Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Nov 2;77(Pt 12):1219–1223. doi: 10.1107/S2056989021011300

Salts of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium and iodide anions with different cation:iodine stoichiometric ratios

Vitalii V Rudiuk a,b, Anna M Shaposhnyk c, Vyacheslav M Baumer c, Igor A Levandovskiy b, Svitlana V Shishkina c,d,*
PMCID: PMC8647746  PMID: 34925885

The ability of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium to form iodide salts with cation:iodine ratio different from equimolar was studied and a Hirshfeld surface analysis was performed to investigate the inter­molecular inter­actions.

Keywords: 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium, mol­ecular structure, crystal structure, Hirshfeld analysis

Abstract

The two iodide salts, 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide–iodine (2/1), C14H15N2O+·I·0.5I2, I, and 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium triiodide, C14H15N2O+·I3 , II, with different cation:iodine atoms ratios were studied. Salt I contains one cation, one iodide anion and half of the neutral I2 mol­ecule in the asymmetric unit (cation:iodine atoms ratio is 1:2). Salt II contains two cations, one triiodide anion (I 3 ) and two half triiodide anions (cation:iodine atoms ratio is 1:3). The NH group forms N—H⋯I hydrogen bonds with the I anion in the crystal of I or N—H⋯O hydrogen bonds in II where only triiodide anions are present.

Chemical context

4-[(Benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide, chemical formula C14H15N2O+·I, is used as a multimodal anti­viral drug (te Velthuis et al., 2020; Boltz et al., 2018; Buhtiarova et al., 2003; Frolov et al., 2004). Its mol­ecular and crystal structure have been studied in detail by diffraction and spectroscopic methods (Drebushchak et al., 2017). The formation of different polymorphic modifications of an API is of great importance for the pharmaceutical industry (Bernstein, 2002; Brittain, 2009; Hilfiker, 2006). Unfortunately, all attempts to find polymorphic modifications of 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide resulting from varying the solvents and crystallization conditions have failed. Only one crystal form with the P212121 ortho­rhom­bic space group has been determined by single-crystal X-ray diffraction (Drebushchak et al., 2017). graphic file with name e-77-01219-scheme1.jpg

In a continuation of this work, we attempted to obtain a new polymorphic form of this compound using not only different solvents (ethanol, methanol, 2-propanol, etc.), but also non-standard methods of activating the crystallization process. To do this, experiments on recrystallization from water under an ultrasonic field effect were carried out. It should be noted that under normal conditions, 4-[(benzyl­amino) carbon­yl]-1-methyl­pyridinium iodide does not dissolve in water. As result, we did not obtain any new polymorphic modifications of this salt, but two compounds with cation–iodine ratios different from the equimolar [1:2 (salt I) and 1:3 (salt II)] were obtained.

Structural commentary

The crystal structures of the salts under study consist of the same 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium cation (C14H15N2O+) and different anions. There is one cation, one iodide anion and half of the neutral I2 mol­ecule in the asymmetric unit of compound I (Fig. 1, left). The neutral I2 mol­ecule is located in a special position in relation to the symmetry centre coinciding with the midpoint of the I—I bond. Thus, the cation:iodine atoms ratio is 1:2 in compound I. The asymmetric unit of compound II contains two cations (A and B), one triiodide anion (I 3 ) and two halves of triiodide anions located on special positions in relation to the symmetry centre (Fig. 1, right). The cation:iodine atoms ration is 1:3 in compound II.

Figure 1.

Figure 1

Mol­ecular structures of I (on the left) and II (on the right), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

The positive charge of the cation is localized at the quaternized nitro­gen atom of the pyridine ring. This results in the N1—C6 and N1—C2 bond elongation (Table 1). The carbamide group is non-coplanar to the plane of the aromatic ring (as evidenced by the N2—C7—C4—C3 torsion angles; Table 1) as a result of steric repulsion between them [with short H2⋯H3 and H2⋯C3 contacts (as compared to the van der Waals radii sums; Zefirov, 1997) of 2.34 and 2.87 Å, respectively]. The cations in the two compounds under study differ in the conformation of the benzyl substituent. The phenyl fragment of the benzyl substituent is located in a −sc position relatively to the C7—N2 bond in I or in a +sc position in mol­ecule A and an ap position in mol­ecule B of II (cf the C7—N2—C8—C9 torsion angles in Table 1). The aromatic ring is turned relative to the carbamide fragment (see the N2—C8—C9—C10 torsion angles).

Table 1. Selected geometrical parameters (Å, °) for the cations in salts I and II .

Parameter I II A II B
N1—C2 1.338 (10) 1.327 (19) 1.32 (2)
N1—C6 1.324 (11) 1.35 (2) 1.313 (18)
N2—C7—C4—C3 18.1 (13) −16 (2) 18 (2)
C7—N2—C8—C9 −75.0 (11) −81 (2) 178.3 (14)
N2—C8—C9—C10 −77.6 (11) −61.6 (18) −53 (2)
H2⋯H3 2.09 2.14 2.11
C3⋯H2 2.55 2.61 2.57

Supra­molecular features

The main difference in the crystal structures of the studied salts is the participation of the carbamide group in inter­molecular inter­actions. In the structure of I, the carbamide group participates in the N—H⋯I′ hydrogen bond between the cation and the anion, while the carbonyl oxygen atom acts as an acceptor in the very weak C5—H⋯O1′ inter­molecular inter­action (Fig. 2, left; Table 2). In the structure of II, the carbamide group participates in the N—H⋯O′ hydrogen bonds between the cations (Fig. 2, right; Table 3). As a result, chains in the [100] crystallographic direction are formed. The triiodide anions occupy voids between neighbouring chains in the crystal. In addition, a set of weak C—H⋯I and C—H⋯π hydrogen bonds are found in both structures (Tables 2 and 3).

Figure 2.

Figure 2

Hydrogen bond formation in structure I (on the left) and II (on the right).

Table 2. Hydrogen-bond geometry (Å, °) for I .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯I2 0.86 2.84 3.632 (7) 154
C2—H2A⋯I2i 0.93 3.18 4.053 (9) 158
C1—H1B⋯I2i 0.96 3.11 3.992 (9) 153
C1—H1C⋯I2ii 0.96 2.96 3.908 (9) 171
C1—H1A⋯I1iii 0.96 3.00 3.824 (10) 145
C5—H5⋯O1iv 0.93 2.59 3.328 (11) 136
C8—H8B⋯C11v 0.97 2.80 3.590 (15) 140
C8—H8B⋯C10v 0.97 2.76 3.694 (14) 162

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}; (iii) x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}; (iv) -x, -y+1, -z+1; (v) -x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}.

Table 3. Hydrogen-bond geometry (Å, °) for II .

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯O1B 0.86 2.02 2.846 (14) 160
C3A—H3A⋯O1B 0.93 2.53 3.381 (18) 152
C2A—H2AA⋯I3 0.93 3.08 3.998 (17) 169
C1A—H1AC⋯C12A i 0.96 2.72 3.62 (2) 158
C1A—H1AA⋯I7i 0.96 3.09 3.966 (19) 153
N2B—H2B⋯O1A ii 0.86 2.13 2.986 (14) 176
C3B—H3B⋯O1A ii 0.93 2.21 3.060 (17) 151
C2B—H2BA⋯C12A iii 0.93 2.85 3.72 (2) 156
C1B—H1BB⋯I7iv 0.96 3.07 3.819 (18) 136
C6B—H6B⋯I4v 0.93 3.12 4.019 (17) 164

Symmetry codes: (i) x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+1; (v) -x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}.

In the structure of II, the A and B cations form stacking dimers as a result of the inter­action of the aromatic systems of the pyridine and benzene rings [the distance between the planes of aromatic cycles is 3.45 (1) Å, slippage 1.119 Å).

Hirshfeld surface analysis

Inter­molecular inter­actions can be analyzed using Hirshfeld surface analysis and 2D fingerprint plots (Turner et al., 2017). The Hirshfeld surfaces were calculated for the cations found in two structures under study using a standard high surface resolution, mapped over d norm (Fig. 3). The red spots, corresponding to contacts that are shorter than the van der Waals radii sum of the closest atoms, are observed at the hydrogen atom of the amino group. At the carbonyl group, red spots are found only in the cations of II. The two-dimensional fingerprint plots show that the hydrogen bonds in II are stronger (note the sharp spikes in Fig. 3).

Figure 3.

Figure 3

Hirshfeld surfaces mapped over d norm.(at the top) and two-dimensional fingerprint plots (at the bottom) of cation in structure I and II.

To compare inter­molecular inter­actions of different types in more qu­anti­tative way, their contributions to the total Hirshfeld surfaces were analysed (Fig. 4). The main contribution is provided by H⋯H short contacts (44.9% for I, 45% for cation A and 36.8% for cation B in II). The contribution of the I⋯H/H⋯I short contacts is also significant [17.3% in I, 21.7% (mol­ecule A) and 25.5% (mol­ecule B) in II], as is that of the C⋯H/H⋯C inter­actions [17.2% in I, 15.5% (mol­ecule A) and 10.7% (mol­ecule B) in II]. Surprisingly, the contributions of the O⋯H/H⋯O inter­actions are very similar in the two structures [9.7% in I, 9.5% (mol­ecule A) and 9.6% (mol­ecule B) in II] despite the stronger N—H⋯O hydrogen bonds in the structure of II.

Figure 4.

Figure 4

Relative contributions of the strongest inter­molecular inter­actions (in %) to the total Hirshfeld surface of cation in two iodide salts.

Database survey

A search of the Cambridge Structural Database (Version 5.42, update of November 2020; Groom et al., 2016) revealed the structure of the AmI salt with an equimolar cation:iodine atoms ratio (refcode BEBFIA; Drebushchak et al., 2017). A comparison of the cation conformations showed its flexibility resulting from rotation about the N—Csp 3 and Csp 3—Car bonds.

Synthesis and crystallization

Benzyl­amide isonicotinic acid (124 g, 0.585 mol) and 270 mL of 90% ethanol were loaded into a glass flask. The obtained solution was heated to a temperature of 313–314 K, and then methyl iodide (91g, 0.641 mol) was added dropwise. The reaction was stirred at a temperature of 313–314 K for 1 h, heated to boiling and boiled for 1 h. The reaction spontaneously cooled to a temperature of 313 K, then to a temperature of 283–288 K in a cooling water bath, and was stirred for 1.5 h at this temperature. The reaction mixture was filtered and the precipitate rinsed on the filter twice with 60 mL of cooled 96% ethanol. The product was dried at 313 K for 12 h. Yield: 145.5 g of crude 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide (88%); yellow crystals.

145.5 g of crude 4-[(benzyl­amino)­carbon­yl]-1-methyl­pyridinium iodide were dissolved in 450 mL of water under ultrasonic activation. The reaction was heated to boiling temperature, stirred at boiling for 30 min and filtered. The obtained solution was cooled slowly and evaporated for three weeks. The rod-shaped crystals of I and block-shaped crystals of II crystallized almost simultaneously.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. Despite the presence of iodine atoms, crystals of salt II diffracted poorly due to their small size. All of the hydrogen atoms were located in difference-Fourier maps. Then, hydrogen atoms were refined as riding (AFIX 33 and 137 commands) with C—H = 0.96 Å, U iso(H) = 1.5U eq(C) for methyl groups (AFIX 43) and Car—H = 0.93 Å, U iso(H) = 1.2U eq(C) for aromatic rings (AFIX 23) and Csp 2—H = 0.97 Å, U iso(H) = 1.2U eq(C) for the methyl­ene fragment.

Table 4. Experimental details.

  I II
Crystal data
Chemical formula C14H15N2O+·I·0.5I2 C14H15N2O+·I3
M r 481.08 608.61
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 14.407 (3), 8.8491 (10), 14.555 (4) 9.914 (2), 27.805 (4), 14.113 (3)
β (°) 119.63 (3) 107.83 (2)
V3) 1613.0 (7) 3703.4 (12)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.89 5.07
Crystal size (mm) 0.60 × 0.10 × 0.05 0.03 × 0.03 × 0.02
 
Data collection
Diffractometer Xcalibur, Sapphire3 Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018) Multi-scan (CrysAlis PRO; Rigaku OD, 2018)
T min, T max 0.159, 1.000 0.347, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11491, 3698, 1941 21040, 6496, 2548
R int 0.083 0.124
(sin θ/λ)max−1) 0.650 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.157, 1.03 0.065, 0.187, 0.97
No. of reflections 3698 6496
No. of parameters 173 371
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.90, −0.90 0.70, −0.77

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT2014/5 (Sheldrick, 2015a ), SHELXL2016/6 (Sheldrick, 2015b ), Mercury (Macrae et al., 2020) and OLEX2 (Dolomanov et al., 2009).

Powder diffraction characterization

A powder diffraction pattern of salt II was registered using a Siemens D500 powder diffractometer (Cu Kα radiation, Bragg–Brentano geometry, curved graphite monochromator on the counter arm, 4 < 2θ < 60°, D2θ = 0.02°, time per step of 2 s). The Rietveld refinement of the obtained pattern (Fig. 5, left) was carried out with FULLPROF (Rodriguez-Carvajal, 2001) and WINPLOTR (Roisnel & Rodriguez-Carvajal, 2000) using an external standard (NIST SRM1976) for the calculation of the instrumental profile function and the single-crystal results as the structure model for the refinement. A powder pattern for salt I was not obtained because of the small amount of the crystal sample. For comparison, Fig. 5 (right) shows the pattern calculated for salt I.

Figure 5.

Figure 5

Final Rietveld plots for II (on the left). Observed data points are indicated by red circles, the best-fit profile (black upper trace) and the difference pattern (blue lower trace) are shown as solid lines. The vertical green bars correspond to the Bragg positions of peaks. The calculated powder pattern for I is shown on the right.

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989021011300/ex2050sup1.cif

e-77-01219-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021011300/ex2050Isup2.hkl

e-77-01219-Isup2.hkl (295.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021011300/ex2050IIsup3.hkl

e-77-01219-IIsup3.hkl (516.4KB, hkl)

CCDC references: 2118096, 2118095

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Farmak JSC for support.

supplementary crystallographic information

4-[(Benzylamino)carbonyl]-1-methylpyridinium iodide–iodine (2/1) (I). Crystal data

C14H15N2O+·I·0.5I2 F(000) = 908
Mr = 481.08 Dx = 1.981 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 14.407 (3) Å Cell parameters from 928 reflections
b = 8.8491 (10) Å θ = 3.6–21.8°
c = 14.555 (4) Å µ = 3.89 mm1
β = 119.63 (3)° T = 293 K
V = 1613.0 (7) Å3 Stick, red
Z = 4 0.60 × 0.10 × 0.05 mm

4-[(Benzylamino)carbonyl]-1-methylpyridinium iodide–iodine (2/1) (I). Data collection

Xcalibur, Sapphire3 diffractometer 3698 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1941 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1 Rint = 0.083
ω scans θmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) h = −18→18
Tmin = 0.159, Tmax = 1.000 k = −11→11
11491 measured reflections l = −18→18

4-[(Benzylamino)carbonyl]-1-methylpyridinium iodide–iodine (2/1) (I). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0416P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3698 reflections Δρmax = 0.90 e Å3
173 parameters Δρmin = −0.89 e Å3

4-[(Benzylamino)carbonyl]-1-methylpyridinium iodide–iodine (2/1) (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-[(Benzylamino)carbonyl]-1-methylpyridinium iodide–iodine (2/1) (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.51630 (5) 0.11900 (6) 0.57075 (6) 0.0696 (2)
I2 0.55433 (5) 0.39112 (7) 0.74152 (6) 0.0738 (3)
O1 0.1044 (5) 0.3003 (8) 0.5772 (6) 0.090 (2)
N1 0.1782 (6) 0.6060 (7) 0.3371 (6) 0.0614 (18)
N2 0.2820 (6) 0.2698 (8) 0.6521 (6) 0.0652 (19)
H2 0.338519 0.295372 0.650010 0.078*
C1 0.1732 (8) 0.7074 (10) 0.2544 (8) 0.075 (3)
H1A 0.127757 0.663816 0.186085 0.113*
H1B 0.243679 0.720760 0.264125 0.113*
H1C 0.145051 0.803613 0.259012 0.113*
C2 0.2636 (7) 0.5182 (10) 0.3929 (8) 0.069 (3)
H2A 0.320082 0.521097 0.379074 0.083*
C3 0.2692 (7) 0.4235 (10) 0.4707 (8) 0.067 (2)
H3 0.327838 0.360259 0.506976 0.081*
C4 0.1885 (6) 0.4224 (9) 0.4944 (8) 0.062 (2)
C5 0.1012 (7) 0.5127 (12) 0.4336 (8) 0.078 (3)
H5 0.043510 0.511632 0.445534 0.093*
C6 0.0979 (7) 0.6028 (10) 0.3569 (8) 0.070 (3)
H6 0.038316 0.663303 0.317556 0.084*
C7 0.1885 (6) 0.3260 (10) 0.5791 (7) 0.057 (2)
C8 0.2932 (8) 0.1666 (10) 0.7357 (8) 0.073 (3)
H8A 0.362531 0.117925 0.766315 0.087*
H8B 0.239142 0.088488 0.704706 0.087*
C9 0.2828 (7) 0.2439 (8) 0.8213 (7) 0.057 (2)
C10 0.3668 (7) 0.3281 (10) 0.8984 (8) 0.068 (2)
H10 0.431231 0.333813 0.898376 0.082*
C11 0.3548 (9) 0.4014 (10) 0.9732 (9) 0.081 (3)
H11 0.410137 0.461576 1.022065 0.097*
C12 0.2622 (9) 0.3890 (10) 0.9788 (9) 0.078 (3)
H12 0.255082 0.439378 1.031040 0.094*
C13 0.1810 (9) 0.3010 (13) 0.9058 (9) 0.083 (3)
H13 0.118664 0.289920 0.909431 0.099*
C14 0.1904 (7) 0.2294 (10) 0.8280 (9) 0.071 (3)
H14 0.134482 0.170291 0.778882 0.085*

4-[(Benzylamino)carbonyl]-1-methylpyridinium iodide–iodine (2/1) (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0651 (4) 0.0655 (4) 0.0790 (5) 0.0033 (3) 0.0364 (4) −0.0008 (3)
I2 0.0669 (4) 0.0799 (4) 0.0809 (5) −0.0121 (3) 0.0413 (4) −0.0181 (3)
O1 0.050 (3) 0.118 (5) 0.100 (6) −0.008 (3) 0.036 (4) 0.012 (5)
N1 0.060 (4) 0.060 (4) 0.056 (5) 0.006 (3) 0.023 (4) −0.002 (3)
N2 0.058 (4) 0.068 (4) 0.074 (6) −0.007 (3) 0.036 (4) 0.003 (4)
C1 0.081 (6) 0.070 (6) 0.062 (7) 0.008 (5) 0.025 (5) 0.008 (5)
C2 0.066 (6) 0.070 (6) 0.080 (8) 0.013 (4) 0.042 (6) −0.002 (5)
C3 0.057 (5) 0.083 (6) 0.073 (7) 0.018 (4) 0.040 (5) 0.006 (5)
C4 0.051 (5) 0.066 (5) 0.060 (6) 0.003 (4) 0.021 (4) −0.019 (4)
C5 0.048 (5) 0.121 (8) 0.067 (7) 0.008 (5) 0.030 (5) 0.004 (6)
C6 0.059 (5) 0.075 (6) 0.073 (7) 0.017 (4) 0.031 (5) 0.005 (5)
C7 0.050 (4) 0.063 (5) 0.060 (6) −0.006 (4) 0.029 (4) −0.002 (4)
C8 0.075 (6) 0.066 (5) 0.077 (7) 0.001 (5) 0.037 (6) 0.013 (5)
C9 0.067 (5) 0.048 (4) 0.060 (6) 0.005 (4) 0.035 (5) 0.006 (4)
C10 0.059 (5) 0.072 (6) 0.072 (7) −0.004 (4) 0.033 (5) 0.010 (5)
C11 0.086 (7) 0.068 (6) 0.074 (8) −0.012 (5) 0.028 (6) −0.002 (5)
C12 0.092 (8) 0.072 (6) 0.073 (8) 0.027 (5) 0.043 (7) 0.017 (5)
C13 0.075 (6) 0.106 (8) 0.070 (7) 0.014 (6) 0.039 (6) 0.019 (6)
C14 0.053 (5) 0.075 (6) 0.083 (8) −0.003 (4) 0.032 (5) 0.016 (5)

4-[(Benzylamino)carbonyl]-1-methylpyridinium iodide–iodine (2/1) (I). Geometric parameters (Å, º)

I1—I1i 2.8182 (13) C5—C6 1.353 (13)
O1—C7 1.221 (9) C5—H5 0.9300
N1—C6 1.324 (11) C6—H6 0.9300
N1—C2 1.338 (10) C8—C9 1.494 (12)
N1—C1 1.475 (11) C8—H8A 0.9700
N2—C7 1.332 (11) C8—H8B 0.9700
N2—C8 1.465 (11) C9—C14 1.387 (11)
N2—H2 0.8600 C9—C10 1.391 (12)
C1—H1A 0.9600 C10—C11 1.350 (14)
C1—H1B 0.9600 C10—H10 0.9300
C1—H1C 0.9600 C11—C12 1.381 (14)
C2—C3 1.378 (12) C11—H11 0.9300
C2—H2A 0.9300 C12—C13 1.369 (15)
C3—C4 1.366 (11) C12—H12 0.9300
C3—H3 0.9300 C13—C14 1.362 (14)
C4—C5 1.380 (12) C13—H13 0.9300
C4—C7 1.499 (13) C14—H14 0.9300
C6—N1—C2 119.8 (8) O1—C7—N2 123.3 (8)
C6—N1—C1 119.7 (7) O1—C7—C4 119.4 (8)
C2—N1—C1 120.5 (8) N2—C7—C4 117.2 (7)
C7—N2—C8 123.3 (7) N2—C8—C9 113.1 (7)
C7—N2—H2 118.4 N2—C8—H8A 109.0
C8—N2—H2 118.4 C9—C8—H8A 109.0
N1—C1—H1A 109.5 N2—C8—H8B 109.0
N1—C1—H1B 109.5 C9—C8—H8B 109.0
H1A—C1—H1B 109.5 H8A—C8—H8B 107.8
N1—C1—H1C 109.5 C14—C9—C10 118.4 (9)
H1A—C1—H1C 109.5 C14—C9—C8 120.8 (9)
H1B—C1—H1C 109.5 C10—C9—C8 120.8 (8)
N1—C2—C3 120.9 (8) C11—C10—C9 120.0 (9)
N1—C2—H2A 119.5 C11—C10—H10 120.0
C3—C2—H2A 119.5 C9—C10—H10 120.0
C4—C3—C2 120.0 (8) C10—C11—C12 121.5 (10)
C4—C3—H3 120.0 C10—C11—H11 119.3
C2—C3—H3 120.0 C12—C11—H11 119.3
C3—C4—C5 116.9 (9) C13—C12—C11 118.7 (10)
C3—C4—C7 123.9 (8) C13—C12—H12 120.7
C5—C4—C7 119.1 (8) C11—C12—H12 120.7
C6—C5—C4 121.4 (8) C14—C13—C12 120.7 (10)
C6—C5—H5 119.3 C14—C13—H13 119.6
C4—C5—H5 119.3 C12—C13—H13 119.6
N1—C6—C5 120.9 (8) C13—C14—C9 120.6 (10)
N1—C6—H6 119.6 C13—C14—H14 119.7
C5—C6—H6 119.6 C9—C14—H14 119.7
C6—N1—C2—C3 0.4 (14) C3—C4—C7—N2 18.1 (13)
C1—N1—C2—C3 179.7 (9) C5—C4—C7—N2 −164.0 (9)
N1—C2—C3—C4 −2.5 (14) C7—N2—C8—C9 −75.0 (11)
C2—C3—C4—C5 3.5 (13) N2—C8—C9—C14 104.6 (9)
C2—C3—C4—C7 −178.6 (9) N2—C8—C9—C10 −77.6 (11)
C3—C4—C5—C6 −2.7 (14) C14—C9—C10—C11 −4.3 (13)
C7—C4—C5—C6 179.3 (9) C8—C9—C10—C11 177.8 (9)
C2—N1—C6—C5 0.5 (14) C9—C10—C11—C12 3.4 (15)
C1—N1—C6—C5 −178.9 (9) C10—C11—C12—C13 −0.5 (15)
C4—C5—C6—N1 0.7 (16) C11—C12—C13—C14 −1.3 (15)
C8—N2—C7—O1 2.3 (14) C12—C13—C14—C9 0.2 (15)
C8—N2—C7—C4 −176.2 (8) C10—C9—C14—C13 2.6 (13)
C3—C4—C7—O1 −160.5 (9) C8—C9—C14—C13 −179.5 (9)
C5—C4—C7—O1 17.4 (13)

Symmetry code: (i) −x+1, −y, −z+1.

4-[(Benzylamino)carbonyl]-1-methylpyridinium iodide–iodine (2/1) (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···I2 0.86 2.84 3.632 (7) 154
C2—H2A···I2ii 0.93 3.18 4.053 (9) 158
C1—H1B···I2ii 0.96 3.11 3.992 (9) 153
C1—H1C···I2iii 0.96 2.96 3.908 (9) 171
C1—H1A···I1iv 0.96 3.00 3.824 (10) 145
C5—H5···O1v 0.93 2.59 3.328 (11) 136
C8—H8B···C11vi 0.97 2.80 3.590 (15) 140
C8—H8B···C10vi 0.97 2.76 3.694 (14) 162

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x−1/2, −y+3/2, z−1/2; (iv) x−1/2, −y+1/2, z−1/2; (v) −x, −y+1, −z+1; (vi) −x+1/2, y−1/2, −z+3/2.

4-[(Benzylamino)carbonyl]-1-methylpyridinium triiodide (II). Crystal data

C14H15N2O+·I3 F(000) = 2242
Mr = 608.61 Dx = 2.183 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.914 (2) Å Cell parameters from 1078 reflections
b = 27.805 (4) Å θ = 3.1–18.1°
c = 14.113 (3) Å µ = 5.07 mm1
β = 107.83 (2)° T = 293 K
V = 3703.4 (12) Å3 Block, yellow
Z = 8 0.03 × 0.03 × 0.02 mm

4-[(Benzylamino)carbonyl]-1-methylpyridinium triiodide (II). Data collection

Xcalibur, Sapphire3 diffractometer 6496 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2548 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1 Rint = 0.124
ω scans θmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) h = −8→11
Tmin = 0.347, Tmax = 1.000 k = −33→33
21040 measured reflections l = −16→16

4-[(Benzylamino)carbonyl]-1-methylpyridinium triiodide (II). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065 H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0424P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max < 0.001
6496 reflections Δρmax = 0.70 e Å3
371 parameters Δρmin = −0.77 e Å3

4-[(Benzylamino)carbonyl]-1-methylpyridinium triiodide (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

4-[(Benzylamino)carbonyl]-1-methylpyridinium triiodide (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
I1 0.45921 (12) 0.79328 (4) 0.65364 (9) 0.0868 (4)
I2 0.46503 (14) 0.71598 (5) 0.78702 (11) 0.1072 (4)
I3 0.45434 (15) 0.87375 (4) 0.50883 (10) 0.1061 (5)
I4 0.000000 1.000000 0.500000 0.1048 (6)
I5 −0.09620 (18) 0.93095 (5) 0.62111 (13) 0.1313 (6)
I6 −0.4785 (8) 0.5112 (2) 0.5262 (5) 0.130 (2) 0.5
I7 −0.3252 (7) 0.5746 (2) 0.6849 (5) 0.1504 (17) 0.5
I7A −0.3531 (7) 0.5527 (2) 0.6302 (5) 0.1504 (17) 0.5
O1A −0.1281 (11) 0.6399 (4) 0.3910 (8) 0.092 (3)
N1A 0.0042 (18) 0.8083 (4) 0.3781 (10) 0.081 (4)
N2A 0.0997 (12) 0.6306 (4) 0.4111 (9) 0.078 (4)
H2A 0.175586 0.643198 0.404694 0.094*
C1A 0.004 (2) 0.8621 (5) 0.3785 (13) 0.110 (6)
H1AA −0.091508 0.873532 0.349446 0.165*
H1AB 0.039744 0.873527 0.445762 0.165*
H1AC 0.062284 0.873811 0.340557 0.165*
C2A 0.1245 (19) 0.7843 (6) 0.4148 (13) 0.096 (5)
H2AA 0.209343 0.801051 0.438759 0.115*
C3A 0.1251 (16) 0.7345 (6) 0.4178 (12) 0.088 (5)
H3A 0.210205 0.717786 0.440984 0.106*
C4A 0.0012 (16) 0.7105 (6) 0.3867 (12) 0.079 (4)
C5A −0.1202 (19) 0.7349 (6) 0.3482 (12) 0.089 (5)
H5A −0.205655 0.718459 0.324995 0.107*
C6A −0.1183 (19) 0.7837 (7) 0.3431 (13) 0.095 (5)
H6A −0.202505 0.800379 0.315060 0.114*
C7A −0.0134 (16) 0.6579 (6) 0.3940 (11) 0.079 (4)
C8A 0.1044 (17) 0.5796 (5) 0.4403 (13) 0.092 (5)
H8AA 0.181584 0.564057 0.423495 0.110*
H8AB 0.016959 0.564255 0.401688 0.110*
C9A 0.1238 (18) 0.5715 (5) 0.5504 (12) 0.074 (4)
C10A 0.252 (2) 0.5902 (6) 0.6130 (16) 0.097 (6)
H10A 0.316106 0.605499 0.587126 0.117*
C11A 0.279 (2) 0.5848 (6) 0.7157 (17) 0.106 (6)
H11A 0.360108 0.597669 0.760162 0.128*
C12A 0.184 (2) 0.5606 (7) 0.7493 (16) 0.106 (6)
H12A 0.203600 0.554933 0.817130 0.127*
C13A 0.060 (2) 0.5444 (6) 0.685 (2) 0.107 (7)
H13A −0.005324 0.529527 0.710907 0.128*
C14A 0.027 (2) 0.5491 (7) 0.5838 (17) 0.121 (7)
H14A −0.057924 0.537576 0.540700 0.145*
O1B 0.3841 (10) 0.6543 (4) 0.4242 (8) 0.086 (3)
N1B 0.4543 (16) 0.5322 (5) 0.1922 (12) 0.088 (4)
N2B 0.6125 (12) 0.6628 (4) 0.4475 (8) 0.076 (4)
H2B 0.684595 0.655003 0.429131 0.091*
C1B 0.4388 (19) 0.4928 (6) 0.1164 (14) 0.108 (6)
H1BA 0.530747 0.480708 0.119642 0.162*
H1BB 0.382401 0.467282 0.130134 0.162*
H1BC 0.393375 0.505462 0.051088 0.162*
C2B 0.581 (2) 0.5433 (6) 0.2527 (16) 0.102 (6)
H2BA 0.658994 0.525293 0.250589 0.123*
C3B 0.5997 (15) 0.5805 (5) 0.3180 (12) 0.074 (4)
H3B 0.690985 0.589253 0.355599 0.088*
C4B 0.4836 (14) 0.6059 (5) 0.3296 (11) 0.069 (4)
C5B 0.356 (2) 0.5904 (6) 0.2686 (12) 0.089 (5)
H5B 0.273994 0.605203 0.272963 0.107*
C6B 0.3436 (18) 0.5548 (6) 0.2030 (12) 0.090 (5)
H6B 0.253572 0.545749 0.163528 0.107*
C7B 0.4904 (17) 0.6428 (5) 0.4034 (11) 0.071 (4)
C8B 0.6312 (18) 0.6988 (5) 0.5285 (12) 0.085 (5)
H8BA 0.569928 0.726128 0.502782 0.102*
H8BB 0.601106 0.684595 0.581491 0.102*
C9B 0.7765 (16) 0.7161 (6) 0.5702 (11) 0.072 (4)
C10B 0.8890 (17) 0.6853 (6) 0.6049 (12) 0.084 (4)
H10B 0.872179 0.652312 0.601274 0.100*
C11B 1.024 (2) 0.7013 (7) 0.6443 (13) 0.097 (5)
H11B 1.097443 0.679375 0.668821 0.116*
C12B 1.0525 (19) 0.7495 (8) 0.6480 (11) 0.094 (5)
H12B 1.144660 0.760430 0.676679 0.112*
C13B 0.946 (2) 0.7812 (7) 0.6098 (13) 0.096 (5)
H13B 0.966127 0.813824 0.608168 0.115*
C14B 0.8040 (16) 0.7646 (6) 0.5720 (11) 0.081 (5)
H14B 0.730116 0.786363 0.548735 0.097*

4-[(Benzylamino)carbonyl]-1-methylpyridinium triiodide (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.0752 (7) 0.0882 (8) 0.0963 (8) −0.0041 (6) 0.0254 (6) −0.0169 (6)
I2 0.0868 (9) 0.0985 (9) 0.1316 (11) −0.0025 (7) 0.0264 (8) 0.0075 (8)
I3 0.1210 (11) 0.0961 (9) 0.0995 (9) −0.0168 (8) 0.0312 (8) −0.0034 (7)
I4 0.0852 (12) 0.0960 (13) 0.1177 (14) 0.0118 (10) 0.0082 (10) −0.0004 (10)
I5 0.1384 (14) 0.1108 (11) 0.1504 (14) 0.0019 (10) 0.0526 (12) 0.0023 (9)
I6 0.099 (4) 0.131 (5) 0.180 (7) 0.027 (3) 0.072 (5) 0.077 (4)
I7 0.117 (3) 0.148 (4) 0.200 (6) −0.001 (3) 0.069 (4) 0.048 (3)
I7A 0.117 (3) 0.148 (4) 0.200 (6) −0.001 (3) 0.069 (4) 0.048 (3)
O1A 0.068 (7) 0.091 (8) 0.123 (10) −0.009 (6) 0.039 (7) −0.023 (6)
N1A 0.106 (11) 0.062 (8) 0.085 (9) 0.004 (8) 0.043 (9) 0.012 (7)
N2A 0.048 (7) 0.080 (9) 0.105 (10) −0.015 (7) 0.022 (7) −0.018 (7)
C1A 0.137 (18) 0.073 (11) 0.116 (15) −0.004 (11) 0.031 (13) 0.013 (10)
C2A 0.071 (12) 0.091 (13) 0.124 (15) −0.013 (10) 0.029 (11) 0.002 (11)
C3A 0.058 (10) 0.079 (11) 0.115 (14) −0.002 (9) 0.008 (9) 0.013 (9)
C4A 0.048 (9) 0.093 (12) 0.086 (11) −0.011 (9) 0.005 (8) −0.001 (9)
C5A 0.085 (13) 0.089 (13) 0.087 (12) −0.024 (11) 0.018 (10) −0.002 (9)
C6A 0.069 (11) 0.121 (16) 0.098 (13) 0.017 (12) 0.031 (10) 0.017 (11)
C7A 0.050 (9) 0.110 (14) 0.076 (11) −0.004 (10) 0.021 (8) −0.010 (9)
C8A 0.078 (12) 0.075 (11) 0.125 (16) −0.011 (9) 0.035 (11) −0.017 (10)
C9A 0.080 (11) 0.064 (10) 0.067 (11) −0.006 (8) 0.009 (9) −0.018 (8)
C10A 0.108 (15) 0.081 (12) 0.122 (16) −0.001 (11) 0.063 (14) −0.017 (11)
C11A 0.087 (14) 0.105 (15) 0.125 (18) −0.001 (11) 0.029 (13) −0.021 (12)
C12A 0.094 (15) 0.113 (16) 0.112 (16) 0.024 (13) 0.034 (14) 0.002 (12)
C13A 0.114 (17) 0.074 (12) 0.16 (2) 0.003 (12) 0.084 (17) 0.024 (13)
C14A 0.125 (18) 0.140 (18) 0.120 (19) −0.011 (15) 0.072 (16) −0.011 (14)
O1B 0.058 (7) 0.107 (8) 0.098 (8) −0.007 (6) 0.029 (6) −0.016 (6)
N1B 0.087 (10) 0.073 (9) 0.120 (12) 0.009 (8) 0.058 (10) −0.002 (8)
N2B 0.042 (7) 0.105 (10) 0.078 (9) −0.011 (7) 0.014 (6) −0.018 (7)
C1B 0.105 (15) 0.101 (13) 0.120 (15) −0.017 (11) 0.036 (13) −0.017 (12)
C2B 0.075 (13) 0.060 (11) 0.18 (2) −0.006 (10) 0.048 (14) 0.007 (12)
C3B 0.056 (9) 0.054 (9) 0.109 (13) −0.012 (7) 0.021 (9) −0.012 (8)
C4B 0.043 (8) 0.073 (10) 0.086 (11) −0.010 (7) 0.011 (7) −0.005 (8)
C5B 0.113 (15) 0.084 (12) 0.085 (12) 0.011 (11) 0.054 (12) −0.009 (9)
C6B 0.072 (11) 0.116 (15) 0.081 (12) −0.019 (11) 0.023 (10) −0.007 (10)
C7B 0.073 (10) 0.075 (10) 0.077 (11) 0.015 (9) 0.038 (9) 0.005 (8)
C8B 0.094 (13) 0.075 (10) 0.086 (11) −0.011 (9) 0.028 (10) −0.014 (9)
C9B 0.068 (10) 0.077 (11) 0.075 (10) −0.012 (9) 0.030 (8) −0.018 (8)
C10B 0.066 (11) 0.089 (12) 0.089 (12) 0.011 (10) 0.014 (9) 0.003 (9)
C11B 0.077 (13) 0.125 (16) 0.092 (13) 0.005 (12) 0.030 (11) 0.003 (11)
C12B 0.072 (12) 0.140 (17) 0.064 (11) −0.021 (13) 0.014 (9) −0.016 (11)
C13B 0.090 (13) 0.104 (13) 0.097 (13) −0.006 (12) 0.034 (11) 0.002 (11)
C14B 0.052 (9) 0.112 (14) 0.069 (10) 0.014 (9) 0.005 (8) −0.014 (9)

4-[(Benzylamino)carbonyl]-1-methylpyridinium triiodide (II). Geometric parameters (Å, º)

I1—I2 2.8459 (18) C12A—H12A 0.9300
I1—I3 3.0206 (17) C13A—C14A 1.37 (3)
I4—I5 2.9181 (15) C13A—H13A 0.9300
I4—I5i 2.9181 (15) C14A—H14A 0.9300
I6—I6ii 0.962 (9) O1B—C7B 1.220 (15)
I6—I7A 1.977 (7) N1B—C6B 1.313 (18)
I6—I7 2.890 (7) N1B—C2B 1.32 (2)
I6—I7Aii 2.925 (7) N1B—C1B 1.504 (19)
I7—I7A 0.957 (7) N2B—C7B 1.305 (17)
O1A—C7A 1.231 (16) N2B—C8B 1.488 (17)
N1A—C2A 1.327 (19) N2B—H2B 0.8600
N1A—C6A 1.35 (2) C1B—H1BA 0.9600
N1A—C1A 1.495 (17) C1B—H1BB 0.9600
N2A—C7A 1.315 (17) C1B—H1BC 0.9600
N2A—C8A 1.472 (17) C2B—C3B 1.36 (2)
N2A—H2A 0.8600 C2B—H2BA 0.9300
C1A—H1AA 0.9600 C3B—C4B 1.403 (18)
C1A—H1AB 0.9600 C3B—H3B 0.9300
C1A—H1AC 0.9600 C4B—C5B 1.36 (2)
C2A—C3A 1.39 (2) C4B—C7B 1.447 (19)
C2A—H2AA 0.9300 C5B—C6B 1.335 (19)
C3A—C4A 1.348 (19) C5B—H5B 0.9300
C3A—H3A 0.9300 C6B—H6B 0.9300
C4A—C5A 1.34 (2) C8B—C9B 1.46 (2)
C4A—C7A 1.48 (2) C8B—H8BA 0.9700
C5A—C6A 1.36 (2) C8B—H8BB 0.9700
C5A—H5A 0.9300 C9B—C10B 1.372 (19)
C6A—H6A 0.9300 C9B—C14B 1.374 (19)
C8A—C9A 1.52 (2) C10B—C11B 1.36 (2)
C8A—H8AA 0.9700 C10B—H10B 0.9300
C8A—H8AB 0.9700 C11B—C12B 1.37 (2)
C9A—C14A 1.35 (2) C11B—H11B 0.9300
C9A—C10A 1.40 (2) C12B—C13B 1.35 (2)
C10A—C11A 1.40 (2) C12B—H12B 0.9300
C10A—H10A 0.9300 C13B—C14B 1.42 (2)
C11A—C12A 1.35 (2) C13B—H13B 0.9300
C11A—H11A 0.9300 C14B—H14B 0.9300
C12A—C13A 1.36 (3)
I2—I1—I3 178.72 (5) C12A—C13A—C14A 122.8 (18)
I5—I4—I5i 180.0 C12A—C13A—H13A 118.6
I6ii—I6—I7A 168.1 (11) C14A—C13A—H13A 118.6
I6ii—I6—I7 174.9 (11) C9A—C14A—C13A 116 (2)
I7A—I6—I7 6.9 (3) C9A—C14A—H14A 121.9
I6ii—I6—I7Aii 8.0 (8) C13A—C14A—H14A 121.9
I7A—I6—I7Aii 176.1 (4) C6B—N1B—C2B 118.4 (15)
I7—I6—I7Aii 176.9 (4) C6B—N1B—C1B 121.6 (16)
I7A—I7—I6 14.4 (7) C2B—N1B—C1B 120.0 (15)
I7—I7A—I6 158.7 (10) C7B—N2B—C8B 122.2 (12)
I7—I7A—I6ii 162.5 (9) C7B—N2B—H2B 118.9
I6—I7A—I6ii 3.9 (4) C8B—N2B—H2B 118.9
C2A—N1A—C6A 119.2 (14) N1B—C1B—H1BA 109.5
C2A—N1A—C1A 120.4 (16) N1B—C1B—H1BB 109.5
C6A—N1A—C1A 120.3 (16) H1BA—C1B—H1BB 109.5
C7A—N2A—C8A 124.0 (13) N1B—C1B—H1BC 109.5
C7A—N2A—H2A 118.0 H1BA—C1B—H1BC 109.5
C8A—N2A—H2A 118.0 H1BB—C1B—H1BC 109.5
N1A—C1A—H1AA 109.5 N1B—C2B—C3B 121.5 (16)
N1A—C1A—H1AB 109.5 N1B—C2B—H2BA 119.3
H1AA—C1A—H1AB 109.5 C3B—C2B—H2BA 119.3
N1A—C1A—H1AC 109.5 C2B—C3B—C4B 121.0 (15)
H1AA—C1A—H1AC 109.5 C2B—C3B—H3B 119.5
H1AB—C1A—H1AC 109.5 C4B—C3B—H3B 119.5
N1A—C2A—C3A 120.7 (16) C5B—C4B—C3B 113.7 (14)
N1A—C2A—H2AA 119.6 C5B—C4B—C7B 120.6 (14)
C3A—C2A—H2AA 119.6 C3B—C4B—C7B 125.5 (14)
C4A—C3A—C2A 119.3 (16) C6B—C5B—C4B 122.9 (16)
C4A—C3A—H3A 120.3 C6B—C5B—H5B 118.5
C2A—C3A—H3A 120.3 C4B—C5B—H5B 118.5
C5A—C4A—C3A 119.7 (16) N1B—C6B—C5B 122.2 (17)
C5A—C4A—C7A 115.8 (14) N1B—C6B—H6B 118.9
C3A—C4A—C7A 124.5 (15) C5B—C6B—H6B 118.9
C4A—C5A—C6A 120.1 (17) O1B—C7B—N2B 121.1 (14)
C4A—C5A—H5A 120.0 O1B—C7B—C4B 120.4 (15)
C6A—C5A—H5A 120.0 N2B—C7B—C4B 118.6 (13)
N1A—C6A—C5A 120.8 (17) C9B—C8B—N2B 113.9 (13)
N1A—C6A—H6A 119.6 C9B—C8B—H8BA 108.8
C5A—C6A—H6A 119.6 N2B—C8B—H8BA 108.8
O1A—C7A—N2A 119.8 (16) C9B—C8B—H8BB 108.8
O1A—C7A—C4A 120.7 (14) N2B—C8B—H8BB 108.8
N2A—C7A—C4A 119.3 (14) H8BA—C8B—H8BB 107.7
N2A—C8A—C9A 114.4 (12) C10B—C9B—C14B 118.1 (15)
N2A—C8A—H8AA 108.7 C10B—C9B—C8B 122.2 (15)
C9A—C8A—H8AA 108.7 C14B—C9B—C8B 119.6 (15)
N2A—C8A—H8AB 108.7 C11B—C10B—C9B 122.2 (17)
C9A—C8A—H8AB 108.7 C11B—C10B—H10B 118.9
H8AA—C8A—H8AB 107.6 C9B—C10B—H10B 118.9
C14A—C9A—C10A 123.7 (18) C10B—C11B—C12B 120.2 (18)
C14A—C9A—C8A 123.0 (17) C10B—C11B—H11B 119.9
C10A—C9A—C8A 113.2 (16) C12B—C11B—H11B 119.9
C11A—C10A—C9A 117.4 (17) C13B—C12B—C11B 119.9 (18)
C11A—C10A—H10A 121.3 C13B—C12B—H12B 120.1
C9A—C10A—H10A 121.3 C11B—C12B—H12B 120.1
C12A—C11A—C10A 119 (2) C12B—C13B—C14B 119.9 (17)
C12A—C11A—H11A 120.5 C12B—C13B—H13B 120.1
C10A—C11A—H11A 120.5 C14B—C13B—H13B 120.1
C11A—C12A—C13A 121 (2) C9B—C14B—C13B 119.6 (16)
C11A—C12A—H12A 119.6 C9B—C14B—H14B 120.2
C13A—C12A—H12A 119.6 C13B—C14B—H14B 120.2
I6—I7—I7A—I6ii −2.0 (11) C6B—N1B—C2B—C3B −7 (3)
C6A—N1A—C2A—C3A 0 (2) C1B—N1B—C2B—C3B 176.0 (14)
C1A—N1A—C2A—C3A 177.8 (15) N1B—C2B—C3B—C4B 6 (3)
N1A—C2A—C3A—C4A −3 (3) C2B—C3B—C4B—C5B −2 (2)
C2A—C3A—C4A—C5A 4 (3) C2B—C3B—C4B—C7B 173.6 (15)
C2A—C3A—C4A—C7A −174.6 (15) C3B—C4B—C5B—C6B −1 (2)
C3A—C4A—C5A—C6A −2 (3) C7B—C4B—C5B—C6B −176.4 (14)
C7A—C4A—C5A—C6A 176.7 (14) C2B—N1B—C6B—C5B 4 (3)
C2A—N1A—C6A—C5A 2 (2) C1B—N1B—C6B—C5B −178.7 (15)
C1A—N1A—C6A—C5A −175.8 (14) C4B—C5B—C6B—N1B 0 (3)
C4A—C5A—C6A—N1A −1 (2) C8B—N2B—C7B—O1B 3 (2)
C8A—N2A—C7A—O1A −8 (2) C8B—N2B—C7B—C4B −176.2 (13)
C8A—N2A—C7A—C4A 166.8 (14) C5B—C4B—C7B—O1B 13 (2)
C5A—C4A—C7A—O1A −19 (2) C3B—C4B—C7B—O1B −161.8 (15)
C3A—C4A—C7A—O1A 159.5 (17) C5B—C4B—C7B—N2B −167.7 (14)
C5A—C4A—C7A—N2A 166.0 (15) C3B—C4B—C7B—N2B 18 (2)
C3A—C4A—C7A—N2A −16 (2) C7B—N2B—C8B—C9B 178.3 (14)
C7A—N2A—C8A—C9A −81 (2) N2B—C8B—C9B—C10B −53 (2)
N2A—C8A—C9A—C14A 117.5 (17) N2B—C8B—C9B—C14B 124.6 (15)
N2A—C8A—C9A—C10A −61.6 (18) C14B—C9B—C10B—C11B 3 (2)
C14A—C9A—C10A—C11A 0 (3) C8B—C9B—C10B—C11B −179.5 (15)
C8A—C9A—C10A—C11A 179.4 (14) C9B—C10B—C11B—C12B −2 (3)
C9A—C10A—C11A—C12A 2 (3) C10B—C11B—C12B—C13B −2 (3)
C10A—C11A—C12A—C13A −4 (3) C11B—C12B—C13B—C14B 4 (2)
C11A—C12A—C13A—C14A 4 (3) C10B—C9B—C14B—C13B 0 (2)
C10A—C9A—C14A—C13A −1 (3) C8B—C9B—C14B—C13B −178.0 (14)
C8A—C9A—C14A—C13A 179.8 (15) C12B—C13B—C14B—C9B −3 (2)
C12A—C13A—C14A—C9A −1 (3)

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x−1, −y+1, −z+1.

4-[(Benzylamino)carbonyl]-1-methylpyridinium triiodide (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2A—H2A···O1B 0.86 2.02 2.846 (14) 160
C3A—H3A···O1B 0.93 2.53 3.381 (18) 152
C2A—H2AA···I3 0.93 3.08 3.998 (17) 169
C1A—H1AC···C12Aiii 0.96 2.72 3.62 (2) 158
C1A—H1AA···I7iii 0.96 3.09 3.966 (19) 153
N2B—H2B···O1Aiv 0.86 2.13 2.986 (14) 176
C3B—H3B···O1Aiv 0.93 2.21 3.060 (17) 151
C2B—H2BA···C12Av 0.93 2.85 3.72 (2) 156
C1B—H1BB···I7vi 0.96 3.07 3.819 (18) 136
C6B—H6B···I4vii 0.93 3.12 4.019 (17) 164

Symmetry codes: (iii) x, −y+3/2, z−1/2; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1; (vi) −x, −y+1, −z+1; (vii) −x, y−1/2, −z+1/2.

Funding Statement

This work was funded by National Academy of Sciences of Ukraine grant 0120U102660.

References

  1. Bernstein, J. (2002). Polymorphism in Molecular Crystals. Oxford: Clarendon Press.
  2. Boltz, D., Peng, X., Muzzio, M., Dash, P., Thomas, P. G. & Margitich, V. (2018). Antivir. Chem. Chemother. 26 https://doi.org/10.1177/2040206618811416. [DOI] [PMC free article] [PubMed]
  3. Brittain, H. G. (2009). Polymorphism in pharmaceutical solids, 2nd ed. New York: Informa.
  4. Buhtiarova, T. A., Danilenko, V. P., Homenko, V. S., Shatyrkina, T. V. & Yadlovsky, O. E. (2003). Ukrainian Med. J. 33, 72–74.
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Drebushchak, T. N., Kryukov, Y. A., Rogova, A. I. & Boldyreva, E. V. (2017). Acta Cryst. E73, 967–970. [DOI] [PMC free article] [PubMed]
  7. Frolov, A. F., Frolov, V. M., Buhtiarova, T. A. & Danilenko, V. P. (2004). Ukrainian Med. J. 39, 69–74.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Hilfiker, R. (2006). Polymorphism in the Pharmaceutical Industry. Weinheim: John Wiley & Sons.
  10. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  11. Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  12. Rodríguez-Carvajal, J. (2001). Commission on Powder Diffraction (IUCr) Newsletter, 26, 12–19.
  13. Roisnel, T. & Rodríguez-Carvajal, J. (2000). WinPLOTR, a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. 7th Europ. Powder Diff. Conf. (EPDIC 7), edited by R. Delhez & E. J. Mittenmeijer, pp. 118–123.
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.
  16. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://Hirshfeldsurface.net
  17. Velthuis, A. J. W. te, Zubkova, T. G., Shaw, M., Mehle, A., Boltz, D., Gmeinwieser, N., Stammer, H., Milde, J., Müller, L. & Margitich, V. (2020). Antimicrobial Agents and Chemotherapy, 64, https://doi.org/10.1128/AAC.02605-20. [DOI] [PMC free article] [PubMed]
  18. Zefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989021011300/ex2050sup1.cif

e-77-01219-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021011300/ex2050Isup2.hkl

e-77-01219-Isup2.hkl (295.1KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021011300/ex2050IIsup3.hkl

e-77-01219-IIsup3.hkl (516.4KB, hkl)

CCDC references: 2118096, 2118095

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES