Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Nov 18;77(Pt 12):1197–1202. doi: 10.1107/S2056989021011907

Crystal structure of a TbIII–CuII glycine­hydroxamate 15-metallacrown-5 sulfate complex

Anna V Pavlishchuk a,b,*, Inna V Vasylenko b, Matthias Zeller c, Anthony W Addison d
PMCID: PMC8647751  PMID: 34925881

The metallamacrocyclic core of the discrete hexa­nuclear 15-metallacrown-5 complex [TbCu5(GlyHA)5(H2O)6.5(SO4)]2(SO4)·6H2O contains five copper(II) ions linked by five glycine­hydroxamate (GlyHA2–) dianions with a square-anti­prismatically octa­coordinate terbium(III) ion in the centre. The positive charge of the 15-metallacrown-5 [TbCu5(GlyHA)5]3+ core is compensated by bidentate and non-coordinated sulfate anions.

Keywords: crystal structure, terbium(III), copper(II), metallamacrocycle, 15-metallacrown-5

Abstract

The core of the title complex, bis­[hexa­aqua­hemi­aqua­penta­kis­(μ3-glycine­hydroxamato)sulfato­penta­copper(II)terbium(III)] sulfate hexa­hydrate, [TbCu5(SO4)(GlyHA)5(H2O)6.5]2(SO4)·6H2O (1), which belongs to the 15-metalla­crown-5 family, consists of five glycine­hydroxamate dianions (GlyHA2−; C2H4N2O2) and five copper(II) ions linked together forming a metallamacrocyclic moiety. The terbium(III) ion is connected to the centre of the metallamacrocycle through five hydroxamate oxygen atoms. The coordination environment of the Tb3+ ion is completed to an octa­coordination level by oxygen atoms of a bidentate sulfate and an apically coordinated water mol­ecule, while the copper(II) atoms are square-planar, penta- or hexa­coordinate due to the apical coordination of water mol­ecules. Continuous shape calculations indicate that the coordination polyhedron of the Tb3+ ion in 1 is best described as square anti­prismatic. The positive charge of each pair of [TbCu5(GlyHA)5(H2O)6.5(SO4)]2 2+ fragments is compensated by a non-coordinated sulfate anion, which is located on an inversion center with 1:1 disordered oxygen atoms. Complex 1 is isomorphous with the previously reported compounds [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4), where Ln III = Pr, Nd, Sm, Eu, Gd, Dy and Ho.

Chemical context

Numerous research studies devoted to polynuclear 3d–4f assemblies have been stimulated by their non-trivial lumin­escence properties (Jankolovits et al., 2011; Maity et al., 2015), single-mol­ecule magnet (SMM) behaviour (Dhers et al., 2016; Zangana et al., 2014) and their significant magnetocaloric effect (Pavlishchuk & Pavlishchuk, 2020; Zheng et al., 2014). The 15-metallacrown-5 complexes are 3d–4f metallamacrocyclic assemblies, which can be easily obtained from one-step reactions between an α-substituted hydroxamic acid and the corresponding salts of transition metals and lanthanides (Stemmler et al., 1999; Pavlishchuk et al., 2011, 2019). Compounds bearing 15-metallacrown-5 {LnCu5}3+ units have demonstrated the ability to serve as sensors (Zabrodina et al., 2018), can absorb and adsorb various small mol­ecules (Lim et al., 2010; Pavlishchuk et al., 2014; Ostrowska et al., 2016) and display SMM behaviour (Wang et al., 2019, 2021; Zaleski et al., 2006; Wu et al., 2021). Taking into account the fact that 15-metallacrowns-5 are also suitable building blocks for the generation of porous coordination polymers and discrete assemblies (Pavlishchuk et al., 2017a ,b , 2018), the synthesis of new examples of this class of metallamacrocyclic assemblies and studies of their structural features are of particular inter­est. Herein we report the crystal structure of the new 15-metallacrown-5 complex [TbCu5(GlyHA)5(H2O)6.5(SO4)]2 (SO4)·13(H2O) (1), which complements the previously reported series of isomorphous metallamacrocycles with Pr, Nd, Sm, Eu, Gd, Dy and Ho ions at their centres. graphic file with name e-77-01197-scheme1.jpg

Structural commentary

Complex 1 crystallizes in the space group P Inline graphic and is isostructural with the previously reported complexes [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4), where GlyHA2− is the dianion of glycine­hydroxamic acid and Ln III = Pr, Nd, Sm, Eu, Gd, Dy and Ho (Pavlishchuk et al., 2011). Each unit cell in 1 contains two [TbCu5(GlyHA)5(SO4)(H2O)6.5]+ 15-metallacrown-5 cations related by an inversion center, one non-coordinated sulfate anion for charge-balance and non-coord­inated water mol­ecules (Figs. 1 and 2).

Figure 1.

Figure 1

The unit cell of complex 1 containing two [TbCu5(GlyHA)5(SO4)(H2O)6.5]+ metallacrown cations and non-coordinated sulfate anions (located on a inversion center with O atoms 1:1 disordered). Non-coordinated water mol­ecules are omitted for clarity of presentation.

Figure 2.

Figure 2

Structure of the [TbCu5(GlyHA)5(SO4)(H2O)6.5]+ metallacrown cations in 1. The dashed lines indicate the disorder of the non-coordinated sulfate anion. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (i) x, y, z + 1.]

The core of the [TbCu5(GlyHA)5(SO4)(H2O)6.5]+ complex cation in 1 is constructed from five copper(II) ions linked by five bridging glycine­hydroxamate dianions (GlyHA2−) and a terbium(III) ion bound at the centre of the metallocycle (Fig. 1). The copper(II) equatorial coordination environment in 1 is formed by two oxygen atoms (from a carboxyl­ate and a deprotonated hydroxamate group) and two nitro­gen atoms (from an amine and a deprotonated hydroxamate). The equatorial Cu—Oeq and Cu—Neq distances range from 1.928 (3) to 1.969 (3) Å and 1.890 (4) to 2.018 (4) Å (Table 1), respectively, which is typical of amino­hydroxamate 15-metallacrown-5 complexes (Stemmler et al., 1999; Pavlishchuk et al., 2011; Katkova et al., 2015a ; Meng et al., 2016). As a result of the apical coordination of water mol­ecules to copper(II) ions, Cu1 has distorted square-bipyramidal coordination [Cu1—O20 = 2.601 (4) Å and Cu1—O21 = 2.736 (4) Å], while Cu3, Cu4 and Cu5 are in square-pyramidal environments [Cu3—O16 = 2.508 (4) Å, Cu4—O17 = 2.481 (4) Å and Cu5—O18 = 2.379 (4) with τ-values (Addison et al., 1984) ranging from 0.07 to 0.13]. As a result of the disorder of the O19 water mol­ecule between two symmetry-equivalent positions with occupancy factors of 0.5, 50% of the Cu2 atoms in 1 have square-planar coordination environments, while the other 50% possess a square-pyramidal coordination [Cu2—O19 = 2.409 (10), τ = 0.022 (Addison et al., 1984)]. The terbium(III) ions at the centres of the [Cu5(GlyHA)5] metallamacrocyclic cores in 1 are bound by five hydroxamate oxygen atoms. The Tb—Oeq bond lengths are typical for 15-metallacrown-5 complexes and range from 2.370 (3) to 2.430 (3) Å (Stemmler et al., 1999; Pavlishchuk et al., 2011; Katkova et al., 2015a ; Meng et al., 2016).

Table 1. Selected bond lengths (Å).

Cu1—N3 1.915 (4) Cu4—O8 1.940 (3)
Cu1—O1 1.928 (3) Cu4—O7 1.947 (3)
Cu1—O2 1.969 (3) Cu4—N10 2.012 (4)
Cu1—N4 1.991 (4) Cu4—O17 2.481 (4)
Cu1—O20 2.601 (4) Cu5—N1 1.890 (4)
Cu1—O21 2.736 (4) Cu5—O9 1.943 (3)
Cu2—N5 1.900 (4) Cu5—O10 1.946 (3)
Cu2—O3 1.928 (3) Cu5—N2 2.003 (4)
Cu2—O4 1.936 (3) Cu5—O18 2.379 (4)
Cu2—N6 2.018 (4) Tb1—O9 2.370 (3)
Cu2—O19 2.409 (10) Tb1—O1 2.372 (3)
Cu3—N7 1.904 (4) Tb1—O15 2.383 (3)
Cu3—O6 1.944 (3) Tb1—O3 2.386 (3)
Cu3—O5 1.949 (3) Tb1—O7 2.411 (3)
Cu3—N8 2.014 (4) Tb1—O5 2.430 (3)
Cu3—O16 2.508 (4) Tb1—O12 2.436 (3)
Cu4—N9 1.894 (4) Tb1—O11 2.451 (3)

The coordination environment of the Tb3+ ion is completed to an octa­coordination level via the two oxygen atoms O11 [Tb1—O11 = 2.451 (3) Å] and O12 [Tb1—O12 = 2.436 (3) Å] from the bidentate sulfate anions and O15 [Tb1—O15 = 2.383 (3) Å] from a water mol­ecule coordinated in the trans-position opposite to the SO4 2− ion. An analysis of selected structural parameters for complex 1 and those of isomorphous compounds with other Ln III ions (Table 2) reveals the influence of the lanthanide contraction. Similar behaviour was found in other series of lanthanide(III) containing metallamacrocycles (Pavlishchuk et al., 2011; Zaleski et al., 2011). According to Shape 2.1 (Casanova et al., 2005) calculations (Fig. 3, Table 3), the coordination geometry of the TbIII ion in 1 is a square anti­prism (D 4d ), which is of particular inter­est with respect to potential generation of lanthanide(III)-containing SMMs (Liu et al., 2018). The deviations from an idealized square-anti­prismatic geometry in the [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4) complexes decrease with reduction of the deviation of the Ln III ion from the mean plane of the metallacrown core, which parallels the ionic radii of the Ln III ions (Table 3). It may be noted that, in the case of a series of related 15-metallacrown-5 complexes with octa­coordinate Ln III ions containing bidentate carbonates or acetates instead of sulfates, the coordination of the lanthanide ions is triangular dodeca­hedral (D 2d ) (Table 3).

Table 2. Comparison of the structural characteristics (Å, °) of {LnCu5}3+ 15-metallacrown-5 complexes with octa­coordinate Ln III ions and various bidentate anions.

Complex a Cu—O/Neq Ln—Oeq Ln—Oaq Ln⋯Cu Cu⋯Cu Deviation of Ln III from Cu5 plane LnO8 geometry b
Pr—SO4 1.898 (2)–2.013 (2) 2.4247 (18)–2.4716 (18) 2.495 (2)–2.528 (2) 3.862 (3)–3.923 (2) 4.530 (2)–4.604 (2) 0.459 SAPR-8
Nd—SO4 1.898 (2)–2.0156 (19) 2.4145 (16)–2.4642 (16) 2.4787 (18)–2.5108 (17) 3.862 (3)–3.915 (4) 4.524 (4)–4.598 (5) 0.452 SAPR-8
Sm—SO4 1.900 (4)–2.015 (4) 2.398 (3) −2.450 (3) 2.441 (4)–2.484 (4) 3.8539 (9)–3.9083 (8) 4.518 (1)–4.592 (1) 0.439 SAPR-8
Eu—SO4 1.896 (3)–2.013 (3) 2.389 (3)–2.437 (3) 2.431 (3)–2.467 (3) 3.844 (7)–3.899 (8) 4.504 (8)–4.585 (9) 0.439 SAPR-8
Eu—CO3 1.886 (14)–2.022 (13) 2.406 (11)–2.493 (11) 2.369 (13)–2.392 (15) 3.890 (2)–3.911 (3) 4.575 (3)–4.589 (3) 0.351 TDD-8
Eu-OAc 1.902 (3)–2.041 (2) 2.440 (4)–2.515 (2) 2.4057 (18)–2.443 (2) 3.8517 (4)–3.9049 (4) 4.5664 (5)–4.6074 (4) 0.469 TDD-8
Gd—SO4 1.892 (3)–2.014 (3) 2.378 (3)–2.434 (3) 2.398 (3)–2.452 (3) 3.838 (7)–3.897 (9) 4.501 (8)–4.578 (11) 0.430 SAPR-8
Gd—CO3 1.898 (2)–2.022 (2) 2.381 (2)–2.484 (2) 2.288 (17)–2.396 (10) 3.8699 (5)–3.9097 (5) 4.5677 (7)–4.5846 (7) 0.337 TDD-8
Gd-OAc 1.890 (12)–2.041 (11) 2.393 (3)–2.438 (9) 2.426 (10)–2.512 (10) 3.845 (2)–3.897 (2) 4.562 (2)–4.602 (2) 0.458 TDD-8
Tb—SO4 1.890 (4)–2.018 (4) 2.370 (3)–2.430 (3) 2.383 (3)–2.451 (3) 3.8398 (8)–3.8944 (8) 4.501 (1)–4.577 (1) 0.427 SAPR-8
Tb-OAc 1.889 (11)–2.036 (11) 2.383 (9)–2.431 (9) 2.409 (10)–2.488 (10) 3.840 (2)–3.896 (2) 4.562 (2)–4.598 (2) 0.445 TDD-8
Dy—SO4 1.8908 (18)–2.0206 (19) 2.3640 (15) −2.4234 (15) 2.3665 (17)–2.4334 (17) 3.834 (2)–3.889 (2) 4.493 (2)–4.573 (2) 0.424 SAPR-8
Dy—CO3 1.898 (3)–2.022 (3) 2.382 (3)–2.469 (3) 2.27 (2)–2.380 (8) 3.8715 (5)–3.9016 (6) 4.5645 (7)–4.5797 (8) 0.354 TDD-8
Ho—SO4 1.887 (3)–2.016 (3) 2.356 (2)–2.416 (2) 2.357 (2)–2.417 (2) 3.827 (2)–3.884 (2) 4.485 (2)–4.565 (2) 0.422 SAPR-8
Ho—CO3 1.898 (2)–2.022 (2) 2.374 (2)–2.475 (2) 2.30 (3)–2.374 (12) 3.8670 (5)–3.9021 (5) 4.5583 (7)–4.5808 (7) 0.330 TDD-8

Notes: (a) Complex Tb—SO4 is 1; Ln-SO4 correspond to the [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4) series with Ln = Pr, Nd, Sm, Eu, Gd, Dy and Ho described in (Pavlishchuk et al., 2011); Ln-CO3 are [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5] with Ln = Eu, Gd, Dy and Ho described in Pavlishchuk et al. (2019) and Stemmler et al. (1999); Ln-OAc are [LnCu5(GlyHA)5(OAc)(H2O)5](NO3)2 Ln = Eu, Gd and Tb described in Katkova et al. (2015a ) and Meng et al. (2016). (b) LnO8 geometries: SAPR-8 = square anti­prism (D4d) and TDD-8 = triangular dodeca­hedron (D 2d ).

Figure 3.

Figure 3

The TbIII coordination sphere geometry in 1.

Table 3. Continuous shape calculations for octa­coordinated Ln 3+ ions in 1 obtained with Shape 2.1 software (Casanova et al., 2005).

  OP-8 HPY-8 HBPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBPY-8
Pr–SO4 30.846 22.755 15.952 11.561 2.215 2.397 13.029 25.482
Nd–SO4 30.677 22.888 15.968 11.587 2.141 2.364 13.033 25.516
Sm–SO4 30.387 22.903 15.951 11.562 2.020 2.311 13.013 25.752
Eu–SO4 30.516 23.164 16.270 11.783 1.952 2.363 13.190 25.864
Gd–SO4 30.465 23.110 16.032 11.570 1.907 2.269 13.151 26.121
Tb–SO4 30.381 23.117 16.159 11.666 1.854 2.322 13.140 26.276
Dy–SO4 30.357 23.195 16.112 11.603 1.799 2.254 13.168 26.433
Ho–SO4 30.272 23.212 16.095 11.588 1.761 2.247 13.186 26.496

Octa­coordinated ions: OP-8 = octa­gon (D 8h ); HPY-8 = hepta­gonal pyramid (C 7v ); HBPY-8 = hexa­gonal bipyramid (D 6h ); CU-8 = cube (O h ); SAPR-8 = square anti­prism (D 4d ); TDD-8 = triangular dodeca­hedron (D 2d ); JGBF-8 = Johnson gyrobifastigium J26 (D 2d ); JETBPY-8 = Johnson elongated triangular bipyramid J14 (D 3h ).

The Cu⋯Cu and Ln⋯Cu separations for complex 1 range from 4.501 (1) to 4.577 (1) Å and 3.8398 (8) to 3.8944 (8) Å, respectively, and are typical for {LnCu5}3+ metallacrowns (Stemmler et al., 1999; Pavlishchuk et al., 2011; Katkova et al., 2015a ; Meng et al., 2016). The Cu—O, Cu—N and Cu⋯Cu distances do not vary significantly amongst metallamacrocycles with different bidentate counter-anions (Table 2). The metallacrown moiety in 1 is close to planar, the deviation of TbIII ions from the mean plane Cu1–Cu5 being 0.4270 (4) Å. The Ln—O distances, Ln—Cu separations and deviations of the Ln III ions from the Cu5 planes of the metallamacrocycles trend with the lanthanide contraction in all members of the isomorphous [LnCu5(GlyHA)5]3+ series. However, there are some minor differences in the observed values for a given Ln III ion, depending on the coordinated bidentate counter-anion, which is likely associated with the different planarities of the {LnCu5}3+ cores (Table 2).

Supra­molecular features

The [LnCu5(GlyHA)5]3+ cations in complex 1 are non-oligomerized, which is typical for 15-metallacrown-5 complexes. The water apical to TbIII in 1 (O15) is involved in the formation of intra­molecular hydrogen bonds (O15—H15A⋯O21 and O15—H15B⋯O16) with apically coordinated water mol­ecules O16 and O21 on copper(II) ions Cu3 and Cu1, respectively. Intra­molecular hydrogen bonds in 1 are also formed between the bidentate sulfate and apically coord­inated water mol­ecules O17, O18 and O20 (O17—H17A⋯O12, O18—H18B⋯O14 and O20—H20B⋯O11) on copper(II) ions Cu4, Cu5 and Cu1. An extended system of inter­molecular hydrogen bonds [N2—H2A⋯O15iii, N8—H8B⋯O12vi (SO4), N10—H10A⋯O20i, O10iiii⋯H21B—O21, O6vi⋯H17B—O17, O21—H21A⋯O18iv, O16—H16A⋯O17iv] links adjacent [TbCu5(GlyHA)5(H2O)6.5(SO4)]+ cations and non-coordinated sulfate anions [N4—H4A⋯O27iv(SO4), O18—H18A⋯O27(SO4), N4—H4A⋯O25x(SO4) and O20—H20A⋯O25(SO4)]. Non-coordinated water mol­ecules in 1 are linked by hydrogen bonds with carbonyl oxygen and amine nitro­gen atoms in the glycine­hydroxamate unit from the metallacrown core (O4 i ⋯H23A—O23, O8⋯H24B—O24, N6—H6B⋯O24vi, N8—H8A⋯O23, N10—H10B⋯O22viii), apically coordinated water mol­ecules (O16—H16B⋯O22, O19—H19A⋯O24 vii , O19–-H19B⋯O24 vi ) or bidentate sulfate (O11i⋯H24A-–O24 and O13ii⋯H23B—O23). Hydrogen-bond parameters and symmetry codes are given in Table 4.

Table 4. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O24—H24B⋯O8 0.84 (2) 2.01 (3) 2.807 (5) 159 (7)
O24—H24A⋯O11i 0.84 (2) 2.21 (3) 3.015 (5) 162 (7)
O23—H23B⋯O13ii 0.85 (2) 2.02 (3) 2.853 (5) 166 (6)
O23—H23A⋯O4i 0.84 (2) 1.89 (2) 2.734 (5) 176 (7)
O22—H22B⋯O23 0.84 (2) 1.89 (3) 2.701 (6) 162 (8)
O22—H22A⋯O26iii 0.84 (2) 2.18 (4) 2.968 (9) 155 (8)
O22—H22A⋯O28ii 0.84 (2) 1.92 (3) 2.733 (9) 161 (8)
O21—H21B⋯O10iii 0.83 (2) 1.91 (3) 2.728 (5) 165 (8)
O21—H21A⋯O18iv 0.84 (2) 1.94 (3) 2.765 (5) 167 (7)
O20—H20B⋯O11 0.83 (2) 2.14 (3) 2.960 (5) 168 (7)
O20—H20A⋯O26v 0.83 (2) 2.09 (3) 2.916 (9) 170 (7)
O20—H20A⋯O25 0.83 (2) 2.02 (5) 2.719 (9) 142 (7)
O19—H19B⋯O24vi 0.84 (2) 2.07 (9) 2.866 (11) 157 (22)
O19—H19A⋯O24vii 0.84 (2) 1.72 (7) 2.535 (12) 162 (21)
O18—H18B⋯O14 0.83 (2) 1.90 (2) 2.732 (5) 173 (7)
O18—H18A⋯O26v 0.84 (2) 2.04 (3) 2.857 (9) 163 (7)
O18—H18A⋯O27 0.84 (2) 1.91 (4) 2.648 (9) 146 (6)
O17—H17B⋯O6vi 0.83 (2) 1.90 (2) 2.730 (5) 176 (7)
O17—H17A⋯O12 0.83 (2) 2.10 (3) 2.905 (5) 163 (6)
O16—H16B⋯O22 0.84 (2) 1.89 (2) 2.721 (6) 173 (7)
O16—H16A⋯O17iv 0.84 (2) 1.95 (2) 2.784 (5) 172 (7)
O15—H15B⋯O16 0.84 (2) 1.86 (2) 2.692 (5) 170 (6)
O15—H15A⋯O21 0.84 (2) 1.85 (3) 2.668 (5) 166 (6)
N10—H10B⋯O22viii 0.91 2.13 2.920 (6) 145
N10—H10A⋯O20i 0.91 2.24 2.987 (5) 139
N8—H8B⋯O12vi 0.91 2.04 2.937 (5) 168
N8—H8A⋯O23 0.91 2.20 3.031 (5) 152
N6—H6B⋯O13ix 0.91 2.64 3.363 (5) 137
N6—H6B⋯O24vi 0.91 2.24 2.984 (6) 139
N6—H6A⋯O13iv 0.91 2.25 3.158 (5) 175
N4—H4B⋯O2x 0.91 2.33 3.182 (5) 156
N4—H4A⋯O27iv 0.91 2.18 3.037 (9) 156
N4—H4A⋯O25x 0.91 2.01 2.789 (9) 143
N2—H2B⋯O27 0.91 2.55 3.418 (9) 159
N2—H2B⋯O28v 0.91 2.08 2.868 (9) 144
N2—H2A⋯O15iii 0.91 2.07 2.946 (5) 162

Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z; (v) -x, -y, -z+1; (vi) -x+1, -y+1, -z; (vii) x, y-1, z; (viii) x-1, y, z; (ix) -x+1, -y, -z; (x) -x+1, -y, -z+1.

Database survey

Compounds most closely related to 1 are its isomorphous counterparts [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4), where GlyHA2− is the dianion of glycine­hydroxamic acid and Ln III = Pr, Nd, Sm, Eu, Gd, Dy and Ho (Pavlishchuk et al., 2011). A search of the Cambridge Structural Database (Version 5.41, 2021; Groom et al., 2016) reveals other compounds that also feature an LnCu5(GlyHA)5 core, with counter-anions such as nitrate, acetate, chloride, lactate, carbonate, sulfate, isophthalate, terephthalate and all lanthanide ions other than radioactive Pm (Katkova et al., 2015a ,b ; Pavlishchuk et al., 2011, 2017a , Pavlishchuk et al., 2018, 2019; Stemmler et al., 1999; Muravyeva et al., 2016; Kremlev et al., 2016). Most of these complexes feature, similar to 1, individual mol­ecular complex cations (Katkova et al., 2015a ,b ; Pavlishchuk et al., 2011, 2017a , 2018, 2019; Stemmler et al., 1999; Muravyeva et al., 2016; Kremlev et al., 2016), but a small number of oligomerized examples have also been reported (Pavlishchuk et al., 2017a , 2018).

Synthesis and crystallization

Complex 1 was synthesized and crystallized according a general procedure described previously (Pavlishchuk et al., 2011). Single crystals were obtained by slow evaporation from an aqueous solution of 1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The structure is isomorphous with its Dy, Eu, Gd, Ho, Nd, Pr analogues (Pavlishchuk et al., 2011) and was solved by isomorphous replacement. The O19 water mol­ecule is disordered over two mutually exclusive positions across an inversion center and was refined as half occupied. The non-coordinated sulfate ion is located on an inversion center and the oxygen atoms are disordered over two sets of positions with half occupancy.

Table 5. Experimental details.

Crystal data
Chemical formula [TbCu5(C2H4N2O2)5(SO4)(H2O)6.5]2(SO4)·6H2O
M r 2464.44
Crystal system, space group Triclinic, P\overline{1}
Temperature (K) 150
a, b, c (Å) 9.6370 (4), 11.5888 (5), 16.2367 (6)
α, β, γ (°) 99.6716 (13), 91.3031 (12), 105.3123 (12)
V3) 1719.80 (12)
Z 1
Radiation type Cu Kα
μ (mm−1) 15.11
Crystal size (mm) 0.20 × 0.20 × 0.08
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
Absorption correction Multi-scan (SADABS; Krause et al., 2015
T min, T max 0.454, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 16278, 7029, 6786
R int 0.050
(sin θ/λ)max−1) 0.639
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.118, 1.10
No. of reflections 7029
No. of parameters 562
No. of restraints 22
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.59, −1.34

Computer programs: APEX3 and SAINT (Bruker, 2018), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), shelXle (Hübschle et al., 2011) and publCIF (Westrip, 2010).

C—H bond distances were constrained to 0.99 for aliphatic CH2 moieties. N—H bond distances were constrained to 0.91 Å for pyramidal (sp 3-hybridized) ammonium NH2 + groups. Water H-atom positions were refined, and O—H distances were restrained to 0.84 (2) Å. The H⋯H distances within the O23 and O24 water mol­ecules were further restrained to 1.35 (2) Å. U iso(H) values were set to kU eq(C/N/O) with k =1.5 for OH, and 1.2 for CH2 and NH2 + units, respectively.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021011907/yy2004sup1.cif

e-77-01197-sup1.cif (575.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021011907/yy2004Isup2.hkl

e-77-01197-Isup2.hkl (558.4KB, hkl)

CCDC reference: 2121203

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported partly by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of a scientific direction ‘Mathematical sciences and natural sciences’ at Taras Shevchenko National University of Kyiv. This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under Grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer). AWA thanks Drexel University for support.

supplementary crystallographic information

Crystal data

[TbCu5(C2H4N2O2)5(SO4)(H2O)6.5]2(SO4)·6H2O Z = 1
Mr = 2464.44 F(000) = 1214
Triclinic, P1 Dx = 2.380 Mg m3
a = 9.6370 (4) Å Cu Kα radiation, λ = 1.54178 Å
b = 11.5888 (5) Å Cell parameters from 9965 reflections
c = 16.2367 (6) Å θ = 4.0–79.9°
α = 99.6716 (13)° µ = 15.11 mm1
β = 91.3031 (12)° T = 150 K
γ = 105.3123 (12)° Plate, blue
V = 1719.80 (12) Å3 0.20 × 0.20 × 0.08 mm

Data collection

Bruker AXS D8 Quest CMOS diffractometer with PhotonII charge-integrating pixel array detector (CPAD) 7029 independent reflections
Radiation source: I-mu-S microsource X-ray tube 6786 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromator Rint = 0.050
Detector resolution: 7.4074 pixels mm-1 θmax = 80.3°, θmin = 2.8°
ω and phi scans h = −12→12
Absorption correction: multi-scan (SADABS; Krause et al., 2015 k = −14→14
Tmin = 0.454, Tmax = 0.754 l = −19→15
16278 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: mixed
wR(F2) = 0.118 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0656P)2 + 1.8351P] where P = (Fo2 + 2Fc2)/3
7029 reflections (Δ/σ)max < 0.001
562 parameters Δρmax = 1.59 e Å3
22 restraints Δρmin = −1.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The structure is ismorphous with its Dy, Eu, Gd, Ho, Nd, Pr analogues (AVP85_10mz121, AVP355_10mz172, AVP621_09mz411 and AVP629_10mz194, AVP65_10mz125 and AVP651_10mz191, AVP70_10mz147, AVP75_10mz148 and AVP754_10mz650), and was solved by isomorphous replacement. The water molecule of O19 is disordered over two mutually exclusive positions across an inversion center and was refined as half occupied. The non-coordinated sulfate ion is located on an inversion center and the oxygen atoms are disordered over two sets of positions with half occupancy. Water H atom positions were refined and O-H distances were restrained to 0.84 (2) Angstrom, respectively. Some H···H distances were further restrained to 1.35 (2) Angstrom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.4433 (5) 0.2625 (4) 0.5042 (3) 0.0167 (8)
C2 0.3610 (5) 0.2938 (4) 0.5788 (3) 0.0195 (9)
H2C 0.320220 0.220082 0.602893 0.023*
H2D 0.427084 0.354919 0.622292 0.023*
C3 0.6783 (5) 0.0423 (4) 0.2493 (3) 0.0158 (8)
C4 0.6931 (6) −0.0360 (5) 0.3110 (3) 0.0235 (10)
H4C 0.794720 −0.038433 0.316648 0.028*
H4D 0.632740 −0.119964 0.290399 0.028*
C5 0.7890 (5) 0.3483 (4) 0.0317 (3) 0.0175 (9)
C6 0.8858 (5) 0.2707 (4) −0.0019 (3) 0.0221 (10)
H6C 0.874472 0.253424 −0.063895 0.027*
H6D 0.987712 0.315424 0.015213 0.027*
C7 0.5254 (5) 0.6985 (4) 0.1304 (3) 0.0159 (8)
C8 0.6022 (5) 0.7507 (4) 0.0594 (3) 0.0179 (9)
H8C 0.532673 0.736705 0.010561 0.022*
H8D 0.643978 0.839491 0.076935 0.022*
C9 0.2149 (5) 0.5808 (4) 0.3895 (3) 0.0163 (9)
C10 0.1644 (5) 0.6898 (4) 0.3802 (3) 0.0222 (10)
H10C 0.058903 0.664428 0.366493 0.027*
H10D 0.184336 0.748022 0.434014 0.027*
Cu1 0.57451 (7) 0.15475 (6) 0.38923 (4) 0.01792 (16)
Cu2 0.71639 (7) 0.16393 (6) 0.12404 (4) 0.01884 (16)
Cu3 0.68477 (7) 0.53540 (6) 0.08031 (4) 0.01553 (15)
Cu4 0.34975 (7) 0.64627 (6) 0.24858 (4) 0.01548 (15)
Cu5 0.28203 (7) 0.39948 (6) 0.44370 (4) 0.01615 (15)
Tb1 0.48345 (2) 0.35681 (2) 0.24306 (2) 0.01322 (9)
N1 0.4245 (4) 0.3141 (3) 0.4416 (2) 0.0171 (7)
N2 0.2431 (4) 0.3430 (4) 0.5530 (2) 0.0195 (8)
H2A 0.236548 0.406266 0.592889 0.023*
H2B 0.157731 0.284301 0.547628 0.023*
N3 0.6105 (4) 0.1242 (3) 0.2732 (2) 0.0178 (7)
N4 0.6482 (5) 0.0108 (4) 0.3943 (3) 0.0215 (8)
H4A 0.724750 0.031948 0.432837 0.026*
H4B 0.577960 −0.048780 0.410697 0.026*
N5 0.7027 (4) 0.3075 (3) 0.0865 (2) 0.0166 (7)
N6 0.8492 (4) 0.1541 (3) 0.0304 (2) 0.0171 (7)
H6A 0.931299 0.139490 0.049586 0.021*
H6B 0.805401 0.091646 −0.011692 0.021*
N7 0.5575 (4) 0.6039 (3) 0.1480 (2) 0.0172 (7)
N8 0.7190 (4) 0.6918 (3) 0.0356 (2) 0.0159 (7)
H8A 0.805912 0.742721 0.057077 0.019*
H8B 0.720395 0.676114 −0.021109 0.019*
N9 0.2929 (4) 0.5471 (3) 0.3302 (2) 0.0173 (7)
N10 0.2378 (4) 0.7509 (4) 0.3133 (3) 0.0226 (8)
H10A 0.298699 0.824200 0.336523 0.027*
H10B 0.171092 0.763954 0.278010 0.027*
O1 0.5000 (3) 0.2882 (3) 0.37163 (19) 0.0166 (6)
O2 0.5244 (4) 0.1896 (3) 0.5060 (2) 0.0196 (6)
O3 0.6029 (4) 0.1998 (3) 0.2163 (2) 0.0199 (7)
O4 0.7336 (4) 0.0300 (3) 0.1769 (2) 0.0196 (7)
O5 0.6158 (3) 0.3809 (3) 0.11866 (19) 0.0157 (6)
O6 0.7979 (4) 0.4510 (3) 0.0074 (2) 0.0189 (6)
O7 0.4861 (3) 0.5537 (3) 0.2123 (2) 0.0166 (6)
O8 0.4330 (3) 0.7478 (3) 0.1689 (2) 0.0193 (6)
O9 0.3463 (3) 0.4493 (3) 0.3393 (2) 0.0170 (6)
O10 0.1827 (4) 0.5265 (3) 0.4519 (2) 0.0195 (7)
O11 0.2853 (4) 0.1696 (3) 0.2229 (2) 0.0238 (7)
O12 0.2734 (4) 0.3216 (3) 0.1464 (2) 0.0205 (7)
O13 0.1448 (4) 0.1123 (3) 0.0876 (2) 0.0253 (7)
O14 0.0575 (4) 0.2189 (4) 0.2058 (2) 0.0311 (8)
O15 0.7222 (3) 0.4609 (3) 0.3006 (2) 0.0184 (6)
H15A 0.767 (6) 0.430 (5) 0.331 (3) 0.028*
H15B 0.782 (5) 0.495 (5) 0.269 (3) 0.028*
O16 0.8851 (4) 0.5789 (3) 0.1920 (2) 0.0254 (7)
H16A 0.960 (5) 0.557 (6) 0.184 (4) 0.038*
H16B 0.917 (7) 0.653 (2) 0.213 (4) 0.038*
O17 0.1408 (4) 0.5205 (3) 0.1525 (2) 0.0220 (7)
H17A 0.163 (7) 0.457 (4) 0.156 (4) 0.033*
H17B 0.155 (7) 0.528 (6) 0.1031 (18) 0.033*
O18 0.0716 (4) 0.2521 (3) 0.3767 (2) 0.0241 (7)
H18A 0.043 (7) 0.185 (3) 0.393 (4) 0.036*
H18B 0.070 (7) 0.236 (6) 0.3246 (13) 0.036*
O19 0.5200 (11) 0.0381 (11) 0.0275 (6) 0.047 (2) 0.5
H19A 0.472 (19) −0.003 (15) 0.060 (9) 0.071* 0.5
H19B 0.55 (2) 0.02 (2) −0.021 (6) 0.071* 0.5
O20 0.3102 (4) 0.0221 (3) 0.3519 (3) 0.0283 (8)
H20A 0.236 (5) 0.022 (7) 0.377 (4) 0.043*
H20B 0.291 (8) 0.063 (6) 0.318 (4) 0.043*
O21 0.8274 (4) 0.3337 (4) 0.3966 (2) 0.0308 (8)
H21A 0.909 (4) 0.320 (7) 0.392 (5) 0.046*
H21B 0.841 (8) 0.380 (6) 0.443 (3) 0.046*
O22 0.9749 (5) 0.8150 (4) 0.2711 (3) 0.0361 (9)
H22A 0.972 (9) 0.855 (7) 0.319 (2) 0.054*
H22B 0.980 (9) 0.857 (6) 0.234 (4) 0.054*
O23 0.9394 (4) 0.9116 (3) 0.1345 (2) 0.0243 (7)
H23A 0.876 (4) 0.947 (5) 0.150 (4) 0.036*
H23B 1.011 (4) 0.968 (4) 0.126 (4) 0.036*
O24 0.3431 (7) 0.9430 (4) 0.1264 (3) 0.0523 (14)
H24A 0.328 (11) 0.998 (6) 0.163 (4) 0.079*
H24B 0.368 (10) 0.893 (6) 0.152 (4) 0.079*
O25 0.1618 (8) 0.0365 (9) 0.4920 (5) 0.0357 (19) 0.5
O26 −0.0300 (9) −0.0158 (7) 0.5820 (5) 0.0339 (17) 0.5
O27 −0.0484 (9) 0.1032 (7) 0.4781 (5) 0.0333 (17) 0.5
O28 −0.0592 (9) −0.1078 (7) 0.4360 (5) 0.0346 (17) 0.5
S1 0.18461 (12) 0.20240 (10) 0.16476 (7) 0.0195 (2)
S2 0.000000 0.000000 0.500000 0.0199 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0163 (19) 0.0162 (19) 0.019 (2) 0.0070 (16) 0.0042 (17) 0.0016 (17)
C2 0.024 (2) 0.025 (2) 0.016 (2) 0.0143 (18) 0.0049 (17) 0.0080 (18)
C3 0.0152 (19) 0.0150 (19) 0.019 (2) 0.0092 (16) 0.0030 (16) 0.0011 (17)
C4 0.034 (3) 0.024 (2) 0.019 (2) 0.020 (2) 0.0063 (19) 0.0025 (19)
C5 0.018 (2) 0.019 (2) 0.016 (2) 0.0074 (17) 0.0045 (17) 0.0023 (17)
C6 0.025 (2) 0.018 (2) 0.025 (2) 0.0068 (18) 0.0113 (19) 0.0018 (18)
C7 0.0150 (19) 0.0126 (19) 0.019 (2) 0.0023 (15) 0.0009 (16) 0.0027 (17)
C8 0.018 (2) 0.017 (2) 0.021 (2) 0.0078 (16) 0.0038 (17) 0.0055 (17)
C9 0.018 (2) 0.0165 (19) 0.017 (2) 0.0114 (16) 0.0011 (16) −0.0027 (17)
C10 0.029 (2) 0.024 (2) 0.022 (2) 0.0194 (19) 0.0081 (19) 0.0066 (19)
Cu1 0.0252 (3) 0.0179 (3) 0.0165 (3) 0.0146 (3) 0.0054 (3) 0.0048 (3)
Cu2 0.0252 (3) 0.0152 (3) 0.0212 (4) 0.0122 (3) 0.0111 (3) 0.0051 (3)
Cu3 0.0188 (3) 0.0136 (3) 0.0167 (3) 0.0074 (2) 0.0067 (2) 0.0039 (2)
Cu4 0.0173 (3) 0.0138 (3) 0.0189 (3) 0.0090 (2) 0.0052 (2) 0.0045 (2)
Cu5 0.0188 (3) 0.0174 (3) 0.0169 (3) 0.0111 (3) 0.0069 (2) 0.0053 (3)
Tb1 0.01436 (14) 0.01192 (14) 0.01535 (15) 0.00683 (10) 0.00396 (10) 0.00235 (10)
N1 0.0233 (18) 0.0181 (17) 0.0138 (18) 0.0112 (15) 0.0065 (14) 0.0044 (14)
N2 0.0220 (19) 0.0194 (18) 0.020 (2) 0.0106 (15) 0.0073 (15) 0.0036 (15)
N3 0.0234 (19) 0.0150 (17) 0.0201 (19) 0.0111 (15) 0.0070 (15) 0.0071 (15)
N4 0.029 (2) 0.0223 (19) 0.020 (2) 0.0157 (16) 0.0087 (16) 0.0072 (16)
N5 0.0159 (17) 0.0179 (17) 0.0169 (18) 0.0087 (14) 0.0056 (14) −0.0016 (15)
N6 0.0171 (17) 0.0183 (18) 0.0193 (19) 0.0092 (14) 0.0060 (14) 0.0053 (15)
N7 0.0192 (18) 0.0170 (17) 0.0174 (18) 0.0075 (14) 0.0036 (15) 0.0043 (15)
N8 0.0212 (18) 0.0104 (15) 0.0183 (18) 0.0060 (14) 0.0061 (14) 0.0057 (14)
N9 0.0202 (18) 0.0166 (17) 0.0185 (19) 0.0108 (14) 0.0029 (15) 0.0032 (15)
N10 0.0212 (19) 0.0169 (18) 0.034 (2) 0.0125 (15) 0.0102 (17) 0.0039 (17)
O1 0.0207 (15) 0.0205 (15) 0.0148 (15) 0.0141 (12) 0.0090 (12) 0.0057 (12)
O2 0.0277 (17) 0.0195 (15) 0.0172 (16) 0.0146 (13) 0.0065 (13) 0.0050 (13)
O3 0.0307 (17) 0.0187 (15) 0.0182 (16) 0.0155 (13) 0.0121 (13) 0.0095 (13)
O4 0.0251 (16) 0.0183 (15) 0.0197 (16) 0.0123 (13) 0.0084 (13) 0.0041 (13)
O5 0.0193 (14) 0.0119 (13) 0.0197 (16) 0.0103 (11) 0.0064 (12) 0.0031 (12)
O6 0.0271 (17) 0.0166 (14) 0.0172 (16) 0.0107 (13) 0.0104 (13) 0.0053 (12)
O7 0.0180 (14) 0.0154 (14) 0.0205 (16) 0.0086 (12) 0.0114 (12) 0.0067 (12)
O8 0.0201 (15) 0.0193 (15) 0.0238 (17) 0.0120 (12) 0.0072 (13) 0.0070 (13)
O9 0.0204 (15) 0.0178 (15) 0.0210 (16) 0.0168 (12) 0.0109 (12) 0.0065 (13)
O10 0.0280 (17) 0.0209 (15) 0.0172 (16) 0.0160 (13) 0.0094 (13) 0.0081 (13)
O11 0.0247 (17) 0.0219 (16) 0.0246 (18) 0.0061 (13) −0.0008 (14) 0.0042 (14)
O12 0.0253 (16) 0.0174 (15) 0.0180 (16) 0.0028 (13) 0.0002 (13) 0.0058 (13)
O13 0.0280 (17) 0.0206 (16) 0.0241 (18) 0.0028 (14) 0.0013 (14) 0.0010 (14)
O14 0.0210 (17) 0.043 (2) 0.0267 (19) 0.0086 (16) 0.0047 (14) −0.0019 (16)
O15 0.0178 (15) 0.0222 (16) 0.0167 (16) 0.0076 (12) 0.0016 (12) 0.0041 (13)
O16 0.0190 (16) 0.0268 (17) 0.0287 (19) 0.0047 (14) 0.0044 (14) 0.0029 (15)
O17 0.0281 (17) 0.0224 (16) 0.0183 (16) 0.0111 (14) 0.0040 (14) 0.0043 (14)
O18 0.0261 (17) 0.0227 (17) 0.0236 (18) 0.0066 (14) 0.0045 (14) 0.0040 (14)
O19 0.038 (5) 0.064 (6) 0.026 (4) −0.007 (4) −0.001 (4) 0.005 (4)
O20 0.0309 (19) 0.0200 (17) 0.035 (2) 0.0066 (15) 0.0100 (16) 0.0063 (15)
O21 0.0287 (19) 0.044 (2) 0.0241 (19) 0.0232 (17) 0.0003 (15) −0.0036 (16)
O22 0.047 (2) 0.036 (2) 0.032 (2) 0.0236 (19) −0.0020 (19) 0.0038 (17)
O23 0.0215 (16) 0.0173 (15) 0.035 (2) 0.0072 (13) 0.0068 (15) 0.0026 (14)
O24 0.090 (4) 0.039 (2) 0.037 (2) 0.043 (3) −0.015 (2) −0.008 (2)
O25 0.023 (4) 0.058 (5) 0.034 (4) 0.014 (4) 0.007 (3) 0.022 (4)
O26 0.042 (4) 0.034 (4) 0.025 (4) 0.011 (3) 0.007 (3) 0.002 (3)
O27 0.038 (4) 0.030 (4) 0.041 (5) 0.018 (3) 0.007 (3) 0.018 (3)
O28 0.044 (5) 0.026 (4) 0.033 (4) 0.009 (3) 0.004 (3) 0.003 (3)
S1 0.0186 (5) 0.0195 (5) 0.0200 (5) 0.0044 (4) 0.0019 (4) 0.0037 (4)
S2 0.0189 (7) 0.0180 (7) 0.0235 (8) 0.0071 (6) −0.0005 (6) 0.0026 (6)

Geometric parameters (Å, º)

C1—N1 1.294 (6) Cu5—N2 2.003 (4)
C1—O2 1.298 (5) Cu5—O18 2.379 (4)
C1—C2 1.509 (6) Tb1—O9 2.370 (3)
C2—N2 1.480 (6) Tb1—O1 2.372 (3)
C2—H2C 0.9900 Tb1—O15 2.383 (3)
C2—H2D 0.9900 Tb1—O3 2.386 (3)
C3—N3 1.301 (5) Tb1—O7 2.411 (3)
C3—O4 1.304 (6) Tb1—O5 2.430 (3)
C3—C4 1.488 (7) Tb1—O12 2.436 (3)
C4—N4 1.488 (6) Tb1—O11 2.451 (3)
C4—H4C 0.9900 Tb1—S1 3.0756 (11)
C4—H4D 0.9900 N1—O1 1.396 (5)
C5—N5 1.295 (6) N2—H2A 0.9100
C5—O6 1.298 (6) N2—H2B 0.9100
C5—C6 1.509 (6) N3—O3 1.389 (5)
C6—N6 1.491 (6) N4—H4A 0.9100
C6—H6C 0.9900 N4—H4B 0.9100
C6—H6D 0.9900 N5—O5 1.395 (4)
C7—N7 1.288 (6) N6—H6A 0.9100
C7—O8 1.298 (5) N6—H6B 0.9100
C7—C8 1.509 (6) N7—O7 1.388 (5)
C8—N8 1.489 (5) N8—H8A 0.9100
C8—H8C 0.9900 N8—H8B 0.9100
C8—H8D 0.9900 N9—O9 1.391 (5)
C9—O10 1.282 (6) N10—H10A 0.9100
C9—N9 1.306 (6) N10—H10B 0.9100
C9—C10 1.498 (6) O11—S1 1.500 (4)
C10—N10 1.487 (7) O12—S1 1.502 (3)
C10—H10C 0.9900 O13—S1 1.461 (3)
C10—H10D 0.9900 O14—S1 1.448 (4)
Cu1—N3 1.915 (4) O15—H15A 0.84 (2)
Cu1—O1 1.928 (3) O15—H15B 0.84 (2)
Cu1—O2 1.969 (3) O16—H16A 0.84 (2)
Cu1—N4 1.991 (4) O16—H16B 0.84 (2)
Cu1—O20 2.601 (4) O17—H17A 0.83 (2)
Cu1—O21 2.736 (4) O17—H17B 0.83 (2)
Cu2—N5 1.900 (4) O18—H18A 0.84 (2)
Cu2—O3 1.928 (3) O18—H18B 0.83 (2)
Cu2—O4 1.936 (3) O19—H19A 0.84 (2)
Cu2—N6 2.018 (4) O19—H19B 0.84 (2)
Cu2—O19 2.409 (10) O20—H20A 0.83 (2)
Cu3—N7 1.904 (4) O20—H20B 0.83 (2)
Cu3—O6 1.944 (3) O21—H21A 0.84 (2)
Cu3—O5 1.949 (3) O21—H21B 0.83 (2)
Cu3—N8 2.014 (4) O22—H22A 0.84 (2)
Cu3—O16 2.508 (4) O22—H22B 0.84 (2)
Cu4—N9 1.894 (4) O23—H23A 0.84 (2)
Cu4—O8 1.940 (3) O23—H23B 0.85 (2)
Cu4—O7 1.947 (3) O24—H24A 0.84 (2)
Cu4—N10 2.012 (4) O24—H24B 0.84 (2)
Cu4—O17 2.481 (4) O25—S2 1.519 (7)
Cu5—N1 1.890 (4) O26—S2 1.401 (8)
Cu5—O9 1.943 (3) O27—S2 1.485 (7)
Cu5—O10 1.946 (3) O28—S2 1.458 (8)
N1—C1—O2 125.3 (4) O5—Tb1—O11 112.83 (11)
N1—C1—C2 114.2 (4) O12—Tb1—O11 57.34 (11)
O2—C1—C2 120.5 (4) O9—Tb1—S1 83.26 (8)
N2—C2—C1 110.0 (4) O1—Tb1—S1 102.84 (8)
N2—C2—H2C 109.7 O15—Tb1—S1 174.96 (8)
C1—C2—H2C 109.7 O3—Tb1—S1 96.74 (9)
N2—C2—H2D 109.7 O7—Tb1—S1 101.43 (8)
C1—C2—H2D 109.7 O5—Tb1—S1 101.06 (8)
H2C—C2—H2D 108.2 O12—Tb1—S1 28.74 (8)
N3—C3—O4 123.0 (4) O11—Tb1—S1 28.77 (8)
N3—C3—C4 115.9 (4) C1—N1—O1 115.9 (3)
O4—C3—C4 121.1 (4) C1—N1—Cu5 119.5 (3)
C3—C4—N4 111.1 (4) O1—N1—Cu5 124.1 (3)
C3—C4—H4C 109.4 C2—N2—Cu5 109.8 (3)
N4—C4—H4C 109.4 C2—N2—H2A 109.7
C3—C4—H4D 109.4 Cu5—N2—H2A 109.7
N4—C4—H4D 109.4 C2—N2—H2B 109.7
H4C—C4—H4D 108.0 Cu5—N2—H2B 109.7
N5—C5—O6 123.7 (4) H2A—N2—H2B 108.2
N5—C5—C6 116.0 (4) C3—N3—O3 115.1 (4)
O6—C5—C6 120.3 (4) C3—N3—Cu1 117.5 (3)
N6—C6—C5 110.5 (4) O3—N3—Cu1 125.5 (3)
N6—C6—H6C 109.5 C4—N4—Cu1 110.6 (3)
C5—C6—H6C 109.5 C4—N4—H4A 109.5
N6—C6—H6D 109.5 Cu1—N4—H4A 109.5
C5—C6—H6D 109.5 C4—N4—H4B 109.5
H6C—C6—H6D 108.1 Cu1—N4—H4B 109.5
N7—C7—O8 124.1 (4) H4A—N4—H4B 108.1
N7—C7—C8 115.5 (4) C5—N5—O5 115.7 (4)
O8—C7—C8 120.4 (4) C5—N5—Cu2 118.6 (3)
N8—C8—C7 109.8 (4) O5—N5—Cu2 125.5 (3)
N8—C8—H8C 109.7 C6—N6—Cu2 109.6 (3)
C7—C8—H8C 109.7 C6—N6—H6A 109.7
N8—C8—H8D 109.7 Cu2—N6—H6A 109.7
C7—C8—H8D 109.7 C6—N6—H6B 109.7
H8C—C8—H8D 108.2 Cu2—N6—H6B 109.7
O10—C9—N9 123.8 (4) H6A—N6—H6B 108.2
O10—C9—C10 121.2 (4) C7—N7—O7 116.2 (4)
N9—C9—C10 115.0 (4) C7—N7—Cu3 119.0 (3)
N10—C10—C9 111.3 (4) O7—N7—Cu3 124.6 (3)
N10—C10—H10C 109.4 C8—N8—Cu3 109.7 (3)
C9—C10—H10C 109.4 C8—N8—H8A 109.7
N10—C10—H10D 109.4 Cu3—N8—H8A 109.7
C9—C10—H10D 109.4 C8—N8—H8B 109.7
H10C—C10—H10D 108.0 Cu3—N8—H8B 109.7
N3—Cu1—O1 90.36 (14) H8A—N8—H8B 108.2
N3—Cu1—O2 175.68 (15) C9—N9—O9 116.1 (4)
O1—Cu1—O2 86.12 (13) C9—N9—Cu4 119.1 (3)
N3—Cu1—N4 83.85 (16) O9—N9—Cu4 124.1 (3)
O1—Cu1—N4 173.91 (15) C10—N10—Cu4 109.9 (3)
O2—Cu1—N4 99.57 (15) C10—N10—H10A 109.7
N3—Cu1—O20 89.10 (15) Cu4—N10—H10A 109.7
O1—Cu1—O20 85.07 (13) C10—N10—H10B 109.7
O2—Cu1—O20 88.10 (14) Cu4—N10—H10B 109.7
N4—Cu1—O20 92.89 (15) H10A—N10—H10B 108.2
N3—Cu1—O21 82.42 (14) N1—O1—Cu1 106.2 (2)
O1—Cu1—O21 80.09 (13) N1—O1—Tb1 125.6 (2)
O2—Cu1—O21 99.41 (13) Cu1—O1—Tb1 126.24 (14)
N4—Cu1—O21 100.98 (15) C1—O2—Cu1 104.0 (3)
O20—Cu1—O21 162.82 (12) N3—O3—Cu2 108.6 (2)
N5—Cu2—O3 89.51 (15) N3—O3—Tb1 122.4 (2)
N5—Cu2—O4 172.53 (15) Cu2—O3—Tb1 128.77 (15)
O3—Cu2—O4 84.79 (13) C3—O4—Cu2 107.7 (3)
N5—Cu2—N6 83.61 (16) N5—O5—Cu3 107.1 (2)
O3—Cu2—N6 171.24 (15) N5—O5—Tb1 124.1 (2)
O4—Cu2—N6 101.58 (15) Cu3—O5—Tb1 123.88 (13)
N5—Cu2—O19 92.3 (3) C5—O6—Cu3 107.0 (3)
O3—Cu2—O19 97.4 (3) N7—O7—Cu4 107.2 (2)
O4—Cu2—O19 93.2 (3) N7—O7—Tb1 124.7 (2)
N6—Cu2—O19 88.3 (3) Cu4—O7—Tb1 125.89 (14)
N7—Cu3—O6 174.11 (15) C7—O8—Cu4 106.9 (3)
N7—Cu3—O5 91.24 (15) N9—O9—Cu5 107.2 (2)
O6—Cu3—O5 84.79 (13) N9—O9—Tb1 126.2 (2)
N7—Cu3—N8 82.67 (16) Cu5—O9—Tb1 126.55 (14)
O6—Cu3—N8 100.63 (14) C9—O10—Cu5 107.4 (3)
O5—Cu3—N8 169.87 (14) S1—O11—Tb1 99.41 (17)
N7—Cu3—O16 96.61 (14) S1—O12—Tb1 100.02 (16)
O6—Cu3—O16 87.37 (13) Tb1—O15—H15A 121 (4)
O5—Cu3—O16 84.87 (13) Tb1—O15—H15B 118 (4)
N8—Cu3—O16 103.81 (14) H15A—O15—H15B 107 (6)
N9—Cu4—O8 172.67 (15) Cu3—O16—H16A 122 (5)
N9—Cu4—O7 89.19 (15) Cu3—O16—H16B 114 (5)
O8—Cu4—O7 85.34 (13) H16A—O16—H16B 102 (7)
N9—Cu4—N10 83.73 (17) Cu4—O17—H17A 92 (5)
O8—Cu4—N10 100.54 (16) Cu4—O17—H17B 111 (5)
O7—Cu4—N10 165.82 (17) H17A—O17—H17B 103 (6)
N9—Cu4—O17 90.56 (14) Cu5—O18—H18A 120 (5)
O8—Cu4—O17 94.98 (13) Cu5—O18—H18B 115 (5)
O7—Cu4—O17 97.53 (13) H18A—O18—H18B 107 (7)
N10—Cu4—O17 94.81 (15) Cu2—O19—H19A 99 (10)
N1—Cu5—O9 88.98 (14) Cu2—O19—H19B 113 (10)
N1—Cu5—O10 163.89 (16) H19A—O19—H19B 135 (10)
O9—Cu5—O10 85.41 (13) Cu1—O20—H20A 131 (5)
N1—Cu5—N2 83.21 (16) Cu1—O20—H20B 95 (5)
O9—Cu5—N2 171.78 (14) H20A—O20—H20B 93 (7)
O10—Cu5—N2 101.44 (14) Cu1—O21—H21A 124 (5)
N1—Cu5—O18 104.51 (15) Cu1—O21—H21B 110 (5)
O9—Cu5—O18 93.14 (13) H21A—O21—H21B 101 (7)
O10—Cu5—O18 90.88 (14) H22A—O22—H22B 113 (8)
N2—Cu5—O18 91.31 (15) H23A—O23—H23B 105 (3)
O9—Tb1—O1 71.67 (10) H24A—O24—H24B 108 (3)
O9—Tb1—O15 100.80 (11) O14—S1—O13 110.9 (2)
O1—Tb1—O15 75.87 (11) O14—S1—O11 111.0 (2)
O9—Tb1—O3 144.63 (11) O13—S1—O11 111.6 (2)
O1—Tb1—O3 73.91 (10) O14—S1—O12 110.1 (2)
O15—Tb1—O3 78.22 (11) O13—S1—O12 110.3 (2)
O9—Tb1—O7 70.65 (10) O11—S1—O12 102.68 (19)
O1—Tb1—O7 131.81 (10) O14—S1—Tb1 118.92 (16)
O15—Tb1—O7 82.82 (11) O13—S1—Tb1 130.15 (15)
O3—Tb1—O7 142.47 (10) O11—S1—Tb1 51.82 (13)
O9—Tb1—O5 143.39 (10) O12—S1—Tb1 51.24 (13)
O1—Tb1—O5 139.79 (10) O26i—S2—O26 180.0
O15—Tb1—O5 77.50 (11) O26i—S2—O28i 114.8 (5)
O3—Tb1—O5 71.55 (10) O26—S2—O28i 65.2 (5)
O7—Tb1—O5 72.88 (10) O26i—S2—O28 65.2 (5)
O9—Tb1—O12 83.74 (11) O26—S2—O28 114.8 (5)
O1—Tb1—O12 129.16 (11) O28i—S2—O28 180.0 (5)
O15—Tb1—O12 153.99 (11) O26i—S2—O27 68.7 (5)
O3—Tb1—O12 112.70 (11) O26—S2—O27 111.3 (5)
O7—Tb1—O12 74.50 (11) O28i—S2—O27 70.8 (5)
O5—Tb1—O12 83.70 (11) O28—S2—O27 109.2 (5)
O9—Tb1—O11 88.43 (11) O26i—S2—O25 69.6 (5)
O1—Tb1—O11 77.71 (11) O26—S2—O25 110.4 (5)
O15—Tb1—O11 147.49 (12) O28i—S2—O25 73.6 (5)
O3—Tb1—O11 76.51 (12) O28—S2—O25 106.4 (5)
O7—Tb1—O11 129.39 (11) O27—S2—O25 104.2 (5)
N1—C1—C2—N2 18.5 (6) O10—C9—N9—Cu4 −173.1 (3)
O2—C1—C2—N2 −161.5 (4) C10—C9—N9—Cu4 6.7 (5)
N3—C3—C4—N4 −9.9 (6) O7—Cu4—N9—C9 167.0 (4)
O4—C3—C4—N4 168.5 (4) N10—Cu4—N9—C9 −0.7 (4)
N5—C5—C6—N6 5.8 (6) O17—Cu4—N9—C9 −95.5 (3)
O6—C5—C6—N6 −176.2 (4) O7—Cu4—N9—O9 −2.8 (3)
N7—C7—C8—N8 −10.1 (5) N10—Cu4—N9—O9 −170.5 (3)
O8—C7—C8—N8 170.5 (4) O17—Cu4—N9—O9 94.8 (3)
O10—C9—C10—N10 168.9 (4) C9—C10—N10—Cu4 9.8 (5)
N9—C9—C10—N10 −10.9 (6) C1—N1—O1—Cu1 11.7 (4)
O2—C1—N1—O1 −0.6 (6) Cu5—N1—O1—Cu1 −159.6 (2)
C2—C1—N1—O1 179.4 (4) C1—N1—O1—Tb1 176.5 (3)
O2—C1—N1—Cu5 171.2 (3) Cu5—N1—O1—Tb1 5.2 (5)
C2—C1—N1—Cu5 −8.8 (5) N1—C1—O2—Cu1 −10.6 (5)
O9—Cu5—N1—C1 175.3 (4) C2—C1—O2—Cu1 169.4 (3)
O10—Cu5—N1—C1 105.8 (6) C3—N3—O3—Cu2 −5.7 (4)
N2—Cu5—N1—C1 −2.1 (4) Cu1—N3—O3—Cu2 158.1 (2)
O18—Cu5—N1—C1 −91.7 (4) C3—N3—O3—Tb1 179.5 (3)
O9—Cu5—N1—O1 −13.6 (3) Cu1—N3—O3—Tb1 −16.7 (5)
O10—Cu5—N1—O1 −83.1 (6) N3—C3—O4—Cu2 7.1 (5)
N2—Cu5—N1—O1 169.0 (3) C4—C3—O4—Cu2 −171.2 (4)
O18—Cu5—N1—O1 79.4 (3) C5—N5—O5—Cu3 −9.7 (4)
C1—C2—N2—Cu5 −19.1 (5) Cu2—N5—O5—Cu3 164.1 (2)
O4—C3—N3—O3 −1.0 (6) C5—N5—O5—Tb1 −165.6 (3)
C4—C3—N3—O3 177.4 (4) Cu2—N5—O5—Tb1 8.2 (4)
O4—C3—N3—Cu1 −166.2 (3) N5—C5—O6—Cu3 8.8 (5)
C4—C3—N3—Cu1 12.2 (5) C6—C5—O6—Cu3 −169.1 (3)
C3—C4—N4—Cu1 3.3 (5) C7—N7—O7—Cu4 3.2 (4)
O6—C5—N5—O5 0.7 (6) Cu3—N7—O7—Cu4 −171.6 (2)
C6—C5—N5—O5 178.6 (4) C7—N7—O7—Tb1 167.2 (3)
O6—C5—N5—Cu2 −173.6 (3) Cu3—N7—O7—Tb1 −7.7 (5)
C6—C5—N5—Cu2 4.4 (5) N7—C7—O8—Cu4 −3.7 (5)
O3—Cu2—N5—C5 165.2 (4) C8—C7—O8—Cu4 175.7 (3)
N6—Cu2—N5—C5 −9.4 (3) C9—N9—O9—Cu5 −0.7 (4)
O19—Cu2—N5—C5 −97.4 (4) Cu4—N9—O9—Cu5 169.3 (2)
O3—Cu2—N5—O5 −8.4 (3) C9—N9—O9—Tb1 177.4 (3)
N6—Cu2—N5—O5 177.0 (3) Cu4—N9—O9—Tb1 −12.5 (5)
O19—Cu2—N5—O5 88.9 (4) N9—C9—O10—Cu5 4.2 (5)
C5—C6—N6—Cu2 −12.1 (5) C10—C9—O10—Cu5 −175.6 (4)
O8—C7—N7—O7 0.3 (6) Tb1—O11—S1—O14 −110.9 (2)
C8—C7—N7—O7 −179.1 (4) Tb1—O11—S1—O13 124.81 (18)
O8—C7—N7—Cu3 175.5 (3) Tb1—O11—S1—O12 6.7 (2)
C8—C7—N7—Cu3 −3.9 (5) Tb1—O12—S1—O14 111.5 (2)
C7—C8—N8—Cu3 18.0 (4) Tb1—O12—S1—O13 −125.78 (18)
O10—C9—N9—O9 −2.5 (6) Tb1—O12—S1—O11 −6.7 (2)
C10—C9—N9—O9 177.3 (4)

Symmetry code: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O24—H24B···O8 0.84 (2) 2.01 (3) 2.807 (5) 159 (7)
O24—H24A···O11ii 0.84 (2) 2.21 (3) 3.015 (5) 162 (7)
O23—H23B···O13iii 0.85 (2) 2.02 (3) 2.853 (5) 166 (6)
O23—H23A···O4ii 0.84 (2) 1.89 (2) 2.734 (5) 176 (7)
O22—H22B···O23 0.84 (2) 1.89 (3) 2.701 (6) 162 (8)
O22—H22A···O26iv 0.84 (2) 2.18 (4) 2.968 (9) 155 (8)
O22—H22A···O28iii 0.84 (2) 1.92 (3) 2.733 (9) 161 (8)
O21—H21B···O10iv 0.83 (2) 1.91 (3) 2.728 (5) 165 (8)
O21—H21A···O18v 0.84 (2) 1.94 (3) 2.765 (5) 167 (7)
O20—H20B···O11 0.83 (2) 2.14 (3) 2.960 (5) 168 (7)
O20—H20A···O26i 0.83 (2) 2.09 (3) 2.916 (9) 170 (7)
O20—H20A···O25 0.83 (2) 2.02 (5) 2.719 (9) 142 (7)
O19—H19B···O24vi 0.84 (2) 2.07 (9) 2.866 (11) 157 (22)
O19—H19A···O24vii 0.84 (2) 1.72 (7) 2.535 (12) 162 (21)
O18—H18B···O14 0.83 (2) 1.90 (2) 2.732 (5) 173 (7)
O18—H18A···O26i 0.84 (2) 2.04 (3) 2.857 (9) 163 (7)
O18—H18A···O27 0.84 (2) 1.91 (4) 2.648 (9) 146 (6)
O17—H17B···O6vi 0.83 (2) 1.90 (2) 2.730 (5) 176 (7)
O17—H17A···O12 0.83 (2) 2.10 (3) 2.905 (5) 163 (6)
O16—H16B···O22 0.84 (2) 1.89 (2) 2.721 (6) 173 (7)
O16—H16A···O17v 0.84 (2) 1.95 (2) 2.784 (5) 172 (7)
O15—H15B···O16 0.84 (2) 1.86 (2) 2.692 (5) 170 (6)
O15—H15A···O21 0.84 (2) 1.85 (3) 2.668 (5) 166 (6)
N10—H10B···O22viii 0.91 2.13 2.920 (6) 145
N10—H10A···O20ii 0.91 2.24 2.987 (5) 139
N8—H8B···O12vi 0.91 2.04 2.937 (5) 168
N8—H8A···O23 0.91 2.20 3.031 (5) 152
N6—H6B···O13ix 0.91 2.64 3.363 (5) 137
N6—H6B···O24vi 0.91 2.24 2.984 (6) 139
N6—H6A···O13v 0.91 2.25 3.158 (5) 175
N4—H4B···O2x 0.91 2.33 3.182 (5) 156
N4—H4A···O27v 0.91 2.18 3.037 (9) 156
N4—H4A···O25x 0.91 2.01 2.789 (9) 143
N2—H2B···O27 0.91 2.55 3.418 (9) 159
N2—H2B···O28i 0.91 2.08 2.868 (9) 144
N2—H2A···O15iv 0.91 2.07 2.946 (5) 162

Symmetry codes: (i) −x, −y, −z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z; (vi) −x+1, −y+1, −z; (vii) x, y−1, z; (viii) x−1, y, z; (ix) −x+1, −y, −z; (x) −x+1, −y, −z+1.

Funding Statement

This work was funded by National Science Foundation, Division of Materials Research grant CHE 1625543 to M. Zeller; National Research Foundation of Ukraine grant 2020.02/0202 to A. V. Pavlishchuk.

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479–1494. [DOI] [PubMed]
  4. Dhers, S., Feltham, H. L. C., Rouzières, M., Clérac, R. & Brooker, S. (2016). Dalton Trans. 45, 18089–18093. [DOI] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  7. Jankolovits, J., Andolina, C. M., Kampf, J. W., Raymond, K. N. & Pecoraro, V. L. (2011). Angew. Chem. 123, 9834–9838. [DOI] [PubMed]
  8. Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Khrapichev, A. A., Samsonov, M. A., Fukin, G. K. & Ketkov, S. Yu. (2015a). Inorg. Chem. Commun. 52, 31–33.
  9. Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Shavyrin, A. S., Baranov, E. V., Khrapichev, A. A. & Ketkov, S. Y. (2015b). Eur. J. Inorg. Chem. pp. 5202–5208.
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  11. Kremlev, K. V., Samsonov, M. A., Zabrodina, G. S., Arapova, A. V., Yunin, P. A., Tatarsky, D. A., Plyusnin, P. E., Katkova, M. A. & Ketkov, S. Y. (2016). Polyhedron, 114, 96–100.
  12. Lim, C., Jankolovits, J., Kampf, J. & Pecoraro, V. (2010). Chem. Asian J. 5, 46–49. [DOI] [PubMed]
  13. Liu, J.-L., Chen, Y.-C. & Tong, M.-L. (2018). Chem. Soc. Rev. 47, 2431–2453. [DOI] [PubMed]
  14. Maity, M., Majee, M. C., Kundu, S., Samanta, S. K., Sañudo, E. C., Ghosh, S. & Chaudhury, M. (2015). Inorg. Chem. 54, 9715–9726. [DOI] [PubMed]
  15. Meng, Y., Yang, H., Li, D., Zeng, S., Chen, G., Li, S. & Dou, J. (2016). RSC Adv. 6, 47196–47202.
  16. Muravyeva, M. S., Zabrodina, G. S., Samsonov, M. A., Kluev, E. A., Khrapichev, A. A., Katkova, M. A. & Mukhina, I. V. (2016). Polyhedron, 114, 165–171.
  17. Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332.
  18. Pavlishchuk, A., Naumova, D., Zeller, M., Calderon Cazorla, S. & Addison, A. W. (2019). Acta Cryst. E75, 1215–1223. [DOI] [PMC free article] [PubMed]
  19. Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255–m265. [DOI] [PubMed]
  20. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504–3511.
  21. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Kiskin, M. A., Efimov, N. N., Ugolkova, E. A., Minin, V. V., Novotortsev, V. M. & Addison, A. W. (2017b). Eur. J. Inorg. Chem. pp. 4866–4878.
  22. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017a). Inorg. Chem. 56, 13152–13165. [DOI] [PubMed]
  23. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K. & Addison, A. W. (2014). Inorg. Chem. 53, 1320–1330. [DOI] [PubMed]
  24. Pavlishchuk, A. V. & Pavlishchuk, V. V. (2020). Theor. Exp. Chem. 56, 1–25.
  25. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  26. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  27. Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807–2817. [DOI] [PubMed]
  28. Wang, J., Li, Q.-W., Wu, S.-G., Chen, Y.-C., Wan, R.-C., Huang, G.-Z., Liu, Y., Liu, J.-L., Reta, D., Giansiracusa, M. J., Wang, Z.-X., Chilton, N. F. & Tong, M.-L. (2021). Angew. Chem. Int. Ed. 60, 5299–5306. [DOI] [PubMed]
  29. Wang, J., Ruan, Z.-Y., Li, Q.-W., Chen, Y.-C., Huang, G.-Z., Liu, J.-L., Reta, D., Chilton, N. F., Wang, Z.-X. & Tong, M.-L. (2019). Dalton Trans. 48, 1686–1692. [DOI] [PubMed]
  30. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  31. Wu, S.-G., Ruan, Z.-Y., Huang, G.-Z., Zheng, J.-Y., Vieru, V., Taran, G., Wang, J., Chen, Y.-C., Liu, J.-L., Ho, L. T. A., Chibotaru, L. F., Wernsdorfer, W., Chen, X.-M. & Tong, M.-L. (2021). Chem, 7, 982–992.
  32. Zabrodina, G. S., Katkova, M. A., Samsonov, M. A. & Ketkov, S. Y. (2018). Z. Anorg. Allg. Chem. 644, 907–911.
  33. Zaleski, C. M., Depperman, E. C., Kampf, J. W., Kirk, M. L. & Pecoraro, V. L. (2006). Inorg. Chem. 45, 10022–10024. [DOI] [PubMed]
  34. Zaleski, C. M., Lim, C.-S., Cutland-Van Noord, A. D., Kampf, J. W. & Pecoraro, V. L. (2011). Inorg. Chem. 50, 7707–7717. [DOI] [PubMed]
  35. Zangana, K. H., Pineda, E. M., Vitorica-Yrezabal, I. J., McInnes, E. J. L. & Winpenny, R. E. P. (2014). Dalton Trans. 43, 13242–13249. [DOI] [PubMed]
  36. Zheng, Y.-Z., Zhou, G.-J., Zheng Z., & Winpenny, R. E. P. (2014). Chem. Soc. Rev. 43, 1462–1475. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021011907/yy2004sup1.cif

e-77-01197-sup1.cif (575.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021011907/yy2004Isup2.hkl

e-77-01197-Isup2.hkl (558.4KB, hkl)

CCDC reference: 2121203

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES