Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2021 Nov 22:2021.11.19.469335. [Version 1] doi: 10.1101/2021.11.19.469335

Acute SARS-CoV-2 infection in pregnancy is associated with placental ACE-2 shedding

Elizabeth S Taglauer, Elisha M Wachman, Lillian Juttukonda, Timothy Klouda, Jiwon Kim, Qiong Wang, Asuka Ishiyama, David J Hackam, Ke Yuan, Hongpeng Jia
PMCID: PMC8629190  PMID: 34845447

Abstract

Human placental tissues have variable rates of SARS-CoV-2 invasion resulting in consistently low rates of fetal transmission suggesting a unique physiologic blockade against SARS-CoV-2. Angiotensin-converting enzyme (ACE)-2, the main receptor for SARS-CoV-2, is expressed as cell surface and soluble forms regulated by a metalloprotease cleavage enzyme, ADAM17. ACE-2 is expressed in the human placenta, but the regulation of placental ACE-2 expression in relation to timing of maternal SARS-CoV-2 infection in pregnancy is not well understood. In this study, we evaluated ACE-2 expression, ADAM17 activity and serum ACE-2 abundance in a cohort of matched villous placental and maternal serum samples from Control pregnancies (SARS-CoV-2 negative, n=8) and pregnancies affected by symptomatic maternal SARS-CoV-2 infections in the 2 nd trimester (“2 nd Tri COVID”, n=8) and 3rd trimester (“3 rd Tri COVID”, n=8). In 3 rd Tri COVID as compared to control and 2 nd Tri-COVID villous placental tissues ACE-2 mRNA expression was remarkably elevated, however, ACE-2 protein expression was significantly decreased with a parallel increase in ADAM17 activity. Soluble ACE-2 was also significantly increased in the maternal serum from 3 rd Tri COVID infections as compared to control and 2 nd Tri-COVID pregnancies. These data suggest that in acute maternal SARS-CoV-2 infections, decreased placental ACE-2 protein may be the result of ACE-2 shedding. Overall, this work highlights the importance of ACE-2 for ongoing studies on SARS-CoV-2 responses at the maternal-fetal interface.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES