The metallamacrocyclic core of the discrete hexanuclear 15-metallacrown-5 complex [TbCu5(GlyHA)5(H2O)6.5(SO4)]2(SO4)·6H2O contains five copper(II) ions linked by five glycinehydroxamate (GlyHA2–) dianions with a square-antiprismatically octacoordinate terbium(III) ion in the centre. The positive charge of the 15-metallacrown-5 [TbCu5(GlyHA)5]3+ core is compensated by bidentate and non-coordinated sulfate anions.
Keywords: crystal structure, terbium(III), copper(II), metallamacrocycle, 15-metallacrown-5
Abstract
The core of the title complex, bis[hexaaquahemiaquapentakis(μ3-glycinehydroxamato)sulfatopentacopper(II)terbium(III)] sulfate hexahydrate, [TbCu5(SO4)(GlyHA)5(H2O)6.5]2(SO4)·6H2O (1), which belongs to the 15-metallacrown-5 family, consists of five glycinehydroxamate dianions (GlyHA2−; C2H4N2O2) and five copper(II) ions linked together forming a metallamacrocyclic moiety. The terbium(III) ion is connected to the centre of the metallamacrocycle through five hydroxamate oxygen atoms. The coordination environment of the Tb3+ ion is completed to an octacoordination level by oxygen atoms of a bidentate sulfate and an apically coordinated water molecule, while the copper(II) atoms are square-planar, penta- or hexacoordinate due to the apical coordination of water molecules. Continuous shape calculations indicate that the coordination polyhedron of the Tb3+ ion in 1 is best described as square antiprismatic. The positive charge of each pair of [TbCu5(GlyHA)5(H2O)6.5(SO4)]2 2+ fragments is compensated by a non-coordinated sulfate anion, which is located on an inversion center with 1:1 disordered oxygen atoms. Complex 1 is isomorphous with the previously reported compounds [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4), where Ln III = Pr, Nd, Sm, Eu, Gd, Dy and Ho.
Chemical context
Numerous research studies devoted to polynuclear 3d–4f assemblies have been stimulated by their non-trivial luminescence properties (Jankolovits et al., 2011 ▸; Maity et al., 2015 ▸), single-molecule magnet (SMM) behaviour (Dhers et al., 2016 ▸; Zangana et al., 2014 ▸) and their significant magnetocaloric effect (Pavlishchuk & Pavlishchuk, 2020 ▸; Zheng et al., 2014 ▸). The 15-metallacrown-5 complexes are 3d–4f metallamacrocyclic assemblies, which can be easily obtained from one-step reactions between an α-substituted hydroxamic acid and the corresponding salts of transition metals and lanthanides (Stemmler et al., 1999 ▸; Pavlishchuk et al., 2011 ▸, 2019 ▸). Compounds bearing 15-metallacrown-5 {LnCu5}3+ units have demonstrated the ability to serve as sensors (Zabrodina et al., 2018 ▸), can absorb and adsorb various small molecules (Lim et al., 2010 ▸; Pavlishchuk et al., 2014 ▸; Ostrowska et al., 2016 ▸) and display SMM behaviour (Wang et al., 2019 ▸, 2021 ▸; Zaleski et al., 2006 ▸; Wu et al., 2021 ▸). Taking into account the fact that 15-metallacrowns-5 are also suitable building blocks for the generation of porous coordination polymers and discrete assemblies (Pavlishchuk et al., 2017a
▸,b
▸, 2018 ▸), the synthesis of new examples of this class of metallamacrocyclic assemblies and studies of their structural features are of particular interest. Herein we report the crystal structure of the new 15-metallacrown-5 complex [TbCu5(GlyHA)5(H2O)6.5(SO4)]2 (SO4)·13(H2O) (1), which complements the previously reported series of isomorphous metallamacrocycles with Pr, Nd, Sm, Eu, Gd, Dy and Ho ions at their centres.
Structural commentary
Complex 1 crystallizes in the space group P
and is isostructural with the previously reported complexes [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4), where GlyHA2− is the dianion of glycinehydroxamic acid and Ln
III = Pr, Nd, Sm, Eu, Gd, Dy and Ho (Pavlishchuk et al., 2011 ▸). Each unit cell in 1 contains two [TbCu5(GlyHA)5(SO4)(H2O)6.5]+ 15-metallacrown-5 cations related by an inversion center, one non-coordinated sulfate anion for charge-balance and non-coordinated water molecules (Figs. 1 ▸ and 2 ▸).
Figure 1.
The unit cell of complex 1 containing two [TbCu5(GlyHA)5(SO4)(H2O)6.5]+ metallacrown cations and non-coordinated sulfate anions (located on a inversion center with O atoms 1:1 disordered). Non-coordinated water molecules are omitted for clarity of presentation.
Figure 2.
Structure of the [TbCu5(GlyHA)5(SO4)(H2O)6.5]+ metallacrown cations in 1. The dashed lines indicate the disorder of the non-coordinated sulfate anion. Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (i) x, y, z + 1.]
The core of the [TbCu5(GlyHA)5(SO4)(H2O)6.5]+ complex cation in 1 is constructed from five copper(II) ions linked by five bridging glycinehydroxamate dianions (GlyHA2−) and a terbium(III) ion bound at the centre of the metallocycle (Fig. 1 ▸). The copper(II) equatorial coordination environment in 1 is formed by two oxygen atoms (from a carboxylate and a deprotonated hydroxamate group) and two nitrogen atoms (from an amine and a deprotonated hydroxamate). The equatorial Cu—Oeq and Cu—Neq distances range from 1.928 (3) to 1.969 (3) Å and 1.890 (4) to 2.018 (4) Å (Table 1 ▸), respectively, which is typical of aminohydroxamate 15-metallacrown-5 complexes (Stemmler et al., 1999 ▸; Pavlishchuk et al., 2011 ▸; Katkova et al., 2015a ▸; Meng et al., 2016 ▸). As a result of the apical coordination of water molecules to copper(II) ions, Cu1 has distorted square-bipyramidal coordination [Cu1—O20 = 2.601 (4) Å and Cu1—O21 = 2.736 (4) Å], while Cu3, Cu4 and Cu5 are in square-pyramidal environments [Cu3—O16 = 2.508 (4) Å, Cu4—O17 = 2.481 (4) Å and Cu5—O18 = 2.379 (4) with τ-values (Addison et al., 1984 ▸) ranging from 0.07 to 0.13]. As a result of the disorder of the O19 water molecule between two symmetry-equivalent positions with occupancy factors of 0.5, 50% of the Cu2 atoms in 1 have square-planar coordination environments, while the other 50% possess a square-pyramidal coordination [Cu2—O19 = 2.409 (10), τ = 0.022 (Addison et al., 1984 ▸)]. The terbium(III) ions at the centres of the [Cu5(GlyHA)5] metallamacrocyclic cores in 1 are bound by five hydroxamate oxygen atoms. The Tb—Oeq bond lengths are typical for 15-metallacrown-5 complexes and range from 2.370 (3) to 2.430 (3) Å (Stemmler et al., 1999 ▸; Pavlishchuk et al., 2011 ▸; Katkova et al., 2015a ▸; Meng et al., 2016 ▸).
Table 1. Selected bond lengths (Å).
| Cu1—N3 | 1.915 (4) | Cu4—O8 | 1.940 (3) |
| Cu1—O1 | 1.928 (3) | Cu4—O7 | 1.947 (3) |
| Cu1—O2 | 1.969 (3) | Cu4—N10 | 2.012 (4) |
| Cu1—N4 | 1.991 (4) | Cu4—O17 | 2.481 (4) |
| Cu1—O20 | 2.601 (4) | Cu5—N1 | 1.890 (4) |
| Cu1—O21 | 2.736 (4) | Cu5—O9 | 1.943 (3) |
| Cu2—N5 | 1.900 (4) | Cu5—O10 | 1.946 (3) |
| Cu2—O3 | 1.928 (3) | Cu5—N2 | 2.003 (4) |
| Cu2—O4 | 1.936 (3) | Cu5—O18 | 2.379 (4) |
| Cu2—N6 | 2.018 (4) | Tb1—O9 | 2.370 (3) |
| Cu2—O19 | 2.409 (10) | Tb1—O1 | 2.372 (3) |
| Cu3—N7 | 1.904 (4) | Tb1—O15 | 2.383 (3) |
| Cu3—O6 | 1.944 (3) | Tb1—O3 | 2.386 (3) |
| Cu3—O5 | 1.949 (3) | Tb1—O7 | 2.411 (3) |
| Cu3—N8 | 2.014 (4) | Tb1—O5 | 2.430 (3) |
| Cu3—O16 | 2.508 (4) | Tb1—O12 | 2.436 (3) |
| Cu4—N9 | 1.894 (4) | Tb1—O11 | 2.451 (3) |
The coordination environment of the Tb3+ ion is completed to an octacoordination level via the two oxygen atoms O11 [Tb1—O11 = 2.451 (3) Å] and O12 [Tb1—O12 = 2.436 (3) Å] from the bidentate sulfate anions and O15 [Tb1—O15 = 2.383 (3) Å] from a water molecule coordinated in the trans-position opposite to the SO4 2− ion. An analysis of selected structural parameters for complex 1 and those of isomorphous compounds with other Ln III ions (Table 2 ▸) reveals the influence of the lanthanide contraction. Similar behaviour was found in other series of lanthanide(III) containing metallamacrocycles (Pavlishchuk et al., 2011 ▸; Zaleski et al., 2011 ▸). According to Shape 2.1 (Casanova et al., 2005 ▸) calculations (Fig. 3 ▸, Table 3 ▸), the coordination geometry of the TbIII ion in 1 is a square antiprism (D 4d ), which is of particular interest with respect to potential generation of lanthanide(III)-containing SMMs (Liu et al., 2018 ▸). The deviations from an idealized square-antiprismatic geometry in the [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4) complexes decrease with reduction of the deviation of the Ln III ion from the mean plane of the metallacrown core, which parallels the ionic radii of the Ln III ions (Table 3 ▸). It may be noted that, in the case of a series of related 15-metallacrown-5 complexes with octacoordinate Ln III ions containing bidentate carbonates or acetates instead of sulfates, the coordination of the lanthanide ions is triangular dodecahedral (D 2d ) (Table 3 ▸).
Table 2. Comparison of the structural characteristics (Å, °) of {LnCu5}3+ 15-metallacrown-5 complexes with octacoordinate Ln III ions and various bidentate anions.
| Complex a | Cu—O/Neq | Ln—Oeq | Ln—Oaq | Ln⋯Cu | Cu⋯Cu | Deviation of Ln III from Cu5 plane | LnO8 geometry b |
|---|---|---|---|---|---|---|---|
| Pr—SO4 | 1.898 (2)–2.013 (2) | 2.4247 (18)–2.4716 (18) | 2.495 (2)–2.528 (2) | 3.862 (3)–3.923 (2) | 4.530 (2)–4.604 (2) | 0.459 | SAPR-8 |
| Nd—SO4 | 1.898 (2)–2.0156 (19) | 2.4145 (16)–2.4642 (16) | 2.4787 (18)–2.5108 (17) | 3.862 (3)–3.915 (4) | 4.524 (4)–4.598 (5) | 0.452 | SAPR-8 |
| Sm—SO4 | 1.900 (4)–2.015 (4) | 2.398 (3) −2.450 (3) | 2.441 (4)–2.484 (4) | 3.8539 (9)–3.9083 (8) | 4.518 (1)–4.592 (1) | 0.439 | SAPR-8 |
| Eu—SO4 | 1.896 (3)–2.013 (3) | 2.389 (3)–2.437 (3) | 2.431 (3)–2.467 (3) | 3.844 (7)–3.899 (8) | 4.504 (8)–4.585 (9) | 0.439 | SAPR-8 |
| Eu—CO3 | 1.886 (14)–2.022 (13) | 2.406 (11)–2.493 (11) | 2.369 (13)–2.392 (15) | 3.890 (2)–3.911 (3) | 4.575 (3)–4.589 (3) | 0.351 | TDD-8 |
| Eu-OAc | 1.902 (3)–2.041 (2) | 2.440 (4)–2.515 (2) | 2.4057 (18)–2.443 (2) | 3.8517 (4)–3.9049 (4) | 4.5664 (5)–4.6074 (4) | 0.469 | TDD-8 |
| Gd—SO4 | 1.892 (3)–2.014 (3) | 2.378 (3)–2.434 (3) | 2.398 (3)–2.452 (3) | 3.838 (7)–3.897 (9) | 4.501 (8)–4.578 (11) | 0.430 | SAPR-8 |
| Gd—CO3 | 1.898 (2)–2.022 (2) | 2.381 (2)–2.484 (2) | 2.288 (17)–2.396 (10) | 3.8699 (5)–3.9097 (5) | 4.5677 (7)–4.5846 (7) | 0.337 | TDD-8 |
| Gd-OAc | 1.890 (12)–2.041 (11) | 2.393 (3)–2.438 (9) | 2.426 (10)–2.512 (10) | 3.845 (2)–3.897 (2) | 4.562 (2)–4.602 (2) | 0.458 | TDD-8 |
| Tb—SO4 | 1.890 (4)–2.018 (4) | 2.370 (3)–2.430 (3) | 2.383 (3)–2.451 (3) | 3.8398 (8)–3.8944 (8) | 4.501 (1)–4.577 (1) | 0.427 | SAPR-8 |
| Tb-OAc | 1.889 (11)–2.036 (11) | 2.383 (9)–2.431 (9) | 2.409 (10)–2.488 (10) | 3.840 (2)–3.896 (2) | 4.562 (2)–4.598 (2) | 0.445 | TDD-8 |
| Dy—SO4 | 1.8908 (18)–2.0206 (19) | 2.3640 (15) −2.4234 (15) | 2.3665 (17)–2.4334 (17) | 3.834 (2)–3.889 (2) | 4.493 (2)–4.573 (2) | 0.424 | SAPR-8 |
| Dy—CO3 | 1.898 (3)–2.022 (3) | 2.382 (3)–2.469 (3) | 2.27 (2)–2.380 (8) | 3.8715 (5)–3.9016 (6) | 4.5645 (7)–4.5797 (8) | 0.354 | TDD-8 |
| Ho—SO4 | 1.887 (3)–2.016 (3) | 2.356 (2)–2.416 (2) | 2.357 (2)–2.417 (2) | 3.827 (2)–3.884 (2) | 4.485 (2)–4.565 (2) | 0.422 | SAPR-8 |
| Ho—CO3 | 1.898 (2)–2.022 (2) | 2.374 (2)–2.475 (2) | 2.30 (3)–2.374 (12) | 3.8670 (5)–3.9021 (5) | 4.5583 (7)–4.5808 (7) | 0.330 | TDD-8 |
Notes: (a) Complex Tb—SO4 is 1; Ln-SO4 correspond to the [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4) series with Ln = Pr, Nd, Sm, Eu, Gd, Dy and Ho described in (Pavlishchuk et al., 2011 ▸); Ln-CO3 are [LnCu5(GlyHA)5(CO3)(NO3)(H2O)5] with Ln = Eu, Gd, Dy and Ho described in Pavlishchuk et al. (2019 ▸) and Stemmler et al. (1999 ▸); Ln-OAc are [LnCu5(GlyHA)5(OAc)(H2O)5](NO3)2 Ln = Eu, Gd and Tb described in Katkova et al. (2015a ▸) and Meng et al. (2016 ▸). (b) LnO8 geometries: SAPR-8 = square antiprism (D4d) and TDD-8 = triangular dodecahedron (D 2d ).
Figure 3.
The TbIII coordination sphere geometry in 1.
Table 3. Continuous shape calculations for octacoordinated Ln 3+ ions in 1 obtained with Shape 2.1 software (Casanova et al., 2005 ▸).
| OP-8 | HPY-8 | HBPY-8 | CU-8 | SAPR-8 | TDD-8 | JGBF-8 | JETBPY-8 | |
|---|---|---|---|---|---|---|---|---|
| Pr–SO4 | 30.846 | 22.755 | 15.952 | 11.561 | 2.215 | 2.397 | 13.029 | 25.482 |
| Nd–SO4 | 30.677 | 22.888 | 15.968 | 11.587 | 2.141 | 2.364 | 13.033 | 25.516 |
| Sm–SO4 | 30.387 | 22.903 | 15.951 | 11.562 | 2.020 | 2.311 | 13.013 | 25.752 |
| Eu–SO4 | 30.516 | 23.164 | 16.270 | 11.783 | 1.952 | 2.363 | 13.190 | 25.864 |
| Gd–SO4 | 30.465 | 23.110 | 16.032 | 11.570 | 1.907 | 2.269 | 13.151 | 26.121 |
| Tb–SO4 | 30.381 | 23.117 | 16.159 | 11.666 | 1.854 | 2.322 | 13.140 | 26.276 |
| Dy–SO4 | 30.357 | 23.195 | 16.112 | 11.603 | 1.799 | 2.254 | 13.168 | 26.433 |
| Ho–SO4 | 30.272 | 23.212 | 16.095 | 11.588 | 1.761 | 2.247 | 13.186 | 26.496 |
Octacoordinated ions: OP-8 = octagon (D 8h ); HPY-8 = heptagonal pyramid (C 7v ); HBPY-8 = hexagonal bipyramid (D 6h ); CU-8 = cube (O h ); SAPR-8 = square antiprism (D 4d ); TDD-8 = triangular dodecahedron (D 2d ); JGBF-8 = Johnson gyrobifastigium J26 (D 2d ); JETBPY-8 = Johnson elongated triangular bipyramid J14 (D 3h ).
The Cu⋯Cu and Ln⋯Cu separations for complex 1 range from 4.501 (1) to 4.577 (1) Å and 3.8398 (8) to 3.8944 (8) Å, respectively, and are typical for {LnCu5}3+ metallacrowns (Stemmler et al., 1999 ▸; Pavlishchuk et al., 2011 ▸; Katkova et al., 2015a ▸; Meng et al., 2016 ▸). The Cu—O, Cu—N and Cu⋯Cu distances do not vary significantly amongst metallamacrocycles with different bidentate counter-anions (Table 2 ▸). The metallacrown moiety in 1 is close to planar, the deviation of TbIII ions from the mean plane Cu1–Cu5 being 0.4270 (4) Å. The Ln—O distances, Ln—Cu separations and deviations of the Ln III ions from the Cu5 planes of the metallamacrocycles trend with the lanthanide contraction in all members of the isomorphous [LnCu5(GlyHA)5]3+ series. However, there are some minor differences in the observed values for a given Ln III ion, depending on the coordinated bidentate counter-anion, which is likely associated with the different planarities of the {LnCu5}3+ cores (Table 2 ▸).
Supramolecular features
The [LnCu5(GlyHA)5]3+ cations in complex 1 are non-oligomerized, which is typical for 15-metallacrown-5 complexes. The water apical to TbIII in 1 (O15) is involved in the formation of intramolecular hydrogen bonds (O15—H15A⋯O21 and O15—H15B⋯O16) with apically coordinated water molecules O16 and O21 on copper(II) ions Cu3 and Cu1, respectively. Intramolecular hydrogen bonds in 1 are also formed between the bidentate sulfate and apically coordinated water molecules O17, O18 and O20 (O17—H17A⋯O12, O18—H18B⋯O14 and O20—H20B⋯O11) on copper(II) ions Cu4, Cu5 and Cu1. An extended system of intermolecular hydrogen bonds [N2—H2A⋯O15iii, N8—H8B⋯O12vi (SO4), N10—H10A⋯O20i, O10iiii⋯H21B—O21, O6vi⋯H17B—O17, O21—H21A⋯O18iv, O16—H16A⋯O17iv] links adjacent [TbCu5(GlyHA)5(H2O)6.5(SO4)]+ cations and non-coordinated sulfate anions [N4—H4A⋯O27iv(SO4), O18—H18A⋯O27(SO4), N4—H4A⋯O25x(SO4) and O20—H20A⋯O25(SO4)]. Non-coordinated water molecules in 1 are linked by hydrogen bonds with carbonyl oxygen and amine nitrogen atoms in the glycinehydroxamate unit from the metallacrown core (O4 i ⋯H23A—O23, O8⋯H24B—O24, N6—H6B⋯O24vi, N8—H8A⋯O23, N10—H10B⋯O22viii), apically coordinated water molecules (O16—H16B⋯O22, O19—H19A⋯O24 vii , O19–-H19B⋯O24 vi ) or bidentate sulfate (O11i⋯H24A-–O24 and O13ii⋯H23B—O23). Hydrogen-bond parameters and symmetry codes are given in Table 4 ▸.
Table 4. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O24—H24B⋯O8 | 0.84 (2) | 2.01 (3) | 2.807 (5) | 159 (7) |
| O24—H24A⋯O11i | 0.84 (2) | 2.21 (3) | 3.015 (5) | 162 (7) |
| O23—H23B⋯O13ii | 0.85 (2) | 2.02 (3) | 2.853 (5) | 166 (6) |
| O23—H23A⋯O4i | 0.84 (2) | 1.89 (2) | 2.734 (5) | 176 (7) |
| O22—H22B⋯O23 | 0.84 (2) | 1.89 (3) | 2.701 (6) | 162 (8) |
| O22—H22A⋯O26iii | 0.84 (2) | 2.18 (4) | 2.968 (9) | 155 (8) |
| O22—H22A⋯O28ii | 0.84 (2) | 1.92 (3) | 2.733 (9) | 161 (8) |
| O21—H21B⋯O10iii | 0.83 (2) | 1.91 (3) | 2.728 (5) | 165 (8) |
| O21—H21A⋯O18iv | 0.84 (2) | 1.94 (3) | 2.765 (5) | 167 (7) |
| O20—H20B⋯O11 | 0.83 (2) | 2.14 (3) | 2.960 (5) | 168 (7) |
| O20—H20A⋯O26v | 0.83 (2) | 2.09 (3) | 2.916 (9) | 170 (7) |
| O20—H20A⋯O25 | 0.83 (2) | 2.02 (5) | 2.719 (9) | 142 (7) |
| O19—H19B⋯O24vi | 0.84 (2) | 2.07 (9) | 2.866 (11) | 157 (22) |
| O19—H19A⋯O24vii | 0.84 (2) | 1.72 (7) | 2.535 (12) | 162 (21) |
| O18—H18B⋯O14 | 0.83 (2) | 1.90 (2) | 2.732 (5) | 173 (7) |
| O18—H18A⋯O26v | 0.84 (2) | 2.04 (3) | 2.857 (9) | 163 (7) |
| O18—H18A⋯O27 | 0.84 (2) | 1.91 (4) | 2.648 (9) | 146 (6) |
| O17—H17B⋯O6vi | 0.83 (2) | 1.90 (2) | 2.730 (5) | 176 (7) |
| O17—H17A⋯O12 | 0.83 (2) | 2.10 (3) | 2.905 (5) | 163 (6) |
| O16—H16B⋯O22 | 0.84 (2) | 1.89 (2) | 2.721 (6) | 173 (7) |
| O16—H16A⋯O17iv | 0.84 (2) | 1.95 (2) | 2.784 (5) | 172 (7) |
| O15—H15B⋯O16 | 0.84 (2) | 1.86 (2) | 2.692 (5) | 170 (6) |
| O15—H15A⋯O21 | 0.84 (2) | 1.85 (3) | 2.668 (5) | 166 (6) |
| N10—H10B⋯O22viii | 0.91 | 2.13 | 2.920 (6) | 145 |
| N10—H10A⋯O20i | 0.91 | 2.24 | 2.987 (5) | 139 |
| N8—H8B⋯O12vi | 0.91 | 2.04 | 2.937 (5) | 168 |
| N8—H8A⋯O23 | 0.91 | 2.20 | 3.031 (5) | 152 |
| N6—H6B⋯O13ix | 0.91 | 2.64 | 3.363 (5) | 137 |
| N6—H6B⋯O24vi | 0.91 | 2.24 | 2.984 (6) | 139 |
| N6—H6A⋯O13iv | 0.91 | 2.25 | 3.158 (5) | 175 |
| N4—H4B⋯O2x | 0.91 | 2.33 | 3.182 (5) | 156 |
| N4—H4A⋯O27iv | 0.91 | 2.18 | 3.037 (9) | 156 |
| N4—H4A⋯O25x | 0.91 | 2.01 | 2.789 (9) | 143 |
| N2—H2B⋯O27 | 0.91 | 2.55 | 3.418 (9) | 159 |
| N2—H2B⋯O28v | 0.91 | 2.08 | 2.868 (9) | 144 |
| N2—H2A⋯O15iii | 0.91 | 2.07 | 2.946 (5) | 162 |
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z; (v) -x, -y, -z+1; (vi) -x+1, -y+1, -z; (vii) x, y-1, z; (viii) x-1, y, z; (ix) -x+1, -y, -z; (x) -x+1, -y, -z+1.
Database survey
Compounds most closely related to 1 are its isomorphous counterparts [LnCu5(GlyHA)5(SO4)(H2O)6.5]2(SO4), where GlyHA2− is the dianion of glycinehydroxamic acid and Ln III = Pr, Nd, Sm, Eu, Gd, Dy and Ho (Pavlishchuk et al., 2011 ▸). A search of the Cambridge Structural Database (Version 5.41, 2021; Groom et al., 2016 ▸) reveals other compounds that also feature an LnCu5(GlyHA)5 core, with counter-anions such as nitrate, acetate, chloride, lactate, carbonate, sulfate, isophthalate, terephthalate and all lanthanide ions other than radioactive Pm (Katkova et al., 2015a ▸,b ▸; Pavlishchuk et al., 2011 ▸, 2017a ▸, Pavlishchuk et al., 2018 ▸, 2019 ▸; Stemmler et al., 1999 ▸; Muravyeva et al., 2016 ▸; Kremlev et al., 2016 ▸). Most of these complexes feature, similar to 1, individual molecular complex cations (Katkova et al., 2015a ▸,b ▸; Pavlishchuk et al., 2011 ▸, 2017a ▸, 2018 ▸, 2019 ▸; Stemmler et al., 1999 ▸; Muravyeva et al., 2016 ▸; Kremlev et al., 2016 ▸), but a small number of oligomerized examples have also been reported (Pavlishchuk et al., 2017a ▸, 2018 ▸).
Synthesis and crystallization
Complex 1 was synthesized and crystallized according a general procedure described previously (Pavlishchuk et al., 2011 ▸). Single crystals were obtained by slow evaporation from an aqueous solution of 1.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 5 ▸. The structure is isomorphous with its Dy, Eu, Gd, Ho, Nd, Pr analogues (Pavlishchuk et al., 2011 ▸) and was solved by isomorphous replacement. The O19 water molecule is disordered over two mutually exclusive positions across an inversion center and was refined as half occupied. The non-coordinated sulfate ion is located on an inversion center and the oxygen atoms are disordered over two sets of positions with half occupancy.
Table 5. Experimental details.
| Crystal data | |
| Chemical formula | [TbCu5(C2H4N2O2)5(SO4)(H2O)6.5]2(SO4)·6H2O |
| M r | 2464.44 |
| Crystal system, space group | Triclinic, P\overline{1} |
| Temperature (K) | 150 |
| a, b, c (Å) | 9.6370 (4), 11.5888 (5), 16.2367 (6) |
| α, β, γ (°) | 99.6716 (13), 91.3031 (12), 105.3123 (12) |
| V (Å3) | 1719.80 (12) |
| Z | 1 |
| Radiation type | Cu Kα |
| μ (mm−1) | 15.11 |
| Crystal size (mm) | 0.20 × 0.20 × 0.08 |
| Data collection | |
| Diffractometer | Bruker AXS D8 Quest CMOS diffractometer with PhotonII charge-integrating pixel array detector (CPAD) |
| Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸ |
| T min, T max | 0.454, 0.754 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 16278, 7029, 6786 |
| R int | 0.050 |
| (sin θ/λ)max (Å−1) | 0.639 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.041, 0.118, 1.10 |
| No. of reflections | 7029 |
| No. of parameters | 562 |
| No. of restraints | 22 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 1.59, −1.34 |
C—H bond distances were constrained to 0.99 for aliphatic CH2 moieties. N—H bond distances were constrained to 0.91 Å for pyramidal (sp 3-hybridized) ammonium NH2 + groups. Water H-atom positions were refined, and O—H distances were restrained to 0.84 (2) Å. The H⋯H distances within the O23 and O24 water molecules were further restrained to 1.35 (2) Å. U iso(H) values were set to kU eq(C/N/O) with k =1.5 for OH, and 1.2 for CH2 and NH2 + units, respectively.
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021011907/yy2004sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021011907/yy2004Isup2.hkl
CCDC reference: 2121203
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
This work was supported partly by the Ministry of Education and Science of Ukraine: Grant of the Ministry of Education and Science of Ukraine for perspective development of a scientific direction ‘Mathematical sciences and natural sciences’ at Taras Shevchenko National University of Kyiv. This material is based upon work supported by the National Science Foundation through the Major Research Instrumentation Program under Grant No. CHE 1625543 (funding for the single-crystal X-ray diffractometer). AWA thanks Drexel University for support.
supplementary crystallographic information
Crystal data
| [TbCu5(C2H4N2O2)5(SO4)(H2O)6.5]2(SO4)·6H2O | Z = 1 |
| Mr = 2464.44 | F(000) = 1214 |
| Triclinic, P1 | Dx = 2.380 Mg m−3 |
| a = 9.6370 (4) Å | Cu Kα radiation, λ = 1.54178 Å |
| b = 11.5888 (5) Å | Cell parameters from 9965 reflections |
| c = 16.2367 (6) Å | θ = 4.0–79.9° |
| α = 99.6716 (13)° | µ = 15.11 mm−1 |
| β = 91.3031 (12)° | T = 150 K |
| γ = 105.3123 (12)° | Plate, blue |
| V = 1719.80 (12) Å3 | 0.20 × 0.20 × 0.08 mm |
Data collection
| Bruker AXS D8 Quest CMOS diffractometer with PhotonII charge-integrating pixel array detector (CPAD) | 7029 independent reflections |
| Radiation source: I-mu-S microsource X-ray tube | 6786 reflections with I > 2σ(I) |
| Laterally graded multilayer (Goebel) mirror monochromator | Rint = 0.050 |
| Detector resolution: 7.4074 pixels mm-1 | θmax = 80.3°, θmin = 2.8° |
| ω and phi scans | h = −12→12 |
| Absorption correction: multi-scan (SADABS; Krause et al., 2015 | k = −14→14 |
| Tmin = 0.454, Tmax = 0.754 | l = −19→15 |
| 16278 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: mixed |
| wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.10 | w = 1/[σ2(Fo2) + (0.0656P)2 + 1.8351P] where P = (Fo2 + 2Fc2)/3 |
| 7029 reflections | (Δ/σ)max < 0.001 |
| 562 parameters | Δρmax = 1.59 e Å−3 |
| 22 restraints | Δρmin = −1.34 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. The structure is ismorphous with its Dy, Eu, Gd, Ho, Nd, Pr analogues (AVP85_10mz121, AVP355_10mz172, AVP621_09mz411 and AVP629_10mz194, AVP65_10mz125 and AVP651_10mz191, AVP70_10mz147, AVP75_10mz148 and AVP754_10mz650), and was solved by isomorphous replacement. The water molecule of O19 is disordered over two mutually exclusive positions across an inversion center and was refined as half occupied. The non-coordinated sulfate ion is located on an inversion center and the oxygen atoms are disordered over two sets of positions with half occupancy. Water H atom positions were refined and O-H distances were restrained to 0.84 (2) Angstrom, respectively. Some H···H distances were further restrained to 1.35 (2) Angstrom. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | Occ. (<1) | |
| C1 | 0.4433 (5) | 0.2625 (4) | 0.5042 (3) | 0.0167 (8) | |
| C2 | 0.3610 (5) | 0.2938 (4) | 0.5788 (3) | 0.0195 (9) | |
| H2C | 0.320220 | 0.220082 | 0.602893 | 0.023* | |
| H2D | 0.427084 | 0.354919 | 0.622292 | 0.023* | |
| C3 | 0.6783 (5) | 0.0423 (4) | 0.2493 (3) | 0.0158 (8) | |
| C4 | 0.6931 (6) | −0.0360 (5) | 0.3110 (3) | 0.0235 (10) | |
| H4C | 0.794720 | −0.038433 | 0.316648 | 0.028* | |
| H4D | 0.632740 | −0.119964 | 0.290399 | 0.028* | |
| C5 | 0.7890 (5) | 0.3483 (4) | 0.0317 (3) | 0.0175 (9) | |
| C6 | 0.8858 (5) | 0.2707 (4) | −0.0019 (3) | 0.0221 (10) | |
| H6C | 0.874472 | 0.253424 | −0.063895 | 0.027* | |
| H6D | 0.987712 | 0.315424 | 0.015213 | 0.027* | |
| C7 | 0.5254 (5) | 0.6985 (4) | 0.1304 (3) | 0.0159 (8) | |
| C8 | 0.6022 (5) | 0.7507 (4) | 0.0594 (3) | 0.0179 (9) | |
| H8C | 0.532673 | 0.736705 | 0.010561 | 0.022* | |
| H8D | 0.643978 | 0.839491 | 0.076935 | 0.022* | |
| C9 | 0.2149 (5) | 0.5808 (4) | 0.3895 (3) | 0.0163 (9) | |
| C10 | 0.1644 (5) | 0.6898 (4) | 0.3802 (3) | 0.0222 (10) | |
| H10C | 0.058903 | 0.664428 | 0.366493 | 0.027* | |
| H10D | 0.184336 | 0.748022 | 0.434014 | 0.027* | |
| Cu1 | 0.57451 (7) | 0.15475 (6) | 0.38923 (4) | 0.01792 (16) | |
| Cu2 | 0.71639 (7) | 0.16393 (6) | 0.12404 (4) | 0.01884 (16) | |
| Cu3 | 0.68477 (7) | 0.53540 (6) | 0.08031 (4) | 0.01553 (15) | |
| Cu4 | 0.34975 (7) | 0.64627 (6) | 0.24858 (4) | 0.01548 (15) | |
| Cu5 | 0.28203 (7) | 0.39948 (6) | 0.44370 (4) | 0.01615 (15) | |
| Tb1 | 0.48345 (2) | 0.35681 (2) | 0.24306 (2) | 0.01322 (9) | |
| N1 | 0.4245 (4) | 0.3141 (3) | 0.4416 (2) | 0.0171 (7) | |
| N2 | 0.2431 (4) | 0.3430 (4) | 0.5530 (2) | 0.0195 (8) | |
| H2A | 0.236548 | 0.406266 | 0.592889 | 0.023* | |
| H2B | 0.157731 | 0.284301 | 0.547628 | 0.023* | |
| N3 | 0.6105 (4) | 0.1242 (3) | 0.2732 (2) | 0.0178 (7) | |
| N4 | 0.6482 (5) | 0.0108 (4) | 0.3943 (3) | 0.0215 (8) | |
| H4A | 0.724750 | 0.031948 | 0.432837 | 0.026* | |
| H4B | 0.577960 | −0.048780 | 0.410697 | 0.026* | |
| N5 | 0.7027 (4) | 0.3075 (3) | 0.0865 (2) | 0.0166 (7) | |
| N6 | 0.8492 (4) | 0.1541 (3) | 0.0304 (2) | 0.0171 (7) | |
| H6A | 0.931299 | 0.139490 | 0.049586 | 0.021* | |
| H6B | 0.805401 | 0.091646 | −0.011692 | 0.021* | |
| N7 | 0.5575 (4) | 0.6039 (3) | 0.1480 (2) | 0.0172 (7) | |
| N8 | 0.7190 (4) | 0.6918 (3) | 0.0356 (2) | 0.0159 (7) | |
| H8A | 0.805912 | 0.742721 | 0.057077 | 0.019* | |
| H8B | 0.720395 | 0.676114 | −0.021109 | 0.019* | |
| N9 | 0.2929 (4) | 0.5471 (3) | 0.3302 (2) | 0.0173 (7) | |
| N10 | 0.2378 (4) | 0.7509 (4) | 0.3133 (3) | 0.0226 (8) | |
| H10A | 0.298699 | 0.824200 | 0.336523 | 0.027* | |
| H10B | 0.171092 | 0.763954 | 0.278010 | 0.027* | |
| O1 | 0.5000 (3) | 0.2882 (3) | 0.37163 (19) | 0.0166 (6) | |
| O2 | 0.5244 (4) | 0.1896 (3) | 0.5060 (2) | 0.0196 (6) | |
| O3 | 0.6029 (4) | 0.1998 (3) | 0.2163 (2) | 0.0199 (7) | |
| O4 | 0.7336 (4) | 0.0300 (3) | 0.1769 (2) | 0.0196 (7) | |
| O5 | 0.6158 (3) | 0.3809 (3) | 0.11866 (19) | 0.0157 (6) | |
| O6 | 0.7979 (4) | 0.4510 (3) | 0.0074 (2) | 0.0189 (6) | |
| O7 | 0.4861 (3) | 0.5537 (3) | 0.2123 (2) | 0.0166 (6) | |
| O8 | 0.4330 (3) | 0.7478 (3) | 0.1689 (2) | 0.0193 (6) | |
| O9 | 0.3463 (3) | 0.4493 (3) | 0.3393 (2) | 0.0170 (6) | |
| O10 | 0.1827 (4) | 0.5265 (3) | 0.4519 (2) | 0.0195 (7) | |
| O11 | 0.2853 (4) | 0.1696 (3) | 0.2229 (2) | 0.0238 (7) | |
| O12 | 0.2734 (4) | 0.3216 (3) | 0.1464 (2) | 0.0205 (7) | |
| O13 | 0.1448 (4) | 0.1123 (3) | 0.0876 (2) | 0.0253 (7) | |
| O14 | 0.0575 (4) | 0.2189 (4) | 0.2058 (2) | 0.0311 (8) | |
| O15 | 0.7222 (3) | 0.4609 (3) | 0.3006 (2) | 0.0184 (6) | |
| H15A | 0.767 (6) | 0.430 (5) | 0.331 (3) | 0.028* | |
| H15B | 0.782 (5) | 0.495 (5) | 0.269 (3) | 0.028* | |
| O16 | 0.8851 (4) | 0.5789 (3) | 0.1920 (2) | 0.0254 (7) | |
| H16A | 0.960 (5) | 0.557 (6) | 0.184 (4) | 0.038* | |
| H16B | 0.917 (7) | 0.653 (2) | 0.213 (4) | 0.038* | |
| O17 | 0.1408 (4) | 0.5205 (3) | 0.1525 (2) | 0.0220 (7) | |
| H17A | 0.163 (7) | 0.457 (4) | 0.156 (4) | 0.033* | |
| H17B | 0.155 (7) | 0.528 (6) | 0.1031 (18) | 0.033* | |
| O18 | 0.0716 (4) | 0.2521 (3) | 0.3767 (2) | 0.0241 (7) | |
| H18A | 0.043 (7) | 0.185 (3) | 0.393 (4) | 0.036* | |
| H18B | 0.070 (7) | 0.236 (6) | 0.3246 (13) | 0.036* | |
| O19 | 0.5200 (11) | 0.0381 (11) | 0.0275 (6) | 0.047 (2) | 0.5 |
| H19A | 0.472 (19) | −0.003 (15) | 0.060 (9) | 0.071* | 0.5 |
| H19B | 0.55 (2) | 0.02 (2) | −0.021 (6) | 0.071* | 0.5 |
| O20 | 0.3102 (4) | 0.0221 (3) | 0.3519 (3) | 0.0283 (8) | |
| H20A | 0.236 (5) | 0.022 (7) | 0.377 (4) | 0.043* | |
| H20B | 0.291 (8) | 0.063 (6) | 0.318 (4) | 0.043* | |
| O21 | 0.8274 (4) | 0.3337 (4) | 0.3966 (2) | 0.0308 (8) | |
| H21A | 0.909 (4) | 0.320 (7) | 0.392 (5) | 0.046* | |
| H21B | 0.841 (8) | 0.380 (6) | 0.443 (3) | 0.046* | |
| O22 | 0.9749 (5) | 0.8150 (4) | 0.2711 (3) | 0.0361 (9) | |
| H22A | 0.972 (9) | 0.855 (7) | 0.319 (2) | 0.054* | |
| H22B | 0.980 (9) | 0.857 (6) | 0.234 (4) | 0.054* | |
| O23 | 0.9394 (4) | 0.9116 (3) | 0.1345 (2) | 0.0243 (7) | |
| H23A | 0.876 (4) | 0.947 (5) | 0.150 (4) | 0.036* | |
| H23B | 1.011 (4) | 0.968 (4) | 0.126 (4) | 0.036* | |
| O24 | 0.3431 (7) | 0.9430 (4) | 0.1264 (3) | 0.0523 (14) | |
| H24A | 0.328 (11) | 0.998 (6) | 0.163 (4) | 0.079* | |
| H24B | 0.368 (10) | 0.893 (6) | 0.152 (4) | 0.079* | |
| O25 | 0.1618 (8) | 0.0365 (9) | 0.4920 (5) | 0.0357 (19) | 0.5 |
| O26 | −0.0300 (9) | −0.0158 (7) | 0.5820 (5) | 0.0339 (17) | 0.5 |
| O27 | −0.0484 (9) | 0.1032 (7) | 0.4781 (5) | 0.0333 (17) | 0.5 |
| O28 | −0.0592 (9) | −0.1078 (7) | 0.4360 (5) | 0.0346 (17) | 0.5 |
| S1 | 0.18461 (12) | 0.20240 (10) | 0.16476 (7) | 0.0195 (2) | |
| S2 | 0.000000 | 0.000000 | 0.500000 | 0.0199 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0163 (19) | 0.0162 (19) | 0.019 (2) | 0.0070 (16) | 0.0042 (17) | 0.0016 (17) |
| C2 | 0.024 (2) | 0.025 (2) | 0.016 (2) | 0.0143 (18) | 0.0049 (17) | 0.0080 (18) |
| C3 | 0.0152 (19) | 0.0150 (19) | 0.019 (2) | 0.0092 (16) | 0.0030 (16) | 0.0011 (17) |
| C4 | 0.034 (3) | 0.024 (2) | 0.019 (2) | 0.020 (2) | 0.0063 (19) | 0.0025 (19) |
| C5 | 0.018 (2) | 0.019 (2) | 0.016 (2) | 0.0074 (17) | 0.0045 (17) | 0.0023 (17) |
| C6 | 0.025 (2) | 0.018 (2) | 0.025 (2) | 0.0068 (18) | 0.0113 (19) | 0.0018 (18) |
| C7 | 0.0150 (19) | 0.0126 (19) | 0.019 (2) | 0.0023 (15) | 0.0009 (16) | 0.0027 (17) |
| C8 | 0.018 (2) | 0.017 (2) | 0.021 (2) | 0.0078 (16) | 0.0038 (17) | 0.0055 (17) |
| C9 | 0.018 (2) | 0.0165 (19) | 0.017 (2) | 0.0114 (16) | 0.0011 (16) | −0.0027 (17) |
| C10 | 0.029 (2) | 0.024 (2) | 0.022 (2) | 0.0194 (19) | 0.0081 (19) | 0.0066 (19) |
| Cu1 | 0.0252 (3) | 0.0179 (3) | 0.0165 (3) | 0.0146 (3) | 0.0054 (3) | 0.0048 (3) |
| Cu2 | 0.0252 (3) | 0.0152 (3) | 0.0212 (4) | 0.0122 (3) | 0.0111 (3) | 0.0051 (3) |
| Cu3 | 0.0188 (3) | 0.0136 (3) | 0.0167 (3) | 0.0074 (2) | 0.0067 (2) | 0.0039 (2) |
| Cu4 | 0.0173 (3) | 0.0138 (3) | 0.0189 (3) | 0.0090 (2) | 0.0052 (2) | 0.0045 (2) |
| Cu5 | 0.0188 (3) | 0.0174 (3) | 0.0169 (3) | 0.0111 (3) | 0.0069 (2) | 0.0053 (3) |
| Tb1 | 0.01436 (14) | 0.01192 (14) | 0.01535 (15) | 0.00683 (10) | 0.00396 (10) | 0.00235 (10) |
| N1 | 0.0233 (18) | 0.0181 (17) | 0.0138 (18) | 0.0112 (15) | 0.0065 (14) | 0.0044 (14) |
| N2 | 0.0220 (19) | 0.0194 (18) | 0.020 (2) | 0.0106 (15) | 0.0073 (15) | 0.0036 (15) |
| N3 | 0.0234 (19) | 0.0150 (17) | 0.0201 (19) | 0.0111 (15) | 0.0070 (15) | 0.0071 (15) |
| N4 | 0.029 (2) | 0.0223 (19) | 0.020 (2) | 0.0157 (16) | 0.0087 (16) | 0.0072 (16) |
| N5 | 0.0159 (17) | 0.0179 (17) | 0.0169 (18) | 0.0087 (14) | 0.0056 (14) | −0.0016 (15) |
| N6 | 0.0171 (17) | 0.0183 (18) | 0.0193 (19) | 0.0092 (14) | 0.0060 (14) | 0.0053 (15) |
| N7 | 0.0192 (18) | 0.0170 (17) | 0.0174 (18) | 0.0075 (14) | 0.0036 (15) | 0.0043 (15) |
| N8 | 0.0212 (18) | 0.0104 (15) | 0.0183 (18) | 0.0060 (14) | 0.0061 (14) | 0.0057 (14) |
| N9 | 0.0202 (18) | 0.0166 (17) | 0.0185 (19) | 0.0108 (14) | 0.0029 (15) | 0.0032 (15) |
| N10 | 0.0212 (19) | 0.0169 (18) | 0.034 (2) | 0.0125 (15) | 0.0102 (17) | 0.0039 (17) |
| O1 | 0.0207 (15) | 0.0205 (15) | 0.0148 (15) | 0.0141 (12) | 0.0090 (12) | 0.0057 (12) |
| O2 | 0.0277 (17) | 0.0195 (15) | 0.0172 (16) | 0.0146 (13) | 0.0065 (13) | 0.0050 (13) |
| O3 | 0.0307 (17) | 0.0187 (15) | 0.0182 (16) | 0.0155 (13) | 0.0121 (13) | 0.0095 (13) |
| O4 | 0.0251 (16) | 0.0183 (15) | 0.0197 (16) | 0.0123 (13) | 0.0084 (13) | 0.0041 (13) |
| O5 | 0.0193 (14) | 0.0119 (13) | 0.0197 (16) | 0.0103 (11) | 0.0064 (12) | 0.0031 (12) |
| O6 | 0.0271 (17) | 0.0166 (14) | 0.0172 (16) | 0.0107 (13) | 0.0104 (13) | 0.0053 (12) |
| O7 | 0.0180 (14) | 0.0154 (14) | 0.0205 (16) | 0.0086 (12) | 0.0114 (12) | 0.0067 (12) |
| O8 | 0.0201 (15) | 0.0193 (15) | 0.0238 (17) | 0.0120 (12) | 0.0072 (13) | 0.0070 (13) |
| O9 | 0.0204 (15) | 0.0178 (15) | 0.0210 (16) | 0.0168 (12) | 0.0109 (12) | 0.0065 (13) |
| O10 | 0.0280 (17) | 0.0209 (15) | 0.0172 (16) | 0.0160 (13) | 0.0094 (13) | 0.0081 (13) |
| O11 | 0.0247 (17) | 0.0219 (16) | 0.0246 (18) | 0.0061 (13) | −0.0008 (14) | 0.0042 (14) |
| O12 | 0.0253 (16) | 0.0174 (15) | 0.0180 (16) | 0.0028 (13) | 0.0002 (13) | 0.0058 (13) |
| O13 | 0.0280 (17) | 0.0206 (16) | 0.0241 (18) | 0.0028 (14) | 0.0013 (14) | 0.0010 (14) |
| O14 | 0.0210 (17) | 0.043 (2) | 0.0267 (19) | 0.0086 (16) | 0.0047 (14) | −0.0019 (16) |
| O15 | 0.0178 (15) | 0.0222 (16) | 0.0167 (16) | 0.0076 (12) | 0.0016 (12) | 0.0041 (13) |
| O16 | 0.0190 (16) | 0.0268 (17) | 0.0287 (19) | 0.0047 (14) | 0.0044 (14) | 0.0029 (15) |
| O17 | 0.0281 (17) | 0.0224 (16) | 0.0183 (16) | 0.0111 (14) | 0.0040 (14) | 0.0043 (14) |
| O18 | 0.0261 (17) | 0.0227 (17) | 0.0236 (18) | 0.0066 (14) | 0.0045 (14) | 0.0040 (14) |
| O19 | 0.038 (5) | 0.064 (6) | 0.026 (4) | −0.007 (4) | −0.001 (4) | 0.005 (4) |
| O20 | 0.0309 (19) | 0.0200 (17) | 0.035 (2) | 0.0066 (15) | 0.0100 (16) | 0.0063 (15) |
| O21 | 0.0287 (19) | 0.044 (2) | 0.0241 (19) | 0.0232 (17) | 0.0003 (15) | −0.0036 (16) |
| O22 | 0.047 (2) | 0.036 (2) | 0.032 (2) | 0.0236 (19) | −0.0020 (19) | 0.0038 (17) |
| O23 | 0.0215 (16) | 0.0173 (15) | 0.035 (2) | 0.0072 (13) | 0.0068 (15) | 0.0026 (14) |
| O24 | 0.090 (4) | 0.039 (2) | 0.037 (2) | 0.043 (3) | −0.015 (2) | −0.008 (2) |
| O25 | 0.023 (4) | 0.058 (5) | 0.034 (4) | 0.014 (4) | 0.007 (3) | 0.022 (4) |
| O26 | 0.042 (4) | 0.034 (4) | 0.025 (4) | 0.011 (3) | 0.007 (3) | 0.002 (3) |
| O27 | 0.038 (4) | 0.030 (4) | 0.041 (5) | 0.018 (3) | 0.007 (3) | 0.018 (3) |
| O28 | 0.044 (5) | 0.026 (4) | 0.033 (4) | 0.009 (3) | 0.004 (3) | 0.003 (3) |
| S1 | 0.0186 (5) | 0.0195 (5) | 0.0200 (5) | 0.0044 (4) | 0.0019 (4) | 0.0037 (4) |
| S2 | 0.0189 (7) | 0.0180 (7) | 0.0235 (8) | 0.0071 (6) | −0.0005 (6) | 0.0026 (6) |
Geometric parameters (Å, º)
| C1—N1 | 1.294 (6) | Cu5—N2 | 2.003 (4) |
| C1—O2 | 1.298 (5) | Cu5—O18 | 2.379 (4) |
| C1—C2 | 1.509 (6) | Tb1—O9 | 2.370 (3) |
| C2—N2 | 1.480 (6) | Tb1—O1 | 2.372 (3) |
| C2—H2C | 0.9900 | Tb1—O15 | 2.383 (3) |
| C2—H2D | 0.9900 | Tb1—O3 | 2.386 (3) |
| C3—N3 | 1.301 (5) | Tb1—O7 | 2.411 (3) |
| C3—O4 | 1.304 (6) | Tb1—O5 | 2.430 (3) |
| C3—C4 | 1.488 (7) | Tb1—O12 | 2.436 (3) |
| C4—N4 | 1.488 (6) | Tb1—O11 | 2.451 (3) |
| C4—H4C | 0.9900 | Tb1—S1 | 3.0756 (11) |
| C4—H4D | 0.9900 | N1—O1 | 1.396 (5) |
| C5—N5 | 1.295 (6) | N2—H2A | 0.9100 |
| C5—O6 | 1.298 (6) | N2—H2B | 0.9100 |
| C5—C6 | 1.509 (6) | N3—O3 | 1.389 (5) |
| C6—N6 | 1.491 (6) | N4—H4A | 0.9100 |
| C6—H6C | 0.9900 | N4—H4B | 0.9100 |
| C6—H6D | 0.9900 | N5—O5 | 1.395 (4) |
| C7—N7 | 1.288 (6) | N6—H6A | 0.9100 |
| C7—O8 | 1.298 (5) | N6—H6B | 0.9100 |
| C7—C8 | 1.509 (6) | N7—O7 | 1.388 (5) |
| C8—N8 | 1.489 (5) | N8—H8A | 0.9100 |
| C8—H8C | 0.9900 | N8—H8B | 0.9100 |
| C8—H8D | 0.9900 | N9—O9 | 1.391 (5) |
| C9—O10 | 1.282 (6) | N10—H10A | 0.9100 |
| C9—N9 | 1.306 (6) | N10—H10B | 0.9100 |
| C9—C10 | 1.498 (6) | O11—S1 | 1.500 (4) |
| C10—N10 | 1.487 (7) | O12—S1 | 1.502 (3) |
| C10—H10C | 0.9900 | O13—S1 | 1.461 (3) |
| C10—H10D | 0.9900 | O14—S1 | 1.448 (4) |
| Cu1—N3 | 1.915 (4) | O15—H15A | 0.84 (2) |
| Cu1—O1 | 1.928 (3) | O15—H15B | 0.84 (2) |
| Cu1—O2 | 1.969 (3) | O16—H16A | 0.84 (2) |
| Cu1—N4 | 1.991 (4) | O16—H16B | 0.84 (2) |
| Cu1—O20 | 2.601 (4) | O17—H17A | 0.83 (2) |
| Cu1—O21 | 2.736 (4) | O17—H17B | 0.83 (2) |
| Cu2—N5 | 1.900 (4) | O18—H18A | 0.84 (2) |
| Cu2—O3 | 1.928 (3) | O18—H18B | 0.83 (2) |
| Cu2—O4 | 1.936 (3) | O19—H19A | 0.84 (2) |
| Cu2—N6 | 2.018 (4) | O19—H19B | 0.84 (2) |
| Cu2—O19 | 2.409 (10) | O20—H20A | 0.83 (2) |
| Cu3—N7 | 1.904 (4) | O20—H20B | 0.83 (2) |
| Cu3—O6 | 1.944 (3) | O21—H21A | 0.84 (2) |
| Cu3—O5 | 1.949 (3) | O21—H21B | 0.83 (2) |
| Cu3—N8 | 2.014 (4) | O22—H22A | 0.84 (2) |
| Cu3—O16 | 2.508 (4) | O22—H22B | 0.84 (2) |
| Cu4—N9 | 1.894 (4) | O23—H23A | 0.84 (2) |
| Cu4—O8 | 1.940 (3) | O23—H23B | 0.85 (2) |
| Cu4—O7 | 1.947 (3) | O24—H24A | 0.84 (2) |
| Cu4—N10 | 2.012 (4) | O24—H24B | 0.84 (2) |
| Cu4—O17 | 2.481 (4) | O25—S2 | 1.519 (7) |
| Cu5—N1 | 1.890 (4) | O26—S2 | 1.401 (8) |
| Cu5—O9 | 1.943 (3) | O27—S2 | 1.485 (7) |
| Cu5—O10 | 1.946 (3) | O28—S2 | 1.458 (8) |
| N1—C1—O2 | 125.3 (4) | O5—Tb1—O11 | 112.83 (11) |
| N1—C1—C2 | 114.2 (4) | O12—Tb1—O11 | 57.34 (11) |
| O2—C1—C2 | 120.5 (4) | O9—Tb1—S1 | 83.26 (8) |
| N2—C2—C1 | 110.0 (4) | O1—Tb1—S1 | 102.84 (8) |
| N2—C2—H2C | 109.7 | O15—Tb1—S1 | 174.96 (8) |
| C1—C2—H2C | 109.7 | O3—Tb1—S1 | 96.74 (9) |
| N2—C2—H2D | 109.7 | O7—Tb1—S1 | 101.43 (8) |
| C1—C2—H2D | 109.7 | O5—Tb1—S1 | 101.06 (8) |
| H2C—C2—H2D | 108.2 | O12—Tb1—S1 | 28.74 (8) |
| N3—C3—O4 | 123.0 (4) | O11—Tb1—S1 | 28.77 (8) |
| N3—C3—C4 | 115.9 (4) | C1—N1—O1 | 115.9 (3) |
| O4—C3—C4 | 121.1 (4) | C1—N1—Cu5 | 119.5 (3) |
| C3—C4—N4 | 111.1 (4) | O1—N1—Cu5 | 124.1 (3) |
| C3—C4—H4C | 109.4 | C2—N2—Cu5 | 109.8 (3) |
| N4—C4—H4C | 109.4 | C2—N2—H2A | 109.7 |
| C3—C4—H4D | 109.4 | Cu5—N2—H2A | 109.7 |
| N4—C4—H4D | 109.4 | C2—N2—H2B | 109.7 |
| H4C—C4—H4D | 108.0 | Cu5—N2—H2B | 109.7 |
| N5—C5—O6 | 123.7 (4) | H2A—N2—H2B | 108.2 |
| N5—C5—C6 | 116.0 (4) | C3—N3—O3 | 115.1 (4) |
| O6—C5—C6 | 120.3 (4) | C3—N3—Cu1 | 117.5 (3) |
| N6—C6—C5 | 110.5 (4) | O3—N3—Cu1 | 125.5 (3) |
| N6—C6—H6C | 109.5 | C4—N4—Cu1 | 110.6 (3) |
| C5—C6—H6C | 109.5 | C4—N4—H4A | 109.5 |
| N6—C6—H6D | 109.5 | Cu1—N4—H4A | 109.5 |
| C5—C6—H6D | 109.5 | C4—N4—H4B | 109.5 |
| H6C—C6—H6D | 108.1 | Cu1—N4—H4B | 109.5 |
| N7—C7—O8 | 124.1 (4) | H4A—N4—H4B | 108.1 |
| N7—C7—C8 | 115.5 (4) | C5—N5—O5 | 115.7 (4) |
| O8—C7—C8 | 120.4 (4) | C5—N5—Cu2 | 118.6 (3) |
| N8—C8—C7 | 109.8 (4) | O5—N5—Cu2 | 125.5 (3) |
| N8—C8—H8C | 109.7 | C6—N6—Cu2 | 109.6 (3) |
| C7—C8—H8C | 109.7 | C6—N6—H6A | 109.7 |
| N8—C8—H8D | 109.7 | Cu2—N6—H6A | 109.7 |
| C7—C8—H8D | 109.7 | C6—N6—H6B | 109.7 |
| H8C—C8—H8D | 108.2 | Cu2—N6—H6B | 109.7 |
| O10—C9—N9 | 123.8 (4) | H6A—N6—H6B | 108.2 |
| O10—C9—C10 | 121.2 (4) | C7—N7—O7 | 116.2 (4) |
| N9—C9—C10 | 115.0 (4) | C7—N7—Cu3 | 119.0 (3) |
| N10—C10—C9 | 111.3 (4) | O7—N7—Cu3 | 124.6 (3) |
| N10—C10—H10C | 109.4 | C8—N8—Cu3 | 109.7 (3) |
| C9—C10—H10C | 109.4 | C8—N8—H8A | 109.7 |
| N10—C10—H10D | 109.4 | Cu3—N8—H8A | 109.7 |
| C9—C10—H10D | 109.4 | C8—N8—H8B | 109.7 |
| H10C—C10—H10D | 108.0 | Cu3—N8—H8B | 109.7 |
| N3—Cu1—O1 | 90.36 (14) | H8A—N8—H8B | 108.2 |
| N3—Cu1—O2 | 175.68 (15) | C9—N9—O9 | 116.1 (4) |
| O1—Cu1—O2 | 86.12 (13) | C9—N9—Cu4 | 119.1 (3) |
| N3—Cu1—N4 | 83.85 (16) | O9—N9—Cu4 | 124.1 (3) |
| O1—Cu1—N4 | 173.91 (15) | C10—N10—Cu4 | 109.9 (3) |
| O2—Cu1—N4 | 99.57 (15) | C10—N10—H10A | 109.7 |
| N3—Cu1—O20 | 89.10 (15) | Cu4—N10—H10A | 109.7 |
| O1—Cu1—O20 | 85.07 (13) | C10—N10—H10B | 109.7 |
| O2—Cu1—O20 | 88.10 (14) | Cu4—N10—H10B | 109.7 |
| N4—Cu1—O20 | 92.89 (15) | H10A—N10—H10B | 108.2 |
| N3—Cu1—O21 | 82.42 (14) | N1—O1—Cu1 | 106.2 (2) |
| O1—Cu1—O21 | 80.09 (13) | N1—O1—Tb1 | 125.6 (2) |
| O2—Cu1—O21 | 99.41 (13) | Cu1—O1—Tb1 | 126.24 (14) |
| N4—Cu1—O21 | 100.98 (15) | C1—O2—Cu1 | 104.0 (3) |
| O20—Cu1—O21 | 162.82 (12) | N3—O3—Cu2 | 108.6 (2) |
| N5—Cu2—O3 | 89.51 (15) | N3—O3—Tb1 | 122.4 (2) |
| N5—Cu2—O4 | 172.53 (15) | Cu2—O3—Tb1 | 128.77 (15) |
| O3—Cu2—O4 | 84.79 (13) | C3—O4—Cu2 | 107.7 (3) |
| N5—Cu2—N6 | 83.61 (16) | N5—O5—Cu3 | 107.1 (2) |
| O3—Cu2—N6 | 171.24 (15) | N5—O5—Tb1 | 124.1 (2) |
| O4—Cu2—N6 | 101.58 (15) | Cu3—O5—Tb1 | 123.88 (13) |
| N5—Cu2—O19 | 92.3 (3) | C5—O6—Cu3 | 107.0 (3) |
| O3—Cu2—O19 | 97.4 (3) | N7—O7—Cu4 | 107.2 (2) |
| O4—Cu2—O19 | 93.2 (3) | N7—O7—Tb1 | 124.7 (2) |
| N6—Cu2—O19 | 88.3 (3) | Cu4—O7—Tb1 | 125.89 (14) |
| N7—Cu3—O6 | 174.11 (15) | C7—O8—Cu4 | 106.9 (3) |
| N7—Cu3—O5 | 91.24 (15) | N9—O9—Cu5 | 107.2 (2) |
| O6—Cu3—O5 | 84.79 (13) | N9—O9—Tb1 | 126.2 (2) |
| N7—Cu3—N8 | 82.67 (16) | Cu5—O9—Tb1 | 126.55 (14) |
| O6—Cu3—N8 | 100.63 (14) | C9—O10—Cu5 | 107.4 (3) |
| O5—Cu3—N8 | 169.87 (14) | S1—O11—Tb1 | 99.41 (17) |
| N7—Cu3—O16 | 96.61 (14) | S1—O12—Tb1 | 100.02 (16) |
| O6—Cu3—O16 | 87.37 (13) | Tb1—O15—H15A | 121 (4) |
| O5—Cu3—O16 | 84.87 (13) | Tb1—O15—H15B | 118 (4) |
| N8—Cu3—O16 | 103.81 (14) | H15A—O15—H15B | 107 (6) |
| N9—Cu4—O8 | 172.67 (15) | Cu3—O16—H16A | 122 (5) |
| N9—Cu4—O7 | 89.19 (15) | Cu3—O16—H16B | 114 (5) |
| O8—Cu4—O7 | 85.34 (13) | H16A—O16—H16B | 102 (7) |
| N9—Cu4—N10 | 83.73 (17) | Cu4—O17—H17A | 92 (5) |
| O8—Cu4—N10 | 100.54 (16) | Cu4—O17—H17B | 111 (5) |
| O7—Cu4—N10 | 165.82 (17) | H17A—O17—H17B | 103 (6) |
| N9—Cu4—O17 | 90.56 (14) | Cu5—O18—H18A | 120 (5) |
| O8—Cu4—O17 | 94.98 (13) | Cu5—O18—H18B | 115 (5) |
| O7—Cu4—O17 | 97.53 (13) | H18A—O18—H18B | 107 (7) |
| N10—Cu4—O17 | 94.81 (15) | Cu2—O19—H19A | 99 (10) |
| N1—Cu5—O9 | 88.98 (14) | Cu2—O19—H19B | 113 (10) |
| N1—Cu5—O10 | 163.89 (16) | H19A—O19—H19B | 135 (10) |
| O9—Cu5—O10 | 85.41 (13) | Cu1—O20—H20A | 131 (5) |
| N1—Cu5—N2 | 83.21 (16) | Cu1—O20—H20B | 95 (5) |
| O9—Cu5—N2 | 171.78 (14) | H20A—O20—H20B | 93 (7) |
| O10—Cu5—N2 | 101.44 (14) | Cu1—O21—H21A | 124 (5) |
| N1—Cu5—O18 | 104.51 (15) | Cu1—O21—H21B | 110 (5) |
| O9—Cu5—O18 | 93.14 (13) | H21A—O21—H21B | 101 (7) |
| O10—Cu5—O18 | 90.88 (14) | H22A—O22—H22B | 113 (8) |
| N2—Cu5—O18 | 91.31 (15) | H23A—O23—H23B | 105 (3) |
| O9—Tb1—O1 | 71.67 (10) | H24A—O24—H24B | 108 (3) |
| O9—Tb1—O15 | 100.80 (11) | O14—S1—O13 | 110.9 (2) |
| O1—Tb1—O15 | 75.87 (11) | O14—S1—O11 | 111.0 (2) |
| O9—Tb1—O3 | 144.63 (11) | O13—S1—O11 | 111.6 (2) |
| O1—Tb1—O3 | 73.91 (10) | O14—S1—O12 | 110.1 (2) |
| O15—Tb1—O3 | 78.22 (11) | O13—S1—O12 | 110.3 (2) |
| O9—Tb1—O7 | 70.65 (10) | O11—S1—O12 | 102.68 (19) |
| O1—Tb1—O7 | 131.81 (10) | O14—S1—Tb1 | 118.92 (16) |
| O15—Tb1—O7 | 82.82 (11) | O13—S1—Tb1 | 130.15 (15) |
| O3—Tb1—O7 | 142.47 (10) | O11—S1—Tb1 | 51.82 (13) |
| O9—Tb1—O5 | 143.39 (10) | O12—S1—Tb1 | 51.24 (13) |
| O1—Tb1—O5 | 139.79 (10) | O26i—S2—O26 | 180.0 |
| O15—Tb1—O5 | 77.50 (11) | O26i—S2—O28i | 114.8 (5) |
| O3—Tb1—O5 | 71.55 (10) | O26—S2—O28i | 65.2 (5) |
| O7—Tb1—O5 | 72.88 (10) | O26i—S2—O28 | 65.2 (5) |
| O9—Tb1—O12 | 83.74 (11) | O26—S2—O28 | 114.8 (5) |
| O1—Tb1—O12 | 129.16 (11) | O28i—S2—O28 | 180.0 (5) |
| O15—Tb1—O12 | 153.99 (11) | O26i—S2—O27 | 68.7 (5) |
| O3—Tb1—O12 | 112.70 (11) | O26—S2—O27 | 111.3 (5) |
| O7—Tb1—O12 | 74.50 (11) | O28i—S2—O27 | 70.8 (5) |
| O5—Tb1—O12 | 83.70 (11) | O28—S2—O27 | 109.2 (5) |
| O9—Tb1—O11 | 88.43 (11) | O26i—S2—O25 | 69.6 (5) |
| O1—Tb1—O11 | 77.71 (11) | O26—S2—O25 | 110.4 (5) |
| O15—Tb1—O11 | 147.49 (12) | O28i—S2—O25 | 73.6 (5) |
| O3—Tb1—O11 | 76.51 (12) | O28—S2—O25 | 106.4 (5) |
| O7—Tb1—O11 | 129.39 (11) | O27—S2—O25 | 104.2 (5) |
| N1—C1—C2—N2 | 18.5 (6) | O10—C9—N9—Cu4 | −173.1 (3) |
| O2—C1—C2—N2 | −161.5 (4) | C10—C9—N9—Cu4 | 6.7 (5) |
| N3—C3—C4—N4 | −9.9 (6) | O7—Cu4—N9—C9 | 167.0 (4) |
| O4—C3—C4—N4 | 168.5 (4) | N10—Cu4—N9—C9 | −0.7 (4) |
| N5—C5—C6—N6 | 5.8 (6) | O17—Cu4—N9—C9 | −95.5 (3) |
| O6—C5—C6—N6 | −176.2 (4) | O7—Cu4—N9—O9 | −2.8 (3) |
| N7—C7—C8—N8 | −10.1 (5) | N10—Cu4—N9—O9 | −170.5 (3) |
| O8—C7—C8—N8 | 170.5 (4) | O17—Cu4—N9—O9 | 94.8 (3) |
| O10—C9—C10—N10 | 168.9 (4) | C9—C10—N10—Cu4 | 9.8 (5) |
| N9—C9—C10—N10 | −10.9 (6) | C1—N1—O1—Cu1 | 11.7 (4) |
| O2—C1—N1—O1 | −0.6 (6) | Cu5—N1—O1—Cu1 | −159.6 (2) |
| C2—C1—N1—O1 | 179.4 (4) | C1—N1—O1—Tb1 | 176.5 (3) |
| O2—C1—N1—Cu5 | 171.2 (3) | Cu5—N1—O1—Tb1 | 5.2 (5) |
| C2—C1—N1—Cu5 | −8.8 (5) | N1—C1—O2—Cu1 | −10.6 (5) |
| O9—Cu5—N1—C1 | 175.3 (4) | C2—C1—O2—Cu1 | 169.4 (3) |
| O10—Cu5—N1—C1 | 105.8 (6) | C3—N3—O3—Cu2 | −5.7 (4) |
| N2—Cu5—N1—C1 | −2.1 (4) | Cu1—N3—O3—Cu2 | 158.1 (2) |
| O18—Cu5—N1—C1 | −91.7 (4) | C3—N3—O3—Tb1 | 179.5 (3) |
| O9—Cu5—N1—O1 | −13.6 (3) | Cu1—N3—O3—Tb1 | −16.7 (5) |
| O10—Cu5—N1—O1 | −83.1 (6) | N3—C3—O4—Cu2 | 7.1 (5) |
| N2—Cu5—N1—O1 | 169.0 (3) | C4—C3—O4—Cu2 | −171.2 (4) |
| O18—Cu5—N1—O1 | 79.4 (3) | C5—N5—O5—Cu3 | −9.7 (4) |
| C1—C2—N2—Cu5 | −19.1 (5) | Cu2—N5—O5—Cu3 | 164.1 (2) |
| O4—C3—N3—O3 | −1.0 (6) | C5—N5—O5—Tb1 | −165.6 (3) |
| C4—C3—N3—O3 | 177.4 (4) | Cu2—N5—O5—Tb1 | 8.2 (4) |
| O4—C3—N3—Cu1 | −166.2 (3) | N5—C5—O6—Cu3 | 8.8 (5) |
| C4—C3—N3—Cu1 | 12.2 (5) | C6—C5—O6—Cu3 | −169.1 (3) |
| C3—C4—N4—Cu1 | 3.3 (5) | C7—N7—O7—Cu4 | 3.2 (4) |
| O6—C5—N5—O5 | 0.7 (6) | Cu3—N7—O7—Cu4 | −171.6 (2) |
| C6—C5—N5—O5 | 178.6 (4) | C7—N7—O7—Tb1 | 167.2 (3) |
| O6—C5—N5—Cu2 | −173.6 (3) | Cu3—N7—O7—Tb1 | −7.7 (5) |
| C6—C5—N5—Cu2 | 4.4 (5) | N7—C7—O8—Cu4 | −3.7 (5) |
| O3—Cu2—N5—C5 | 165.2 (4) | C8—C7—O8—Cu4 | 175.7 (3) |
| N6—Cu2—N5—C5 | −9.4 (3) | C9—N9—O9—Cu5 | −0.7 (4) |
| O19—Cu2—N5—C5 | −97.4 (4) | Cu4—N9—O9—Cu5 | 169.3 (2) |
| O3—Cu2—N5—O5 | −8.4 (3) | C9—N9—O9—Tb1 | 177.4 (3) |
| N6—Cu2—N5—O5 | 177.0 (3) | Cu4—N9—O9—Tb1 | −12.5 (5) |
| O19—Cu2—N5—O5 | 88.9 (4) | N9—C9—O10—Cu5 | 4.2 (5) |
| C5—C6—N6—Cu2 | −12.1 (5) | C10—C9—O10—Cu5 | −175.6 (4) |
| O8—C7—N7—O7 | 0.3 (6) | Tb1—O11—S1—O14 | −110.9 (2) |
| C8—C7—N7—O7 | −179.1 (4) | Tb1—O11—S1—O13 | 124.81 (18) |
| O8—C7—N7—Cu3 | 175.5 (3) | Tb1—O11—S1—O12 | 6.7 (2) |
| C8—C7—N7—Cu3 | −3.9 (5) | Tb1—O12—S1—O14 | 111.5 (2) |
| C7—C8—N8—Cu3 | 18.0 (4) | Tb1—O12—S1—O13 | −125.78 (18) |
| O10—C9—N9—O9 | −2.5 (6) | Tb1—O12—S1—O11 | −6.7 (2) |
| C10—C9—N9—O9 | 177.3 (4) |
Symmetry code: (i) −x, −y, −z+1.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O24—H24B···O8 | 0.84 (2) | 2.01 (3) | 2.807 (5) | 159 (7) |
| O24—H24A···O11ii | 0.84 (2) | 2.21 (3) | 3.015 (5) | 162 (7) |
| O23—H23B···O13iii | 0.85 (2) | 2.02 (3) | 2.853 (5) | 166 (6) |
| O23—H23A···O4ii | 0.84 (2) | 1.89 (2) | 2.734 (5) | 176 (7) |
| O22—H22B···O23 | 0.84 (2) | 1.89 (3) | 2.701 (6) | 162 (8) |
| O22—H22A···O26iv | 0.84 (2) | 2.18 (4) | 2.968 (9) | 155 (8) |
| O22—H22A···O28iii | 0.84 (2) | 1.92 (3) | 2.733 (9) | 161 (8) |
| O21—H21B···O10iv | 0.83 (2) | 1.91 (3) | 2.728 (5) | 165 (8) |
| O21—H21A···O18v | 0.84 (2) | 1.94 (3) | 2.765 (5) | 167 (7) |
| O20—H20B···O11 | 0.83 (2) | 2.14 (3) | 2.960 (5) | 168 (7) |
| O20—H20A···O26i | 0.83 (2) | 2.09 (3) | 2.916 (9) | 170 (7) |
| O20—H20A···O25 | 0.83 (2) | 2.02 (5) | 2.719 (9) | 142 (7) |
| O19—H19B···O24vi | 0.84 (2) | 2.07 (9) | 2.866 (11) | 157 (22) |
| O19—H19A···O24vii | 0.84 (2) | 1.72 (7) | 2.535 (12) | 162 (21) |
| O18—H18B···O14 | 0.83 (2) | 1.90 (2) | 2.732 (5) | 173 (7) |
| O18—H18A···O26i | 0.84 (2) | 2.04 (3) | 2.857 (9) | 163 (7) |
| O18—H18A···O27 | 0.84 (2) | 1.91 (4) | 2.648 (9) | 146 (6) |
| O17—H17B···O6vi | 0.83 (2) | 1.90 (2) | 2.730 (5) | 176 (7) |
| O17—H17A···O12 | 0.83 (2) | 2.10 (3) | 2.905 (5) | 163 (6) |
| O16—H16B···O22 | 0.84 (2) | 1.89 (2) | 2.721 (6) | 173 (7) |
| O16—H16A···O17v | 0.84 (2) | 1.95 (2) | 2.784 (5) | 172 (7) |
| O15—H15B···O16 | 0.84 (2) | 1.86 (2) | 2.692 (5) | 170 (6) |
| O15—H15A···O21 | 0.84 (2) | 1.85 (3) | 2.668 (5) | 166 (6) |
| N10—H10B···O22viii | 0.91 | 2.13 | 2.920 (6) | 145 |
| N10—H10A···O20ii | 0.91 | 2.24 | 2.987 (5) | 139 |
| N8—H8B···O12vi | 0.91 | 2.04 | 2.937 (5) | 168 |
| N8—H8A···O23 | 0.91 | 2.20 | 3.031 (5) | 152 |
| N6—H6B···O13ix | 0.91 | 2.64 | 3.363 (5) | 137 |
| N6—H6B···O24vi | 0.91 | 2.24 | 2.984 (6) | 139 |
| N6—H6A···O13v | 0.91 | 2.25 | 3.158 (5) | 175 |
| N4—H4B···O2x | 0.91 | 2.33 | 3.182 (5) | 156 |
| N4—H4A···O27v | 0.91 | 2.18 | 3.037 (9) | 156 |
| N4—H4A···O25x | 0.91 | 2.01 | 2.789 (9) | 143 |
| N2—H2B···O27 | 0.91 | 2.55 | 3.418 (9) | 159 |
| N2—H2B···O28i | 0.91 | 2.08 | 2.868 (9) | 144 |
| N2—H2A···O15iv | 0.91 | 2.07 | 2.946 (5) | 162 |
Symmetry codes: (i) −x, −y, −z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z; (vi) −x+1, −y+1, −z; (vii) x, y−1, z; (viii) x−1, y, z; (ix) −x+1, −y, −z; (x) −x+1, −y, −z+1.
Funding Statement
This work was funded by National Science Foundation, Division of Materials Research grant CHE 1625543 to M. Zeller; National Research Foundation of Ukraine grant 2020.02/0202 to A. V. Pavlishchuk.
References
- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Bruker (2018). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Casanova, D., Llunell, M., Alemany, P. & Alvarez, S. (2005). Chem. Eur. J. 11, 1479–1494. [DOI] [PubMed]
- Dhers, S., Feltham, H. L. C., Rouzières, M., Clérac, R. & Brooker, S. (2016). Dalton Trans. 45, 18089–18093. [DOI] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
- Jankolovits, J., Andolina, C. M., Kampf, J. W., Raymond, K. N. & Pecoraro, V. L. (2011). Angew. Chem. 123, 9834–9838. [DOI] [PubMed]
- Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Khrapichev, A. A., Samsonov, M. A., Fukin, G. K. & Ketkov, S. Yu. (2015a). Inorg. Chem. Commun. 52, 31–33.
- Katkova, M. A., Zabrodina, G. S., Muravyeva, M. S., Shavyrin, A. S., Baranov, E. V., Khrapichev, A. A. & Ketkov, S. Y. (2015b). Eur. J. Inorg. Chem. pp. 5202–5208.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Kremlev, K. V., Samsonov, M. A., Zabrodina, G. S., Arapova, A. V., Yunin, P. A., Tatarsky, D. A., Plyusnin, P. E., Katkova, M. A. & Ketkov, S. Y. (2016). Polyhedron, 114, 96–100.
- Lim, C., Jankolovits, J., Kampf, J. & Pecoraro, V. (2010). Chem. Asian J. 5, 46–49. [DOI] [PubMed]
- Liu, J.-L., Chen, Y.-C. & Tong, M.-L. (2018). Chem. Soc. Rev. 47, 2431–2453. [DOI] [PubMed]
- Maity, M., Majee, M. C., Kundu, S., Samanta, S. K., Sañudo, E. C., Ghosh, S. & Chaudhury, M. (2015). Inorg. Chem. 54, 9715–9726. [DOI] [PubMed]
- Meng, Y., Yang, H., Li, D., Zeng, S., Chen, G., Li, S. & Dou, J. (2016). RSC Adv. 6, 47196–47202.
- Muravyeva, M. S., Zabrodina, G. S., Samsonov, M. A., Kluev, E. A., Khrapichev, A. A., Katkova, M. A. & Mukhina, I. V. (2016). Polyhedron, 114, 165–171.
- Ostrowska, M., Fritsky, I. O., Gumienna-Kontecka, E. & Pavlishchuk, A. V. (2016). Coord. Chem. Rev. 327–328, 304–332.
- Pavlishchuk, A., Naumova, D., Zeller, M., Calderon Cazorla, S. & Addison, A. W. (2019). Acta Cryst. E75, 1215–1223. [DOI] [PMC free article] [PubMed]
- Pavlishchuk, A. V., Kolotilov, S. V., Fritsky, I. O., Zeller, M., Addison, A. W. & Hunter, A. D. (2011). Acta Cryst. C67, m255–m265. [DOI] [PubMed]
- Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E. & Addison, A. W. (2018). Eur. J. Inorg. Chem. pp. 3504–3511.
- Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Kiskin, M. A., Efimov, N. N., Ugolkova, E. A., Minin, V. V., Novotortsev, V. M. & Addison, A. W. (2017b). Eur. J. Inorg. Chem. pp. 4866–4878.
- Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Lofland, S. E., Thompson, L. K., Addison, A. W. & Hunter, A. D. (2017a). Inorg. Chem. 56, 13152–13165. [DOI] [PubMed]
- Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K. & Addison, A. W. (2014). Inorg. Chem. 53, 1320–1330. [DOI] [PubMed]
- Pavlishchuk, A. V. & Pavlishchuk, V. V. (2020). Theor. Exp. Chem. 56, 1–25.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807–2817. [DOI] [PubMed]
- Wang, J., Li, Q.-W., Wu, S.-G., Chen, Y.-C., Wan, R.-C., Huang, G.-Z., Liu, Y., Liu, J.-L., Reta, D., Giansiracusa, M. J., Wang, Z.-X., Chilton, N. F. & Tong, M.-L. (2021). Angew. Chem. Int. Ed. 60, 5299–5306. [DOI] [PubMed]
- Wang, J., Ruan, Z.-Y., Li, Q.-W., Chen, Y.-C., Huang, G.-Z., Liu, J.-L., Reta, D., Chilton, N. F., Wang, Z.-X. & Tong, M.-L. (2019). Dalton Trans. 48, 1686–1692. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Wu, S.-G., Ruan, Z.-Y., Huang, G.-Z., Zheng, J.-Y., Vieru, V., Taran, G., Wang, J., Chen, Y.-C., Liu, J.-L., Ho, L. T. A., Chibotaru, L. F., Wernsdorfer, W., Chen, X.-M. & Tong, M.-L. (2021). Chem, 7, 982–992.
- Zabrodina, G. S., Katkova, M. A., Samsonov, M. A. & Ketkov, S. Y. (2018). Z. Anorg. Allg. Chem. 644, 907–911.
- Zaleski, C. M., Depperman, E. C., Kampf, J. W., Kirk, M. L. & Pecoraro, V. L. (2006). Inorg. Chem. 45, 10022–10024. [DOI] [PubMed]
- Zaleski, C. M., Lim, C.-S., Cutland-Van Noord, A. D., Kampf, J. W. & Pecoraro, V. L. (2011). Inorg. Chem. 50, 7707–7717. [DOI] [PubMed]
- Zangana, K. H., Pineda, E. M., Vitorica-Yrezabal, I. J., McInnes, E. J. L. & Winpenny, R. E. P. (2014). Dalton Trans. 43, 13242–13249. [DOI] [PubMed]
- Zheng, Y.-Z., Zhou, G.-J., Zheng Z., & Winpenny, R. E. P. (2014). Chem. Soc. Rev. 43, 1462–1475. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989021011907/yy2004sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021011907/yy2004Isup2.hkl
CCDC reference: 2121203
Additional supporting information: crystallographic information; 3D view; checkCIF report



