallic acid per g of dry weight (mg GAE/ g DW) and allowed to define the injection volumes for the quantification by Ultra-High Performance Liquid Chromatography (UHPLC).

2.5.3. Ultra-High Performance Liquid Chromatography (UHPLC) Analysis

Prior to the injection, the extracts were concentrated to dryness, re-dissolved in 20 μL of 0.01% formic acid, and centrifuged at 4190× g for 7 min and at 4 °C. The UHPLC method was previously reported by [31]. An Agilent 1290 chromatograph equipped with a diode-array detector (Agilent Technologies, Palo Alto, CA, USA) set between 220 and 500 nm and an Eclipse Plus C18 column (1.8 um, 2.1 × 5 mm) were used. The column was kept at 30 °C, the injection volumes were in a range between 0.3 and 1.5 μL, the flow rate was 1 mL/min, and a linear gradient was used. Open lab ChemStation software was used for data acquisition and processing. The identification of the phenolic compounds was performed through a comparison of their retention times and UV-vis spectra, within the range 250–750 nm, with those of the available standards [31]. The chromatograms were monitored at 280 for the benzoic acids, hydroxycinnamic acids, flavones, and flavanones, and at 320 nm for the flavonols. Their quantification was carried out using external calibration curves of each of the compounds analyzed. The LODs and LOQs ranged from 0.006 µg in chlorogenic acid to 0.012 µg in p-hydroxybenzoic acid and 0.014 µg in chlorogenic acid to 0.041 µg in p-hydroxybenzoic acid, respectively. The LOD and LOQ were established on the basis of signal-to-noise (S/N) ratios of 3 and 10, respectively. The samples were analyzed in duplicate with double sample injection. The TPC was calculated by adding up all the individual phenolics.

2.6. Statistical Analysis

All the experiments were performed in triplicate with double injection, and the results were expressed as mean ± standard deviation (SD). The mean separation was made via Tukey’s test. Differences were considered statistically significant for p values ≤0.01. The statistical analysis was performed using the STATGRAPHICS Centurion XVII software.

3. Results

3.1. Color Parameters and Other Characteristics

The color parameters, humidity values, and culinary uses of the flowers are presented in Table 1, Table 2 and Table 3.

Table 1.

Mean color parameter values, humidity, and culinary uses (according to Coyago, et al., (2017) [32] and The-Plant-List, (2019) [33]) of white, yellow, and orange flowers.

Samples Family Species Common Name Culinary Uses Humidity (%) L* a* b* C*ab hab
White flowers
1 Araceae Spathiphyllum montanum Grayum Peace flower Non edible 89.767 ± 0.225 57.200 ± 6.263 −9.210 ± 0.676 24.800 ± 1.495 26.456 ± 0.709 110.333 ± 0.697
2 Agavaceae Chlorophytum comosum (Thunb.) Jacques Bad mother Infusion 99.130 ± 0.701 na na na na na
3 Amaryllidaceae Agapanthus africanus (L.) Hoffmanns African lily Infusion 76.112 ± 0.306 73.517 ± 0.804 −1.213 ± 0.211 4.557 ± 0.872 4.727 ± 0.798 105.413 ± 3.107
4 Apiaceae Coriandrum sativum L. Coriander Salad, garrison 95.853 ± 0.027 na na na na na
5 Apocynaceae Nerium oleander L. Flower laurel Non edible 79.493 ± 0.666 77.800 ± 3.581 −2.627 ± 0.316 7.637 ± 0.301 8.092 ± 0.268 109.291 ± 3.447
6 Apocynaceae Trachelospermum jasminoides (Lind.) Len. Starry jasmine Infusion 95.800 ± 0.325 na na na na na
7 Boraginaceae Heliotropium arborescens L. Vanilla Infusion 86.012 ± 0.152 na na na na na
8 Brassicaceae Matthiola incana (L.) R. Br. White violet Infusion 99.718 ± 0.525 87.123 ± 0.023 −1.740 ± 0.017 21.623 ± 0.323 21.693 ± 0.124 94.558 ± 0.023
9 Campanulaceae Campanula shetleri Heckard Green bell na 93.548 ± 0.011 67.010 ± 0.001 0.730 ± 0.001 14.050 ± 0.001 14.050 ± 0.001 87.070 ± 0.000
10 Caryophyllaceae Dianthus chinensis L. Diantus Salad, tea 94.444 ± 0.922 80.793 ± 1.819 −3.137 ± 0.110 11.687 ± 2.201 12.106 ± 0.156 105.231± 2.077
11 Caryophyllaceae Gypsophila paniculata L. Veil Infusion 88.312 ± 1.542 na na na na na
12 Convolvulaceae Convolvulus pseudoscammonia C. Koch L. Meadow bell Infusion 89.878 ± 0.808 83.093 ± 4.473 −1.800 ± 0.171 5.767 ± 1.140 6.043 ± 0.120 107.501 ± 1.604
13 Iridaceae Gladiolus communis L. Gladiolus Salad, garrison 79.592 ± 0.349 67.010 ± 0.001 0.730 ± 0.001 14.051 ± 0.008 14.069 ± 0.002 87.070 ± 0.001
14 Lamiaceae Mentha suaveolens Ehrh. Mentha suaveolens Infusion 79.771 ± 0.902 na na na na na
15 Magnoliaceae Magnolia grandiflora L. Magnolia Tea 82.151 ± 0.272 83.093 ± 4.473 −1.800 ± 0.171 5.767 ± 0.140 6.043 ± 0.410 107.501 ± 0.764
16 Oleaceae Jasminum sambac (L.) Aiton Jasmine of Arabia Salad, tea 84.826 ± 0.104 83.987 ± 2.450 −2.927 ± 0.401 16.497 ± 0.901 16.757 ± 0.918 100.059 ± 0.129
17 Orchidaceae Phalaenopsis aphrodite Rchb. f. Orchid na 98.172 ± 0.063 70.063 ± 1.670 10.030 ± 2.044 −7.103 ± 1.079 12.297 ± 2.201 325.161 ± 1.368
18 Plumbaginaceae Plumbago auriculata Lam. Celestine Infusion 26.895 ± 0.872 54.340 ± 1.806 1.530 ± 0.041 −16.017 ± 0.154 16.208 ± 0.157 275.041 ± 0.289
19 Rosaceae Fragaria × Duchesne ex Rozier Strawberry na 94.215 ± 0.579 67.010 ± 0.001 0.730 ± 0.020 14.050 ± 0.001 14.069 ± 0.031 87.070 ± 0.011
20 Rosaceae Rosa hybrid Vill. Rose Salad, desserts 79.739 ± 0.888 86.353 ± 0.915 0.030 ± 0.041 14.207 ± 0.059 14.207 ± 0.024 89.924 ± 0.005
21 Solanaceae Capsicum annuum L. Pepper na 98.960 ± 0.921 na na na na na
22 Solanaceae Solanum laxum Sprengel False jasmine na 85.197 ± 1.508 50.783 ± 2.100 11.903 ± 1.050 8.620 ± 0.219 14.798 ± 1.203 35.636 ± 0.832
23 Verbenaceae Aloysia citriodora Palau Cedrón Tea 98.118 ± 0.847 na na na na na
24 Verbenaceae Lantana camara L. Lantana Tea 86.986 ± 0.183 64.770 ± 0.143 2.703 ± 0.246 17.780 ± 1.362 17.991 ± 1.326 81.447 ± 1.244
Yellow flowers
25 Araceae Aglaonema commutatum Schott Aglaonema Non edible 91.958 ± 0.900 66.330 ± 1.411 −0.627 ± 0.055 28.877 ± 1.864 28.884 ± 0.186 91.205 ± 0.180
26 Asteraceae Anthemis tinctoria L. Golden Daisy Colorant 78.726 ± 0.172 60.770 ± 2.463 21.140 ± 0.654 87.357 ± 2.326 89.878 ± 0.740 76.436 ± 0.139
27 Asteraceae Dahlia coccinea Cav. Dahlia Salad 87.788 ± 0.184 61.363 ± 0.719 2.133 ± 0.201 66.667 ± 0.540 66.713 ± 0.281 88.181 ± 0.133
28 Asteraceae Dahlia pinnata Cav. Dahlia Salad 74.519 ± 0.001 67.290 ± 0.646 16.523 ± 0.018 75.780 ± 0.546 77.561 ± 0.572 77.739 ± 0.060
29 Brassicaceae Diplotaxis tenuifolia (L.) DC. Rucula Salad 87.218 ± 0.528 na na na na na
30 Cannabaceae Cannabis sativa L. Cannabis Non edible 76.200± 0.914 na na na na na
31 Celastraceae Euonymus japonicus Thunb. Burning bush Colorant 92.000 ± 1.028 na na na na na
32 Fabaceae Sophora japonica L. Acacia Japan Infusion 73.629 ± 0.384 79.180 ± 1.871 −6.573 ± 0.116 22.023 ± 0.733 22.984 ± 0.107 106.592 ± 0.582
33 Fabaceae Senna papillosa H.S. Irwin & Barneby Senna Non edible 73.823 ± 0.326 58.420 ± 4.265 11.060 ± 2.265 38.370 ± 4.099 40.000 ± 5.911 74.380 ± 4.294
34 Juglandaceae Pterocarya stenoptera C. DC. Chinese fresno Non edible 84.572 ± 0.611 73.000 ± 1.279 −5.970 ± 0.214 32.910 ± 1.255 33.455 ± 1.245 100.342 ± 0.283
35 Lamiaceae Ocimum basilicum L. Basil Salad, tea 94.680 ± 1.525 80.893 ± 3.409 −7.227 ± 0.657 32.187 ± 1.419 32.990 ± 0.712 102.602 ± 0.691
36 Malvaceae Gossypium arboreum L. Cotton Non edible 81.410 ± 0.114 80.873 ± 3.412 −7.243 ± 0.713 32.201 ± 1.403 33.120 ± 0.725 102.612 ± 0.743
37 Plantaginaceae Plantago major L. Plantain Infusion 85.714 ± 0.200 na na na na na
38 Polygonaceae Fallopia aubertii (L.Henry) Holub Gabriela falloppio na 92.411 ± 0.332 na na na na na
39 Portulacaceae Portulaca oleracea L. Purslane Salad 98.092 ± 0.661 71.643 ± 0.965 4.887 ± 0.240 29.533 ± 0.397 29.906 ± 0.401 80.624 ± 0.311
40 Rubiaceae Gardenia jasminoides J. Ellis Gardenia Colorant 82.213 ± 0.283 84.253 ± 3.833 3.453 ± 0.116 46.923 ± 0.470 47.050 ± 0.161 85.833 ± 0.179
41 Solanaceae Solanum lycopersicum L. Tomato na 87.255 ± 0.261 77.200 ± 1.001 −4.500 ± 0.121 22.034 ± 0.704 23.036 ± 0.111 106.603 ± 0.612
42 Verbenaceae Lantana camara L. Lantana Tea 88.122 ± 0.706 50.570 ± 0.875 18.403 ± 0.431 48.440 ± 0.128 51.823 ± 0.135 69.101 ± 1.018
Orange flowers
43 Acanthaceae Justicia aurea Schltdl. na 94.207 ± 0.184 68.817 ± 1.399 4.123 ± 0.456 88.640 ± 3.326 88.736 ± 3.433 87.386 ± 0.191
44 Bignoniaceae Tecoma capensis (Thunb.) Lindl. Cape honeysuckle Infusion 72.225 ± 0.506 53.233 ± 2.266 40.633 ± 2.053 34.833 ± 2.048 53.572 ± 0.299 40.635 ± 3.084
45 Gesneriaceae Drymonia affinis (Mansf.) Wiehler Drymonia na 73.209 ± 0.172 49.510 ± 1.247 24.983 ± 0.582 32.520 ± 0.963 41.010 ± 1.063 52.490 ± 0.519
46 Gesneriaceae Drymonia brochidodroma Wiehler Drymonia na 91.041 ± 0.703 46.622 ± 1.207 25.043 ± 0.604 32.511 ± 1.000 41.002 ± 1.333 52.512 ± 1.302
47 Lythraceae Punica granatum L. Pomegranate Infusion 69.105 ± 0.437 43.093 ± 2.765 47.340 ± 0.356 36.738 ± 0.217 59.743 ± 0.133 38.153 ± 0.375
48 Zigniberaceae Renealmia alpinia (Rottb.) Maas Honeyy bract Spice 89.126 ± 1.333 52.111 ± 0.224 42.175 ± 0.126 35.101 ± 0.243 54.872 ± 0.302 39.825 ± 2.126

na, not available.

Table 2.

Mean color parameter values, humidity, and culinary uses (according to Coyago et al., (2017) [32] and The-Plant-List, (2019) [33]) of red and pink flowers.

Samples Family Species Common Name Culinary Use Humidity (%) L* a* b* C*ab hab
Red flowers
49 Acanthaceae Aphelandra squarrosa Nees Zebra plant na 73.202 ± 3.184 30.847 ± 1.259 49.437 ± 0.942 32.257 ± 0.541 59.030 ± 1.028 33.142 ± 0.339
50 Amaranthaceae Celosia argentea L. Cockscomb na 71.704 ± 0.126 36.837 ± 2.878 23.600 ± 2.946 −2.833 ± 0.342 23.817 ± 2.999 352.621 ± 0.629
51 Apocynaceae Catharanthus roseus (L.) G. Don Vinca rosea Non-edible 96.519 ± 0.015 46.001 ± 0.012 49.863 ± 0.285 −7.123 ± 0.081 50.370 ± 0.270 351.865 ± 0.137
52 Apocynaceae Nerium oleander L. Flower laurel Non-edible 89.739 ± 3.621 67.077 ± 1.693 19.380 ± 1.427 3.250 ± 0.658 19.810 ± 1.583 10.429 ± 1.409
53 Araceae Anthuriumandraeanum Linden ex Anus Non-edible 94.096 ± 1.525 50.630 ± 0.404 32.917 ± 1.165 11.283 ± 1.585 34.814 ± 1.226 18.895 ± 2.255
54 Balsaminaceae Impatiens balsamina L. Joy of home Salad, desserts 91.049 ± 0.211 41.543 ± 2.466 47.893 ± 4.686 23.887 ± 3.367 53.528 ± 4.758 26.449 ± 1.238
55 Balsaminaceae Impatiens walleriana Hook. F. My dear Salad, desserts 85.202 ± 0.984 50.287 ± 2.228 57.220 ± 2.573 19.490 ± 2.556 60.463 ± 2.626 18.770 ± 1.556
56 Begoniaceae Begonia cavaleriei H. Lév. Begonia na 76.748 ± 0.253 54.793 ± 4.344 19.460 ± 2.899 12.267 ± 0.498 23.311 ± 2.381 33.935 ± 3.613
57 Begoniaceae Begonia cucullata Willd. Sugar flower Salad, desserts 59.290 ± 0.127 37.443 ± 0.873 36.870 ± 2.315 15.157 ± 2.171 39.931 ± 2.942 21.995 ± 1.802
58 Begoniaceae Begonia × tuberhybrida Voss Begonia Salad, desserts 99.736 ± 0.834 32.067 ± 1.391 53.383 ± 2.036 33.483 ± 1.014 63.018 ± 2.134 32.121 ± 0.720
59 Caryophyllaceae Dianthus caryophyllus L. Carmination Fruit salad 95.775 ± 0.106 39.863 ± 4.495 50.847 ± 3.674 21.403 ± 3.633 55.206 ± 3.751 22.762 ± 2.616
60 Ericaceae Rhododendron simsii Planch. Azalea Non-edible 41.527 ± 2.572 41.543 ± 2.466 47.893 ± 3.468 23.887 ± 3.367 53.528 ± 1.265 26.449 ± 1.238
61 Escalloniaceae Escallonia rubra Pers. Escalloniacea na 82.780 ± 0.427 na na na na na
62 Euphorbiaceae Euphorbia milii Des Moul. Crown of christ Non-edible 98.893 ± 0.165 40.683 ± 2.678 32.693 ± 2.356 13.493 ± 1.152 35.384 ± 1.765 22.483 ± 2.048
63 Fabaceae Brownea macrophylla Linden Panama flame tree na 87.209 ± 0.217 na na na na na
64 Geraniaceae Pelargonium peltatum (L.) L´Hér. Gitanilla na 96.390 ± 0.028 14.157 ± 0.337 17.037 ± 0.491 1.823 ± 0.161 17.135 ± 0.472 6.124 ± 0.694
65 Geraniaceae Pelargonium x hortorum H. Bailey Geranium Salad, desserts 86.548 ± 0.281 30.353 ± 2.168 46.593 ± 2.431 27.520 ± 2.095 54.119 ± 2.408 30.563 ± 0.945
66 Lamiaceae Salvia splendens Sellow ex Schult. Red sage Garrison 72.018 ± 0.164 38.813 ± 2.189 24.673 ± 1.401 21.833 ± 0.132 33.424 ± 1.121 42.183 ± 1.443
67 Malvaceae Malvaviscus arboreus Cav. Marshmallow Infusion 86.152 ± 0.909 40.990 ± 1.676 47.580 ± 2.984 25.150 ± 3.289 53.833 ± 3.015 27.789 ± 1.699
68 Onagraceae Fuchsia magellanica Lam. Fuchsia Tea 81.264 ± 0.009 44.210 ± 2.187 34.773 ± 0.917 3.037 ± 0.703 34.980 ± 1.053 5.963 ± 0.856
69 Rosaceae Rosa hybrid Vill. Rose Salad, desserts 78.682 ± 0.325 28.440 ± 1.591 46.303 ± 0.280 17.863 ± 1.013 49.635 ± 0.356 21.100 ± 1.027
70 Papaveraceae Papaver rhoeas L. Wheat poppy Garrison 72.111 ± 0.263 40.683 ± 2.678 32.693 ± 3.566 13.493 ± 1.520 35.384 ± 3.653 22.483 ± 2.048
71 Rubiaceae Warszewiczia coccinea Klotzsch Chaconia Tea 83.000 ± 1.381 34.253 ± 1.363 46.237 ± 2.908 12.033 ± 0.526 47.777 ± 2.944 14.607 ± 0.316
72 Scrophulariaceae Antirrhinum majus L. Dragon mouth Salad 94.967 ± 0.288 24.040 ± 1.152 18.920 ± 0.593 15.050 ± 1.283 24.201 ± 0.367 38.489 ± 3.222
73 Scrophulariaceae Russelia equisetiformis Schltdl. & Ruselia Infusion 89.257 ± 0.129 41.543 ± 2.466 47.893 ± 4.686 23.887 ± 3.367 53.528 ± 4.765 26.449 ± 1.238
74 Solanaceae Petunia hybrida Vilm. Petunia Salad, desserts 90.986 ± 5.425 34.253 ± 1.363 46.237 ± 2.908 12.033 ± 0.526 47.777 ± 2.944 14.607 ± 0.316
75 Verbenaceae Lantana camara L. Lantana Tea 83.774 ± 2.182 33.210 ± 0.439 38.610 ± 2.384 30.187 ± 0.335 49.124 ± 0.282 38.024 ± 0.478
76 Verbenaceae Verbena × hybrid Groenland Verbena Salad, garrison 85.436 ± 0.023 26.913 ± 0.674 36.787 ± 3.852 14.537 ± 0.872 39.560 ± 3.868 21.641 ± 1.176
Pink flowers
77 Amaranthaceae Celosia argentea L. Cockscomb na 72.421 ± 0.184 19.443 ± 2.286 34.023 ± 1.479 4.120 ± 1.085 34.286 ± 1.538 6.948 ± 2.004
78 Apocynaceae Nerium oleander L. Flower laurel Non-edible 82.058 ± 0.327 58.847 ± 3.279 29.247 ± 4.101 −2.743 ± 0.145 29.387 ± 4.139 354.364 ± 0.711
79 Begoniaceae Begonia argentea Linden Begonia na 91.547 ± 1.522 na na na na na
80 Bromeliaceae Guzmania hybrid Guzmania na 89.651 ± 0.001 46.660 ± 0.233 15.770 ± 0.885 9.340 ± 0.524 18.343 ± 0.488 30.703 ± 2.838
81 Caryophyllaceae Dianthus caryophyllus L. Carmination Fruit salad 84.678 ± 0.325 43.320 ± 1.501 34.690 ± 0.436 3.987 ± 0.127 34.918 ± 0.447 6.558 ± 0.126
82 Caryophyllaceae Saponaria officinalis L. Soap flower Non-edible 81.110 ± 0.202 68.560 ± 0.291 3.883 ± 0.946 −3.333 ± 0.818 5.133 ± 0.760 318.436 ± 5.235
83 Ericaceae Rhododendron simsii Planch. Azalea indica Non-edible 74.579 ± 0.299 82.190 ± 1.669 5.943 ± 0.421 8.860 ± 0.739 10.686 ± 0.396 56.081 ± 4.033
84 Fabaceae Trifolium cernuum Brot. Four leaf clover Salad, tea 81.411 ± 0.303 50.783 ± 1.421 11.903 ± 0.850 8.620 ± 1.397 14.798 ± 0.203 35.636 ± 5.324
85 Gentianaceae Eustoma grandiflorum G. Don Eustoma na 92.072 ± 0.099 66.407 ± 4.493 4.067 ± 0.668 5.233 ± 0.486 6.630 ± 0.792 52.333 ± 2.000
86 Geraniaceae Pelargonium domesticum Bailey Real geranium Salad, desserts 85.698 ± 0.785 15.783 ± 1.532 16.793 ± 1.561 1.757 ± 0.875 17.147 ± 1.675 12.053 ± 1.4800
87 Geraniaceae Pelargonium × hortorum Bailey Geranium Salad, desserts 75.523 ± 0.185 52.563 ± 0.198 29.107 ± 0.233 2.177 ± 0.437 29.200 ± 0.234 4.016 ± 0.172
88 Hydrangeaceae Hydrangea petiolaris S. & Zucc. Hydrangea Infusion 74.361 ± 0.725 58.440 ± 1.439 24.807 ± 1.436 −3.767 ± 0.372 25.092 ± 1.463 351.369 ± 0.558
89 Lythraceae Cuphea hyssopifolia Kunth False breccia Infusion 95.948 ± 0.811 na na na na na
90 Lythraceae Lagerstroemia indica L. Jupiter tree Tea 87.561 ± 0.347 47.777 ± 0.128 27.050 ± 0.622 −4.687 ± 0.063 27.456 ± 0.622 350.173 ± 0.302
91 Malvaceae Gossypium arboreum L. Cotton Non-edible 82.733 ± 5.421 51.887 ± 5.484 10.090 ± 0.617 9.913 ± 0.588 14.162 ± 0.078 44.522 ± 3.431
92 Nyctaginaceae Mirabilis jalapa L. Night Dondiego Colorant 85.593 ± 0.206 53.100 ± 1.815 15.547 ± 0.213 7.133 ± 0.445 17.175 ± 0.143 24.759 ± 1.630
93 Orchidaceae Phalaenopsis aphrodite Rchb. F. Orchid na 92.271 ± 0.358 50.783 ± 2.100 11.903 ± 0.805 8.620 ± 1.321 14.798 ± 0.120 35.636 ± 3.024
94 Portulacaceae Portulaca oleracea L. Purslane Salad 85.529 ± 3.674 35.780 ± 0.344 18.983 ± 0.144 27.170 ± 0.265 33.145 ± 0.136 55.085 ± 0.466
95 Rosaceae Rosa hybrid Rose Salad, desserts 89.769 ± 0.105 47.763 ± 3.951 55.923 ± 5.390 19.007 ± 0.679 59.088 ± 5.045 18.886 ± 1.936
96 Verbenaceae Verbena × hybrid G. & Rümpler Verbena Salad, garrison 84.040 ± 0.037 41.467 ± 3.153 19.337 ± 0.140 2.330 ± 0.437 19.486 ± 0.153 6.793 ± 1.117

na, not available.

Table 3.

Mean color parameter values, humidity, and culinary uses (according to Coyago et al., (2017) [32] and The-Plant-List, (2019) [33]) of lilac and blue flowers.

Samples Family Species Common name Culinary use Humidity (%) L* a* b* C*ab hab
Lilac flowers
97 Amaryllidaceae Allium schoenoprasum L. Chives Salad, garrison 74.820 ± 0.222 20.333 ± 3.502 2.915 ± 0.126 −0.147 ± 0.001 2.983 ± 0.119 359.606 ± 0.012
98 Apocynaceae Catharanthus roseus L. Vinca rosea Non-edible 87.648 ± 1.291 54.233 ± 2.573 30.217 ± 2.145 −18.707 ± 1.692 35.553 ± 2.139 328.223 ± 1.971
99 Asteraceae Centaurea seridis L. Spiny broom na 93.516 ± 0.883 na na na na na
100 Asteraceae Cichorium intybus L. Chicory of Brussels Salad, tea 98.378 ± 0.283 na na na na na
101 Asteraceae Osteospermun fruticosum Norl. Cape margarita Tea 82.523 ± 0.317 47.673 ± 2.091 29.153 ± 0.459 −15.303 ± 0.110 32.927 ± 0.379 332.286 ± 0.488
102 Brassicaceae Alyssum montanum L. Garlic herb Infusion 81.159 ± 0.395 na na na na na
103 Campanulaceae Campanula carpatica Jacq. Little bell na 85.496 ± 0.152 na na na na na
104 Geraniaceae Pelargonium domesticum Bailey Real geranium Salad, desserts 92.894 ± 0.800 58.660 ± 4.038 25.157 ± 1.518 −12.213 ± 0.319 31.101 ± 1.325 335.566 ± 1.634
105 Geraniaceae Pelargonium × hortorum Bailey Common geranium Salad, desserts 83.186 ± 0.001 38.290 ± 2.736 53.403 ± 1.538 −11.497 ± 0.678 54.633 ± 1.355 167.827 ± 1.051
106 Lamiaceae Mentha ×piperita L. Peppermint Salad, garrison 94.503 ± 0.063 na na na na na
107 Lamiaceae Ocimum basilicum L. Basil Salad, tea 89.677 ± 1.222 41.423 ± 1.120 6.436 ± 0.311 −4.879 ± 0.921 8.124 ± 0.343 322.701 ± 4.206
108 Malvaceae Hibiscus syriacus L. Rose of Syria Salad, tea 70.778 ± 0.747 53.743 ± 0.282 18.460 ± 1.136 −12.697 ± 0.616 22.407 ± 1.202 325.356 ± 0.302
109 Nyctaginaceae Bougainvillea spectabilis Willd. Bougainvillea Infusion 86.967 ± 1.558 50.753 ± 0.741 6.963 ± 1.002 1.790 ± 0.310 7.309 ± 0.911 16.291 ± 3.413
110 Plumbaginaceae Limonium sinuatum (L.) Miller Always alive Additive 91.656 ± 0.184 na na na na na
111 Polygonaceae Fallopia aubertii (L. Henry) Holub Gabriela falloppio na 99.350 ± 1.200 na na na na na
112 Solanaceae Petunia hybrida Vilm. Petunia Salad, desserts 86.068 ± 0.315 69.300 ± 0.566 9.533 ± 1.230 −4.087 ± 1.287 10.390 ± 0.346 337.496 ± 1.963
113 Solanaceae Solanum rantonnetti Carrière Blue flower solano Infusion 83.018 ± 0.126 na na na na na
114 Verbenaceae Verbena × hybrid G. & Rümpler Verbena Salad, garrison 84.238 ± 1.282 41.367 ± 1.086 6.397 ± 0.303 −4.913 ± 0.949 8.081 ± 0.379 322.707 ± 4.156
115 Verbenaceae Vitex agnus-castus L. Chilli pepper Infusion 82.257 ± 0.666 33.417 ± 1.246 9.887 ± 1.320 −14.997 ± 2.539 17.967 ± 2.844 303.628 ± 1.419
Blue flowers
116 Amaryllidaceae Agapanthus africanus Hoffmanns African lily Infusion 82.523 ± 5.401 57.173 ± 2.173 4.543 ± 0.162 −15.723 ± 1.030 16.367 ± 0.233 286.099 ± 0.508
117 Convolvulaceae Convolvulus althaeoides L. Bell of the virgin Non-edible 89.100 ± 0.172 61.887 ± 1.980 12.333 ± 1.512 −3.312 ± 0.001 12.709 ± 1.520 345.099 ± 1.657
118 Gesneriaceae Saintpaulia ionantha Wendland African violet Salad 89.577 ± 0.065 na na na na na
119 Goodeniaceae Scaevola aemula R. Bronw Flower fan Infusion 93.812 ± 0.273 36.913 ± 1.770 8.497 ± 0.619 0.539 ± 0.016 8.431 ± 0.623 3.380 ± 0.521
120 Lamiaceae Agastachefoeniculum Kuntze Anise hyssop Salad, desserts 79.731 ± 0.288 na na na na na
121 Lamiaceae Lavandula angustifolia Mill. Lavender Infusion 88.511 ± 0.173 37.582 ± 1.607 8.8977 ± 0.639 −12.101 ± 0.812 15.026 ± 0.922 306.212 ± 0.144
122 Lamiaceae Rosmarinus officinalis L. Rosemary Garrison, desserts 89.483 ± 0.211 na na na na na
123 Passiofloraceae Passiflora × belotti Flower of the passion Tea 97.826 ± 0.742 na na na na na
124 Polygonaceae Polygala vulgaris L. Common sparrow Infusion 88.391 ± 0.364 49.780 ± 1.113 17.963 ± 1.319 −10.847 ± 2.043 21.006 ± 1.320 329.058 ± 3.214
125 Solanaceae Petunia × hybrida Vilm. Petunia Salad, desserts 83.425 ± 0.779 23.210 ± 1.458 23.027 ± 1.216 −25.717 ± 1.197 34.519 ± 1.703 311.811 ± 0.177

na, not available.

3.2. Carotenoids

Selection of the Extraction Solvents

Four different extraction solvents were tested for the extraction of carotenoids in Calendula × hybrid (Figure 1). Acetone: methanol (v/v) (2:1) and ethyl acetate: methanol: petroleum ether (v/v/v) (1:1:1) showed the highest carotenoid extraction yields and there was no statistically significant difference between the two mixtures. The recovery of carotenoids obtained with this mixture, using all-trans-β-apo-8′-carotenal as internal standard, was 83%.

Figure 1.

Figure 1

Carotenoid content recoveries (mg/100 g DW) after extraction of Calendula × hybrid using four different extraction solvents. H-A (1:1), hexane: acetone (v/v) (1:1); M-A-D (1:1:2), methanol: acetone: dichloromethane (v/v/v) (1:1:2); A-M (2:1), acetone: methanol (v/v) (2:1); AE-M-PE (1:1:1), ethyl acetate: methanol: petroleum ether (v/v/v) (1:1:1). Different letters among bars of the same carotenoid indicate significant differences by ANOVA test (p < 0.01).

In addition, quantitative data on individuals and TCC, assessed by liquid chromatography, are presented in Table 4, Table 5 and Table 6. An example of the resulting chromatogram is presented in Figure 2, and the frequency, mean contents, and standard deviations of carotenoids and major sources are presented in Figure 3, sections A, B, and C.

Table 4.

Carotenoid contents (μg/g dry weight) of white, yellow, and orange flowers and retinol activity equivalents.

Species Phytoene Lutein Epoxide Luteoxanthin Antheraxanthin 9-Cis-Violaxanthin Violaxanthin Lutein 9-Cis-Anteraxanthin Zeinoxanthin β-Carotene α-Carotene TOTAL Retinol Activity Equivalents FW
White flowers
1 S. montanum 47.724 ± 0.633 96.839 ± 1.304 32.235 ± 2.525 82.001 ± 0.789 258.863 ± 0.843 0.629 ± 0.123
2 C. comosum 14.816 ± 0.003 79.101 ± 2.045 93.917 ± 1.700 0.059 ± 0.018
3 A. africanus 3.648 ± 0.460 4.478 ± 0.373 8.125 ± 0.069
4 C. sativum 141.747 ± 0.501 22.734 ± 2.594 103.121 ±1.176 267.601 ± 1.238 0.352 ± 0.023
5 N. oleander 2.748 ± 0.3122 2.748 ± 0.3122
6 T.jasminoides 3.581 ± 0.527 3.581 ± 0.527
7 H. arborescens 26.995 ± 2.084 3.745 ± 0.251 30.740 ± 0.195 0.044 ± 0.015
8 M. incana 2.523 ± 0.411 2.523 ± 0.411
9 C. shetleri 11.357 ± 0.434 11.675 ± 0.446 23.033 ± 0.068
10 D. chinensis nd
11 G. paniculata 6.649 ± 0.855 9.124 ± 0.930 18.801 ± 0.232 33.854 ± 0.3168 0.980 ± 0.029
12 C. scammonia 5.989 ± 0.770 5.929 ± 0.235 11.918 ± 0.077
13 G. communis 3.146 ± 0.107 3.146 ± 0.107
14 M. suaveolens 38.523 ± 2.621 6.901 ± 0.415 21.677 ± 1.936 71.278 ± 0.439 11.611 ± 0.001 149.990 ± 0.687 0.195 ± 0.001
15 M. grandiflora 20.359 ± 1.259 20.359 ± 1.259
16 J. sambac 4.877 ± 0.136 4.877 ± 0.136
17 P. aphrodite 1.901 ± 0.411 6.822 ± 0.330 8.273 ± 0.125 0.063 ± 0.023
18 P. auriculata nd
19 F. × ananassa nd
20 Rosa hybrid 16.801 ± 0.001 6.418 ± 0.546 9.970 ± 0.702 33.249 ± 0.153
21 C. annuum 20.435 ± 0.642 18.313 ± 0.576 16.199 ±0.509 76.460 ± 0.468 8.272 ± 0.161 139.680 ± 0.618 0.141 ± 0.066
22 S. laxum 10.427 ± 0.360 3.734 ± 0.101 4.730 ± 0.163 6.682 ± 0.944 25.572 ± 0.845 0.028 ± 0.015
23 A. citriodora 1.741 ± 0.264 1.741 ± 0.264
24 L. camara* 44.352 ± 1.586 6.914 ± 0.238 13.515 ± 0.321 64.782 ± 0.420 0.148 ± 0.011
*13-Cis-violaxanthin (43.503 ± 0.722); 9-Cis-lutein (140.712 ± 0.586); Zeaxanthin (147.8 ± 2.502); β-Cryptoxanthin (361.422 ± 7.638); α-Cis-anteraxanthin (232.215 ± 12.126).
Yellow flowers
25 A. commutatu 10.424 ± 0.162 13.040 ± 0.203 43.188 ± 0.462 12.028 ± 0.245 78.680 ± 0.402 0.085 ± 0.024
26 A. tinctoria 9.338 ± 0.574 10.240 ± 0.630 19.578 ± 0.093
27 D. coccinea nd
28 D. pinnata 19.521 ± 0.613 20.492 ± 0.644 40.013 ± 0.097 0.208 ± 0.044
29 D. tenuifolia 17.464 ± 0.549 33.122 ± 3.642 41.066 ± 1.291 13.755 ± 0.432 105.408 ± 0.455 0.021 ± 0.021
30 C. sativa 16.949 ± 0.585 2.878 ± 0.099 19.826 ± 0.057 0.057 ± 0.035
31 E. japonicus 31.441 ± 0.946 31.441 ± 0.946
32 S. japonica 38.878 ± 1.341 100.347 ± 3.461 139.225 ± 0.369 2.208 ± 0.010
33 S. papillosa 86.001 ± 0.021 1204.010 ± 0.062 1311.876 ± 0.052 170.316 ± 0.001 2772.202 ± 0.056 3.477 ± 0.027
34 P. stenoptera 3.623 ± 0.803 1.130 ± 0.226 3.991 ± 0.593 23.966 ± 1.709 32.709 ± 0.278
35 O. basilicum 7.293 ± 0.106 7.992 ± 0.124 205.176 ± 1.318 284.137 ± 1.924 504.597 ± 2.895 1.255 ± 0.030
36 G. arboreum 5.150 ± 0.362 5.150 ± 0.362
37 P. major 31.395 ± 0.489 136.768 ± 3.277 168.162 ± 0.314
38 F. aubertii 3.725 ± 0.394 3.725 ± 0.394
39 P. oleracea 334.85 ± 8.972 433.409 ± 0.182 239.780 ± 3.720 4.357 ± 0.685 1012.431 ± 7.860 0.051 ± 0.041
40 G. jasminoides 6.895 ± 0.150 6.895 ± 0.150
41 S. lycopersicum 31.885 ± 0.609 20.207 ± 1.752 35.960 ± 1.748 88.052 ± 0.738
42 L. camaraa 12.744 ± 0.648 75.829 ± 2.937 92.465 ± 0.823 43.500 ± 0.307 63.792 ± 3.421 54.906 ± 2.379 50.828 ± 0.461 731.514 ± 7.631 2056.065 ± 7.148 4.796 ± 1.027
Orange flowers
43 J. aurea 47.880 ± 0.071 47.880 ± 0.071
44 T. capensis 6.595 ± 0.751 1.844 ± 0.260 6.320 ± 0.406 6.621 ± 0.426 37.646 ± 0.241 0.188 ± 0.015
45 D. affinis 22.283 ± 0.003 30.403 ± 0.013 43.261 ± 0.001 16.277 ± 0.034 112.225 ± 0.026 0.364 ± 0.007
46 D. brochidodroma 97.582 ± 0.011 258.828 ± 0.078 76.733 ± 0.022 433.144 ± 0.080
47 P. granatum 24.981 ± 0.309 8.891 ± 0.279 33.872 ± 0.260 0.229 ± 0.075
48 R. alpinia 220.643 ± 0.06 1372.181 ± 0.001 1451.916 ± 0.003 3044.739 ± 2.120 19.058 ± 0.019

nd, not detectable.

Table 5.

Carotenoid contents (μg/g dry weight) of red and pink flowers and retinol activity equivalents.

Species Reaction Phytoene Lutein Epoxide Antheraxanthin 9-Cis-Violaxanthin Violaxanthin Lutein 9-Cis-Anteraxanthin Zeinoxanthin β-Cryptoxanthin β-Carotene α-Carotene Total Others Carotenoids Retinol Activity Equivalents FW
Red flowers
49 A. squarrosa S 140.001 ± 0.001 208.963 ± 0.012 32.298 ± 0.001 381.262 ± 0.003
50 C. argentea S 2.518 ± 0.556 8.205 ± 0.637 8.452 ± 0.893 2.900 ± 0.286 22.074 ± 0.151 0.068 ± 0.084
51 C. roseus 3.691 ± 0.721 3.691 ± 0.721
52 N.oleander 3.431 ± 0.439 3.431 ± 0.439
53 A. andraeanum 11.101 ± 0.109 3.041 ± 0.490 14.142 ± 0.122 0.015 ± 0.070
54 I. balsamina 2.890 ± 0.209 2.890 ± 0.209
55 I. walleriana 2.908 ± 0.196 2.908 ± 0.196
56 B. cavaleriei S 3.689 ± 0.119 21.277 ± 0.092 Lycopene
(17.588 ± 0.567)
0.072 ± 0.042
57 B. andraeanum S 3.950 ± 0.114 3.950 ± 0.114
58 B. × tuberhybrida S 8.719 ± 0.910 8.719 ± 0.910
59 D. caryophyllus 15.862 ± 0.408 15.862 ± 0.408
60 R. simsii S 79.036 ± 0.063 79.036 ± 0.063
61 E. rubra 5.163 ± 0.224 5.163 ± 0.224
62 E. milii 7.357 ± 0.103 7.357 ± 0.103
63 B. macrophylla S 17.165 ± 0.023 33.391 ± 0.072 203.433 ± 0.001 377.425 ± 0.009 Luteoxanthin
(98.725 ± 0.001); 9-Cis-β-cryptoxanthin
(24.704 ± 0.011)
2.385 ± 0.001
64 P. peltatum 3.280 ± 0.108 3.280 ± 0.108
65 P. × hortorum 3.521 ± 0.491 3.521 ± 0.491
66 S. splendens S 5.548 ± 0.234 5.548 ± 0.234
67 M. arboreus S 140.300 ± 0.004 7.074 ± 0.295 147.374 ± 0.023
68 F. magellanica 5.269 ± 0.537 6.497 ± 0.001 11.766 ± 0.045
69 Rosa hybrid 6.800 ± 0.303 6.800 ± 0.303 0.122 ± 0.016
70 P. rhoeas S 66.753 ± 0.823 66.753 ± 0.823
71 W. coccinea S 97.236 ± 0.001 97.236 ± 0.001
72 A. majus nd
73 R. equisetiformis S 9.144 ± 0.732 140.300 ± 0.001 4.252 ± 0.340 4.085 ± 0.106 161.976 ± 0.164 Neochrome
(4.252 ± 0.340)
0.055 ± 0.001
74 Petunia × hybrid 6.019 ± 0.111 6.019 ± 0.111
75 L. camara 33.946 ± 1.469 25.415 ± 2.768 46.326 ± 1.267 36.794 ± 0.959 25.694 ± 0.315 55.198 ± 1.267 1.542 ± 0.460 5.587 ± 0.287 304.721 ± 0.183 0.021 ± 0.000
76 Verbena × hybrid 30.303 ± 0.525 11.906 ± 1.700 58.361 ± 0.004 9.303 ± 0.002 26.972 ± 0.011 106.289 ± 0.017 15-Cis-violaxanthin (11.711 ± 1.600); 9-Cis-lutein
(32.001 ±1.229)
0.328 ± 0.001
Pink flowers
77 C. argentea 15.714 ± 0.421 100.672± 2.836 116.324± 0.303
78 N. oleander 0.972 ± 0.003 0.972 ± 0.003
79 B. argentea S 182.793± 0.734 43.165 ± 0.181 15.310 ± 0.194 241.268± 0.594 0.803 ± 0.003
80 Guzmania hybrid 126.450 ± 0.852 2.912 ± 0.129 7.763 ± 0.107 13.867 ± 0.782 150.992± 0.859 0.119 ± 0.006
81 D. caryophyllus 1.662 ± 0.004 1.662 ± 0.004
82 S. officinalis 9.544 ± 0.984 9.544 ± 0.984
83 R.simsii 0.718 ± 0.074 0.718 ± 0.074
84 T. cernuum 2.776 ± 0.304 2.041 ± 0.022 4.817 ± 0.041
85 E. grandiflorum 0.966 ± 0.039 0.966 ± 0.039
86 P. domesticum 2.078 ± 0.120 2.078 ± 0.120
87 P. × hortorum nd
88 H. petiolaris 7.3 ± 0.2 7.3 ± 0.0
89 C. hyssopifolia 19.298 ± 1.331 60.944 ± 1.834 11.306 ± 0.780 61.105 ± 0.421 157.029 ± 0.638 Luteoxanthin
(4.375 ± 0.132)
0.209 ± 0.004
90 L. indica 4.385 ± 0.308 8.476 ± 0.595 12.861 ± 0.069 0.088 ± 0.000
91 G. arboreum 0.700 ± 0.001 0.700 ± 0.001
92 M. jalapa S 4.147 ± 0.328 4.147 ± 0.328
93 P. aphrodite 6.858 ± 0.510 8.376 ± 0.802 8.742 ± 0.837 20.361 ± 1.252 44.338 ± 0.284 0.131 ± 0.002
94 P. oleracea 156.999 ± 3.163 355.241 ± 3.700 120.763 ± 5.221 632.974 ± 6.136
95 Rosa hybrid 6.718 ± 0.846 9.657 ± 0.102 14.962 ± 0.188 5.379 ± 0.678 27.610 ± 0.205 64.238 ± 0.531 0.235 ± 0.002
96 Verbena × hybrid 10.142 ± 1.038 2.544 ± 0.048 12.685 ± 0.127 0.034 ± 0.001

S, saponified; nd, not detectable.

Table 6.

Carotenoid contents (μg/g dry weight) of lilac and blue flowers and retinol activity equivalents.

Species Reaction Phytoene Lutein Epoxide Luteoxanthin Antheraxanthin 9-Cis-Violaxanthin Violaxanthin Lutein 9-Cis-Anteraxanthin Zeinoxanthin β-Cryptoxanthin β-Carotene α-Carotene Total Retinol Activity Equivalents FW
Lilac flowers
97 A. schoenoprasum 14.146 ± 1.277 10.807 ± 0.976 36.072± 3.256 9.041 ± 0.081 70.066 ± 0.421 0.190 ± 0.001
98 C. roseus S nd
99 C. seridis nd
100 C. intybus 2.096 ± 0.105 2.096 ± 0.105
101 O. fruticosum 3.892 ± 0.815 3.892 ± 0.815
102 A. montanum S 10.610 ± 0.974 45.785± 0.420 24.954 ± 0.222 81.349 ± 0.575 0.100 ± 0.001
103 C. carpatica 6.957 ± 0.012 8.320 ± 0.001 20.323 ± 0.007 35.600 ± 0.064 0.020 ± 0.000
104 Pelargonium × domesticum 0.739 ± 0.071 0.739 ± 0.071
105 Pelargonium × hortorum S nd
106 Mentha × piperita S 23.427 ± 0.415 5.907 ± 0.113 9.493 ± 0.182 70.580± 0.664 38.600 ± 0.141 148.008 ± 0.943 0.177 ± 0.002
107 O. basilicum 16.781 ± 1.022 5.105 ± 1.026 7.611 ± 0.100 37.663 ± 2.341 22.492 ± 0.864 88.873 ± 0.611 0.294 ± 0.007
108 H. syriacus S 3.869 ± 0.481 3.869 ± 0.481
109 B. spectabili S 12.183 ± 1.010 33.282 ± 0.820 45.465 ± 0.141
110 L. sinuatum 3.231 ± 0.152 3.231 ± 0.0152 0.240 ± 0.004
111 F. aubertii 5.407 ± 0.107 5.407 ± 0.107
112 Petunia × hybrida 9.113 ± 0.126 9.113 ± 0.126
113 S. rantonnetti 8.307 ± 0.775 7.797 ± 0.538 7.299 ± 0.503 34.080 ± 2.350 21.228 ± 1.464 78.711 ± 0.433 0.301 ± 0.001
114 Verbena × hybrid 25.007 ± 1.137 48.224 ± 2.200 6.914 ± 0.426 22.666 ± 1.051 102.689 ± 0.424 0.297 ± 0.005
115 V. agnus- castus 4.909 ± 0.103 2.582 ± 0.153 7.491 ± 0.092 0.038 ± 0.001
Blue flowers
116 A. africanus 3.648 ± 0.460 4.478 ± 0.373 8.125 ± 0.069
117 C. althaeoides nd
118 S. ionantha 1.911 ± 0.145 1.911 ± 0.145
119 S. aemula 18.220 ± 1.227 3.139 ± 0.152 4.112 ± 0.277 16.117 ± 1.085 41.588 ± 0.228
120 A. foeniculum 47.885 ± 3.833 35.877 ± 2.872 83.763 ± 0.516 0.607 ± 0.003
121 L. angustifolia S 17.478 ± 0.822 19.190 ± 0.893 4.540 ± 0.373 19.347 ± 0.224 59.506 ± 1.492 12.258 ± 0.841 132.320± 0.513 0.722 ± 0.001
122 R. officinalis S 14.888 ± 1.021 14.888± 1.021
123 Passiflora × belotti 4.818 ± 0.454 7.122 ± 0.580 21.554 ± 2.032 15.638 ± 0.216 49.133± 0.436 0.196 ± 0.003
124 P. vulgaris 1.736 ± 0.412 1.736 ± 0.412
125 Petunia × hybrida 23.061± 1.631 16.645 ± 0.021 39.707± 0.136 0.230 ± 0.000

S, saponified; nd, not detectable.

Figure 2.

Figure 2

Chromatogram of Lavandula angustifolia at 450 nm (C18 column). 1. Lutein; 2. Zeinoxanthin; 3. β-Cryptoxanthin; 4. α-Carotene; 5. β-Carotene.

Figure 3.

Figure 3

Frequency, mean contents, and standard deviations of carotenoids and major sources. Frequency (A), mean contents of individual carotenoids (B), total carotenoid content (C), and list of species with high concentrations of carotenoids. Number within the figures represent the sample under study.

3.3. Phenolic Compounds

The quantitative data on individuals and TPC assessed by chromatographic analysis are presented in Table 7, Table 8 and Table 9. In addition, an example of the resulting chromatogram is presented in Figure 4 and Figure 5 sections A, B, and C show the frequency, mean contents, and standard deviations of the phenolics and major sources.

Table 7.

Phenolic compound contents (mg/g dry weight) of white, yellow, and orange flowers.

Species Gallic p-Hydroxybe. m-Coumaric p-Coumaric Vanillic Caffeic Syringic Chlorogenic Ferulic Naringin Crisin Quercitrin Myricetin Quercetin Kaempferol Total
White flowers
1 S. montanum nd
2 C. comosum 7.868 ± 0.718 2.802 ± 0.053 4.061 ± 0.092 0.475 ± 0.039 4.249 ± 0.038 21.110 ± 1.393
3 A. africanus 8.648 ± 0.934 2.032 ± 0.081 1.444 ± 0.249 0.890 ± 0.022 13.013 ± 1.287
4 C. sativum 0.242 ± 0.023 0.560 ± 0.008 1.185 ± 0.042 0.372 ± 0.020 0.089 ± 0.001 2.448 ± 0.094
5 N. oleander 0.103 ± 0.003 2.999 ± 0.031 3.091 ± 0.052 0.443 ± 0.020 0.215 ± 0.014 3.428 ± 0.372 3.339 ± 0.029 13.618 ± 0.521
6 T. jasminoides 1.719 ± 0.014 0.398 ± 0.085 0.990 ± 0.001 0.323 ± 0.0036 0.802 ± 0.154 4.132 ± 0.028
7 H. arborescens 0.476 ± 0.013 0.456 ± 0.001 0.227 ± 0.020 1.158 ± 0.163
8 M. incana 5.710 ± 1.153 5.710 ± 1.153
9 C. shetleri 2.329 ± 0.079 0.218 ± 0.020 1.338 ± 0.107 0.248 ± 0.004 4.133 ± 0.092
10 D. chinensis 5.655 ± 0.601 3.870 ± 0.253 9.525 ± 0.016
11 G. paniculata 4.277 ± 0.467 17.930 ± 2.552 22.208 ± 0.132
12 C.s scammonia 0.844 ± 0.053 1.611 ± 0.274 0.146 ± 0.004 1.472 ± 0.242 0.438 ± 0.090 4.884 ± 0.053 9.598 ± 0.073
13 G. communis 0.688 ± 0.085 0.123 ± 0.009 0.577 ± 0.010 0.587 ± 0.009 2.390 ± 0.129
14 M. suaveolens 0.601 ± 0.035 1.337 ± 0.028 1.247 ± 0.013 3.863 ± 0.704
15 M. grandiflora 0.168 ± 0.001 0.575 ± 0.035 0.744 ± 0.036
16 J. sambac 5.913 ± 0.217 0.290 ± 0.003 0.146 ± 0.005 2.211 ± 0.040 0.261 ± 0.016 9.219 ± 0.028
17 P. aphrodite 1.063 ± 0.054 0.201 ± 0.010 6.565 ± 0.214 7.954 ± 0.886
18 P. auriculata 19.895 ± 2.118 17.592 ± 0.561 22.356 ± 0.618 59.843 ± 0.252
19 F. × ananassa 0.472 ± 0.011 24.183 ± 0.625 16.983 ± 0.321 41.628 ± 0.127
20 Rosa hybrid 4.033 ± 0.199 1.302 ± 0.029 1.499 ± 0.351 12.501 ± 1.098
21 C. annuum 0.358 ± 0.068 0.737 ± 0.106 1.372 ± 0.069 1.162 ± 0.044 0.545 ± 0.007 4.978 ± 0.057 0.547 ± 0.010 9.699 ± 0.0877
22 S. laxum 0.213 ± 0.076 0.301 ± 0.001 0.099 ± 0.001 0.953 ± 0.052 1.266 ± 0.132
23 A. citriodora 1.944 ± 0.036 2.869 ± 0.028 3.748 ± 0.068 4.401 ± 0048 15.643 ± 0.001
24 L. camara 7.556 ± 0.026 3.402 ± 0.020 2.170 ± 0.115 5.922 ± 0.173 19.051 ± 0.033
Yellow flowers
25 A. commutatum 0.084 ± 0.022 0.220 ± 0.009 0.121 ± 0.034 0.162 ± 0.032 0.588 ± 0.097
26 A. tinctoria 2.345 ± 0.013 6.767 ± 0.228 0.495 ± 0.041 1.309 ± 0.013 0.152 ± 0.004 11.066 ± 0.615
27 D. coccinea 6.902 ± 0.027 4.738 ± 0.227 1.325 ± 0.303 0.721 ± 0.078 3.570 ± 0.2488 15.733 ± 0.0774
28 D. pinnata 0.340 ± 0.022 1.402 ± 0.081 1.325 ± 0.130 0.721 ± 0.078 0.597 ± 0.037 0.824 ± 0.139 4.475 ± 0.542 9.685 ± 0.012
29 D. tenuifolia 2.186 ± 0.006 3.075 ± 0.438 2.439 ± 0.388 7.701 ± 0.083
30 C. sativa 0.239 ± 0.014 1.719 ± 0.130 0.233 ± 0.010 2.192 ± 0.155
31 E. japonicus 0.245 ± 0.090 0.190 ± 0.001 0.225 ± 0.031 0.649 ± 0.010 0.251 ± 0.006 1.858 ± 0.0218
32 S. japonica 0.813 ± 0.039 0.179 ± 0.007 0.409 ± 0.018 0.427 ± 0.006 3.395 ± 0.146 0.972 ± 0.035 2.669 ± 0.347 9.167 ± 0.742
33 S. papillosa nd
34 P. stenoptera 12.605 ± 1.193 1.220 ± 0.019 1.529 ± 0.134 0.505 ± 0.068 0.131 ± 0.027 18.078 ± 0.119
35 O. basilicum 0.207 ± 0.013 0.328 ± 0.032 0.640 ± 0.0050
36 G. arboreum 0.4360 ± 0.025 0.308 ± 0.002 5.621 ± 0.766 1.507 ± 0.029 7.872 ± 0.011
37 P. major 0.751 ± 0.051 0.856 ± 0.058 21.226 ± 1.503 22.833 ± 0.161
38 F. aubertii 0.806 ± 0.028 0.091 ± 0.006 0.191 ± 0.024 0.399 ± 0.018 0.136 ± 0.018 1.725 ± 0.089
39 P. oleracea 1.302 ± 0.101 2.425 ± 0.001 0.125 ± 0.007 0.457 ± 0.049 4.276 ± 0.053
40 G. jasminoides 0.600 ± 0.026 0.316 ± 0.001 0.407 ± 0.023 0.311 ± 0.004 1.956 ± 0.025
41 S. lycopersicum 1.849 ± 0.297 0.435 ± 0.009 0.620 ± 0.072 0.691 ± 0.059 3.395 ± 0.436
42 L. camara 1.034 ± 0.107 2.665 ± 0.043 1.175 ± 0.122 2.412 ± 0.003 2.126 ± 0.040 1.634 ± 0.011 10.862 ± 0.072
Orange flowers
43 J. aurea nd
44 T. capensis 0.350 ± 0.070 0.773 ± 0.117 0.208 ± 0.005 1.331 ± 0.019
45 D.a affinis nd
46 D. brochidodroma nd
47 P. granatum 9.103 ± 0.533 10.080 ± 0.358 8.421 ± 0.159 56.464 ± 2.298 22.133 ± 1.821 146.937 ± 0.669
48 R. alpinia nd

nd, not detectable.

Table 8.

Phenolic compound contents (mg/g dry weight) of red and pink flowers.

Species Gallic p-Hydroxybe. m-Coumaric p-Coumaric Vanillic Caffeic Syringic Chlorogenic Ferulic Naringin Crisin Quercitrin Myricetin Quercetin Kaempferol Total
Red flowers
49 A. squarrosa nd
50 C. argentea 0.654 ± 0.026 1.660 ± 0.007 0.665 ± 0.007 0.079 ± 0.004 0.098 ± 0.013 0.179 ± 0.002 3.558 ± 0.286 0.251 ± 0.008 0.572 ± 0.018 7.715 ± 0.044
51 C.s roseus 1.190 ± 0.560 16.458 ± 1.017 0.691 ± 0.069 0.953 ± 0.004 0.791 ± 0.056 6.029 ± 0.254 26.476 ± 2.014
52 N. oleander 4.114 ± 0.118 6.622 ± 0.307 0.764 ± 0.057 1.347 ± 0.013 4.388 ± 0.041 4546 ± 0.385 21.781 ± 1.893
53 A. andraeanum 0.361 ±0.051 6.192 ± 0.177 7.664 ± 0.258
54 I. balsamina 1.503 ± 0.285 0.133 ± 0.028 1.394 ± 0.190 3.244 ±0.052
55 I. walleriana 3.120 ± 0.145 1.195 ± 0.145 3.611 ± 0.004 8.428 ± 0.384
56 B. cavaleriei 1.311 ± 0.060 0.265 ± 0.013 0.641 ± 0.030 1.417 ± 0.071 4.330 ± 0.213
57 B. andraeanum 0.360 ± 0.046 0.273 ± 0.019 0.414 ± 0.048 0.207 ± 0.001 1.984 ± 0.013 2.217 ± 0.099 4.191 ± 0.049 9.646 ± 0.274
58 Begonia × tuberhybrida 1.650 ± 0.242 3.306 ± 0.069 0.642 ± 0.039 2.730 ± 0.205 8.693 ± 0.874
59 D. caryophyllus 13.167 ± 0.241 1.512 ± 0.095 0.331 ± 0.031 0.396 ± 0.071 15.405 ± 2.662
60 R. simsii 0.279 ± 0.057 0.138 ± 0.013 0.361 ± 0.003 0.131 ± 0.003 1.142 ± 0.010
61 E. rubra 0.042 ± 0.002 0.238 ± 0.068 0.326 ± 0.050 0.600 ± 0.122
62 E. milii 4.882 ± 0.502 0.347 ± 0.018 0.724 ± 0.035 0.167 ± 0.018 7.414 ± 0.062
63 B. macrophylla nd
64 P. peltatum 14.741 ± 0.122 2.216 ± 0.011 1.103 ± 0.102 0.248 ± 0.001 0.440 ± 0.012 8.415 ± 0.012 32.452 ± 0449
65 Pelargonium × hortorum 7.142 ± 2.789 2.011 ± 0.003 1.406 ± 0.147 1.371 ± 0.185 18.655 ± 0.296 3.081 ± 0.032 68.975 ± 4.079
66 S. splendens 1.182 ± 0.014 0.683 ± 0.008 4.311 ± 0.053 0.213 ± 0.003 0.801 ± 0.100 7.245 ± 0.078
67 M. arboreus 3.440 ± 0.450 3.429 ± 0.334 0.510 ± 0.071 6.166 ± 0.412 14.824 ± 1.379
68 F. magellanica 4.327 ± 0.154 11.080 ± 0.105 1.555 ± 0.022 23.538 ± 0.242 42.488 ± 1.335
69 Rosa hybrid 3.194 ± 0.642 4.989 ± 0.065 0.793 ± 0.015 0.970 ± 0.075 1.065 ± 0.248 6.339 ± 0.029 19.201 ± 1.513
70 P. rhoeas nd
71 W. coccinea nd
72 A. majus 0.911 ± 0.002 2.443 ± 0.312 0.146 ± 0.019 4.354 ± 0.197 8.962 ± 0.106
73 R. equisetiformis 2.577 ± 0.193 0.137 ± 0.032 4.795 ± 0.061
74 Petunia × hybrid 11.005 ± 0.795 2.724 ± 0.123 13.729 ± 0.191
75 L. camara 9.204 ± 0.120 0.911 ± 0.003 1.001 ± 0.021 0.603 ± 0.003 5.833 ± 0.804 2.306 ± 0.011 2.642 ± 0.333 22.478 ± 0.301
76 Verbena × hybrid 2.493 ± 0.176 1.373 ± 0.001 0.949 ± 0.139 1.187 ± 0.081 9.888 ± 0.148 4.310 ± 0.214 21.283 ± 0.834
Pink flowers
77 C. argentea 1.635 ± 0.068 6.172 ± 0.254 0.239 ± 0.022 0.218 ± 0.001 0.634 ± 0.013 4.615 ± 0.074 13.765 ± 0.437
78 N. oleander 5.514 ± 0.513 0.384 ± 0.086 7.902 ± 0.090 1.123 ± 0.101 0.464 ± 0.069 0.290 ± 0.045 15.677 ± 0.904
79 B. argentea 0.214 ± 0.021 0.274 ± 0.029 0.488 ± 0.051
80 G. hybrid 0.491 ± 0.065 0.473 ± 0.003 0.118 ± 0.019 1.229 ± 0.097
81 D. caryophyllus 8.479 ± 0.385 0.714 ± 0.032 1.527 ± 0.069 0.087 ± 0.004 10.807 ± 0.049
82 S. officinalis 1.733 ± 0.160 8.728 ± 0.943 10.461 ± 1.103
83 R. simsii 0.279 ± 0.057 0.138 ± 0.013 0.361 ± 0.003 0.131 ± 0.003 1.142 ± 0.102
84 T. cernuum 0.279 ± 0.005 0.166 ± 0.004 1.354 ± 0.079 0.605 ± 0.031 2.674 ± 0.187
85 E. grandiflorum 0.257 ± 0.008 0.338 ± 0.086 1.713 ± 0.141 3.105 ± 0.271
86 P. domesticum 15.733 ± 0.120 6.495 ± 0.152 0.310 ± 0.011 1.345 ± 0.086 3.485 ± 0.484 32.678 ± 2.198
87 Pelargonium × hortorum 22.520 ± 1.728 3.162 ± 0.070 3.704 ± 0.073 19.506 ± 1.375 6.291 ± 2.100 55.183 ± 5.346
88 H. petiolaris 10.889 ± 0.114 34.229 ± 2.096 6.566 ± 0.175 3.183 ± 0.162 4.350 ± 0.224 2.154 ± 0.115 61.371 ± 4.260
89 C. hyssopifolia 11.312 ± 0.867 11.312 ± 0.867
90 L. indica 0.424 ± 0.006 2.667 ± 0.395 3.091 ± 0.484
91 G. arboreum 0.367 ± 0.010 2.762 ± 0.326 0.545 ± 0.036 0.862 ± 0.073 0.741 ± 0.034 5.276 ± 0.479
92 M. jalapa 4.530 ± 0.048 2.230 ± 0.022 0.729 ± 0.044 0.369 ± 0.012 0.332 ± 0.013 0.373 ± 0.009 0.922 ± 0.123 9.485 ± 0.271
93 P. aphrodite 10.146 ± 0.349 1.614 ± 0.049 17.202 ± 0.282 3.136 ± 0.020 39.969 ± 1.073
94 P. oleracea 0.402 ± 0.111 4.008 ± 0.160 0.125 ± 0.007 0.347 ± 0.050 4.389 ± 0.021
95 Rosa hybrid 5.799 ± 0.424 0.333 ± 0.014 0.351 ± 0.050 7.770 ± 0.033
96 Verbena ×hybrid 18.240 ± 1.965 1.470 ± 0.169 6.890 ± 0.668 0.198 ± 0.014 26.797 ± 2.816

nd, not detectable.

Table 9.

Phenolic compound contents (mg/g dry weight) of lilac and blue flowers.

Species Gallic p-Hydroxybe. m-Coumaric p-Coumaric Vanillic Caffeic Syringic Chlorogenic Ferulic Naringin Crisin Quercitrin Myricetin Quercetin Kaempferol Total
Lilac flowers
97 A. schoenoprasum 2.156 ± 0.0244 2.736 ± 0.274 0.190 ± 0.007 0.031 ± 0.006 0.894 ± 0.003 1.284 ± 0.010 1.978 ± 0.125 9.269 ± 0.670
98 C. roseus 1.680 ± 0.094 7.023 ± 0.685 2.263 ± 0.169 1.021 ± 0.058 2.525 ± 0.150 14.559 ± 1.223 29.137 ± 3.556
99 C. seridis 0.987 ± 0.138 0.544 ± 0.030 0.532 ± 0.024 1.087 ± 0.001 7.465 ± 0.174 0.288 ± 0.019 2.044 ± 0.136 3.055 ± 0.612 16.001 ± 2.364
100 C. intybus 1.433 ± 0.123 3.938 ± 0.175 0.388 ± 0.069 0.512 ± 0.004 0.911 ± 0.061 0.446 ± 0.014 0.415 ± 0.053 9.891 ± 0.848
101 O. fruticosum 0.898 ± 0.182 0.658 ± 0.071 0.561 ± 0.094 0.729 ± 0.133 3.051 ± 0.501
102 A. montanum 0.105 ± 0.024 0.871 ± 0.098 0.191 ± 0.023 1.677 ± 0.253
103 C. carpatica 4.031 ± 0.349 0.621 ± 0.008 4.785 ± 0.501
104 P. domesticum 17.440 ± 1.088 10.666 ± 0.513 2.397 ± 0.088 2.434 ± 0.121 0.711 ± 0.059 1.045 ± 0.116 1.297 ± 0.015 37.965 ± 0.125
105 P. × hortorum 27.709 ± 0.061 6.280 ± 0.437 1.537 ± 0.219 1.672 ± 0.002 2.599 ± 0.125 39.797 ± 0.096
106 M. × piperita 0.062 ± 0.003 0.083 ± 0.004 0.210 ± 0.013 0.133 ± 0.007 0.488 ± 0.027
107 O. basilicum 0.197 ± 0.008 0.197 ± 0.008
108 H. syriacus 10.489 ± 0.107 19.139 ± 1.870 0.318 ± 0.036 29.946 ± 2.013
109 B. spectabili 3.844 ± 0.218 0.352 ± 0.015 7.161 ± 0.409 4.422 ± 0.269 15.779 ± 1.334
110 L. sinuatum 0.393 ± 0.077 0.350 ± 0.008 0.120 ± 0.030 0.972 ± 0.073 2.036 ± 0.171
111 F. aubertii 0.749 ± 0.011 0.160 ± 0.010 0.377 ± 0.022 0.711 ± 0.092 0.388 ± 0.130 2.659 ± 0.276
112 Petunia × hybrida 0.197 ± 0.010 0.683 ± 0.082 0.187 ± 0.020 0.846 ± 0.052 0.647 ± 0.020 1.322 ± 0.102 0.909 ± 0.035 4.791 ± 0.320
113 S. rantonnetti 1.213 ± 0.083 0.612 ± 0.017 0.685 ± 0.072 0.391 ± 0.002 0.278 ± 0.002 3.180 ± 0.177
114 Verbena × hybrid 6.323 ± 0.143 0.504 ± 0.029 1.467 ± 0.056 0.925 ± 0.022 1.282 ± 0.158 3.519 ± 0.355 8.950 ± 0.526 24.044 ± 2.346
115 V.agnus- castus 5.337 ± 0.337 15.534 ± 0.790 0.564 ± 0.010 5.344 ± 0.168 1.580 ± 0.035 0.363 ± 0.030 28.994 ± 2.552
Blue flowers
116 A. africanus 6.751 ± 0.339 1.452 ± 0.069 1.032 ± 0.089 3.663 ± 0.171 13.687 ± 0.736
117 C. althaeoides 0.029 ± 0.004 3.938 ± 0.309 0986 ± 0.127 2.995 ± 0.387 1.568 ± 0.203 9.516 ± 1.231
118 S. ionantha 1.519 ± 0.037 19.628 ± 2.488 2.940 ± 0.062 1.641 ± 0.200 10.830 ± 0.428 37.201 ± 3.850
119 S. aemula 2.659 ± 0.128 0.534 ± 0.010 0.529 ± 0.078 0.851 ± 0.064 1.322 ± 0.048 0.837 ± 0.171 7.257 ± 0.525
120 A. foeniculum 3.469 ± 0.258 0.648 ± 0.013 6.628 ± 0.470
121 L. angustifolia 1.614 ± 0.235 1.666 ± 0.231 1.207 ± 0.067 0.413 ± 0.029 5.634 ± 0.834
122 R. officinalis 1.634 ± 0.050 4.981 ± 0.490 1.035 ± 0.020 7.651 ± 0.560
123 P. × belotti 6.005 ± 0.614 0.359 ± 0.024 6.364 ± 1.475
124 P. vulgaris 4.490 ± 0.097 4.490 ± 0.097
125 Petunia × hybrida 2.300 ± 0.251 0.578 ± 0.013 0.554 ± 0.050 2.966 ± 0.005 0.948 ± 0.041 7.850 ± 0.048

Figure 4.

Figure 4

Chromatogram of lilac Catharanthus roseus phenolics at 280 nm (A) and 320 nm (B). 1. p-Hydroxybenzoic acid, 2. m-Coumaric acid, 3. Chlorogenic acid, 4. Quercitrin, 5. Quercetin, 6. Kaempferol.

Figure 5.

Figure 5

Frequency, mean contents and standard deviations of phenolics and major sources. Frequency (A), mean contents of individual phenolics (B), total phenolics content (C), and list of species with high concentrations of phenolics. Number within the figures represent the sample under study.

4. Discussion

4.1. Color Parameters and Other Characteristics

The great majority of the flowers were edible (n = 111, i.e., 89%); 70% of the families studied (52 families) included edible flowers. For example, the families Asteraceae and Lamiaceae contained six and seven edible species, respectively [20]. Concerning their uses, the most frequent were in salads (31.3% of the total use of the flowers) and infusions (28.9%), followed by teas (15.7%), desserts (13.3%) and others, including as garnishes and colorants (Table 1, Table 2 and Table 3). The different culinary uses of flowers depend to some extent on their size, shape, and color, as suggested by other authors [4]. These characteristics varied considerably among the samples surveyed in the present study. Different shapes were found, such as tubular (e.g., Russelia equisetiformis Schltdl. Et Cham.), bilabial (e.g., Rosmarinus officinalis L.), flared (e.g., Punica granatum L.), and flowers that form part of a cluster (e.g., Plantago major L., Salvia splendens Sellow ex Schylt., Vitex agnus-castus L., Allium schoenoprasum L., and Lantana camara L.). On the other hand, the flowers showed a great variety of colors (Table 1, Table 2 and Table 3), such as white (e.g., Portulaca oleracea L.), yellow (e.g., Anthemis tinctoria L.), orange (e.g., Punica granatum L.), pink (e.g., Diantuhus caryophyllus L.), red (e.g., Pelargonium × hortorum), lilac (e.g., Petunia hybrid), and blue (e.g., Lavandula angustifolia Mill.). The color parameters ranged between 14.2 and 87.1, −9.2 and 57.2, −25.7 and 88.6, 2.9 and 89.9, and 3.4 and 359.6 for L* (lightness), a* (ranging from green to red), b* (ranging from blue to yellow), C*ab (chroma, the quantitative expression of color), and hab (hue angle, the qualitative expression of color), respectively. The variety of colors found in the petals of flowers under study can be explained by the different contents of carotenoids and phenolics, which are usually the main contributors to the color of these structures [34,35].

The humidity of the petals ranged between 54.5 and 99.7%, a wider interval compared to that recently reported by other authors (70 and 95%) [4].

4.2. Carotenoids

4.2.1. Selection of the Extraction Solvents

Regarding the quantification of carotenoids in flowers, there are several studies that use different extraction solvents; however, the mixtures acetone: methanol (2:1) and ethyl acetate: methanol: petroleum ether (1:1:1) in this study presented the highest extraction percentage. Acetone: methanol (2:1) was selected as the extraction solvent for the studied flowers due to its slightly higher yield and its simplicity of preparation.

4.2.2. Carotenoid Levels

At this point it is important to notice that saponification, which simplifies the identification of carotenoids, has the disadvantage that it leads to carotenoid losses [30], so the information provided must be interpreted with this in mind. This fact has been observed in the TCC levels of red and lilac flowers of Catharanthus roseus (3.7 µg/g DW and not detectable, respectively) and Pelargonium × hortorum (3.5 µg/g DW and not detectable, respectively). Although the TCC levels measured in non-saponified extracts by spectrophotometry showed values of 185, 132, and 100 µg/g DW, respectively, no individual carotenoids were detected by RRLC after the saponification of the extracts (data not shown).

On the other hand, flowers of the same family but different species presented different profiles in most cases. At this point it is important to notice that the profiles of the secondary metabolites of plants in general and carotenoids and phenolics in particular are dependent on different factors, including genotype as one of the most important, along with ambient/seasonal (light quality and quantity, temperature), and agronomic factors (irrigation, fertilization, etc.), among others [36,37,38].

Lutein (31.7%), β-cryptoxanthin (16.6%), and β-carotene (15.4%) were the most frequent carotenoids (Figure 3, section A). These three carotenoids are, along with zeaxanthin, α-carotene, lycopene, phytoene, and phytofluene, the major carotenoids in human tissues and fluids, all of which are thought to promote health [13]. All of them, except phytofluene, were identified in the set of samples, as well as others not reported in humans, such as lutein epoxide, antheraxanthin, violaxanthin, zeinoxanthin, luteoxanthin, and neochrome (Figure 3, section A).

Figure 3, section B, presents the mean contents and standard deviations of the individual carotenoids. The levels of the colorless carotenoid phytoene ranged between 2.8 (Trifolium cernuum) and 126.4 µg/g DW (Guzmania hybrid). The concentrations of lutein ranged from 0.7 to 1204.0 µg/g DW. The best source by far was Senna papillosa yellow (1204.0 µg/g DW), followed by Portulaca oleracea yellow (334.9 µg/g DW) and Aphelandra squarrosa red (209.0 µg/g DW), in descending order. The levels of lutein epoxide ranged from 2.9 to 75.8 µg/g DW. The highest amounts were found in Lantana camara yellow (75.8 µg/g DW), Mentha suaveolens white (38.5 µg/g DW), Solanum lycopersicum yellow (31.9 µg/g DW), and Mentha × piperita lilac (23.4 µg/g DW). The concentrations of luteoxanthin fell in an interval of 1.1–98.7 µg/g DW, and the main sources were Brownea macrophylla red (98.7 µg/g DW), Mentha suaveolens white (6.9 µg/g DW), and Mentha × piperita lilac (5.9 µg/g DW). On the other hand, the concentrations of antheraxanthin ranged from 1.8 to 18.3 µg/g DW. Capsicum annuum white (18.3 µg/g DW), Campanula shetleri white (11.4 µg/g DW), and Rosa hybrid pink (9.6 µg/g DW) were the flowers with the highest contents. The 9-Cis-antheraxanthin concentration values fluctuated between 5.4 and 433.4 µg/g DW. The highest levels were detected in Portulaca oleracea yellow (433.4 µg/g DW) and pink (355.2 µg/g DW) petals. The concentrations of violaxanthin ranged from 4.0 to 258.8 µg/g DW. Drymonia brochidodroma orange (258.8 µg/g DW), Aphelandra squarrosa red (140 µg/g DW), and Senna papillosa yellow (86.0 µg/g DW) were the best sources. The concentrations of the carotenoid identified as zeinoxanthin varied between 4.5 and 1311.9 µg/g DW. The best sources were Senna papillosa yellow (1311.9 µg/g DW) and, to a much lesser extent, Portulaca oleracea yellow (239.8 µg/g DW). The levels of the provitamin A carotenoid β-cryptoxanthin ranged from 4.2 to 33.4 µg/g DW; the highest amounts were found in Brownea macrophylla red (33.4 µg/g DW) and Lavandula angustifolia blue (19.3 µg/g DW). The amounts of the provitamin A carotenoid α-carotene were in the interval of 12.3–1451.9 µg/g DW. Renealmia alpinia orange (1451.9 µg/g DW) and, to a lesser extent, Lantana camara yellow (731.5 µg/g DW) and Spathiphyllum montanum white (82.0 µg/g DW) stood out as the main sources.

Britton and Khachik proposed a criterion through which to classify food sources according to their carotenoid content expressed in mg/100 g fresh weight. According to this criterion, the contents of a specific carotenoid can be classified as low (0–0.1 mg/100 g), moderate (0.1–0.5 mg/100 g), high (0.5–2 mg/100 g), or very high (>2 mg/100 g).

Using this criterion to categorize carotenoid sources, the petals with high (0.5–2 mg/100 g) or very high (>2 mg/100 g) carotenoid levels are Renealmia alpinia (15.0 mg/100 g FW), Senna papillosa (4.5 mg/100 g FW), Sophora japonica, Brownea macrophylla (2.6 mg/100 g FW) (β-carotene), Tecoma capensis (0.5 mg/100 g FW) (β-cryptoxanthin), Senna papillosa (31.8 mg/100 g FW), Aphelandra squarrosa (5.6 mg/100 g FW), Portulaca oleracea (4.7 mg/100 g FW) (lutein), Lantana camara (1.7 mg/100 g FW)(zeaxanthin), and Lantana camara (0.6 mg/100 g FW) (phytoene).

On the other hand, the maximum daily intakes of carotenoids reported in recent reviews were 4.1 (lutein + zeaxanthin), 1.4 (β-cryptoxanthin), 2.4 (α-carotene), 8.8 (β-carotene), 9.4 (lycopene), 2.0 (phytoene), and 0.7 mg (phytofluene) [13]. These intakes could be obtained with 87.2 g FW of Portulaca oleracea (lutein + zeaxanthin), 280 g FW of Tecoma capensis (β-cryptoxanthin), 15.2 g FW of Renealmia alpinia (α-carotene), 58.7 g FW of Renealmia alpinia (β-carotene), and 153.8 g FW of Guzmania hibrid (phytoene). These data indicate that the consumption of just a few grams of petals of some flowers (for instance, Portulaca oleracea or Renealmia alpinia) can be useful to increase considerably the intakes of health-promoting carotenoids.

The petals of the edible flowers Renealmia alpinia (15.0 mg/100 g FW of β-carotene and 15.8 mg/100 g FW of α-carotene) and Lantana camara (0.6 mg/100 g FW of β-carotene and 8.6 mg/100 g FW of α-carotene) showed the highest values of provitamin A carotenoids. The values of vitamin A activity of the samples can be expressed in terms of retinol activity equivalents (RAE), considering the equivalences 1 RAE = 12 μg of all-trans-β-carotene = 24 μg of other provitamin A carotenoids [39]. Thus, the RAE per gram of fresh weight of Renealmia alpinia and Lantana camara are 19.1 and 4.1, respectively. Given that 1 RAE equals two retinol equivalent (RE), it can be estimated that 10 g of fresh flowers from Renealmia alpinia would provide 381.2 retinol equivalents (RE), which is approximately half the daily recommendation of vitamin A for adults (750 RE/day) by FAO and OMS [40].

The TCC values obtained as the sum of the levels of individual carotenoids ranged from 1.7 (Aloysia citriodora, pink) to 3044.7 µg/g DW (Renealmia alpinia, orange). The flowers with the highest TCC levels were Renealmia alpinia orange (3044.7 µg/g DW), Senna papillosa yellow (2772.2 µg/g DW), Lantana camara yellow (2056.0 µg/g DW), and Portulaca oleracea yellow (1012.4 µg/g DW). The TCC content of R. alpinia was outstanding, as it was 23 times higher than the mean TCC of all the flowers. Foods with high or very high carotenoid levels are: green vegetables, apricot, carrot, mango, palm oil, buriti, and sweet potato (β-carotene); persimmon, pitanga, papaya, pumpkin, and tangerines (β-cryptoxanthin); green vegetables, pumpkin, sastra, and egg yolk (lutein); Chinese wolfberry, sastra, corozo, sapote, quince, orange, and red peppers (zeaxanthin); tomato, watermelon, red grapefruit, and papaya (lycopene); tomato, apricot, red pepper, carrot, and red grapefruit (phytoene and phytofluene) [5,15,17,28].

4.3. Phenolic Compounds

The most frequent phenolic compounds in the set of flowers evaluated were m-coumaric acid (a phenolic acid), quercitrin, and quercetin (flavonoids) (Figure 5, section A), which agrees well with the information reported by other authors indicating that phenolic acids and flavonoids are the predominant phenolic compounds in flowers [41]. On the other hand, values between 4.83 and 222.00 mg GAE/g DW of total phenolics have been described in 23 edible flowers elsewhere [4].

Flowers of the same species with different colors showed different profiles of phenolics, as opposed to what was observed in the case of carotenoids. Flowers of different species also exhibited different phenolic patterns. This may have been due to the fact that, as already mentioned, the contents of phenolic compounds and other secondary metabolites in plants are dependent on genetic factors, as well as climatic and agronomic conditions, among others [37,38].

In addition, the influence of different methods on the extraction efficiency of different compounds (in this case not only phenolics but also carotenoids), and therefore on their, quantification must be taken into account.

4.3.1. Benzoic Acids

Gallic acid displayed ranges between 0.1 and 38.1 mg/g DW. Pelargonium × hortorum red (38.1 mg/g DW), pink (24.5 mg/g DW), lilac (27.7 mg/g DW), and Pelargonium domesticum lilac (18.6 mg/g DW) were the samples with the highest contents. The content of p-Hydroxybenzoic acid ranged from 0.1 to 21.1 mg/g DW. The highest values were found in Plumbago auriculata white (21.1 mg/g DW), Chlorophytum comosum white (8.4 mg/g DW), Dahlia coccinea yellow (6.9 mg/g DW), and Vitex agnus castus lilac (6.5 mg/g DW). The m-coumaric acid values showed ranges between 0.04 and 19.5 mg/g DW. Verbena × hybrid pink (19.5 mg/g DW), Dianthus caryophyllus red (15.5 mg/g DW), Vitex agnus-castus lilac (15.5 mg/g DW), and Hydrangea petiolaris pink (12.3 mg/g DW) exhibited the most significant m-coumaric acid concentrations. The p-coumaric acid values oscillated between 0.1 and 17.6 mg/g DW. Catharanthus roseus red (17.6 mg/g DW) and Punica granatum orange (10.1 mg/g DW) were the samples surveyed with the highest values of p-coumaric acid. The levels of vanillic acid fell in an interval of 0.1–1.6 mg/g DW. This compound was detected only in a few species, such as Dianthus caryophyllus red (1.6 mg/g DW), Vitex agnus castus lilac (0.6 mg/g DW), Nerium oleander pink (0.5 mg/g DW), Celosia argentea red (0.1 mg/g DW), and Aglaonema commutatum yellow (0.1 mg/g DW). The Syringic acid totals ranged from 0.1 to 3.0 mg/g DW. Lagerstroemia indica pink (3.0 mg/g DW) and Pelargonium domesticum lilac (2.4 mg/g DW) were the flowers with the highest concentrations.

4.3.2. Hydroxycinnamic Acids

The concentrations of caffeic acid ranged from 0.1 to 34.2 mg/g DW. Hydrangea petiolaris pink (34.2 mg/g DW), Salvia splendens red (4.3 mg/g DW), and Convolvus althaeoides blue (4.2 mg/g DW) were the richest sources of this compound. The chlorogenic acid content ranged between 0.1 and 8.4 mg/g DW. Its main sources were Punica granatum orange (8.4 mg/g DW), Nerium oleander pink (7.9 mg/g DW) and red (7.3 mg/g DW), Anthemis tinctoria yellow (6.8 mg/g DW), and Hydrangea petiolaris pink (6.6 mg/g DW). The ferulic acid levels oscillated between 0.1 and 3.3 mg/g DW. Convolvulus althaeoides blue (3.3 mg/g DW), Nerium oleander pink (1.2 mg/g DW), Petunia hybrida lilac (0.9 mg/g DW), and Dahlia pinnata yellow (0.9 mg/g DW) were its main sources.

4.3.3. Flavonols

The quercitrin concentrations ranged from 0.1 to 39.5 mg/g DW. The main sources of this flavanol were Punica granatum orange (39.5 mg/g DW), Fragaria × ananassa white (24.2 mg/g DW), Plantago major yellow (21.2 mg/g DW), Hibiscus syriacus lilac (19.9 mg/g DW), and Gypsophila paniculata white (19.4 mg/g DW). The quercetin levels oscillated between 0.1 and 23.8 mg/g DW. Its major sources were Plumbago auriculata white (23.8 mg/g DW), Punica granatum orange (23.1 mg/g DW), and Fragaria × ananassa white (19.3 mg/g DW). Myricetin was present in the set of samples at concentrations in the range 0.4 - 8.2 mg/g DW and was only detected in Pelargonium × hortorum pink (8.2 mg/g DW) and red (3.8 mg/g DW), Dianthus caryophyllus pink (1.5 mg/g DW), Pelargonium domesticum lilac (1.0 mg/g DW), and Fallopia aubertii lilac (0.8 mg/g DW) and yellow (0.4 mg/g DW). The levels of kaempferol in the set of flowers were in an interval of 0.6–16.1 mg/g DW. Catharanthus roseus lilac (16.1 mg/g DW), Saintpaulia ionantha blue (11.4 mg/g DW), and Rosa hybrid red (6.6 mg/g DW) were the best sources.

4.3.4. Flavones

Crisin was detected only in a few samples, at concentrations between 0.1 and 21.2 mg/g DW. Saintpauli ionantha blue (21.2 mg/g DW), Cuphea hyssopifolia pink (11.3 mg/g DW), and Lantana camara (Verbenaceae family) white (3.4 mg/g DW) displayed the highest values.

4.3.5. Flavanones

The naringin values were between 0.2 and 20.1 mg/g DW and Pelargonium × hortorum pink (20.1 mg/g DW) and red (18.6 mg/g DW) and Pelargonium peltatum red (8.4 mg/g DW) exhibited the highest values.

4.3.6. Total Phenolic Compounds

TPC demonstrated ranges between 0.2 (Ocimum basilicum white) and 146.7 mg/g DW (Punica granatum orange) (Figure 3, section C). The TPC in Punica granatum was noteworthy as it was 15 times higher than the mean of TPC in the entire set of flowers. Punica granatum orange (147.0 mg/g DW), Pelargonium × hortorum red (65.5 mg/g DW) and pink (59.7 mg/g DW), Hydrangea petiolaris pink (62.6 mg/g DW), and Plumbago auriculata white (62.5 mg/g DW) showed the highest values of TPC in the flowers under study. Other authors found similar values of TPC in Pelargonium × hortorum (i.e., 50.4 mg GAE/g DW using the same humidity as this study) [42]. Anthemis tinctoria with chlorogenic acid (6.8 mg/g DW) as the major compound and 11.5 mg/g DW of TPC, Mirabilis jalapa with p-hydroxybenzoic acid (4.5 mg/g) and 9.5 mg/g of TPC, Limonium sinuatum with kaempferol (1.0 mg/g DW) and 1.8 mg/g DW of TPC, Euonymus japonicus with quercitrin (0.8 mg/g DW) and 1.9 mg/g DW of TPC, and Gardenia jasminoides with ferulic acid and naringin (0.6 mg/g DW both) and 1.9 mg/g DW of TPC are used as food additives and natural colorants [43,44,45]. Other authors have reported values of 9.06 mg/100 g DW, 19.06 mg/100g DW, and 190.8 mg GAE/100 g DW for gallic acid, quercetin, and total phenolic, respectively, in Gardenia jasminoides [46]. Furthermore, other authors reported that Mirabilis jalapa is a good source of flavonoids and phenolic acids (ferulic acid and caffeic acid as major compounds) [47]. The aforementioned flowers, despite being used as coloring agents, did not stand out for their TPC in the present study.

5. Conclusions

In this study, the carotenoids and phenolic compounds of 125 flowers were evaluated. Flowers with high TCC levels (assessed by liquid chromatography) were pinpointed, such as Renealmia alpinia orange (whose TCC levels was 23 times higher than the media), Senna papillosa yellow, Lantana camara yellow, and Portulaca oleracea yellow. The petals of the edible flowers Renealmia alpinia and Lantana camara stood out for their high content of provitamin A carotenoid. The main sources of the different carotenoids detected were Guzmania hybrid (phytoene), Senna papillosa (lutein), Renealmia alpinia (β-carotene), Lantana camara yellow (lutein epoxide), Brownea macrophylla red (luteoxanthin), Capsicum annuum white (antheraxanthin), Portulaca oleracea yellow and pink petals (9-cis-antheraxanthin), Drymonia brochidodroma orange (violaxanthin), Senna papillosa yellow (zeinoxanthin), Brownea macrophylla red (β-cryptoxanthin), and Renealmia alpinia orange (α-carotene).

Some petals are indeed highly concentrated sources of carotenoids, including provitamin A carotenoids. As an example, it has been estimated that 10 g fresh weight of the petals of Renealmia alpinia can provide 381.2 ER, which is approximately half the daily recommendation of vitamin A for adults (750 ER/day).

The samples with the highest TPC (assessed by liquid chromatography) were Punica granatum orange, Pelargonium × hortorum red and pink, and Hydrangea petiolaris pink and Plumbago auriculata white). The TPC in Punica granatum was approximately 15 times higher than the mean.

The main sources of the different phenolics detected were Pelargonium × hortorum red, pink, and lilac (gallic acid), Plumbago auriculata white (p-hydroxybenzoic acid), Verbena × hybrid pink (m-coumaric acid), Catharanthus roseus red (p-coumaric acid), Dianthus caryophyllus red and lilac (vanillic acid), Lagerstroemia indica pink (syringic acid), Hydrangea petiolaris pink (caffeic acid), Punica granatum orange (chlorogenic acid), Convolvulus althaeoides blue (ferulic acid), Punica granatum orange (quercitrin), Plumbago auriculata white (quercetin), Pelargonium × hortorum pink and red (myricetin), Catharanthus roseus lilac (kaempferol), Saintpauli ionantha blue (crisin), and Pelargonium × hortorum pink and red (naringin).

In summary, several petal matrices with interesting carotenoid or phenolic profiles (either by their total content or their levels of specific carotenoids or phenolics) were pinpointed. The information provided can help to design breeding programs aimed at producing flowers with increased carotenoid and/or phenolic levels and can be useful for the provision of natural colors for the agro-food or textile industries, as well as for the provision of beneficial compounds for the functional foods, nutricosmetics, and pharmaceutical industries.

Acknowledgments

The authors thank the Secretaría de Educación Superior, Ciencia, Tecnología e Inovación (SENESCYT) and the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia (CEDIA), Ecuador, for its financial support; Real Botanic Garden from Córdoba-Spain for the provision of flowers; and the technical staff of the Biology Service (SGI, Universidad de Sevilla) for the services offered. A.J.M.-M. acknowledges funding from the Spanish State Secretariat of Research, Development and Innovation (Ministry of Economy and Competitiveness, project ref. AGL2012-37610, co-funded by FEDER). E.C.-C., D.H., A.B., C.S., and A.J.M.-M. thank the Ibero-American Programme for Science, Technology and Development (CYTED, http://www.cyted.org) for the funding of the IBERCAROT network (http://carotenoides.us.es/ref.112RT445). A.J.M.-M. acknowledges funding from the Carotenoid Network: from microbial and plants to food and health (BIO2015-71703-REDT) and CaRed: Red española de carotenoides (BIO2017-90877-REDT), funded by the Spanish Ministry of Economy and Competitiveness.

Author Contributions

Conceptualization, M.C.; methodology, C.S.; software, A.B.; validation, P.M.-B.; formal analisis and writing-review and editing, E.C.-C.; investigation, D.H.; resources, supervision and project administration A.J.M.-M. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by SENESCYT-Ecuador; the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia (CEDIA); the Spanish State Secretariat of Research, Development and Innovation (Ministry of Economy and Competitiveness, project ref. AGL2012-37610, co-funded by FEDER), E.C.-C., D.H., A.B., C.S.; the Ibero-American Programme for Science, Technology and Development (CYTED, http://www.cyted.org) for the funding of the IBERCAROT network (http://carotenoides.us.es/ref.112RT445); the Carotenoid Network: from microbial and plants to food and health (BIO2015-71703-REDT); and CaRed: Red española de carotenoides (BIO2017-90877-REDT), funded by the Spanish Ministry of Economy and Competitiveness.

Data Availability Statement

The datasets generated for this study are available on request to the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Wongwattanasathien O., Kangsadalampai K., Tongyonk L. Antimutagenicity of some flowers grown in Thailand. Food Chem. Toxicol. 2010;48:1045–1051. doi: 10.1016/j.fct.2010.01.018. [DOI] [PubMed] [Google Scholar]
  • 2.Wang C., Wang J., Lin W., Chu C., Chou F., Tseng T. Protective effect of Hibiscus anthocyanins against tert -butyl hydroperoxide-induced hepatic toxicity in rats. Food Chem. Toxicol. 2000;38:411–416. doi: 10.1016/S0278-6915(00)00011-9. [DOI] [PubMed] [Google Scholar]
  • 3.Leonti M., Verpoorte R. Traditional mediterranean and european herbal medicines. J. Ethnopharmacol. 2017;199:161–167. doi: 10.1016/j.jep.2017.01.052. [DOI] [PubMed] [Google Scholar]
  • 4.Fernandes L., Casal S., Pereira J.A., Saraiva J.A., Ramalhosa E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017;60:38–50. doi: 10.1016/j.jfca.2017.03.017. [DOI] [Google Scholar]
  • 5.Ahrazem O., Diretto G., Argandoña Picazo J., Fiore A., Rubio-Moraga Á., Rial C., Varela R.M., Macías F.A., Castillo R., Romano E., et al. The specialized roles in carotenogenesis and apocarotenogenesis of the phytoene synthase gene Family in Saffron. Front. Plant. Sci. 2019;10:249. doi: 10.3389/fpls.2019.00249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Ohmiya A. Review: Diversity of carotenoid composition in flower petals. Jpn. Agric. Res. Q. 2011;45:163–171. doi: 10.6090/jarq.45.163. [DOI] [Google Scholar]
  • 7.Pires T., Dias M., Barros L., Ricardo C., Alves M., Oliveira M., Ferreira I. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2017 doi: 10.1016/j.foodres.2017.11.014. [DOI] [PubMed] [Google Scholar]
  • 8.Onofrei V., Teliban G.C., Burducea M., Lobiuc A., Sandu C.B., Tocai M., Robu T. Organic foliar fertilization increases polyphenol content of Calendula officinalis L. Ind. Crops Prod. 2017;109:509–513. doi: 10.1016/j.indcrop.2017.08.055. [DOI] [Google Scholar]
  • 9.Fu X.Q., Ma N., Sun W.P., Dang Y.Y. Microwave and enzyme co-assisted aqueous two-phase extraction of polyphenol and lutein from marigold (Tagetes erecta L.) flower. Ind. Crops Prod. 2018;123:296–302. doi: 10.1016/j.indcrop.2018.06.087. [DOI] [Google Scholar]
  • 10.Meléndez-Martínez A. Carotenoides en Agroalimentación y Salud. CYTED; Cambridge, UK: 2017. [Google Scholar]
  • 11.Esteban R., Moran J., Becerril J., García-Plazaola J. Versatility of carotenoids: An integrated view on diversity, evolution, functional roles and environmental interactions. Environ. Exp. Bot. 2015;119:63–75. doi: 10.1016/j.envexpbot.2015.04.009. [DOI] [Google Scholar]
  • 12.Schaefer H.M., Schaefer V., Levey D. How plant-animal interactions signal new insights in communication. Trends Ecol. Evol. 2004;19:577–584. doi: 10.1016/j.tree.2004.08.003. [DOI] [Google Scholar]
  • 13.Meléndez-Martínez A. An overview of carotenoids, apocarotenoids and vitamin A in agro-food, nutrition, health and disease. Mol. Nutr. Food Res. 2019;63:1–43. doi: 10.1002/mnfr.201801045. [DOI] [PubMed] [Google Scholar]
  • 14.Meléndez-Martínez A., Stinco C., Mapelli-Brahm P. Skin carotenoids in public health and nutricosmetics. The emerging roles and applications of the UV light-absorbing colourless carotenoids phytoene and phytofluene. Nutrients. 2019;11:1093. doi: 10.3390/nu11051093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Breithaupt D.E. Modern application of xanthophylls in animal feeding—A review. Trends Food Sci. Technol. 2007;18:501–506. doi: 10.1016/j.tifs.2007.04.009. [DOI] [Google Scholar]
  • 16.Goralczyk R., Wertz K. Skin photoprotection by carotenoids. In: Britton G., Liaaen-Jensen S., Pfander H., editors. Carotenoids. Volume 5. Nutrition and Health. Birkhäuser; Basel, Switzerland: 2009. pp. 335–362. [Google Scholar]
  • 17.Baaka N., El Ksibi I., Mhenni M.F. Optimisation of the recovery of carotenoids from tomato processing wastes: Application on textile dyeing and assessment of its antioxidant activity. Nat. Prod. Res. 2017;31:196–203. doi: 10.1080/14786419.2016.1226828. [DOI] [PubMed] [Google Scholar]
  • 18.Shahidi F., Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods. 2015;18:820–897. doi: 10.1016/j.jff.2015.06.018. [DOI] [Google Scholar]
  • 19.Granado-Loreiro F., Hernández-Alvarez E. Functional foods and health effects: A nutritional biochemistry perspective. Curr. Med. Chem. 2016;23:2929–2957. doi: 10.2174/0929867323666160615105746. [DOI] [PubMed] [Google Scholar]
  • 20.Lu B., Li M., Yin R. Phytochemical content, health benefits, and toxicology of common edible flowers: A review (2000-2015) Crit. Rev. Food Sci. Nutr. 2015;56:S130–S148. doi: 10.1080/10408398.2015.1078276. [DOI] [PubMed] [Google Scholar]
  • 21.Fan J., Zhu W., Kang H., Ma H., Tao G. Flavonoid constituents and antioxidant capacity in flowers of different Zhongyuan tree penoy cultivars. J. Funct. Foods. 2012;4:147–157. doi: 10.1016/j.jff.2011.09.006. [DOI] [Google Scholar]
  • 22.Kaisoon O., Siriamornpun S. Phenolic compounds and antioxidant activities of edible flowers from Thailand. J. Funct. 2011;3:88–99. doi: 10.1016/j.jff.2011.03.002. [DOI] [Google Scholar]
  • 23.Meléndez-Martínez A., Britton G., Vicario I.M., Heredia F.J. The complex carotenoid pattern of orange juices from concentrate. Food Chem. 2008;109:546–553. doi: 10.1016/j.foodchem.2008.01.003. [DOI] [Google Scholar]
  • 24.Meléndez-Martínez A., Paulino M., Stinco C., Mapelli-Brahm P., Wang X.-D. Study of the time-course of cis/trans (Z/E) isomerization of lycopene, phytoene, and phytofluene from tomato. J. Agric. Food Chem. 2014;62:12399–12406. doi: 10.1021/jf5041965. [DOI] [PubMed] [Google Scholar]
  • 25.Meléndez-Martínez A., Britton G., Vicario I., Heredia F. Identification of isolutein (lutein epoxide) as cis-antheraxanthin in orange juice. J. Agric. Food Chem. 2005;53:9369–9373. doi: 10.1021/jf051722i. [DOI] [PubMed] [Google Scholar]
  • 26.Meléndez-Martínez A., Vicario I., Heredia F. Geometrical isomers of violaxanthin in orange juice. Food Chem. 2007;104:169–175. doi: 10.1016/j.foodchem.2006.11.017. [DOI] [Google Scholar]
  • 27.Meléndez-Martínez A., Britton G., Vicario I., Heredia F. Identification of zeinoxanthin in orange juices. J. Agric. Food Chem. 2005;53:6362–6367. doi: 10.1021/jf050370c. [DOI] [PubMed] [Google Scholar]
  • 28.Bakó E., Deli J., Tóth G. HPLC study on the carotenoid composition of Calendula products. J. Biochem. Biophys. Methods. 2002;53:241–250. doi: 10.1016/S0165-022X(02)00112-4. [DOI] [PubMed] [Google Scholar]
  • 29.Kimura M., Rodriguez-amaya D.B. A scheme for obtaining standards and HPLC quantification of leafy vegetable carotenoids. Food Chem. 2002;78:389–398. doi: 10.1016/S0308-8146(02)00203-0. [DOI] [Google Scholar]
  • 30.Stinco C., Benítez-González A., Hernanz D., Vicario I., Meléndez-Martínez A. Development and validation of a rapid resolution liquid chromatography method for the screening of dietary plant isoprenoids: Carotenoids, tocopherols and chlorophylls. J. Chromatogr. A. 2014;1370:162–170. doi: 10.1016/j.chroma.2014.10.044. [DOI] [PubMed] [Google Scholar]
  • 31.Jara-Palacios M.J., Hernanz D., González-Manzano S., Santos-Buelga C., Escudero-Gilete M.L., Heredia F.J. Detailed phenolic composition of white grape by-products by RRLC/MS and measurement of the antioxidant activity. Talanta. 2014;125:51–57. doi: 10.1016/j.talanta.2014.02.065. [DOI] [PubMed] [Google Scholar]
  • 32.Coyago-Cruz E., Corell M., Meléndez-Martínez A. In: Estudio Sobre el Contenido en Carotenoides y Compuestos Fenólicos de Tomates y Flores en el Contexto de la Alimentación Funcional. Rojo P., editor. Universida. Punto Rojo Libros, S.L.; Sevilla, Spain: 2017. [Google Scholar]
  • 33.The-Plant-List A Working List of All Plant Species. 2017. [(accessed on 12 December 2017)]. Available online: http://www.theplantlist.org/
  • 34.Zhu C., Bai C., Sanahuja G., Yuan D., Farré G., Naqvi S., Shi L., Capell T., Christou P. The regulation of carotenoid pigmentation in flowers. Arch. Biochem. Biophys. 2010;504:132–141. doi: 10.1016/j.abb.2010.07.028. [DOI] [PubMed] [Google Scholar]
  • 35.Pan Q., Dai Y., Nuringtyas R., Mustafa R. Investigation of the chemomarkers correlated with flower colour in different organs of Catharanthus roseus using NMR-based metabolomics. Phytochem. Anal. 2014;25:66–74. doi: 10.1002/pca.2464. [DOI] [PubMed] [Google Scholar]
  • 36.Dias M., Borge G., Kljak K., Mandić A., Mapelli-Brahm P., Olmedilla-Alonso B., Pintea A., Ravasco F., Saponjac V., Sereikaité J., et al. European database of carotenoid levels in foods. Factors affecting carotenoid content. Foods. 2021;912:1–31. doi: 10.3390/foods10050912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Poiroux-Gonord F., Bidel L.P.R., Fanciullino A.L., Gautier H., Lauri-Lopez F., Urban L. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J. Agric. Food Chem. 2010;58:12065–12082. doi: 10.1021/jf1037745. [DOI] [PubMed] [Google Scholar]
  • 38.Coyago-Cruz E., Corell M., Moriana A., Hernanz D., Benítez-González A., Stinco C., Meléndez-Martínez A. Antioxidants (carotenoids and phenolics) profile of cherry tomatoes as influenced by deficit irrigation, ripening and cluster. Food Chem. 2018;240:870–884. doi: 10.1016/j.foodchem.2017.08.028. [DOI] [PubMed] [Google Scholar]
  • 39.National-Academies-Press . Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academies Press; Washington, DC, USA: 2001. [PubMed] [Google Scholar]
  • 40.Latham M. Vitaminas. FAO; Rome, Italy: 2002. [Google Scholar]
  • 41.Naczk M., Shahidi F. Extraction and analysis of phenolics in food. J. Chromatogr. A. 2004;1054:95–111. doi: 10.1016/S0021-9673(04)01409-8. [DOI] [PubMed] [Google Scholar]
  • 42.Li A.N., Li S., Li H.B., Xu D.P., Xu X.R., Chen F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods. 2014;6:319–330. doi: 10.1016/j.jff.2013.10.022. [DOI] [Google Scholar]
  • 43.Xu D.P., Li Y., Meng X., Zhou T., Zhou Y., Zheng J., Zhang J.J., Li H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017;18:96. doi: 10.3390/ijms18010096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Eser F., Yaglioglu A.S., Dolarslan M., Aktas E., Onal A. Dyeing, fastness, and cytotoxic properties, and phenolic constituents of Anthemis tinctoria var. tinctoria (Asteraceae) J. Text. Inst. 2016;5000 doi: 10.1080/00405000.2016.1257348. [DOI] [Google Scholar]
  • 45.Uddin R., Saha M.R., Subhan N., Hossain H., Jahan I.A., Akter R. HPLC-Analysis of polyphenolic compounds in Gardenia jasminoides and determination of antioxidant activity by using free radical scavenging assays. Adv. Pharm. Bull. 2014;4:273–281. doi: 10.5681/apb.2014.040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Chen F., Yao Q., Tian J. Review of ecological restoration technology. Eng. Rev. 2016;36:115–121. [Google Scholar]
  • 47.Singh M., Kumar V., Singh I., Gauttam V., Nath A. Anti-inflammatory activity of aqueous extract of Mirabilis jalapa Linn. leaves. Pharmacogn. Res. 2011;2:364. doi: 10.4103/0974-8490.75456. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

The datasets generated for this study are available on request to the corresponding author.


Articles from Foods are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES