Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Nov 18;77(Pt 12):1311–1315. doi: 10.1107/S205698902100668X

Tautomerism troubles: proton transfer modifies the stereochemical assignments in diastereoisomeric structures of spiro­cyclic 5-methyl-2H-imidazol-4-amine dimers

Helen Blade a, Peter N Horton b, James A Morrison c, James B Orton b, Rachel A Sullivan c, Simon J Coles b,*
PMCID: PMC8647748  PMID: 34925905

Single-crystal structure analysis was required to correctly identify the mol­ecular structure and stereochemistry assignment of unexpected impurities in the preparation of a novel pharmaceutical spiro­cyclic imidazole-amine compound.

Keywords: chirality assignment, pharmaceutical, crystal structure

Abstract

During the racemization of a novel pharmaceutical spiro­cyclic imidazole–amine compound, namely, 6′-bromo-N-(6′-bromo-4-meth­oxy-4′′-methyl-3′H-di­spiro[cyclo­hexane-1,2′-indene-1′,2′′-imidazol]-5′′-yl)-4-meth­oxy-4′′-methyl-3′H-di­spiro­[cyclo­hexane-1,2′-indene-1′,2′′-imidazol]-5′′-imine, C36H41Br2N5O2, two impurities were isolated. These impurities were clearly dimers from mass spectroscopic analysis, however single-crystal diffraction characterization was required for the assignment of stereochemistry. The single-crystal diffraction results revealed subtly different structures to those proposed, due to an unexpected proton transfer. The dimers contain four stereocentres, but two of primary inter­est, and are centrosymmetric, so after careful structure refinement and close inspection it was possible to unambiguously assign the stereochemistry of both the homochiral [(S),(S)- and (R),(R)-] and the heterochiral [(S),(R)- and (R),(S)-] compounds.

Chemical context

During the racemization of an enanti­opure spiro­cyclic 5-methyl-2H-imidazol-4-amine, two impurities were observed by reverse phase-HPLC, which were subsequently rationalized as a combination of the homochiral compounds (S),(S)-(R),(R)-, and heterochiral compounds (S),(R)- and (R),(S)- (see Fig. 1 for the proposed 2D structures). Solution-state NMR and mass spectrometry analysis revealed that these impurities were dimers of the 5-methyl-2H-imidazol-4-amine compound e (see Fig. 2); no diagnostic signals were observed in the solution-state NMR and therefore single-crystal structure determination was required to allow assignment of the absolute configuration of the impurities observed.

Figure 1.

Figure 1

Proposed structures of the dimeric impurities, comprising the (R),(R)-, (S),(S)-, (R),(S)- and (S),(R)- compounds, respectively.

Figure 2.

Figure 2

5-methyl-2H-imidazol-4-amine, compound e.

The chemical shifts from the solution-state NMR are given in Section 6 below. As related enanti­omers are indistinguishable by solution-state NMR, single crystal X-ray diffraction analysis was sought to enable an unambiguous assignment, revealing structures 1 and 2. This analysis not only enabled the identification of the correct absolute structure, but also revealed that there was, in fact, a subtle variation to the proposed structures. Crystal structures were obtained for both the impurities observed, which revealed that the homochiral and heterochiral structures differed from those proposed (a, b, c and d) due to hydrogen migration from the bridging nitro­gen centre to the closest imidazole group. graphic file with name e-77-01311-scheme1.jpg

Structural commentary

Both structures solved and refined satisfactorily in the centrosymmetric space group P21/n. Therefore, both possible diastereoisomers, RR/SS (in structure 1) and RS/SR (in structure 2), are present in equal amounts in their respective crystal. The structures along with their atomic numbering schemes are illustrated in Fig. 3.

Figure 3.

Figure 3

The mol­ecular structures with atomic numbering schemes (non-carbon and hydrogen atoms only for clarity) for 1 and 2 respectively. The chiral centres are marked with an asterisk and for clarity only the enanti­omer solved in the asymmetric unit of each structure is shown.

Fig. 3 shows that in both cases an unexpected proton transfer from the bridging amine centre (N1 in both structures) to the spiro-imidazole nitro­gen (N2 in both structures) had occurred. Examination of residual electron density maps (see Refinement section and Fig. 6) of both structures, supported by inter­preting the bond lengths around these nitro­gen centres, confirmed the location of the hydrogen atom and therefore the fact that this migration has occurred. It was, however, necessary to restrain the N2—H2 bond in structure 1, otherwise it refined to a value slightly shorter than expected. This transfer results in a perturbation of the bonding pattern within the imidazole rings for both structures. The bond conjugation between these rings is extended via the bridging nitro­gen (N1), which makes the formal nature of the double and single bonds in these ring systems less clear, as depicted in Fig. 4 and Table 1.

Figure 6.

Figure 6

The 3D residual electron difference maps from the refinements of 1 and 2. The green wireframe is drawn at a threshold of >0.4 electrons /Å−3.

Figure 4.

Figure 4

Labelled bonds in the N-bridged bis-imidazole core, with associated bond lengths for 1 and 2 denoted in Table 1.

Table 1. Bond lengths (Å) in the N-bridged bis-imidazole core for structures 1 and 2, with bonds denoted as in Fig. 4 .

Bond Structure 1 Bond order Structure 2 Bond order
1 (N1⋯C1) 1.3327 (19) delocalized 1.3081 (18) delocalized
2 (N1⋯C19) 1.3616 (18) delocalized 1.3853 (18) delocalized
3 (C1⋯N2) 1.3250 (19) delocalized 1.3374 (18) delocalized
4 (C19⋯N4) 1.3115 (18) delocalized 1.2983 (18) delocalized
5 (C1—C2) 1.4940 (19) single 1.4959 (19) single
6 (C19—C20) 1.4925 (19) single 1.4940 (18) single
7 (N2—C4) 1.4471 (18) single 1.4509 (17) single
8 (N4—C22) 1.4513 (17) single 1.4791 (17) single
9 (C2—N3) 1.2818 (19) double 1.2800 (19) double
10 (N5—C20) 1.2809 (19) double 1.2837 (18) double
11 (N3—C4) 1.4770 (17) single 1.4759 (18) single
12 (N5—C22) 1.4816 (17) single 1.4635 (17) single

This perturbation of bonding means particularly close attention must be paid to the formal chirality assignment of the stereocentres C4 and C22 in both structures 1 and 2, as it is dependent on analysis of the surrounding imidazole bond lengths. The definitive Cahn–Ingold–Prelog assignment (Cahn et al., 1966) of these stereocentres required a manual approach as the algorithms in both PLATON (Spek, 2020) and Mercury (Macrae et al., 2020) software gave inaccurate results, due to the ambiguity of bond order altering the priority of the bonds connected to the stereocentres. In both structures, the distances between atoms C1 and N2 (1) and C19 and N4 (2) have more double-bond character than single. This results in a formal designation of RR (and SS) and RS (and SR) in the refined structures of 1 and 2, respectively.

The hydrogen-atom location also results in the formation of a strong intra­molecular hydrogen bond between both imidazole rings, mediated by a N2—H2⋯N4 inter­action in each structure (Tables 2 and 3).

Table 2. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N4 0.826 (19) 2.064 (18) 2.6456 (16) 127.2 (15)

Table 3. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N4 0.82 (1) 1.95 (2) 2.5549 (16) 129 (2)

Supra­molecular features

The packing arrangement for both structures 1 and 2 are shown in Fig. 5. In both compounds there are no hydrogen-bonding inter­actions present within the structure, other than that of the N2—H2⋯N4 intra­molecular hydrogen bond. This intra­molecular inter­action is an additional factor influencing the delocalization of bonding in these ring systems.

Figure 5.

Figure 5

The predominant packing motifs in the structures of 1 and 2.

The packing is likely to be dominated by dispersive inter­actions and the differences between the two motifs will be small. These mol­ecules have a ridge-tile shape and the structure of 1 involves insertion of a sidewall of one mol­ecule into the cleft of another; this motif contains some small voids with a volume of approximately 30 Å2 calculated using Mercury (Macrae et al., 2020). However, mol­ecules in the structure of 2 assemble in a side-by-side manner into a strand, which allows complementary head-to-tail stacking of strands and is more packing efficient (using the same settings in Mercury no voids are calculated).

Database survey

These mol­ecular structures are relatively unique in solid-state chemistry. A search of the CSD (CSD version 5.42, updates of Feb 2021; Groom et al., 2016) yielded no results for structures with a similarity to the overall mol­ecule or to the motif of the methyl-imidazole-amine bridged dimer. There were also no structures found for a spiro group with similar substituents.

2H-Imidazoles are well known in organic chemistry and a name search for these in the CSD revealed 677 structures. A combination of this search with that of the substructure of the imidazole core of this system, where the bonds are considered to be ‘double’ produces 50 hits, while there are no results if these bonds are defined as ‘delocalized’. Analysis of the hit lists does not reveal any structures similar to those reported herein and therefore does not provide any insight as to how the bonding should be assigned.

Synthesis and crystallization

Solid samples of 1 and 2 were isolated from a reaction to form a spiro­cyclic 5-methyl-2H-imidazol-4-amine, during which they were formed as an impurity product and were subsequently isolated. Single crystals of compounds 1 and 2 were grown by slow evaporation at room temperature from individual solutions of ethyl acetate (200 mL g−1). Each mixture was allowed to evaporate to dryness over the period of a week. Both compounds formed colourless block-shaped crystals.

Characterization by spectroscopic techniques

The following NMR and mass spectrometry data were collected.

Compound a, (R,R)/(S,S)-(1r,1′S,4S,E)-6′-bromo-N-[(1r,1′S,4S)-6′-bromo-4-meth­oxy-4′′-methyl-3′H-di­spiro­[cyclo­hexane-1,2′-indene-1′,2′′-imidazol-5′′-yl]-4-meth­oxy-4′′-methyl-3′H-di­spiro­[cyclo­hexane-1,2′-indene-1′,2′′-imidazol]-5′′-imine (and enanti­omer):

1H NMR (500 MHz, CDCl3) 1.06 (td, J = 13.7, 3.8 Hz, 1H), 1.22–1.47 (m, 3H), 1.65 (dd, J = 12.8, 2.9 Hz, 1H), 1.68–1.77 (m, 1H), 1.85–1.94 (m, 1H), 1.94–2.03 (m, 1H), 2.41 (s, 3H), 2.91–3.01 (m, 1H), 3.06–3.17 (m, 2H), 3.31 (s, 3H), 6.90 (d, J = 1.7 Hz, 1H), 7.19 (d, J = 8.0 Hz, 1H), 7.38 (dd, J = 8.0, 1.9 Hz, 1H). 13C NMR (126 MHz, CDCl3) 14.11, 28.26, 28.39, 28.98, 30.46, 39.23, 53.08, 53.14, 55.43, 79.02, 104.96, 120.06, 125.61, 127.16, 131.63, 141.17, 142.20, 165.37, 165.82. LC–MS (ESI, M + H+) 734.2, 736.1, 738.1

Compound c, (R,S)/(S,R)-(1r,1′S,4S,E)-6′-bromo-N-[(1r,1′S,4S)-6′-bromo-4-meth­oxy-4′′-methyl-3′H-di­spiro­[cyclo­hexane-1,2′-indene-1′,2′′-imidazol-5′′-yl]-4-meth­oxy-4′′-methyl-3′H-di­spiro­[cyclo­hexane-1,2′-indene-1′,2′′-imidazol]-5′′-imine (and enanti­omer):

1H NMR (500 MHz, CDCl3) 1.06 (td, J = 13.6, 3.7 Hz, 1H), 1.20 (td, J = 13.3, 3.5 Hz, 1H), 1.31 (dqt, J = 21.3, 8.2, 4.1 Hz, 2H), 1.5–1.6 (m, 1H), 1.65–1.78 (m, 1H), 1.85–2.01 (m, 2H), 2.41 (s, 3H), 3.03 (td, J = 10.7, 5.3 Hz, 1H), 3.13 (s, 2H), 3.32 (s, 3H), 6.86 (d, J = 1.8 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.38 (dd, J = 8.0, 1.9 Hz, 1H). 13C NMR (126 MHz, CDCl3) 14.11, 28.05, 28.32, 28.88, 29.94, 39.28, 53.05, 55.47, 78.49, 104.94, 119.80, 125.04, 127.27, 131.49, 141.48, 142.80, 165.56, 165.73. LC–MS (ESI, M + H+) 734.2, 736.1, 738.1

Refinement

The crystal data, data collection and refinement details for structures 1 and 2 are summarized in Table 4 and were obtained by following a previously published approach (Coles & Gale, 2012). Further details of these experiments are given at the end of this section. The structure refinements of both 1 and 2 demonstrated that the hydrogen atom anti­cipated to be bound to the bridging nitro­gen (labelled N1 in both structures) was in fact bound to one of the adjacent imidazole nitro­gen atoms (labelled N2 in both structures). This was confirmed by inspection of residual electron difference maps. Fig. 6 depicts 3D representations of the residual electron difference map around the bis-imidazole cores of 1 and 2, the green wireframes are drawn at a threshold of >0.4 electrons/Å−3 and highlight the location of the hydrogen atoms.

Table 4. Experimental details.

  1 2
Crystal data
Chemical formula C36H41Br2N5O2 C36H41Br2N5O2
M r 735.56 735.56
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 10.18956 (5), 13.92084 (5), 25.48643 (14) 13.19297 (6), 17.60010 (8), 15.25349 (8)
β (°) 113.5742 (7) 104.4018 (5)
V3) 3313.47 (3) 3430.52 (3)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 3.42 3.30
Crystal size (mm) 0.18 × 0.05 × 0.03 0.31 × 0.07 × 0.05
 
Data collection
Diffractometer Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2019) Gaussian (CrysAlis PRO; Rigaku OD, 2019)
T min, T max 0.621, 1.000 0.654, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 118177, 6068, 5967 97773, 6285, 6257
R int 0.031 0.023
(sin θ/λ)max−1) 0.602 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.022, 0.056, 1.06 0.024, 0.057, 1.06
No. of reflections 6068 6285
No. of parameters 454 413
No. of restraints 15 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.39 0.33, −0.44

Computer programs: CrysAlis PRO (Rigaku OD, 2019), SHELXT (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

The structures of 1 and 2 solved in the space group P21/n (# 14) using dual methods in the SHELXT (Sheldrick, 2015a ) structure-solution program and refined by full-matrix least-squares minimization on F2 using SHELXL2018/3 (Sheldrick, 2015b ). All non-hydrogen atoms were refined anisotropically. The position of the N—H atom H2 was located from the difference map and refined with its thermal parameter linked to that of its parent atom, N2. The positions of the remaining C—H atoms were calculated geometrically and refined using a riding model.

The disordered atoms of 2 (Br1A/Br1B, O1A/O1B and C5A/C5B > C18A/C18B), have been modelled over two positions using geometric parameter restraints. In addition, the geometry of the minor benzene ring (C5B > C10B) was constrained to be a regular hexa­gon with bond lengths of 1.39 Å. All minor atomic positions were modelled isotropically with the thermal parameters of atoms Br1A and Br1B restrained and those of atoms O1B and C5B > C18B, constrained to be the same. Applying the above to the refinement conserved realistic chemical geometries and lowered the R 1 value from 2.74% to 2.20%. Fig. 7 depicts the disorder modelling in structure 2, with displacement ellipsoids drawn at the 50% probability level and the minor component highlighted in orange (10.8%).

Figure 7.

Figure 7

The disorder modelling in structure 2, with displacement ellipsoids drawn at the 50% probability level and the minor component highlighted in orange (10.8%).

Supplementary Material

Crystal structure: contains datablock(s) 2, 1, New_Global_Publ_Block. DOI: 10.1107/S205698902100668X/dj2028sup1.cif

e-77-01311-sup1.cif (6.7MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S205698902100668X/dj20281sup2.hkl

e-77-01311-1sup2.hkl (499.7KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S205698902100668X/dj20282sup3.hkl

e-77-01311-2sup3.hkl (482.5KB, hkl)

CCDC references: 2092542, 2092541

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We would like to thank the Engineering and Physical Sciences Research Council (UK) for funding the UK National Crystallography Service.

supplementary crystallographic information

(R,R)/(S,S)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (2) . Crystal data

C36H41Br2N5O2 F(000) = 1512
Mr = 735.56 Dx = 1.474 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
a = 10.18956 (5) Å Cell parameters from 82488 reflections
b = 13.92084 (5) Å θ = 3.2–70.3°
c = 25.48643 (14) Å µ = 3.42 mm1
β = 113.5742 (7)° T = 100 K
V = 3313.47 (3) Å3 Block, colourless
Z = 4 0.18 × 0.05 × 0.03 mm

(R,R)/(S,S)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (2) . Data collection

Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector diffractometer 6068 independent reflections
Radiation source: Rotating anode, Rigaku 007 HF 5967 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.031
Detector resolution: 10 pixels mm-1 θmax = 68.2°, θmin = 3.7°
profile data from ω–scans h = −12→12
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2019) k = −16→16
Tmin = 0.621, Tmax = 1.000 l = −30→30
118177 measured reflections

(R,R)/(S,S)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (2) . Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0259P)2 + 2.2368P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056 (Δ/σ)max = 0.001
S = 1.06 Δρmax = 0.33 e Å3
6068 reflections Δρmin = −0.39 e Å3
454 parameters Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
15 restraints Extinction coefficient: 0.00013 (2)
Primary atom site location: dual

(R,R)/(S,S)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. This diastereoisomer has crystallised in the centrosymmetric space group P21/n; meaning that both RS and SR forms of the API must be present in equal amounts within the crystal. The atoms of both methoxy groups (O1, C18 and O2, C36), have been modelled as single sites with large thermal ellipsoids. This was found to be the most appropriate model; however, these large ellipsoids result in two checkCIF C-alerts. The N2-H2 bond length has been restrained, otherwise it refined to an unrealistic value.

(R,R)/(S,S)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1A 0.94977 (8) −0.13936 (5) 0.43736 (3) 0.0374 (2) 0.892 (3)
Br1B 0.9408 (7) −0.1378 (3) 0.4382 (2) 0.0172 (9)* 0.108 (3)
Br2 1.07263 (2) −0.11819 (2) 0.78926 (2) 0.02647 (6)
C1 0.53448 (14) 0.13684 (9) 0.50383 (6) 0.0145 (3)
C2 0.43133 (15) 0.12704 (10) 0.44275 (6) 0.0165 (3)
C3 0.27976 (15) 0.09625 (11) 0.42505 (6) 0.0202 (3)
H3A 0.229686 0.101766 0.383384 0.030*
H3B 0.232780 0.137362 0.443573 0.030*
H3C 0.277007 0.029346 0.436529 0.030*
C4 0.63956 (15) 0.17633 (11) 0.44190 (6) 0.0193 (3)
C5A 0.7365 (5) 0.1160 (3) 0.4219 (2) 0.0222 (4) 0.892 (3)
C5B 0.726 (5) 0.1225 (19) 0.4235 (19) 0.0203 (18)* 0.108 (3)
C6B 0.779 (5) 0.0303 (19) 0.4395 (18) 0.0203 (18)* 0.108 (3)
H6B 0.758545 −0.003496 0.467690 0.024* 0.108 (3)
C7B 0.862 (4) −0.0124 (15) 0.4141 (16) 0.0203 (18)* 0.108 (3)
C8B 0.892 (3) 0.0371 (14) 0.3728 (13) 0.0203 (18)* 0.108 (3)
H8B 0.949075 0.007835 0.355409 0.024* 0.108 (3)
C9B 0.839 (4) 0.1293 (14) 0.3568 (14) 0.0203 (18)* 0.108 (3)
H9B 0.859224 0.163089 0.328615 0.024* 0.108 (3)
C10B 0.756 (5) 0.1720 (15) 0.3822 (17) 0.0203 (18)* 0.108 (3)
C6A 0.7881 (6) 0.0251 (3) 0.4394 (2) 0.0232 (4) 0.892 (3)
H6A 0.764777 −0.009365 0.466683 0.028* 0.892 (3)
C7A 0.8764 (5) −0.0138 (2) 0.41507 (19) 0.0295 (6) 0.892 (3)
C8A 0.9095 (4) 0.0346 (3) 0.37454 (17) 0.0378 (7) 0.892 (3)
H8A 0.969356 0.005467 0.358518 0.045* 0.892 (3)
C9A 0.8551 (5) 0.1254 (3) 0.35756 (19) 0.0400 (8) 0.892 (3)
H9A 0.877176 0.159069 0.329666 0.048* 0.892 (3)
C10A 0.7676 (6) 0.1679 (2) 0.3814 (2) 0.0308 (6) 0.892 (3)
C11A 0.6999 (8) 0.2652 (3) 0.3726 (2) 0.0333 (7) 0.892 (3)
H11A 0.608818 0.266382 0.338153 0.040* 0.892 (3)
H11B 0.764944 0.314851 0.368599 0.040* 0.892 (3)
C11B 0.697 (6) 0.273 (2) 0.3769 (19) 0.0203 (18)* 0.108 (3)
H11C 0.613084 0.281278 0.340010 0.024* 0.108 (3)
H11D 0.770694 0.320734 0.378786 0.024* 0.108 (3)
C12A 0.6733 (3) 0.28113 (17) 0.42800 (14) 0.0223 (6) 0.892 (3)
C12B 0.651 (3) 0.2870 (12) 0.4280 (12) 0.0203 (18)* 0.108 (3)
C13A 0.5515 (2) 0.3498 (3) 0.42170 (15) 0.0284 (6) 0.892 (3)
H13A 0.528888 0.344473 0.455909 0.034* 0.892 (3)
H13B 0.465152 0.330764 0.387914 0.034* 0.892 (3)
C13B 0.518 (3) 0.349 (2) 0.4150 (15) 0.0203 (18)* 0.108 (3)
H13C 0.483509 0.338398 0.445655 0.024* 0.108 (3)
H13D 0.442776 0.326030 0.378784 0.024* 0.108 (3)
C14A 0.5885 (2) 0.45441 (16) 0.41473 (9) 0.0307 (5) 0.892 (3)
H14A 0.603163 0.461269 0.378796 0.037* 0.892 (3)
H14B 0.507726 0.496456 0.412131 0.037* 0.892 (3)
C14B 0.535 (2) 0.4608 (14) 0.4093 (8) 0.0203 (18)* 0.108 (3)
H14C 0.548316 0.474167 0.373635 0.024* 0.108 (3)
H14D 0.445952 0.493368 0.406538 0.024* 0.108 (3)
C15A 0.7235 (3) 0.48558 (15) 0.46518 (8) 0.0267 (4) 0.892 (3)
H15A 0.706406 0.480777 0.501104 0.032* 0.892 (3)
C15B 0.654 (2) 0.4996 (12) 0.4572 (7) 0.0203 (18)* 0.108 (3)
H15B 0.635274 0.492084 0.492578 0.024* 0.108 (3)
C16A 0.8469 (2) 0.42084 (16) 0.47028 (8) 0.0261 (4) 0.892 (3)
H16A 0.933141 0.440372 0.503969 0.031* 0.892 (3)
H16B 0.867971 0.428206 0.435805 0.031* 0.892 (3)
C16B 0.791 (3) 0.4494 (14) 0.4659 (7) 0.0203 (18)* 0.108 (3)
H16C 0.868915 0.476239 0.500163 0.024* 0.108 (3)
H16D 0.814573 0.461434 0.432469 0.024* 0.108 (3)
C17A 0.8131 (2) 0.31553 (15) 0.47662 (9) 0.0215 (5) 0.892 (3)
H17A 0.804927 0.306878 0.513749 0.026* 0.892 (3)
H17B 0.893491 0.275115 0.477054 0.026* 0.892 (3)
C17B 0.781 (2) 0.3407 (15) 0.4737 (10) 0.0203 (18)* 0.108 (3)
H17C 0.779365 0.329361 0.511730 0.024* 0.108 (3)
H17D 0.870363 0.311012 0.474303 0.024* 0.108 (3)
C18A 0.6803 (3) 0.65329 (16) 0.46879 (12) 0.0413 (6) 0.892 (3)
H18A 0.583914 0.650527 0.438231 0.062* 0.892 (3)
H18B 0.722462 0.716483 0.468597 0.062* 0.892 (3)
H18C 0.674585 0.642820 0.505843 0.062* 0.892 (3)
C18B 0.7490 (18) 0.6576 (11) 0.4964 (7) 0.0203 (18)* 0.108 (3)
H18D 0.754713 0.724310 0.485220 0.030* 0.108 (3)
H18E 0.845719 0.630669 0.514422 0.030* 0.108 (3)
H18F 0.702936 0.655535 0.523542 0.030* 0.108 (3)
C19 0.60745 (14) 0.15389 (9) 0.60063 (6) 0.0138 (3)
C20 0.57460 (14) 0.16738 (9) 0.65227 (6) 0.0144 (3)
C21 0.43197 (15) 0.15223 (11) 0.65370 (6) 0.0188 (3)
H21A 0.398441 0.087093 0.640470 0.028*
H21B 0.363969 0.199100 0.628608 0.028*
H21C 0.439273 0.160477 0.692959 0.028*
C22 0.80075 (14) 0.20290 (10) 0.67386 (6) 0.0144 (3)
C23 0.93006 (14) 0.14103 (10) 0.70748 (6) 0.0152 (3)
C24 0.93173 (15) 0.05021 (10) 0.72998 (6) 0.0170 (3)
H24 0.845787 0.018643 0.726256 0.020*
C25 1.06528 (16) 0.00721 (11) 0.75835 (6) 0.0195 (3)
C26 1.19161 (16) 0.05226 (11) 0.76421 (6) 0.0218 (3)
H26 1.280946 0.021263 0.784060 0.026*
C27 1.18686 (15) 0.14333 (11) 0.74081 (6) 0.0201 (3)
H27 1.272763 0.174655 0.744257 0.024*
C28 1.05525 (15) 0.18787 (10) 0.71239 (6) 0.0173 (3)
C29 1.02117 (15) 0.28508 (10) 0.68463 (6) 0.0189 (3)
H29A 1.022639 0.283712 0.646033 0.023*
H29B 1.090366 0.333869 0.708176 0.023*
C30 0.86808 (14) 0.30664 (10) 0.68100 (6) 0.0158 (3)
C31 0.78163 (17) 0.37358 (10) 0.63154 (6) 0.0215 (3)
H31A 0.682777 0.379223 0.629414 0.026*
H31B 0.776406 0.345604 0.595042 0.026*
C32 0.84940 (17) 0.47367 (11) 0.63930 (6) 0.0237 (3)
H32A 0.945356 0.468505 0.638376 0.028*
H32B 0.789723 0.515270 0.607076 0.028*
C33 0.86370 (16) 0.51995 (10) 0.69566 (6) 0.0199 (3)
H33 0.766053 0.534957 0.693902 0.024*
C34 0.94019 (15) 0.45383 (10) 0.74631 (6) 0.0184 (3)
H34A 0.935315 0.482069 0.781137 0.022*
H34B 1.042379 0.449010 0.752665 0.022*
C35 0.87464 (15) 0.35300 (10) 0.73697 (6) 0.0166 (3)
H35A 0.776587 0.356845 0.735909 0.020*
H35B 0.932251 0.311634 0.769691 0.020*
C36 0.86287 (19) 0.68719 (11) 0.67521 (7) 0.0294 (4)
H36A 0.785107 0.699087 0.687764 0.044*
H36B 0.822439 0.673693 0.634040 0.044*
H36C 0.924525 0.744030 0.683035 0.044*
N1 0.50182 (12) 0.12806 (8) 0.54828 (5) 0.0145 (2)
N2 0.65823 (13) 0.16116 (9) 0.50079 (5) 0.0158 (2)
H2 0.730 (2) 0.1702 (12) 0.5305 (8) 0.019*
N3 0.48867 (13) 0.15027 (9) 0.40810 (5) 0.0197 (3)
N4 0.74130 (12) 0.17302 (8) 0.61310 (5) 0.0144 (2)
N5 0.68690 (12) 0.19542 (8) 0.69490 (5) 0.0147 (2)
O1A 0.76650 (15) 0.58132 (9) 0.45969 (6) 0.0329 (4) 0.892 (3)
O1B 0.6675 (12) 0.6029 (8) 0.4471 (4) 0.0203 (18)* 0.108 (3)
O2 0.94500 (11) 0.60694 (7) 0.70543 (5) 0.0233 (2)

(R,R)/(S,S)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1A 0.01661 (19) 0.0563 (3) 0.0367 (2) −0.00006 (10) 0.00794 (11) −0.02513 (17)
Br2 0.03585 (10) 0.02105 (9) 0.02360 (9) 0.00887 (6) 0.01305 (7) 0.00352 (6)
C1 0.0141 (6) 0.0122 (6) 0.0154 (7) −0.0012 (5) 0.0039 (5) 0.0001 (5)
C2 0.0167 (7) 0.0152 (7) 0.0149 (7) −0.0023 (5) 0.0034 (6) 0.0001 (5)
C3 0.0160 (7) 0.0228 (7) 0.0185 (7) −0.0044 (6) 0.0035 (6) −0.0001 (6)
C4 0.0179 (7) 0.0278 (8) 0.0105 (6) −0.0081 (6) 0.0039 (5) −0.0001 (6)
C5A 0.0174 (13) 0.0380 (12) 0.0125 (8) −0.0138 (8) 0.0075 (8) −0.0092 (9)
C6A 0.0165 (12) 0.0382 (11) 0.0161 (8) −0.0104 (8) 0.0078 (8) −0.0112 (8)
C7A 0.0149 (13) 0.0498 (12) 0.0238 (10) −0.0120 (8) 0.0078 (9) −0.0208 (8)
C8A 0.0242 (15) 0.0683 (16) 0.0288 (11) −0.0214 (11) 0.0189 (11) −0.0257 (10)
C9A 0.038 (2) 0.0692 (16) 0.0227 (10) −0.0302 (12) 0.0220 (12) −0.0168 (10)
C10A 0.0292 (16) 0.0499 (13) 0.0153 (8) −0.0223 (9) 0.0109 (9) −0.0089 (9)
C11A 0.0400 (13) 0.0461 (15) 0.0131 (13) −0.0225 (12) 0.0099 (9) −0.0006 (11)
C12A 0.0217 (13) 0.0293 (10) 0.0141 (8) −0.0120 (8) 0.0051 (9) 0.0022 (7)
C13A 0.0226 (14) 0.0294 (10) 0.0242 (13) −0.0090 (12) −0.0001 (13) 0.0075 (9)
C14A 0.0251 (10) 0.0287 (10) 0.0314 (11) −0.0038 (10) 0.0040 (10) 0.0105 (8)
C15A 0.0267 (11) 0.0229 (10) 0.0268 (10) −0.0069 (9) 0.0068 (9) 0.0058 (7)
C16A 0.0220 (9) 0.0262 (10) 0.0255 (10) −0.0090 (8) 0.0046 (8) 0.0025 (7)
C17A 0.0193 (11) 0.0241 (12) 0.0177 (8) −0.0075 (7) 0.0040 (8) 0.0014 (8)
C18A 0.0414 (13) 0.0270 (11) 0.0520 (15) 0.0018 (9) 0.0149 (12) 0.0051 (11)
C19 0.0157 (6) 0.0112 (6) 0.0143 (6) 0.0003 (5) 0.0059 (5) 0.0009 (5)
C20 0.0154 (6) 0.0130 (6) 0.0150 (6) 0.0011 (5) 0.0061 (5) 0.0003 (5)
C21 0.0150 (7) 0.0248 (7) 0.0173 (7) −0.0013 (6) 0.0071 (6) −0.0019 (6)
C22 0.0142 (6) 0.0172 (7) 0.0126 (6) −0.0025 (5) 0.0060 (5) −0.0018 (5)
C23 0.0144 (7) 0.0199 (7) 0.0113 (6) −0.0001 (5) 0.0051 (5) −0.0035 (5)
C24 0.0173 (7) 0.0203 (7) 0.0149 (7) −0.0005 (5) 0.0081 (6) −0.0023 (5)
C25 0.0240 (7) 0.0213 (7) 0.0137 (6) 0.0044 (6) 0.0080 (6) −0.0023 (5)
C26 0.0175 (7) 0.0289 (8) 0.0171 (7) 0.0063 (6) 0.0048 (6) −0.0061 (6)
C27 0.0143 (7) 0.0272 (8) 0.0198 (7) −0.0022 (6) 0.0078 (6) −0.0086 (6)
C28 0.0171 (7) 0.0214 (7) 0.0155 (7) −0.0033 (6) 0.0087 (6) −0.0062 (5)
C29 0.0179 (7) 0.0208 (7) 0.0213 (7) −0.0046 (6) 0.0115 (6) −0.0046 (6)
C30 0.0162 (7) 0.0162 (7) 0.0147 (7) −0.0026 (5) 0.0059 (5) −0.0018 (5)
C31 0.0262 (8) 0.0189 (7) 0.0152 (7) −0.0035 (6) 0.0039 (6) −0.0006 (6)
C32 0.0318 (8) 0.0190 (7) 0.0169 (7) −0.0045 (6) 0.0062 (6) 0.0005 (6)
C33 0.0198 (7) 0.0166 (7) 0.0207 (7) −0.0043 (5) 0.0055 (6) −0.0021 (6)
C34 0.0188 (7) 0.0191 (7) 0.0155 (7) −0.0016 (6) 0.0051 (6) −0.0026 (5)
C35 0.0171 (7) 0.0177 (7) 0.0145 (7) −0.0002 (5) 0.0058 (6) −0.0014 (5)
C36 0.0350 (9) 0.0188 (8) 0.0263 (8) −0.0046 (7) 0.0038 (7) 0.0016 (6)
N1 0.0144 (6) 0.0151 (6) 0.0135 (6) −0.0013 (4) 0.0050 (5) −0.0004 (4)
N2 0.0139 (6) 0.0221 (6) 0.0101 (5) −0.0041 (5) 0.0033 (5) −0.0004 (5)
N3 0.0185 (6) 0.0228 (6) 0.0149 (6) −0.0070 (5) 0.0034 (5) 0.0003 (5)
N4 0.0145 (5) 0.0151 (5) 0.0132 (6) −0.0011 (4) 0.0052 (5) −0.0010 (4)
N5 0.0142 (5) 0.0152 (6) 0.0157 (6) 0.0003 (4) 0.0071 (5) 0.0002 (4)
O1A 0.0323 (9) 0.0226 (7) 0.0399 (8) −0.0063 (6) 0.0105 (6) 0.0047 (6)
O2 0.0238 (5) 0.0174 (5) 0.0239 (5) −0.0050 (4) 0.0045 (4) −0.0010 (4)

(R,R)/(S,S)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (2) . Geometric parameters (Å, º)

Br1A—C7A 1.897 (2) C16A—H16A 0.9900
Br1B—C7B 1.916 (9) C16A—H16B 0.9900
Br2—C25 1.9043 (15) C16A—C17A 1.529 (3)
C1—C2 1.4959 (19) C16B—H16C 0.9900
C1—N1 1.3081 (18) C16B—H16D 0.9900
C1—N2 1.3374 (18) C16B—C17B 1.53 (3)
C2—C3 1.4884 (19) C17A—H17A 0.9900
C2—N3 1.2800 (19) C17A—H17B 0.9900
C3—H3A 0.9800 C17B—H17C 0.9900
C3—H3B 0.9800 C17B—H17D 0.9900
C3—H3C 0.9800 C18A—H18A 0.9800
C4—C5A 1.530 (3) C18A—H18B 0.9800
C4—C5B 1.370 (18) C18A—H18C 0.9800
C4—C12A 1.572 (3) C18A—O1A 1.411 (3)
C4—C12B 1.597 (18) C18B—H18D 0.9800
C4—N2 1.4509 (17) C18B—H18E 0.9800
C4—N3 1.4759 (18) C18B—H18F 0.9800
C5A—C6A 1.375 (3) C18B—O1B 1.418 (19)
C5A—C10A 1.395 (2) C19—C20 1.4940 (18)
C5B—C6B 1.3900 C19—N1 1.3853 (18)
C5B—C10B 1.3900 C19—N4 1.2983 (18)
C6B—H6B 0.9500 C20—C21 1.4833 (19)
C6B—C7B 1.3900 C20—N5 1.2837 (18)
C7B—C8B 1.3900 C21—H21A 0.9800
C8B—H8B 0.9500 C21—H21B 0.9800
C8B—C9B 1.3900 C21—H21C 0.9800
C9B—H9B 0.9500 C22—C23 1.5196 (19)
C9B—C10B 1.3900 C22—C30 1.5778 (18)
C10B—C11B 1.516 (17) C22—N4 1.4791 (17)
C6A—H6A 0.9500 C22—N5 1.4635 (17)
C6A—C7A 1.390 (2) C23—C24 1.386 (2)
C7A—C8A 1.384 (3) C23—C28 1.3930 (19)
C8A—H8A 0.9500 C24—H24 0.9500
C8A—C9A 1.379 (3) C24—C25 1.395 (2)
C9A—H9A 0.9500 C25—C26 1.385 (2)
C9A—C10A 1.397 (3) C26—H26 0.9500
C10A—C11A 1.496 (4) C26—C27 1.394 (2)
C11A—H11A 0.9900 C27—H27 0.9500
C11A—H11B 0.9900 C27—C28 1.389 (2)
C11A—C12A 1.557 (3) C28—C29 1.502 (2)
C11B—H11C 0.9900 C29—H29A 0.9900
C11B—H11D 0.9900 C29—H29B 0.9900
C11B—C12B 1.558 (18) C29—C30 1.5544 (19)
C12A—C13A 1.523 (3) C30—C31 1.531 (2)
C12A—C17A 1.543 (3) C30—C35 1.5427 (18)
C12B—C13B 1.531 (18) C31—H31A 0.9900
C12B—C17B 1.560 (18) C31—H31B 0.9900
C13A—H13A 0.9900 C31—C32 1.532 (2)
C13A—H13B 0.9900 C32—H32A 0.9900
C13A—C14A 1.532 (4) C32—H32B 0.9900
C13B—H13C 0.9900 C32—C33 1.527 (2)
C13B—H13D 0.9900 C33—H33 1.0000
C13B—C14B 1.58 (4) C33—C34 1.522 (2)
C14A—H14A 0.9900 C33—O2 1.4318 (17)
C14A—H14B 0.9900 C34—H34A 0.9900
C14A—C15A 1.523 (3) C34—H34B 0.9900
C14B—H14C 0.9900 C34—C35 1.5316 (19)
C14B—H14D 0.9900 C35—H35A 0.9900
C14B—C15B 1.44 (2) C35—H35B 0.9900
C15A—H15A 1.0000 C36—H36A 0.9800
C15A—C16A 1.510 (3) C36—H36B 0.9800
C15A—O1A 1.427 (2) C36—H36C 0.9800
C15B—H15B 1.0000 C36—O2 1.4232 (19)
C15B—C16B 1.49 (3) N2—H2 0.826 (19)
C15B—O1B 1.477 (19)
N1—C1—C2 125.21 (12) C15B—C16B—H16C 109.1
N1—C1—N2 130.25 (13) C15B—C16B—H16D 109.1
N2—C1—C2 104.43 (12) C15B—C16B—C17B 112.3 (16)
C3—C2—C1 123.63 (12) H16C—C16B—H16D 107.9
N3—C2—C1 111.73 (12) C17B—C16B—H16C 109.1
N3—C2—C3 124.63 (13) C17B—C16B—H16D 109.1
C2—C3—H3A 109.5 C12A—C17A—H17A 109.0
C2—C3—H3B 109.5 C12A—C17A—H17B 109.0
C2—C3—H3C 109.5 C16A—C17A—C12A 112.77 (17)
H3A—C3—H3B 109.5 C16A—C17A—H17A 109.0
H3A—C3—H3C 109.5 C16A—C17A—H17B 109.0
H3B—C3—H3C 109.5 H17A—C17A—H17B 107.8
C5A—C4—C12A 101.9 (2) C12B—C17B—H17C 108.1
C5B—C4—C12B 109.6 (18) C12B—C17B—H17D 108.1
C5B—C4—N2 115.9 (15) C16B—C17B—C12B 116.9 (16)
C5B—C4—N3 109 (2) C16B—C17B—H17C 108.1
N2—C4—C5A 115.42 (19) C16B—C17B—H17D 108.1
N2—C4—C12A 114.73 (16) H17C—C17B—H17D 107.3
N2—C4—C12B 112.3 (10) H18A—C18A—H18B 109.5
N2—C4—N3 104.06 (11) H18A—C18A—H18C 109.5
N3—C4—C5A 109.3 (2) H18B—C18A—H18C 109.5
N3—C4—C12A 111.57 (14) O1A—C18A—H18A 109.5
N3—C4—C12B 105.2 (9) O1A—C18A—H18B 109.5
C6A—C5A—C4 127.7 (2) O1A—C18A—H18C 109.5
C6A—C5A—C10A 123.04 (17) H18D—C18B—H18E 109.5
C10A—C5A—C4 109.2 (2) H18D—C18B—H18F 109.5
C4—C5B—C6B 129.4 (15) H18E—C18B—H18F 109.5
C4—C5B—C10B 110.6 (15) O1B—C18B—H18D 109.5
C6B—C5B—C10B 120.0 O1B—C18B—H18E 109.5
C5B—C6B—H6B 120.0 O1B—C18B—H18F 109.5
C5B—C6B—C7B 120.0 N1—C19—C20 121.30 (12)
C7B—C6B—H6B 120.0 N4—C19—C20 110.01 (12)
C6B—C7B—Br1B 119.7 (7) N4—C19—N1 128.65 (12)
C6B—C7B—C8B 120.0 C21—C20—C19 124.80 (12)
C8B—C7B—Br1B 120.3 (7) N5—C20—C19 110.24 (12)
C7B—C8B—H8B 120.0 N5—C20—C21 124.96 (12)
C9B—C8B—C7B 120.0 C20—C21—H21A 109.5
C9B—C8B—H8B 120.0 C20—C21—H21B 109.5
C8B—C9B—H9B 120.0 C20—C21—H21C 109.5
C8B—C9B—C10B 120.0 H21A—C21—H21B 109.5
C10B—C9B—H9B 120.0 H21A—C21—H21C 109.5
C5B—C10B—C11B 109.3 (18) H21B—C21—H21C 109.5
C9B—C10B—C5B 120.0 C23—C22—C30 102.40 (11)
C9B—C10B—C11B 130.5 (19) N4—C22—C23 109.30 (11)
C5A—C6A—H6A 121.8 N4—C22—C30 110.81 (10)
C5A—C6A—C7A 116.49 (17) N5—C22—C23 112.87 (11)
C7A—C6A—H6A 121.8 N5—C22—C30 113.26 (11)
C6A—C7A—Br1A 118.23 (17) N5—C22—N4 108.11 (10)
C8A—C7A—Br1A 119.18 (18) C24—C23—C22 127.95 (12)
C8A—C7A—C6A 122.6 (2) C24—C23—C28 122.05 (13)
C7A—C8A—H8A 120.2 C28—C23—C22 109.99 (12)
C9A—C8A—C7A 119.57 (18) C23—C24—H24 121.5
C9A—C8A—H8A 120.2 C23—C24—C25 117.00 (13)
C8A—C9A—H9A 120.1 C25—C24—H24 121.5
C8A—C9A—C10A 119.84 (19) C24—C25—Br2 118.46 (11)
C10A—C9A—H9A 120.1 C26—C25—Br2 119.30 (11)
C5A—C10A—C9A 118.5 (2) C26—C25—C24 122.24 (14)
C5A—C10A—C11A 110.7 (3) C25—C26—H26 120.2
C9A—C10A—C11A 130.8 (3) C25—C26—C27 119.60 (13)
C10A—C11A—H11A 111.1 C27—C26—H26 120.2
C10A—C11A—H11B 111.1 C26—C27—H27 120.3
C10A—C11A—C12A 103.2 (3) C28—C27—C26 119.34 (13)
H11A—C11A—H11B 109.1 C28—C27—H27 120.3
C12A—C11A—H11A 111.1 C23—C28—C29 110.39 (12)
C12A—C11A—H11B 111.1 C27—C28—C23 119.76 (14)
C10B—C11B—H11C 110.5 C27—C28—C29 129.84 (13)
C10B—C11B—H11D 110.5 C28—C29—H29A 111.0
C10B—C11B—C12B 106.1 (18) C28—C29—H29B 111.0
H11C—C11B—H11D 108.7 C28—C29—C30 103.86 (11)
C12B—C11B—H11C 110.5 H29A—C29—H29B 109.0
C12B—C11B—H11D 110.5 C30—C29—H29A 111.0
C11A—C12A—C4 101.9 (2) C30—C29—H29B 111.0
C13A—C12A—C4 111.3 (2) C29—C30—C22 102.12 (11)
C13A—C12A—C11A 115.1 (3) C31—C30—C22 112.43 (11)
C13A—C12A—C17A 110.0 (2) C31—C30—C29 113.56 (12)
C17A—C12A—C4 108.8 (2) C31—C30—C35 107.73 (11)
C17A—C12A—C11A 109.5 (3) C35—C30—C22 110.21 (11)
C11B—C12B—C4 98.0 (15) C35—C30—C29 110.76 (11)
C11B—C12B—C17B 104 (3) C30—C31—H31A 109.3
C13B—C12B—C4 117 (2) C30—C31—H31B 109.3
C13B—C12B—C11B 115 (2) C30—C31—C32 111.46 (12)
C13B—C12B—C17B 107.8 (18) H31A—C31—H31B 108.0
C17B—C12B—C4 114.4 (18) C32—C31—H31A 109.3
C12A—C13A—H13A 109.1 C32—C31—H31B 109.3
C12A—C13A—H13B 109.1 C31—C32—H32A 109.2
C12A—C13A—C14A 112.4 (2) C31—C32—H32B 109.2
H13A—C13A—H13B 107.9 H32A—C32—H32B 107.9
C14A—C13A—H13A 109.1 C33—C32—C31 111.93 (12)
C14A—C13A—H13B 109.1 C33—C32—H32A 109.2
C12B—C13B—H13C 108.0 C33—C32—H32B 109.2
C12B—C13B—H13D 108.0 C32—C33—H33 109.1
C12B—C13B—C14B 117 (2) C34—C33—C32 111.51 (12)
H13C—C13B—H13D 107.2 C34—C33—H33 109.1
C14B—C13B—H13C 108.0 O2—C33—C32 110.57 (12)
C14B—C13B—H13D 108.0 O2—C33—H33 109.1
C13A—C14A—H14A 109.5 O2—C33—C34 107.43 (11)
C13A—C14A—H14B 109.5 C33—C34—H34A 109.2
H14A—C14A—H14B 108.1 C33—C34—H34B 109.2
C15A—C14A—C13A 110.71 (17) C33—C34—C35 112.26 (11)
C15A—C14A—H14A 109.5 H34A—C34—H34B 107.9
C15A—C14A—H14B 109.5 C35—C34—H34A 109.2
C13B—C14B—H14C 109.2 C35—C34—H34B 109.2
C13B—C14B—H14D 109.2 C30—C35—H35A 109.1
H14C—C14B—H14D 107.9 C30—C35—H35B 109.1
C15B—C14B—C13B 112.1 (18) C34—C35—C30 112.46 (11)
C15B—C14B—H14C 109.2 C34—C35—H35A 109.1
C15B—C14B—H14D 109.2 C34—C35—H35B 109.1
C14A—C15A—H15A 109.0 H35A—C35—H35B 107.8
C16A—C15A—C14A 110.03 (18) H36A—C36—H36B 109.5
C16A—C15A—H15A 109.0 H36A—C36—H36C 109.5
O1A—C15A—C14A 113.11 (17) H36B—C36—H36C 109.5
O1A—C15A—H15A 109.0 O2—C36—H36A 109.5
O1A—C15A—C16A 106.73 (18) O2—C36—H36B 109.5
C14B—C15B—H15B 108.8 O2—C36—H36C 109.5
C14B—C15B—C16B 111.8 (14) C1—N1—C19 116.17 (12)
C14B—C15B—O1B 108.8 (14) C1—N2—C4 111.11 (12)
C16B—C15B—H15B 108.8 C1—N2—H2 119.9 (12)
O1B—C15B—H15B 108.8 C4—N2—H2 128.8 (12)
O1B—C15B—C16B 109.8 (13) C2—N3—C4 108.41 (12)
C15A—C16A—H16A 109.3 C19—N4—C22 105.32 (11)
C15A—C16A—H16B 109.3 C20—N5—C22 106.28 (11)
C15A—C16A—C17A 111.51 (16) C18A—O1A—C15A 114.26 (18)
H16A—C16A—H16B 108.0 C18B—O1B—C15B 115.5 (11)
C17A—C16A—H16A 109.3 C36—O2—C33 113.31 (11)
C17A—C16A—H16B 109.3
Br1A—C7A—C8A—C9A 179.2 (4) C22—C23—C24—C25 178.69 (13)
Br1B—C7B—C8B—C9B −178 (3) C22—C23—C28—C27 −178.89 (12)
Br2—C25—C26—C27 178.87 (10) C22—C23—C28—C29 1.91 (15)
C1—C2—N3—C4 1.44 (16) C22—C30—C31—C32 −179.77 (12)
C2—C1—N1—C19 −170.60 (12) C22—C30—C35—C34 179.62 (11)
C2—C1—N2—C4 5.17 (15) C23—C22—C30—C29 31.83 (12)
C3—C2—N3—C4 −179.96 (13) C23—C22—C30—C31 153.90 (11)
C4—C5A—C6A—C7A −179.2 (5) C23—C22—C30—C35 −85.90 (12)
C4—C5A—C10A—C9A −180.0 (4) C23—C22—N4—C19 125.11 (12)
C4—C5A—C10A—C11A 1.7 (5) C23—C22—N5—C20 −122.43 (12)
C4—C5B—C6B—C7B 178 (5) C23—C24—C25—Br2 −179.34 (10)
C4—C5B—C10B—C9B −179 (4) C23—C24—C25—C26 0.1 (2)
C4—C5B—C10B—C11B 7 (4) C23—C28—C29—C30 19.18 (14)
C4—C12A—C13A—C14A 173.7 (2) C24—C23—C28—C27 −0.3 (2)
C4—C12A—C17A—C16A −173.89 (18) C24—C23—C28—C29 −179.47 (12)
C4—C12B—C13B—C14B 172 (2) C24—C25—C26—C27 −0.5 (2)
C4—C12B—C17B—C16B −174.2 (17) C25—C26—C27—C28 0.6 (2)
C5A—C4—C12A—C11A 34.2 (4) C26—C27—C28—C23 −0.2 (2)
C5A—C4—C12A—C13A 157.4 (3) C26—C27—C28—C29 178.82 (13)
C5A—C4—C12A—C17A −81.3 (3) C27—C28—C29—C30 −159.92 (14)
C5A—C4—N2—C1 −124.3 (3) C28—C23—C24—C25 0.3 (2)
C5A—C4—N3—C2 125.48 (18) C28—C29—C30—C22 −31.12 (13)
C5A—C6A—C7A—Br1A −179.6 (4) C28—C29—C30—C31 −152.41 (11)
C5A—C6A—C7A—C8A −1.2 (2) C28—C29—C30—C35 86.22 (13)
C5A—C10A—C11A—C12A 20.8 (5) C29—C30—C31—C32 −64.44 (16)
C5B—C4—C12B—C11B 25 (3) C29—C30—C35—C34 67.36 (15)
C5B—C4—C12B—C13B 149 (3) C30—C22—C23—C24 159.75 (13)
C5B—C4—C12B—C17B −84 (3) C30—C22—C23—C28 −21.74 (14)
C5B—C4—N2—C1 −124 (2) C30—C22—N4—C19 −122.77 (12)
C5B—C4—N3—C2 125.9 (11) C30—C22—N5—C20 121.78 (12)
C5B—C6B—C7B—Br1B 178 (3) C30—C31—C32—C33 −57.70 (17)
C5B—C6B—C7B—C8B 0.0 C31—C30—C35—C34 −57.38 (15)
C5B—C10B—C11B—C12B 10 (4) C31—C32—C33—C34 52.46 (17)
C6B—C5B—C10B—C9B 0.0 C31—C32—C33—O2 171.92 (12)
C6B—C5B—C10B—C11B −175 (4) C32—C33—C34—C35 −50.88 (16)
C6B—C7B—C8B—C9B 0.0 C32—C33—O2—C36 81.23 (16)
C7B—C8B—C9B—C10B 0.0 C33—C34—C35—C30 54.70 (16)
C8B—C9B—C10B—C5B 0.0 C34—C33—O2—C36 −156.88 (12)
C8B—C9B—C10B—C11B 174 (5) C35—C30—C31—C32 58.61 (16)
C9B—C10B—C11B—C12B −164 (3) N1—C1—C2—C3 −6.3 (2)
C10B—C5B—C6B—C7B 0.0 N1—C1—C2—N3 172.30 (13)
C10B—C11B—C12B—C4 −20 (4) N1—C1—N2—C4 −171.09 (14)
C10B—C11B—C12B—C13B −145 (3) N1—C19—C20—C21 2.0 (2)
C10B—C11B—C12B—C17B 98 (4) N1—C19—C20—N5 −176.99 (12)
C6A—C5A—C10A—C9A 0.1 (3) N1—C19—N4—C22 175.98 (13)
C6A—C5A—C10A—C11A −178.3 (5) N2—C1—C2—C3 177.18 (13)
C6A—C7A—C8A—C9A 0.7 (3) N2—C1—C2—N3 −4.21 (16)
C7A—C8A—C9A—C10A 0.2 (3) N2—C1—N1—C19 5.0 (2)
C8A—C9A—C10A—C5A −0.6 (3) N2—C4—C5A—C6A 31.9 (4)
C8A—C9A—C10A—C11A 177.4 (6) N2—C4—C5A—C10A −148.1 (2)
C9A—C10A—C11A—C12A −157.3 (4) N2—C4—C5B—C6B 32 (4)
C10A—C5A—C6A—C7A 0.8 (2) N2—C4—C5B—C10B −149.3 (17)
C10A—C11A—C12A—C4 −33.7 (5) N2—C4—C12A—C11A 159.7 (3)
C10A—C11A—C12A—C13A −154.2 (4) N2—C4—C12A—C13A −77.2 (3)
C10A—C11A—C12A—C17A 81.4 (4) N2—C4—C12A—C17A 44.1 (2)
C11A—C12A—C13A—C14A −71.1 (4) N2—C4—C12B—C11B 156 (2)
C11A—C12A—C17A—C16A 75.6 (2) N2—C4—C12B—C13B −81 (2)
C11B—C12B—C13B—C14B −74 (3) N2—C4—C12B—C17B 46 (2)
C11B—C12B—C17B—C16B 80 (2) N2—C4—N3—C2 1.64 (16)
C12A—C4—C5A—C6A 156.9 (3) N3—C4—C5A—C6A −85.0 (4)
C12A—C4—C5A—C10A −23.1 (3) N3—C4—C5A—C10A 95.0 (3)
C12A—C4—N2—C1 117.70 (15) N3—C4—C5B—C6B −85 (3)
C12A—C4—N3—C2 −122.61 (16) N3—C4—C5B—C10B 94 (2)
C12A—C13A—C14A—C15A −57.2 (3) N3—C4—C12A—C11A −82.3 (3)
C12B—C4—C5B—C6B 161 (3) N3—C4—C12A—C13A 40.8 (3)
C12B—C4—C5B—C10B −21 (3) N3—C4—C12A—C17A 162.13 (15)
C12B—C4—N2—C1 108.8 (10) N3—C4—C12B—C11B −92 (2)
C12B—C4—N3—C2 −116.6 (11) N3—C4—C12B—C13B 31 (2)
C12B—C13B—C14B—C15B −51 (3) N3—C4—C12B—C17B 159.0 (16)
C13A—C12A—C17A—C16A −51.7 (3) N3—C4—N2—C1 −4.47 (16)
C13A—C14A—C15A—C16A 58.1 (3) N4—C19—C20—C21 179.78 (13)
C13A—C14A—C15A—O1A 177.4 (2) N4—C19—C20—N5 0.82 (16)
C13B—C12B—C17B—C16B −42 (3) N4—C19—N1—C1 −10.6 (2)
C13B—C14B—C15B—C16B 55 (2) N4—C22—C23—C24 −82.71 (16)
C13B—C14B—C15B—O1B 176.8 (17) N4—C22—C23—C28 95.80 (13)
C14A—C15A—C16A—C17A −57.1 (2) N4—C22—C30—C29 −84.63 (12)
C14A—C15A—O1A—C18A 74.0 (3) N4—C22—C30—C31 37.44 (15)
C14B—C15B—C16B—C17B −56 (2) N4—C22—C30—C35 157.64 (11)
C14B—C15B—O1B—C18B 161.4 (13) N4—C22—N5—C20 −1.40 (14)
C15A—C16A—C17A—C12A 54.7 (2) N5—C22—C23—C24 37.64 (19)
C15B—C16B—C17B—C12B 51 (2) N5—C22—C23—C28 −143.85 (12)
C16A—C15A—O1A—C18A −164.90 (18) N5—C22—C30—C29 153.68 (11)
C16B—C15B—O1B—C18B −75.9 (16) N5—C22—C30—C31 −84.25 (14)
C17A—C12A—C13A—C14A 53.0 (3) N5—C22—C30—C35 35.95 (15)
C17B—C12B—C13B—C14B 41 (3) N5—C22—N4—C19 1.89 (14)
C19—C20—N5—C22 0.43 (14) O1A—C15A—C16A—C17A 179.84 (15)
C20—C19—N1—C1 166.76 (12) O1B—C15B—C16B—C17B −177.2 (14)
C20—C19—N4—C22 −1.62 (14) O2—C33—C34—C35 −172.18 (11)
C21—C20—N5—C22 −178.53 (13)

(R,R)/(S,S)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N4 0.826 (19) 2.064 (18) 2.6456 (16) 127.2 (15)

(R,S)/(S,R)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (1) . Crystal data

C36H41Br2N5O2 F(000) = 1512
Mr = 735.56 Dx = 1.424 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
a = 13.19297 (6) Å Cell parameters from 74158 reflections
b = 17.60010 (8) Å θ = 2.5–70.4°
c = 15.25349 (8) Å µ = 3.30 mm1
β = 104.4018 (5)° T = 100 K
V = 3430.52 (3) Å3 Block, colourless
Z = 4 0.31 × 0.07 × 0.05 mm

(R,S)/(S,R)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (1) . Data collection

Rigaku 007HF equipped with Varimax confocal mirrors and an AFC11 goniometer and HyPix 6000 detector diffractometer 6285 independent reflections
Radiation source: Rotating anode, Rigaku 007 HF 6257 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.023
Detector resolution: 10 pixels mm-1 θmax = 68.3°, θmin = 3.9°
profile data from ω–scans h = −15→15
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2019) k = −21→21
Tmin = 0.654, Tmax = 1.000 l = −18→18
97773 measured reflections

(R,S)/(S,R)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (1) . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0248P)2 + 2.9185P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
6285 reflections Δρmax = 0.33 e Å3
413 parameters Δρmin = −0.44 e Å3
1 restraint

(R,S)/(S,R)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (1) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. This diastereoisomer has crystallised in the centrosymmetric space group P21/n; meaning that both SS and RR forms of the API must be present in equal amounts within the crystal.

(R,S)/(S,R)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (1) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.57538 (2) 0.34738 (2) 0.89948 (2) 0.02177 (5)
Br2 0.14814 (2) 0.66375 (2) 0.24065 (2) 0.02990 (6)
C1 0.15668 (11) 0.50387 (8) 0.69473 (9) 0.0129 (3)
C2 0.13914 (11) 0.52942 (8) 0.78320 (10) 0.0144 (3)
C3 0.04172 (12) 0.51294 (10) 0.81180 (11) 0.0214 (3)
H3A 0.048466 0.532334 0.873213 0.032*
H3B 0.030082 0.457923 0.810962 0.032*
H3C −0.017676 0.537693 0.770109 0.032*
C4 0.29513 (11) 0.57251 (8) 0.77417 (9) 0.0133 (3)
C5 0.39917 (11) 0.54110 (8) 0.82716 (9) 0.0140 (3)
C6 0.43135 (12) 0.46632 (9) 0.83361 (10) 0.0162 (3)
H6 0.388386 0.427279 0.800815 0.019*
C7 0.52897 (12) 0.45036 (9) 0.88989 (10) 0.0173 (3)
C8 0.59218 (12) 0.50677 (9) 0.93894 (10) 0.0185 (3)
H8 0.657774 0.494104 0.978454 0.022*
C9 0.55861 (12) 0.58207 (9) 0.92970 (10) 0.0176 (3)
H9 0.601620 0.621205 0.962229 0.021*
C10 0.46163 (12) 0.59959 (9) 0.87251 (10) 0.0157 (3)
C11 0.40713 (12) 0.67508 (9) 0.84824 (10) 0.0175 (3)
H11A 0.456675 0.714295 0.837849 0.021*
H11B 0.374767 0.692667 0.896646 0.021*
C12 0.32230 (11) 0.65767 (8) 0.75962 (10) 0.0136 (3)
C13 0.22456 (11) 0.70763 (8) 0.74388 (11) 0.0174 (3)
H13A 0.168199 0.684004 0.696541 0.021*
H13B 0.200517 0.709635 0.800360 0.021*
C14 0.24256 (13) 0.78862 (9) 0.71501 (13) 0.0251 (4)
H14A 0.175330 0.816570 0.701148 0.030*
H14B 0.291377 0.814993 0.765677 0.030*
C15 0.28730 (12) 0.78963 (9) 0.63259 (12) 0.0217 (3)
H15 0.236081 0.765257 0.580750 0.026*
C16 0.38937 (12) 0.74506 (8) 0.65217 (11) 0.0177 (3)
H16A 0.441114 0.769143 0.702812 0.021*
H16B 0.418255 0.745545 0.598164 0.021*
C17 0.36986 (11) 0.66312 (8) 0.67692 (10) 0.0145 (3)
H17A 0.436898 0.634951 0.690158 0.017*
H17B 0.321797 0.638505 0.624337 0.017*
C18 0.33503 (15) 0.87778 (11) 0.53124 (14) 0.0355 (4)
H18A 0.294890 0.844671 0.483397 0.053*
H18B 0.409455 0.864737 0.543539 0.053*
H18C 0.325097 0.930878 0.511642 0.053*
C19 0.12763 (11) 0.43884 (8) 0.56219 (9) 0.0124 (3)
C20 0.07361 (11) 0.38220 (8) 0.49353 (9) 0.0123 (3)
C21 −0.02914 (11) 0.34673 (8) 0.49334 (10) 0.0159 (3)
H21A −0.085343 0.383654 0.471467 0.024*
H21B −0.029155 0.330987 0.554960 0.024*
H21C −0.040429 0.302236 0.453450 0.024*
C22 0.22276 (11) 0.41636 (8) 0.46271 (9) 0.0117 (3)
C23 0.23216 (11) 0.46484 (8) 0.38289 (9) 0.0123 (3)
C24 0.18603 (11) 0.53442 (8) 0.35623 (10) 0.0158 (3)
H24 0.141328 0.558250 0.388096 0.019*
C25 0.20823 (11) 0.56779 (9) 0.28060 (11) 0.0189 (3)
C26 0.27239 (12) 0.53353 (10) 0.23273 (11) 0.0212 (3)
H26 0.285223 0.557722 0.180869 0.025*
C27 0.31778 (12) 0.46373 (9) 0.26092 (10) 0.0196 (3)
H27 0.362047 0.439791 0.228716 0.023*
C28 0.29774 (11) 0.42925 (8) 0.33682 (9) 0.0138 (3)
C29 0.33843 (11) 0.35584 (8) 0.38287 (10) 0.0144 (3)
H29A 0.412775 0.347934 0.383041 0.017*
H29B 0.296824 0.312047 0.352846 0.017*
C30 0.32551 (11) 0.36684 (8) 0.48025 (9) 0.0118 (3)
C31 0.31641 (12) 0.29247 (8) 0.52930 (10) 0.0166 (3)
H31A 0.260115 0.261062 0.491214 0.020*
H31B 0.296945 0.303725 0.586573 0.020*
C32 0.41931 (12) 0.24756 (9) 0.55019 (11) 0.0196 (3)
H32A 0.411332 0.201096 0.584435 0.023*
H32B 0.435041 0.231742 0.492700 0.023*
C33 0.51027 (12) 0.29466 (9) 0.60523 (11) 0.0219 (3)
H33 0.497643 0.305715 0.665943 0.026*
C34 0.52114 (12) 0.36922 (9) 0.55827 (11) 0.0189 (3)
H34A 0.541834 0.358860 0.501331 0.023*
H34B 0.576778 0.400299 0.597697 0.023*
C35 0.41793 (11) 0.41339 (8) 0.53713 (10) 0.0152 (3)
H35A 0.426159 0.460335 0.503813 0.018*
H35B 0.401738 0.428523 0.594668 0.018*
C36 0.62272 (17) 0.19682 (12) 0.68103 (15) 0.0448 (5)
H36A 0.573730 0.155573 0.657157 0.067*
H36B 0.609719 0.215570 0.737741 0.067*
H36C 0.694655 0.177843 0.692376 0.067*
N1 0.09138 (9) 0.46044 (7) 0.63455 (8) 0.0131 (2)
N2 0.24915 (9) 0.53150 (7) 0.69163 (8) 0.0122 (2)
H2 0.2733 (13) 0.5217 (10) 0.6481 (11) 0.015*
N3 0.21762 (9) 0.56719 (7) 0.82906 (8) 0.0151 (3)
N4 0.21425 (9) 0.45973 (7) 0.54149 (8) 0.0124 (2)
N5 0.12793 (9) 0.36819 (7) 0.43652 (8) 0.0130 (2)
O1 0.29971 (10) 0.86771 (7) 0.61123 (9) 0.0308 (3)
O2 0.60841 (9) 0.25660 (7) 0.61737 (8) 0.0303 (3)

(R,S)/(S,R)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (1) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02290 (9) 0.01996 (9) 0.02374 (9) 0.00478 (6) 0.00824 (7) 0.00669 (6)
Br2 0.02056 (9) 0.02260 (10) 0.04550 (12) 0.00515 (7) 0.00627 (8) 0.01708 (8)
C1 0.0132 (7) 0.0124 (7) 0.0139 (7) 0.0012 (5) 0.0048 (5) −0.0003 (5)
C2 0.0155 (7) 0.0142 (7) 0.0147 (7) 0.0000 (5) 0.0063 (6) −0.0019 (5)
C3 0.0190 (8) 0.0274 (8) 0.0211 (8) −0.0053 (6) 0.0113 (6) −0.0069 (7)
C4 0.0136 (7) 0.0146 (7) 0.0124 (7) −0.0023 (5) 0.0047 (5) −0.0039 (5)
C5 0.0144 (7) 0.0169 (7) 0.0117 (6) −0.0030 (6) 0.0051 (5) −0.0012 (5)
C6 0.0175 (7) 0.0166 (7) 0.0154 (7) −0.0039 (6) 0.0056 (6) −0.0005 (6)
C7 0.0187 (7) 0.0196 (8) 0.0159 (7) 0.0004 (6) 0.0086 (6) 0.0035 (6)
C8 0.0137 (7) 0.0288 (8) 0.0136 (7) −0.0005 (6) 0.0046 (6) 0.0023 (6)
C9 0.0163 (7) 0.0232 (8) 0.0137 (7) −0.0057 (6) 0.0045 (6) −0.0030 (6)
C10 0.0167 (7) 0.0184 (7) 0.0130 (7) −0.0037 (6) 0.0056 (6) −0.0025 (6)
C11 0.0183 (7) 0.0163 (7) 0.0168 (7) −0.0038 (6) 0.0026 (6) −0.0059 (6)
C12 0.0139 (7) 0.0121 (7) 0.0153 (7) −0.0013 (5) 0.0044 (6) −0.0039 (5)
C13 0.0152 (7) 0.0157 (7) 0.0229 (7) 0.0009 (6) 0.0078 (6) −0.0045 (6)
C14 0.0223 (8) 0.0148 (8) 0.0410 (10) 0.0037 (6) 0.0129 (7) −0.0023 (7)
C15 0.0190 (8) 0.0123 (7) 0.0334 (9) 0.0004 (6) 0.0057 (7) 0.0040 (6)
C16 0.0165 (7) 0.0137 (7) 0.0237 (8) −0.0008 (6) 0.0068 (6) 0.0007 (6)
C17 0.0144 (7) 0.0132 (7) 0.0171 (7) 0.0007 (5) 0.0062 (6) −0.0012 (5)
C18 0.0284 (9) 0.0273 (10) 0.0515 (12) 0.0043 (8) 0.0111 (8) 0.0194 (9)
C19 0.0114 (7) 0.0118 (7) 0.0135 (7) −0.0003 (5) 0.0020 (5) 0.0002 (5)
C20 0.0121 (7) 0.0122 (7) 0.0122 (6) −0.0002 (5) 0.0021 (5) 0.0004 (5)
C21 0.0124 (7) 0.0169 (7) 0.0183 (7) −0.0033 (6) 0.0040 (6) −0.0031 (6)
C22 0.0119 (7) 0.0129 (7) 0.0106 (6) −0.0026 (5) 0.0032 (5) −0.0029 (5)
C23 0.0100 (6) 0.0149 (7) 0.0114 (6) −0.0030 (5) 0.0014 (5) −0.0005 (5)
C24 0.0109 (7) 0.0174 (7) 0.0190 (7) −0.0005 (6) 0.0033 (6) −0.0003 (6)
C25 0.0113 (7) 0.0187 (8) 0.0245 (8) −0.0005 (6) 0.0005 (6) 0.0061 (6)
C26 0.0171 (7) 0.0278 (9) 0.0193 (7) −0.0013 (6) 0.0055 (6) 0.0090 (6)
C27 0.0177 (7) 0.0271 (8) 0.0155 (7) 0.0024 (6) 0.0072 (6) 0.0024 (6)
C28 0.0128 (7) 0.0165 (7) 0.0117 (6) −0.0011 (5) 0.0025 (5) −0.0006 (5)
C29 0.0158 (7) 0.0157 (7) 0.0127 (7) 0.0015 (6) 0.0050 (5) −0.0011 (5)
C30 0.0120 (7) 0.0122 (7) 0.0114 (6) −0.0005 (5) 0.0033 (5) −0.0004 (5)
C31 0.0183 (7) 0.0153 (7) 0.0171 (7) −0.0015 (6) 0.0059 (6) 0.0021 (6)
C32 0.0223 (8) 0.0158 (7) 0.0204 (7) 0.0020 (6) 0.0050 (6) 0.0051 (6)
C33 0.0211 (8) 0.0235 (8) 0.0184 (7) 0.0055 (6) −0.0002 (6) 0.0026 (6)
C34 0.0137 (7) 0.0205 (8) 0.0202 (7) −0.0003 (6) −0.0001 (6) −0.0012 (6)
C35 0.0138 (7) 0.0153 (7) 0.0154 (7) −0.0013 (6) 0.0017 (5) −0.0018 (6)
C36 0.0391 (11) 0.0338 (11) 0.0487 (12) 0.0068 (9) −0.0132 (9) 0.0160 (9)
N1 0.0121 (6) 0.0147 (6) 0.0133 (6) −0.0017 (5) 0.0047 (5) −0.0032 (5)
N2 0.0123 (6) 0.0135 (6) 0.0119 (6) −0.0016 (5) 0.0050 (5) −0.0042 (5)
N3 0.0166 (6) 0.0160 (6) 0.0144 (6) −0.0010 (5) 0.0068 (5) −0.0025 (5)
N4 0.0129 (6) 0.0133 (6) 0.0119 (6) −0.0009 (5) 0.0046 (5) −0.0021 (5)
N5 0.0112 (6) 0.0140 (6) 0.0130 (6) −0.0023 (5) 0.0016 (5) −0.0003 (5)
O1 0.0299 (6) 0.0148 (6) 0.0502 (8) 0.0034 (5) 0.0149 (6) 0.0090 (5)
O2 0.0235 (6) 0.0282 (7) 0.0333 (7) 0.0095 (5) −0.0042 (5) 0.0053 (5)

(R,S)/(S,R)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (1) . Geometric parameters (Å, º)

Br1—C7 1.9071 (16) C19—C20 1.4925 (19)
Br2—C25 1.9005 (15) C19—N1 1.3616 (18)
C1—C2 1.4940 (19) C19—N4 1.3115 (18)
C1—N1 1.3327 (19) C20—C21 1.4917 (19)
C1—N2 1.3250 (19) C20—N5 1.2809 (19)
C2—C3 1.485 (2) C21—H21A 0.9800
C2—N3 1.2818 (19) C21—H21B 0.9800
C3—H3A 0.9800 C21—H21C 0.9800
C3—H3B 0.9800 C22—C23 1.5169 (19)
C3—H3C 0.9800 C22—C30 1.5775 (19)
C4—C5 1.514 (2) C22—N4 1.4513 (17)
C4—C12 1.5697 (19) C22—N5 1.4816 (17)
C4—N2 1.4471 (18) C23—C24 1.383 (2)
C4—N3 1.4770 (17) C23—C28 1.392 (2)
C5—C6 1.379 (2) C24—H24 0.9500
C5—C10 1.390 (2) C24—C25 1.389 (2)
C6—H6 0.9500 C25—C26 1.386 (2)
C6—C7 1.387 (2) C26—H26 0.9500
C7—C8 1.389 (2) C26—C27 1.387 (2)
C8—H8 0.9500 C27—H27 0.9500
C8—C9 1.393 (2) C27—C28 1.390 (2)
C9—H9 0.9500 C28—C29 1.504 (2)
C9—C10 1.392 (2) C29—H29A 0.9900
C10—C11 1.512 (2) C29—H29B 0.9900
C11—H11A 0.9900 C29—C30 1.5489 (19)
C11—H11B 0.9900 C30—C31 1.5271 (19)
C11—C12 1.556 (2) C30—C35 1.5441 (19)
C12—C13 1.530 (2) C31—H31A 0.9900
C12—C17 1.545 (2) C31—H31B 0.9900
C13—H13A 0.9900 C31—C32 1.534 (2)
C13—H13B 0.9900 C32—H32A 0.9900
C13—C14 1.528 (2) C32—H32B 0.9900
C14—H14A 0.9900 C32—C33 1.527 (2)
C14—H14B 0.9900 C33—H33 1.0000
C14—C15 1.516 (2) C33—C34 1.519 (2)
C15—H15 1.0000 C33—O2 1.4284 (19)
C15—C16 1.522 (2) C34—H34A 0.9900
C15—O1 1.4311 (19) C34—H34B 0.9900
C16—H16A 0.9900 C34—C35 1.531 (2)
C16—H16B 0.9900 C35—H35A 0.9900
C16—C17 1.529 (2) C35—H35B 0.9900
C17—H17A 0.9900 C36—H36A 0.9800
C17—H17B 0.9900 C36—H36B 0.9800
C18—H18A 0.9800 C36—H36C 0.9800
C18—H18B 0.9800 C36—O2 1.412 (2)
C18—H18C 0.9800 N2—H2 0.823 (14)
C18—O1 1.421 (2)
N1—C1—C2 125.17 (13) N5—C20—C21 125.43 (13)
N2—C1—C2 105.82 (12) C20—C21—H21A 109.5
N2—C1—N1 128.98 (13) C20—C21—H21B 109.5
C3—C2—C1 123.12 (13) C20—C21—H21C 109.5
N3—C2—C1 111.32 (12) H21A—C21—H21B 109.5
N3—C2—C3 125.56 (13) H21A—C21—H21C 109.5
C2—C3—H3A 109.5 H21B—C21—H21C 109.5
C2—C3—H3B 109.5 C23—C22—C30 102.04 (11)
C2—C3—H3C 109.5 N4—C22—C23 114.04 (12)
H3A—C3—H3B 109.5 N4—C22—C30 112.98 (11)
H3A—C3—H3C 109.5 N4—C22—N5 106.87 (11)
H3B—C3—H3C 109.5 N5—C22—C23 109.73 (11)
C5—C4—C12 102.45 (11) N5—C22—C30 111.22 (11)
N2—C4—C5 114.25 (12) C24—C23—C22 128.04 (13)
N2—C4—C12 114.48 (12) C24—C23—C28 122.24 (13)
N2—C4—N3 105.19 (11) C28—C23—C22 109.71 (12)
N3—C4—C5 109.74 (11) C23—C24—H24 121.6
N3—C4—C12 110.81 (11) C23—C24—C25 116.76 (14)
C6—C5—C4 127.50 (13) C25—C24—H24 121.6
C6—C5—C10 122.50 (14) C24—C25—Br2 118.99 (12)
C10—C5—C4 109.99 (13) C26—C25—Br2 118.59 (12)
C5—C6—H6 121.3 C26—C25—C24 122.42 (14)
C5—C6—C7 117.34 (14) C25—C26—H26 120.2
C7—C6—H6 121.3 C25—C26—C27 119.68 (14)
C6—C7—Br1 118.08 (12) C27—C26—H26 120.2
C6—C7—C8 121.94 (15) C26—C27—H27 120.4
C8—C7—Br1 119.97 (12) C26—C27—C28 119.21 (14)
C7—C8—H8 120.3 C28—C27—H27 120.4
C7—C8—C9 119.48 (14) C23—C28—C29 110.20 (12)
C9—C8—H8 120.3 C27—C28—C23 119.68 (14)
C8—C9—H9 120.2 C27—C28—C29 130.11 (13)
C10—C9—C8 119.57 (14) C28—C29—H29A 111.1
C10—C9—H9 120.2 C28—C29—H29B 111.1
C5—C10—C9 119.10 (14) C28—C29—C30 103.23 (11)
C5—C10—C11 109.99 (13) H29A—C29—H29B 109.1
C9—C10—C11 130.91 (14) C30—C29—H29A 111.1
C10—C11—H11A 111.0 C30—C29—H29B 111.1
C10—C11—H11B 111.0 C29—C30—C22 101.61 (11)
C10—C11—C12 103.59 (11) C31—C30—C22 112.81 (11)
H11A—C11—H11B 109.0 C31—C30—C29 113.80 (12)
C12—C11—H11A 111.0 C31—C30—C35 109.08 (12)
C12—C11—H11B 111.0 C35—C30—C22 109.10 (11)
C11—C12—C4 101.86 (11) C35—C30—C29 110.20 (11)
C13—C12—C4 110.97 (12) C30—C31—H31A 109.3
C13—C12—C11 114.79 (12) C30—C31—H31B 109.3
C13—C12—C17 109.50 (12) C30—C31—C32 111.72 (12)
C17—C12—C4 109.15 (11) H31A—C31—H31B 107.9
C17—C12—C11 110.28 (12) C32—C31—H31A 109.3
C12—C13—H13A 108.9 C32—C31—H31B 109.3
C12—C13—H13B 108.9 C31—C32—H32A 109.3
H13A—C13—H13B 107.7 C31—C32—H32B 109.3
C14—C13—C12 113.34 (12) H32A—C32—H32B 108.0
C14—C13—H13A 108.9 C33—C32—C31 111.61 (13)
C14—C13—H13B 108.9 C33—C32—H32A 109.3
C13—C14—H14A 109.3 C33—C32—H32B 109.3
C13—C14—H14B 109.3 C32—C33—H33 109.0
H14A—C14—H14B 107.9 C34—C33—C32 111.30 (12)
C15—C14—C13 111.74 (13) C34—C33—H33 109.0
C15—C14—H14A 109.3 O2—C33—C32 112.32 (13)
C15—C14—H14B 109.3 O2—C33—H33 109.0
C14—C15—H15 109.0 O2—C33—C34 106.11 (13)
C14—C15—C16 109.82 (13) C33—C34—H34A 109.5
C16—C15—H15 109.0 C33—C34—H34B 109.5
O1—C15—C14 106.87 (13) C33—C34—C35 110.78 (13)
O1—C15—H15 109.0 H34A—C34—H34B 108.1
O1—C15—C16 113.19 (13) C35—C34—H34A 109.5
C15—C16—H16A 109.7 C35—C34—H34B 109.5
C15—C16—H16B 109.7 C30—C35—H35A 109.1
C15—C16—C17 109.84 (12) C30—C35—H35B 109.1
H16A—C16—H16B 108.2 C34—C35—C30 112.68 (12)
C17—C16—H16A 109.7 C34—C35—H35A 109.1
C17—C16—H16B 109.7 C34—C35—H35B 109.1
C12—C17—H17A 109.0 H35A—C35—H35B 107.8
C12—C17—H17B 109.0 H36A—C36—H36B 109.5
C16—C17—C12 112.81 (12) H36A—C36—H36C 109.5
C16—C17—H17A 109.0 H36B—C36—H36C 109.5
C16—C17—H17B 109.0 O2—C36—H36A 109.5
H17A—C17—H17B 107.8 O2—C36—H36B 109.5
H18A—C18—H18B 109.5 O2—C36—H36C 109.5
H18A—C18—H18C 109.5 C1—N1—C19 114.92 (12)
H18B—C18—H18C 109.5 C1—N2—C4 110.02 (12)
O1—C18—H18A 109.5 C1—N2—H2 119.8 (12)
O1—C18—H18B 109.5 C4—N2—H2 130.1 (12)
O1—C18—H18C 109.5 C2—N3—C4 107.61 (11)
N1—C19—C20 123.54 (12) C19—N4—C22 107.66 (11)
N4—C19—C20 108.12 (12) C20—N5—C22 106.51 (11)
N4—C19—N1 128.29 (13) C18—O1—C15 113.31 (14)
C21—C20—C19 123.79 (12) C36—O2—C33 113.60 (15)
N5—C20—C19 110.78 (12)
Br1—C7—C8—C9 178.42 (11) C24—C23—C28—C29 178.36 (13)
Br2—C25—C26—C27 179.54 (12) C24—C25—C26—C27 −0.7 (2)
C1—C2—N3—C4 1.52 (16) C25—C26—C27—C28 0.2 (2)
C2—C1—N1—C19 −174.58 (13) C26—C27—C28—C23 0.4 (2)
C2—C1—N2—C4 1.35 (16) C26—C27—C28—C29 −178.16 (15)
C3—C2—N3—C4 −177.80 (14) C27—C28—C29—C30 157.17 (15)
C4—C5—C6—C7 −177.07 (13) C28—C23—C24—C25 −0.1 (2)
C4—C5—C10—C9 176.23 (13) C28—C29—C30—C22 33.89 (13)
C4—C5—C10—C11 −3.85 (16) C28—C29—C30—C31 155.44 (12)
C4—C12—C13—C14 −171.17 (13) C28—C29—C30—C35 −81.68 (14)
C4—C12—C17—C16 174.63 (12) C29—C30—C31—C32 68.08 (16)
C5—C4—C12—C11 −33.48 (13) C29—C30—C35—C34 −69.81 (15)
C5—C4—C12—C13 −156.11 (12) C30—C22—C23—C24 −156.70 (14)
C5—C4—C12—C17 83.12 (13) C30—C22—C23—C28 22.73 (14)
C5—C4—N2—C1 119.89 (13) C30—C22—N4—C19 −120.81 (13)
C5—C4—N3—C2 −124.03 (13) C30—C22—N5—C20 123.30 (12)
C5—C6—C7—Br1 −179.74 (10) C30—C31—C32—C33 56.31 (17)
C5—C6—C7—C8 0.6 (2) C31—C30—C35—C34 55.79 (16)
C5—C10—C11—C12 −18.25 (16) C31—C32—C33—C34 −55.19 (17)
C6—C5—C10—C9 −2.8 (2) C31—C32—C33—O2 −174.01 (12)
C6—C5—C10—C11 177.14 (13) C32—C33—C34—C35 54.55 (17)
C6—C7—C8—C9 −2.0 (2) C32—C33—O2—C36 −74.54 (18)
C7—C8—C9—C10 0.9 (2) C33—C34—C35—C30 −55.86 (16)
C8—C9—C10—C5 1.4 (2) C34—C33—O2—C36 163.64 (15)
C8—C9—C10—C11 −178.53 (15) C35—C30—C31—C32 −55.40 (16)
C9—C10—C11—C12 161.66 (15) N1—C1—C2—C3 −4.1 (2)
C10—C5—C6—C7 1.8 (2) N1—C1—C2—N3 176.53 (14)
C10—C11—C12—C4 31.57 (14) N1—C1—N2—C4 −176.97 (14)
C10—C11—C12—C13 151.55 (12) N1—C19—C20—C21 4.0 (2)
C10—C11—C12—C17 −84.21 (14) N1—C19—C20—N5 −175.33 (13)
C11—C12—C13—C14 74.04 (17) N1—C19—N4—C22 175.04 (14)
C11—C12—C17—C16 −74.26 (15) N2—C1—C2—C3 177.46 (14)
C12—C4—C5—C6 −157.02 (14) N2—C1—C2—N3 −1.88 (17)
C12—C4—C5—C10 24.03 (15) N2—C1—N1—C19 3.4 (2)
C12—C4—N2—C1 −122.41 (13) N2—C4—C5—C6 −32.6 (2)
C12—C4—N3—C2 123.55 (13) N2—C4—C5—C10 148.42 (12)
C12—C13—C14—C15 54.37 (18) N2—C4—C12—C11 −157.73 (12)
C13—C12—C17—C16 52.97 (16) N2—C4—C12—C13 79.64 (15)
C13—C14—C15—C16 −57.49 (18) N2—C4—C12—C17 −41.12 (16)
C13—C14—C15—O1 179.37 (13) N2—C4—N3—C2 −0.68 (15)
C14—C15—C16—C17 59.04 (17) N3—C4—C5—C6 85.21 (17)
C14—C15—O1—C18 −176.19 (14) N3—C4—C5—C10 −93.74 (14)
C15—C16—C17—C12 −58.08 (17) N3—C4—C12—C11 83.52 (13)
C16—C15—O1—C18 62.79 (19) N3—C4—C12—C13 −39.11 (16)
C17—C12—C13—C14 −50.61 (17) N3—C4—C12—C17 −159.88 (11)
C19—C20—N5—C22 −0.97 (15) N3—C4—N2—C1 −0.52 (15)
C20—C19—N1—C1 171.64 (13) N4—C19—C20—C21 −178.47 (13)
C20—C19—N4—C22 −2.37 (15) N4—C19—C20—N5 2.22 (17)
C21—C20—N5—C22 179.73 (13) N4—C19—N1—C1 −5.4 (2)
C22—C23—C24—C25 179.31 (13) N4—C22—C23—C24 −34.6 (2)
C22—C23—C28—C27 −179.95 (13) N4—C22—C23—C28 144.88 (12)
C22—C23—C28—C29 −1.11 (16) N4—C22—C30—C29 −157.12 (11)
C22—C30—C31—C32 −176.82 (11) N4—C22—C30—C31 80.65 (15)
C22—C30—C35—C34 179.43 (12) N4—C22—C30—C35 −40.75 (15)
C23—C22—C30—C29 −34.24 (13) N4—C22—N5—C20 −0.44 (15)
C23—C22—C30—C31 −156.47 (11) N5—C22—C23—C24 85.28 (17)
C23—C22—C30—C35 82.13 (13) N5—C22—C23—C28 −95.29 (14)
C23—C22—N4—C19 123.27 (13) N5—C22—C30—C29 82.70 (13)
C23—C22—N5—C20 −124.56 (13) N5—C22—C30—C31 −39.53 (15)
C23—C24—C25—Br2 −179.61 (10) N5—C22—C30—C35 −160.93 (11)
C23—C24—C25—C26 0.7 (2) N5—C22—N4—C19 1.84 (15)
C23—C28—C29—C30 −21.51 (15) O1—C15—C16—C17 178.38 (13)
C24—C23—C28—C27 −0.5 (2) O2—C33—C34—C35 177.03 (12)

(R,S)/(S,R)-(1r,1'S,4S,E)-6'-Bromo-N-[(1r,1'S,4S)-6'-bromo-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol-5''-yl]-4-methoxy-4''-methyl-3'H-dispiro[cyclohexane-1,2'-indene-1',2''-imidazol]-5''-imine (1) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···N4 0.82 (1) 1.95 (2) 2.5549 (16) 129 (2)

References

  1. Cahn, R. S., Ingold, C. K. & Prelog, V. (1966). Angew. Chem. Int. Ed. Engl. 5, 385–415.
  2. Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  5. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  6. Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Neu-Isenburg, Germany.
  7. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  8. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  9. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 2, 1, New_Global_Publ_Block. DOI: 10.1107/S205698902100668X/dj2028sup1.cif

e-77-01311-sup1.cif (6.7MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S205698902100668X/dj20281sup2.hkl

e-77-01311-1sup2.hkl (499.7KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S205698902100668X/dj20282sup3.hkl

e-77-01311-2sup3.hkl (482.5KB, hkl)

CCDC references: 2092542, 2092541

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES