Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2021 Nov 24:2021.11.22.469576. [Version 1] doi: 10.1101/2021.11.22.469576

A modified porous silicon microparticle promotes mucosal delivery of SARS-CoV-2 antigen and induction of potent and durable systemic and mucosal T helper 1 skewed protective immunity

Awadalkareem Adam, Qing Shi, Binbin Wang, Jing Zou, Junhua Mai, Samantha R Osman, Wenzhe Wu, Xuping Xie, Patricia V Aguilar, Xiaoyong Bao, Pei-Yong Shi, Haifa Shen, Tian Wang
PMCID: PMC8629199  PMID: 34845456

Abstract

Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM)-adjuvanted SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable SARS-CoV-2-specific systemic humoral and type 1 helper T (Th) cell-mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant infection. mPSM facilitated the uptake of SARS-CoV-2 RBD antigens by nasal and airway epithelial cells. Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited potent systemic and lung resident memory T and B cells and SARS-CoV-2 specific IgA responses, and markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant infection. Our results suggest that mPSM can serve as potent adjuvant for SARS-CoV-2 subunit vaccine which is effective for systemic and mucosal vaccination.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES