Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2021 Nov 16;77(Pt 12):1299–1302. doi: 10.1107/S2056989021011877

Mixed-metal phosphates K1.64Na0.36TiFe(PO4)3 and K0.97Na1.03Ti1.26Fe0.74(PO4)3 with a langbeinite framework

Igor V Zatovsky a,*, Nataliia Yu Strutynska b, Ivan V Ogorodnyk c, Vyacheslav N Baumer d, Nickolai S Slobodyanik b, Denis S Butenko e,f
PMCID: PMC8647752  PMID: 34925902

K1.65Na0.35TiFe(PO4)3 and K0.97Na1.03Ti1.26Fe0.74(PO4)3 are isotypic and crystallize in the langbeinite structure type. K+ and Na+ cations, and Ti3+, Ti4+ and Fe3+ cations, respectively, share the same sites in the crystal structure.

Keywords: crystal structure, phosphate, mixed occupancy, framework structure

Abstract

Single crystals of the langbeinite-type phosphates K1.65Na0.35TiFe(PO4)3 and K0.97Na1.03Ti1.26Fe0.74(PO4)3 were grown by crystallization from high-temperature self-fluxes in the system Na2O–K2O–P2O5–TiO2–Fe2O3 using fixed molar ratios of (Na+K):P = 1.0, Ti:P = 0.20 and Na:K = 1.0 or 2.0 over the temperature range 1273–953 K. The three-dimensional framework of the two isotypic phosphates are built up from [(Ti/Fe)2(PO4)3] structure units containing two mixed [(Ti/Fe)O6] octa­hedra (site symmetry 3) connected via three bridging PO4 tetra­hedra. The potassium and sodium cations share two different sites in the structure that are located in the cavities of the framework. One of these sites has nine and the other twelve surrounding O atoms.

Chemical context

Over the last decade, numerous research efforts have been directed towards the creation of new phosphate materials for Li- or Na-ion batteries (Nose et al., 2013; Zhang et al., 2021). In particular, significant progress has been made for complex phosphates with general formula M I 1+ xZ 2(PO4)3 (M I = Li, Na; Z = polyvalent metals; x values can range from 0 to 3; Zatovsky et al., 2016) adopting NASICON-type structures. The composition of phosphates with a langbeinite-type structure is very similar to the composition of NASICON-type ones, and langbeinite-type phosphates are also considered to be potential hosts for new electrode materials (Luo et al., 2019). However, langbeinite-type phosphates with a composition M I 1+ xZ 2(PO4)3 (x = 0–1) can only be prepared with large monovalent cations (e.g., K, Rb, Cs, NH4; Norberg, 2002; Ogorodnyk et al., 2007a ). The langbeinite-type structure has only been reported for Na2 Z IIITi(PO4)3 (Z III = Cr, Fe; Isasi & Daidouh, 2000). More recently, a good prospect for using such kinds of materials as anodes for Na-ion batteries has been predicted because of the recently reported migration mechanisms in langbeinite-type Na2CrTi(PO4)3 determined by atomic simulation (Luo et al., 2019). However, according to Wang et al. (2019), the phosphate Na2CrTi(PO4)3 belongs to the family of compounds with a NASICON-type structure. Therefore, the issue of preparing Na-containing langbeinite-type phosphates requires further research and development. In recent years, the synthesis of K/Na-containing complex phosphates has been realized using the self-flux method and resulted in the compounds K1.75Na0.25Ti2(PO4)3 (Zatovsky et al., 2018) and K0.877Na0.48Ti2(PO4)3 (Strutynska et al., 2016).

Here, we report the preparation, structure analysis and characterization of two new mixed-metal phosphates K1.64Na0.36TiFe(PO4)3 (I) and K0.97Na1.03Ti1.26Fe0.74(PO4)3 (II), which are isotypic with the mineral langbeinite, K2Mg2(SO4)3 (Zemann & Zemann, 1957; Mereiter, 1979).

Structural commentary

As it is illustrated in Fig. 1, two pairs of mixed sites occupied by alkali metals (K/Na) and transition metals (Ti/Fe) are located on threefold rotation axes (Wyckoff position 4 a), whereas the P and all O atoms occupy general sites (12 b). In the structures, the main structural element for building of the three-dimensional framework is a [(Ti/Fe)2(PO4)3] fragment consisting of two mixed-metal [(Ti/Fe)O6] octa­hedra and three PO4 tetra­hedra (Fig. 2 a). Such building units run in three orthogonal directions along the cubic space diagonals (Fig. 2 b), which is typical for the langbeinite-related family of compounds (sulfates, phosphates, vanadates etc, Ogorodnyk et al., 2007a ).

Figure 1.

Figure 1

A view of the asymmetric units of (I) and (II), with displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

(a) [(Ti/Fe)2(PO4)3] building unit and (b) three-dimensional framework for (I) and (II).

Two octa­hedrally coordinated sites (Ti1/Fe1) and (Ti2/Fe2) show mixed occupancy with an Fe:Ti ratio close to 1:1. For (I), the Ti occupancy is 0.48 (3) for the M1 site, while for the M2 site it is 0.52 (3); for (II), the Ti occupancy is 0.61 (2) for the M1 site and 0.65 (2) for the M2 site. In the case of (I), this corresponds to Fe3+ and Ti4+ cations, while for (II), the simultaneous presence of Fe3+, Ti3+ and Ti4+ is suggested. The prepared crystals of (II) are violet in color and the Ti3+:Ti4+ ratio is about 1:4 taking into account the total charge of the cationic part of the compound. Partial self-reduction of Ti4+ to Ti3+ often accompanies the synthesis of langbeinite-type complex phosphates in fluxes of multicomponent systems when various trivalent or divalent metals are present (Gustafsson et al., 2005; Zatovskii et al., 2006). For structures (I) and (II), the [Ti/FeO6] octa­hedra are slightly distorted (Tables 1 and 2). The range of M—O bond lengths [1.938 (2) – 1.976 (3) Å] is close to those in other langbeinite-related phosphates containing Ti and transition metals, such as K2Fe0.5Ti1.5(PO4)3 [1.940 (2)–1.992 (2) Å]; K2Ni0.5Ti1.5(PO4)3 [1.938 (5)–1.962 (5) Å]; K2Co0.5Ti1.5(PO4)3 [1.945 (2)–1.974 (2) Å]; K2Mn0.5Ti1.5(PO4)3 [1.961 (2)–2.002 (2) Å] (Ogorodnyk et al., 2008, 2007b , 2006). The P—O distances for both structures are in the narrow ranges of 1.516 (4)–1.523 (3) for (I) and 1.517 (3)–1.523 (2) Å for (II).

Table 1. Selected bond lengths (Å) for (I).

Fe1—O2i 1.954 (3) K2—O2vi 2.911 (4)
Fe1—O1 1.976 (3) K2—O4vii 3.007 (4)
Fe2—O3ii 1.938 (3) K2—O4viii 3.231 (4)
Fe2—O4iii 1.970 (3) P3—O4 1.516 (4)
K1—O1iv 2.830 (4) P3—O2 1.522 (3)
K1—O2v 3.019 (4) P3—O3 1.523 (3)
K1—O4v 3.129 (4) P3—O1 1.523 (3)
K2—O3v 2.854 (4)    

Symmetry codes: (i) -z, x-{\script{1\over 2}}, -y+{\script{1\over 2}}; (ii) y+{\script{1\over 2}}, -z+{\script{1\over 2}}, -x+1; (iii) z, x, y; (iv) -z+{\script{1\over 2}}, -x+1, y+{\script{1\over 2}}; (v) z+{\script{1\over 2}}, -x+{\script{3\over 2}}, -y+1; (vi) x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1; (vii) -y+1, z+{\script{1\over 2}}, -x+{\script{3\over 2}}; (viii) -z+1, x+{\script{1\over 2}}, -y+{\script{3\over 2}}.

Table 2. Selected bond lengths (Å) for (II).

Fe1—O2i 1.940 (2) K2—O2vi 2.910 (3)
Fe1—O1 1.974 (2) K2—O4v 2.982 (4)
Fe2—O3ii 1.938 (2) K2—O4vii 3.237 (3)
Fe2—O4 1.954 (2) P3—O4 1.517 (3)
K1—O1iii 2.820 (3) P3—O3 1.518 (2)
K1—O2iv 3.009 (3) P3—O2 1.520 (2)
K1—O4v 3.122 (3) P3—O1 1.523 (2)
K2—O3v 2.843 (3)    

Symmetry codes: (i) -z, x-{\script{1\over 2}}, -y+{\script{1\over 2}}; (ii) -x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}; (iii) -z+{\script{1\over 2}}, -x+1, y+{\script{1\over 2}}; (iv) -y+1, z+{\script{1\over 2}}, -x+{\script{3\over 2}}; (v) z+{\script{1\over 2}}, -x+{\script{3\over 2}}, -y+1; (vi) -y+{\script{3\over 2}}, -z+1, x+{\script{1\over 2}}; (vii) -z+1, x+{\script{1\over 2}}, -y+{\script{3\over 2}}.

There are two sites where the alkali metal cations reside (Fig. 1). The first one, (K/Na)1 is occupied by K+ and Na+ cations at ratios of 0.85 (2):0.15 (2) and 0.676 (18):0.324 (18) for (I) and (II), respectively. The [(K/Na)1O9] polyhedra show three sets of (K/Na)—O distances assuming a cut-off value for the contact lengths of 3.129 (4) Å; the bond lengths are similar for both structures (Tables 1 and 2). The coordination environment of the alkali cations related to the (K/Na)2 site consists of twelve O-atom neighbours with (K/Na)2—O distances ranging from 2.843 (3) to 3.237 (3) Å, which includes four sets of distances (Tables 1 and 2). For this site, the K:Na ratios are 0.80 (3):0.20 (3) for (I) and 0.294 (19):0.706 (19) for (II). An inter­esting fact is that the substitution of potassium by sodium in the position (K/Na)2 is greater for (II) than for (I), but the (K/Na)2—O distances change insignificantly.

Synthesis and crystallization

Phosphates (I) and (II) were obtained from the melts of the system Na2O–K2O–P2O5–TiO2–Fe2O3 at fixed molar ratios of (Na+K)/P = 1.0, Ti/P = 0.20 and different values of Na/K = 1.0 or 2.0 over the temperature range 1273–953 K. All initial components MI H2PO4 (MI = Na, K), Fe2O3 and TiO2 were of an analytical grade.

A mixture of KH2PO4 (10 g), NaH2PO4 (8.82 g), Fe2O3 (2.35 g) and TiO2 (2.35 g) was used for the preparation of (I), while a mixture of KH2PO4 (10 g), NaH2PO4 (17.64 g), Fe2O3 (3.53 g) and TiO2 (3.53 g) was used for the preparation of (II). In both cases, the mixtures of calculated amounts of starting components were ground in an agate mortar and melted in a platinum crucible at 1273 K. The obtained melts were kept under isothermal conditions for 2 h for dissolving of the corresponding TiO2 + Fe2O3 mixture in the phosphate melt. Then the temperature was decreased with a rate of 25 K h−1 to 953 K and kept at this temperature for 2 h before cooling down to room temperature by turning off the furnace power. The obtained crystalline phases were separated from soluble salts by leaching with hot water and dried at 373 K.

The molar ratio Na/K in the initial melts had an influence on the composition of the obtained crystals. Light-yellow crystals formed in the melt with a ratio of Na:K = 1.0 while violet crystals were obtained for a ratio Na:K = 2.0 (Fig. 3). It should be noted that increasing the amount of sodium in the initial melts to a ratio Na/K = 2.0 caused the growth of crystals with sizes of 2–3 mm (Fig. 3 b) in length.

Figure 3.

Figure 3

Photographs of single crystals of (a) (I) and (b) (II).

The chemical compositions of the prepared samples (qu­anti­tative determination of K, Na, Ti, Fe and P) were confirmed by ICP–AES with a Shimadzu ICPE-9820 spectrometer. The analyses showed that the molar ratios of K:Na:Ti:Fe:P were close to 1.65:0.35:1:1:3 for (I) and 1:1:1.25:0.75:3 for (II).

The phosphates (I) and (II) were further characterized using Fourier transform infrared (FTIR) spectroscopy. The spectra were obtained using a PerkinElmer Spectrum BX spectrometer in the range 4000–400 cm−1 (at 4 cm−1 resolution) with sample material pressed into KBr pellets. The FTIR spectra for both compounds are similar in band positions of vibration modes (Fig. 4). The broad and intense bands in the frequency region 1150–900 cm−1 are characteristic for P—O stretching vibrations [ν as(PO3) – region 1150–1090 cm−1 and ν s(PO3) – region 1020–900 cm−1] of the PO4 tetra­hedron. The band group at 650–550 cm−1 is caused by bending δ(P—O) vibrations of P—O bonds. Some differences in the spectra were observed in the range 500–400 cm−1, which are due to X—O (X = Ti, Fe) vibrations and correlate with insignificant differences in the composition of the prepared compounds (I) and (II).

Figure 4.

Figure 4

FTIR spectra of (I) (curve 1) and (II) (curve 2).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. According to the results of the chemical analysis, large qu­anti­ties of Na and Ti are present in the structures. Taking into account possible coordination spheres of Na and Ti and previously reported langbeinite-type phosphates with a mixed-metal framework, we supposed that Ti occupies the same sites as Fe, and Na the same positions as K. Hence, the corresponding positions of Fe1 and Fe2, K1 and K2 were occupied with Ti and Na, respectively. As the Fe(Ti) positions are part of the rigid framework, we assumed that these sites show full occupancy, while the sites related with the alkali metal can be fully or partially occupied. At a first approach, the occupancies were refined using linear combinations of free variables (SUMP restraint). Two SUMP restraints were applied to occupancies of Fe1(Ti1) and Fe2(Ti2) sites. One more SUMP restraint was then applied to the sum of valence units of all metal-atom positions. This refinement resulted in satisfactory reliability factors. It was found that the occupancies of K1(Na1) and K2(Na2) are close to 1. Thus, to simplify the refinement we tried to refine the occupancies with free variable constraints instead of SUMP restraints while keeping the alkali metal site occupancies equal to 1. To each refined position, a unique free variable constraint was applied, plus constrained identical coordinates and ADPs for each site. The resulting reliability factors were found to be almost equal to those where the SUMP restraints were used. For the final refinement cycles, the second approach was applied to both structures.

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula K1.65Na0.35TiFe(PO4)3 K0.97Na1.03Ti1.26Fe0.74(PO4)3
M r 461.19 448.16
Crystal system, space group Cubic, P213 Cubic, P213
Temperature (K) 293 293
a (Å) 9.82010 (13) 9.7945 (1)
V3) 947.00 (4) 939.61 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.69 3.27
Crystal size (mm) 0.13 × 0.10 × 0.07 0.15 × 0.11 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur-3 Oxford Diffraction Xcalibur-3
Absorption correction Multi-scan (Blessing, 1995) Multi-scan (Blessing, 1995)
T min, T max 0.675, 0.782 0.622, 0.835
No. of measured, independent and observed [I > 2σ(I)] reflections 1897, 847, 829 10546, 837, 833
R int 0.027 0.026
(sin θ/λ)max−1) 0.681 0.681
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.025, 0.064, 1.14 0.016, 0.043, 1.12
No. of reflections 847 837
No. of parameters 63 63
Δρmax, Δρmin (e Å−3) 0.48, −0.37 0.29, −0.27
Absolute structure Flack x determined using 339 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 349 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.02 (2) −0.042 (11)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015), DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 2012), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989021011877/wm5625sup1.cif

e-77-01299-sup1.cif (651.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021011877/wm5625Isup2.hkl

e-77-01299-Isup2.hkl (70.2KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021011877/wm5625IIsup3.hkl

e-77-01299-IIsup3.hkl (69.4KB, hkl)

CCDC references: 2121192, 2121193

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Potassium sodium titanium iron tris(phosphate) (I). Crystal data

K1.65Na0.35TiFe(PO4)3 Dx = 3.235 Mg m3
Mr = 461.19 Mo Kα radiation, λ = 0.71073 Å
Cubic, P213 Cell parameters from 1897 reflections
Hall symbol: P 2ac 2ab 3 θ = 2.9–29.0°
a = 9.82010 (13) Å µ = 3.69 mm1
V = 947.00 (4) Å3 T = 293 K
Z = 4 Tetrahedron, light yellow
F(000) = 896.8 0.13 × 0.10 × 0.07 mm

Potassium sodium titanium iron tris(phosphate) (I). Data collection

Oxford Diffraction Xcalibur-3 diffractometer 829 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
φ and ω scans θmax = 29.0°, θmin = 2.9°
Absorption correction: multi-scan (Blessing, 1995) h = −13→3
Tmin = 0.675, Tmax = 0.782 k = −5→13
1897 measured reflections l = −12→12
847 independent reflections

Potassium sodium titanium iron tris(phosphate) (I). Refinement

Refinement on F2 'w = 1/[σ2(Fo2) + (0.0292P)2 + 0.5767P] where P = (Fo2 + 2Fc2)/3'
Least-squares matrix: full (Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.025 Δρmax = 0.48 e Å3
wR(F2) = 0.064 Δρmin = −0.37 e Å3
S = 1.14 Extinction correction: SHELXL-2018/3 (Sheldrick 2015)
847 reflections Extinction coefficient: 0.0042 (16)
63 parameters Absolute structure: Flack x determined using 339 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: 0.02

Potassium sodium titanium iron tris(phosphate) (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Potassium sodium titanium iron tris(phosphate) (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.14303 (6) 0.14303 (6) 0.14303 (6) 0.0085 (3) 0.52 (3)
Ti1 0.14303 (6) 0.14303 (6) 0.14303 (6) 0.0085 (3) 0.48 (3)
Fe2 0.41389 (6) 0.41389 (6) 0.41389 (6) 0.0087 (3) 0.48 (3)
Ti2 0.41389 (6) 0.41389 (6) 0.41389 (6) 0.0087 (3) 0.52 (3)
K1 0.70712 (13) 0.70712 (13) 0.70712 (13) 0.0254 (7) 0.85 (2)
Na1 0.70712 (13) 0.70712 (13) 0.70712 (13) 0.0254 (7) 0.15 (2)
K2 0.93216 (12) 0.93216 (12) 0.93216 (12) 0.0228 (8) 0.80 (3)
Na2 0.93216 (12) 0.93216 (12) 0.93216 (12) 0.0228 (8) 0.20 (3)
P3 0.45810 (10) 0.22783 (10) 0.12639 (11) 0.0089 (3)
O1 0.3106 (3) 0.2345 (3) 0.0792 (3) 0.0181 (7)
O2 0.5477 (4) 0.2988 (4) 0.0217 (3) 0.0214 (8)
O3 0.5021 (3) 0.0809 (3) 0.1494 (4) 0.0207 (7)
O4 0.4787 (4) 0.3041 (4) 0.2590 (4) 0.0254 (9)

Potassium sodium titanium iron tris(phosphate) (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0085 (3) 0.0085 (3) 0.0085 (3) −0.0002 (2) −0.0002 (2) −0.0002 (2)
Ti1 0.0085 (3) 0.0085 (3) 0.0085 (3) −0.0002 (2) −0.0002 (2) −0.0002 (2)
Fe2 0.0087 (3) 0.0087 (3) 0.0087 (3) −0.0005 (2) −0.0005 (2) −0.0005 (2)
Ti2 0.0087 (3) 0.0087 (3) 0.0087 (3) −0.0005 (2) −0.0005 (2) −0.0005 (2)
K1 0.0254 (7) 0.0254 (7) 0.0254 (7) 0.0004 (5) 0.0004 (5) 0.0004 (5)
Na1 0.0254 (7) 0.0254 (7) 0.0254 (7) 0.0004 (5) 0.0004 (5) 0.0004 (5)
K2 0.0228 (8) 0.0228 (8) 0.0228 (8) −0.0021 (4) −0.0021 (4) −0.0021 (4)
Na2 0.0228 (8) 0.0228 (8) 0.0228 (8) −0.0021 (4) −0.0021 (4) −0.0021 (4)
P3 0.0078 (5) 0.0098 (5) 0.0090 (5) −0.0003 (3) 0.0014 (4) 0.0001 (4)
O1 0.0103 (14) 0.0218 (16) 0.0222 (17) −0.0032 (12) −0.0019 (12) 0.0080 (14)
O2 0.0190 (17) 0.0273 (17) 0.0178 (16) 0.0001 (14) 0.0060 (14) 0.0096 (14)
O3 0.0225 (16) 0.0123 (14) 0.0273 (17) 0.0070 (13) 0.0027 (14) 0.0027 (14)
O4 0.0278 (19) 0.029 (2) 0.0190 (17) −0.0027 (15) 0.0019 (15) −0.0148 (15)

Potassium sodium titanium iron tris(phosphate) (I). Geometric parameters (Å, º)

Fe1—O2i 1.954 (3) K1—O2xviii 3.019 (4)
Fe1—O2ii 1.954 (3) K1—O4xvi 3.129 (4)
Fe1—O2iii 1.954 (3) K1—O4xvii 3.129 (4)
Fe1—O1 1.976 (3) K1—O4xviii 3.129 (4)
Fe1—O1iv 1.976 (3) K1—P3xvi 3.4416 (16)
Fe1—O1v 1.976 (3) K1—P3xviii 3.4416 (16)
Fe1—K2vi 3.587 (2) K1—P3xvii 3.4416 (16)
Fe1—K1vii 3.7927 (9) K2—O3xvi 2.854 (4)
Fe1—K1viii 3.7927 (9) K2—O3xvii 2.854 (4)
Fe1—K1ix 3.7927 (9) K2—O3xviii 2.854 (4)
Fe2—O3x 1.938 (3) K2—O2xix 2.911 (4)
Fe2—O3xi 1.938 (3) K2—O2xx 2.911 (4)
Fe2—O3xii 1.938 (3) K2—O2xxi 2.911 (4)
Fe2—O4v 1.970 (3) K2—O4xvii 3.007 (4)
Fe2—O4iv 1.970 (3) K2—O4xvi 3.007 (4)
Fe2—O4 1.970 (3) K2—O4xviii 3.007 (4)
Fe2—K2xiii 3.7237 (7) K2—O4xx 3.231 (4)
Fe2—K2xiv 3.7237 (7) K2—O4xxi 3.231 (4)
Fe2—K2xv 3.7237 (7) K2—O4xix 3.231 (4)
K1—O1xii 2.830 (4) P3—O4 1.516 (4)
K1—O1x 2.830 (4) P3—O2 1.522 (3)
K1—O1xi 2.830 (4) P3—O3 1.523 (3)
K1—O2xvi 3.019 (4) P3—O1 1.523 (3)
K1—O2xvii 3.019 (4)
O2i—Fe1—O2ii 89.19 (16) O4xvi—K1—P3xviii 69.72 (7)
O2i—Fe1—O2iii 89.19 (16) O4xvii—K1—P3xviii 103.33 (10)
O2ii—Fe1—O2iii 89.19 (16) O4xviii—K1—P3xviii 26.12 (7)
O2i—Fe1—O1 177.99 (16) P3xvi—K1—P3xviii 94.91 (5)
O2ii—Fe1—O1 88.89 (15) O1xii—K1—P3xvii 94.57 (7)
O2iii—Fe1—O1 90.18 (14) O1x—K1—P3xvii 79.17 (7)
O2i—Fe1—O1iv 88.88 (15) O1xi—K1—P3xvii 169.22 (7)
O2ii—Fe1—O1iv 90.18 (14) O2xvi—K1—P3xvii 108.29 (8)
O2iii—Fe1—O1iv 177.99 (16) O2xvii—K1—P3xvii 26.23 (6)
O1—Fe1—O1iv 91.72 (14) O2xviii—K1—P3xvii 115.08 (8)
O2i—Fe1—O1v 90.18 (14) O4xvi—K1—P3xvii 103.33 (10)
O2ii—Fe1—O1v 177.99 (16) O4xvii—K1—P3xvii 26.12 (7)
O2iii—Fe1—O1v 88.88 (15) O4xviii—K1—P3xvii 69.72 (7)
O1—Fe1—O1v 91.71 (14) P3xvi—K1—P3xvii 94.91 (5)
O1iv—Fe1—O1v 91.72 (14) P3xviii—K1—P3xvii 94.91 (5)
O2i—Fe1—K2vi 54.17 (11) O3xvi—K2—O3xvii 100.76 (10)
O2ii—Fe1—K2vi 54.17 (11) O3xvi—K2—O3xviii 100.76 (10)
O2iii—Fe1—K2vi 54.17 (11) O3xvii—K2—O3xviii 100.76 (10)
O1—Fe1—K2vi 124.04 (10) O3xvi—K2—O2xix 100.42 (10)
O1iv—Fe1—K2vi 124.04 (10) O3xvii—K2—O2xix 149.92 (11)
O1v—Fe1—K2vi 124.04 (10) O3xviii—K2—O2xix 95.97 (10)
O2i—Fe1—K1vii 52.19 (11) O3xvi—K2—O2xx 95.97 (10)
O2ii—Fe1—K1vii 131.75 (12) O3xvii—K2—O2xx 100.42 (10)
O2iii—Fe1—K1vii 65.77 (11) O3xviii—K2—O2xx 149.92 (11)
O1—Fe1—K1vii 129.13 (11) O2xix—K2—O2xx 56.22 (11)
O1iv—Fe1—K1vii 113.38 (10) O3xvi—K2—O2xxi 149.92 (11)
O1v—Fe1—K1vii 46.69 (10) O3xvii—K2—O2xxi 95.97 (10)
K2vi—Fe1—K1vii 78.252 (17) O3xviii—K2—O2xxi 100.42 (10)
O2i—Fe1—K1viii 65.77 (11) O2xix—K2—O2xxi 56.22 (11)
O2ii—Fe1—K1viii 52.19 (11) O2xx—K2—O2xxi 56.22 (11)
O2iii—Fe1—K1viii 131.75 (12) O3xvi—K2—O4xvii 52.44 (10)
O1—Fe1—K1viii 113.38 (10) O3xvii—K2—O4xvii 49.39 (9)
O1iv—Fe1—K1viii 46.69 (10) O3xviii—K2—O4xvii 115.63 (12)
O1v—Fe1—K1viii 129.13 (11) O2xix—K2—O4xvii 140.25 (11)
K2vi—Fe1—K1viii 78.252 (17) O2xx—K2—O4xvii 94.39 (10)
K1vii—Fe1—K1viii 115.965 (12) O2xxi—K2—O4xvii 132.45 (10)
O2i—Fe1—K1ix 131.75 (12) O3xvi—K2—O4xvi 49.39 (9)
O2ii—Fe1—K1ix 65.77 (11) O3xvii—K2—O4xvi 115.63 (12)
O2iii—Fe1—K1ix 52.19 (11) O3xviii—K2—O4xvi 52.44 (10)
O1—Fe1—K1ix 46.69 (10) O2xix—K2—O4xvi 94.39 (10)
O1iv—Fe1—K1ix 129.13 (11) O2xx—K2—O4xvi 132.45 (10)
O1v—Fe1—K1ix 113.38 (10) O2xxi—K2—O4xvi 140.25 (11)
K2vi—Fe1—K1ix 78.252 (17) O4xvii—K2—O4xvi 87.30 (11)
K1vii—Fe1—K1ix 115.965 (12) O3xvi—K2—O4xviii 115.63 (12)
K1viii—Fe1—K1ix 115.965 (12) O3xvii—K2—O4xviii 52.44 (10)
O3x—Fe2—O3xi 92.72 (15) O3xviii—K2—O4xviii 49.39 (9)
O3x—Fe2—O3xii 92.72 (15) O2xix—K2—O4xviii 132.45 (10)
O3xi—Fe2—O3xii 92.72 (15) O2xx—K2—O4xviii 140.25 (11)
O3x—Fe2—O4v 171.85 (17) O2xxi—K2—O4xviii 94.39 (10)
O3xi—Fe2—O4v 83.11 (16) O4xvii—K2—O4xviii 87.30 (11)
O3xii—Fe2—O4v 94.47 (15) O4xvi—K2—O4xviii 87.30 (11)
O3x—Fe2—O4iv 94.47 (15) O3xvi—K2—O4xx 55.86 (9)
O3xi—Fe2—O4iv 171.85 (17) O3xvii—K2—O4xx 85.99 (9)
O3xii—Fe2—O4iv 83.11 (16) O3xviii—K2—O4xx 156.61 (10)
O4v—Fe2—O4iv 90.22 (16) O2xix—K2—O4xx 88.46 (10)
O3x—Fe2—O4 83.11 (16) O2xx—K2—O4xx 46.20 (9)
O3xi—Fe2—O4 94.47 (15) O2xxi—K2—O4xx 101.11 (10)
O3xii—Fe2—O4 171.85 (17) O4xvii—K2—O4xx 53.02 (13)
O4v—Fe2—O4 90.22 (16) O4xvi—K2—O4xx 104.40 (2)
O4iv—Fe2—O4 90.22 (16) O4xviii—K2—O4xx 137.03 (8)
O3x—Fe2—K2xiii 127.93 (11) O3xvi—K2—O4xxi 156.61 (10)
O3xi—Fe2—K2xiii 118.56 (11) O3xvii—K2—O4xxi 55.86 (9)
O3xii—Fe2—K2xiii 48.96 (11) O3xviii—K2—O4xxi 85.99 (9)
O4v—Fe2—K2xiii 60.13 (13) O2xix—K2—O4xxi 101.11 (10)
O4iv—Fe2—K2xiii 53.60 (12) O2xx—K2—O4xxi 88.46 (10)
O4—Fe2—K2xiii 129.40 (12) O2xxi—K2—O4xxi 46.20 (9)
O3x—Fe2—K2xiv 118.56 (11) O4xvii—K2—O4xxi 104.40 (2)
O3xi—Fe2—K2xiv 48.96 (11) O4xvi—K2—O4xxi 137.03 (8)
O3xii—Fe2—K2xiv 127.93 (11) O4xviii—K2—O4xxi 53.02 (13)
O4v—Fe2—K2xiv 53.60 (12) O4xx—K2—O4xxi 115.75 (5)
O4iv—Fe2—K2xiv 129.40 (12) O3xvi—K2—O4xix 85.99 (9)
O4—Fe2—K2xiv 60.13 (12) O3xvii—K2—O4xix 156.61 (10)
K2xiii—Fe2—K2xiv 113.261 (15) O3xviii—K2—O4xix 55.86 (9)
O3x—Fe2—K2xv 48.96 (11) O2xix—K2—O4xix 46.20 (9)
O3xi—Fe2—K2xv 127.93 (11) O2xx—K2—O4xix 101.11 (10)
O3xii—Fe2—K2xv 118.56 (11) O2xxi—K2—O4xix 88.46 (10)
O4v—Fe2—K2xv 129.40 (12) O4xvii—K2—O4xix 137.03 (8)
O4iv—Fe2—K2xv 60.13 (12) O4xvi—K2—O4xix 53.02 (13)
O4—Fe2—K2xv 53.60 (12) O4xviii—K2—O4xix 104.40 (2)
K2xiii—Fe2—K2xv 113.261 (15) O4xx—K2—O4xix 115.75 (5)
K2xiv—Fe2—K2xv 113.261 (15) O4xxi—K2—O4xix 115.75 (5)
O1xii—K1—O1x 92.24 (11) O4—P3—O2 106.1 (2)
O1xii—K1—O1xi 92.24 (12) O4—P3—O3 107.6 (2)
O1x—K1—O1xi 92.24 (11) O2—P3—O3 111.7 (2)
O1xii—K1—O2xvi 56.73 (9) O4—P3—O1 111.6 (2)
O1x—K1—O2xvi 148.02 (12) O2—P3—O1 109.0 (2)
O1xi—K1—O2xvi 82.44 (10) O3—P3—O1 110.81 (19)
O1xii—K1—O2xvii 82.44 (10) O4—P3—K2xiv 70.72 (16)
O1x—K1—O2xvii 56.73 (9) O2—P3—K2xiv 58.63 (14)
O1xi—K1—O2xvii 148.02 (12) O3—P3—K2xiv 167.81 (14)
O2xvi—K1—O2xvii 118.99 (3) O1—P3—K2xiv 80.51 (13)
O1xii—K1—O2xviii 148.02 (12) O4—P3—K1xv 65.34 (15)
O1x—K1—O2xviii 82.44 (10) O2—P3—K1xv 61.21 (14)
O1xi—K1—O2xviii 56.73 (9) O3—P3—K1xv 82.59 (14)
O2xvi—K1—O2xviii 118.99 (3) O1—P3—K1xv 166.21 (14)
O2xvii—K1—O2xviii 118.99 (3) K2xiv—P3—K1xv 85.88 (3)
O1xii—K1—O4xvi 103.04 (9) O4—P3—K2xv 56.80 (16)
O1x—K1—O4xvi 164.18 (10) O2—P3—K2xv 126.68 (15)
O1xi—K1—O4xvi 83.19 (10) O3—P3—K2xv 50.98 (15)
O2xvi—K1—O4xvi 46.48 (9) O1—P3—K2xv 124.35 (14)
O2xvii—K1—O4xvi 128.76 (12) K2xiv—P3—K2xv 126.85 (4)
O2xviii—K1—O4xvi 82.41 (10) K1xv—P3—K2xv 66.30 (5)
O1xii—K1—O4xvii 83.19 (10) O4—P3—K1ix 148.79 (17)
O1x—K1—O4xvii 103.04 (9) O2—P3—K1ix 71.17 (14)
O1xi—K1—O4xvii 164.18 (10) O3—P3—K1ix 101.86 (15)
O2xvi—K1—O4xvii 82.41 (10) O1—P3—K1ix 46.23 (13)
O2xvii—K1—O4xvii 46.48 (9) K2xiv—P3—K1ix 82.53 (3)
O2xviii—K1—O4xvii 128.76 (12) K1xv—P3—K1ix 129.78 (5)
O4xvi—K1—O4xvii 83.10 (12) K2xv—P3—K1ix 149.91 (4)
O1xii—K1—O4xviii 164.18 (10) P3—O1—Fe1 132.5 (2)
O1x—K1—O4xviii 83.19 (10) P3—O1—K1ix 110.90 (17)
O1xi—K1—O4xviii 103.04 (9) Fe1—O1—K1ix 102.77 (13)
O2xvi—K1—O4xviii 128.76 (12) P3—O2—Fe1xxii 165.9 (2)
O2xvii—K1—O4xviii 82.41 (10) P3—O2—K2xiv 94.85 (16)
O2xviii—K1—O4xviii 46.48 (9) Fe1xxii—O2—K2xiv 92.87 (13)
O4xvi—K1—O4xviii 83.10 (12) P3—O2—K1xv 92.56 (16)
O4xvii—K1—O4xviii 83.10 (12) Fe1xxii—O2—K1xv 97.07 (13)
O1xii—K1—P3xvi 79.17 (7) K2xiv—O2—K1xv 103.55 (11)
O1x—K1—P3xvi 169.22 (7) P3—O3—Fe2ix 151.0 (2)
O1xi—K1—P3xvi 94.57 (7) P3—O3—K2xv 104.53 (18)
O2xvi—K1—P3xvi 26.23 (6) Fe2ix—O3—K2xv 100.23 (13)
O2xvii—K1—P3xvi 115.08 (8) P3—O4—Fe2 152.9 (3)
O2xviii—K1—P3xvi 108.29 (8) P3—O4—K2xv 98.25 (18)
O4xvi—K1—P3xvi 26.12 (7) Fe2—O4—K2xv 94.57 (14)
O4xvii—K1—P3xvi 69.72 (7) P3—O4—K1xv 88.54 (16)
O4xviii—K1—P3xvi 103.33 (10) Fe2—O4—K1xv 117.62 (15)
O1xii—K1—P3xviii 169.22 (7) K2xv—O4—K1xv 77.17 (10)
O1x—K1—P3xviii 94.57 (7) P3—O4—K2xiv 83.00 (16)
O1xi—K1—P3xviii 79.17 (7) Fe2—O4—K2xiv 87.94 (14)
O2xvi—K1—P3xviii 115.08 (8) K2xv—O4—K2xiv 171.21 (14)
O2xvii—K1—P3xviii 108.29 (8) K1xv—O4—K2xiv 94.20 (11)
O2xviii—K1—P3xviii 26.23 (6)

Symmetry codes: (i) −z, x−1/2, −y+1/2; (ii) −y+1/2, −z, x−1/2; (iii) x−1/2, −y+1/2, −z; (iv) y, z, x; (v) z, x, y; (vi) x−1, y−1, z−1; (vii) −x+1/2, −y+1, z−1/2; (viii) x−1/2, −y+1/2, −z+1; (ix) −x+1, y−1/2, −z+1/2; (x) y+1/2, −z+1/2, −x+1; (xi) −x+1, y+1/2, −z+1/2; (xii) −z+1/2, −x+1, y+1/2; (xiii) −x+1, y−1/2, −z+3/2; (xiv) x−1/2, −y+3/2, −z+1; (xv) −x+3/2, −y+1, z−1/2; (xvi) z+1/2, −x+3/2, −y+1; (xvii) −y+1, z+1/2, −x+3/2; (xviii) −x+3/2, −y+1, z+1/2; (xix) x+1/2, −y+3/2, −z+1; (xx) −z+1, x+1/2, −y+3/2; (xxi) −y+3/2, −z+1, x+1/2; (xxii) x+1/2, −y+1/2, −z.

Potassium sodium titanium iron tris(phosphate) (II). Crystal data

K0.97Na1.03Ti1.26Fe0.74(PO4)3 Dx = 3.168 Mg m3
Mr = 448.16 Mo Kα radiation, λ = 0.71073 Å
Cubic, P213 Cell parameters from 10546 reflections
Hall symbol: P 2ac 2ab 3 θ = 2.9–29.0°
a = 9.7945 (1) Å µ = 3.27 mm1
V = 939.61 (3) Å3 T = 293 K
Z = 4 Tetrahedron, violet
F(000) = 870.9 0.15 × 0.11 × 0.08 mm

Potassium sodium titanium iron tris(phosphate) (II). Data collection

Oxford Diffraction Xcalibur-3 diffractometer 833 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
φ and ω scans θmax = 29.0°, θmin = 2.9°
Absorption correction: multi-scan (Blessing, 1995) h = −12→13
Tmin = 0.622, Tmax = 0.835 k = −13→13
10546 measured reflections l = −13→13
837 independent reflections

Potassium sodium titanium iron tris(phosphate) (II). Refinement

Refinement on F2 'w = 1/[σ2(Fo2) + (0.0186P)2 + 1.1348P] where P = (Fo2 + 2Fc2)/3'
Least-squares matrix: full (Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.016 Δρmax = 0.28 e Å3
wR(F2) = 0.043 Δρmin = −0.27 e Å3
S = 1.12 Extinction correction: SHELXL-2018/3 (Sheldrick 2015)
837 reflections Extinction coefficient: 0.0015 (10)
63 parameters Absolute structure: Flack x determined using 349 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: 0.02

Potassium sodium titanium iron tris(phosphate) (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Potassium sodium titanium iron tris(phosphate) (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.14198 (4) 0.14198 (4) 0.14198 (4) 0.0079 (2) 0.39 (2)
Ti1 0.14198 (4) 0.14198 (4) 0.14198 (4) 0.0079 (2) 0.61 (2)
Fe2 0.41334 (4) 0.41334 (4) 0.41334 (4) 0.0079 (2) 0.35 (2)
Ti2 0.41334 (4) 0.41334 (4) 0.41334 (4) 0.0079 (2) 0.65 (2)
K1 0.70732 (10) 0.70732 (10) 0.70732 (10) 0.0266 (6) 0.676 (18)
Na1 0.70732 (10) 0.70732 (10) 0.70732 (10) 0.0266 (6) 0.324 (18)
K2 0.93159 (11) 0.93159 (11) 0.93159 (11) 0.0254 (8) 0.294 (19)
Na2 0.93159 (11) 0.93159 (11) 0.93159 (11) 0.0254 (8) 0.706 (19)
P3 0.45787 (7) 0.22778 (7) 0.12657 (7) 0.00815 (19)
O1 0.3100 (2) 0.2337 (3) 0.0789 (2) 0.0210 (5)
O2 0.5478 (3) 0.2989 (3) 0.0220 (3) 0.0266 (6)
O3 0.5024 (3) 0.0810 (2) 0.1492 (3) 0.0269 (5)
O4 0.4786 (3) 0.3034 (3) 0.2602 (3) 0.0313 (6)

Potassium sodium titanium iron tris(phosphate) (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0079 (2) 0.0079 (2) 0.0079 (2) 0.00028 (15) 0.00028 (15) 0.00028 (15)
Ti1 0.0079 (2) 0.0079 (2) 0.0079 (2) 0.00028 (15) 0.00028 (15) 0.00028 (15)
Fe2 0.0079 (2) 0.0079 (2) 0.0079 (2) −0.00052 (15) −0.00052 (15) −0.00052 (15)
Ti2 0.0079 (2) 0.0079 (2) 0.0079 (2) −0.00052 (15) −0.00052 (15) −0.00052 (15)
K1 0.0266 (6) 0.0266 (6) 0.0266 (6) 0.0015 (4) 0.0015 (4) 0.0015 (4)
Na1 0.0266 (6) 0.0266 (6) 0.0266 (6) 0.0015 (4) 0.0015 (4) 0.0015 (4)
K2 0.0254 (8) 0.0254 (8) 0.0254 (8) −0.0021 (4) −0.0021 (4) −0.0021 (4)
Na2 0.0254 (8) 0.0254 (8) 0.0254 (8) −0.0021 (4) −0.0021 (4) −0.0021 (4)
P3 0.0075 (3) 0.0087 (3) 0.0083 (3) −0.0003 (2) 0.0015 (2) −0.0007 (2)
O1 0.0088 (9) 0.0299 (12) 0.0242 (12) −0.0033 (8) −0.0020 (8) 0.0089 (10)
O2 0.0197 (11) 0.0361 (14) 0.0241 (12) −0.0014 (10) 0.0088 (10) 0.0136 (11)
O3 0.0263 (12) 0.0128 (10) 0.0415 (14) 0.0088 (9) 0.0053 (11) 0.0032 (11)
O4 0.0333 (14) 0.0373 (15) 0.0232 (12) −0.0027 (12) 0.0014 (11) −0.0206 (11)

Potassium sodium titanium iron tris(phosphate) (II). Geometric parameters (Å, º)

Fe1—O2i 1.940 (2) K1—O2xviii 3.009 (3)
Fe1—O2ii 1.940 (2) K1—O4xvii 3.122 (3)
Fe1—O2iii 1.940 (2) K1—O4xviii 3.122 (3)
Fe1—O1 1.974 (2) K1—O4xvi 3.122 (3)
Fe1—O1iv 1.974 (2) K1—P3xviii 3.4327 (11)
Fe1—O1v 1.974 (2) K1—P3xvii 3.4327 (11)
Fe1—K2vi 3.569 (2) K1—P3xvi 3.4327 (11)
Fe1—K1vii 3.7806 (7) K2—O3xvii 2.843 (3)
Fe1—K1viii 3.7806 (7) K2—O3xvi 2.843 (3)
Fe1—K1ix 3.7806 (7) K2—O3xviii 2.843 (3)
Fe2—O3x 1.938 (2) K2—O2xix 2.910 (3)
Fe2—O3xi 1.938 (2) K2—O2xx 2.910 (3)
Fe2—O3xii 1.938 (2) K2—O2xxi 2.910 (3)
Fe2—O4 1.954 (2) K2—O4xvii 2.982 (4)
Fe2—O4iv 1.954 (2) K2—O4xvi 2.982 (4)
Fe2—O4v 1.954 (2) K2—O4xviii 2.982 (4)
Fe2—K2xiii 3.7084 (6) K2—O4xx 3.237 (3)
Fe2—K2xiv 3.7084 (6) K2—O4xix 3.237 (3)
Fe2—K2xv 3.7084 (6) K2—O4xxi 3.237 (3)
K1—O1xi 2.820 (3) P3—O4 1.517 (3)
K1—O1xii 2.820 (3) P3—O3 1.518 (2)
K1—O1x 2.820 (3) P3—O2 1.520 (2)
K1—O2xvi 3.009 (3) P3—O1 1.523 (2)
K1—O2xvii 3.009 (3)
O2i—Fe1—O2ii 89.72 (12) O4xvii—K1—P3xvii 26.22 (5)
O2i—Fe1—O2iii 89.72 (12) O4xviii—K1—P3xvii 103.21 (8)
O2ii—Fe1—O2iii 89.72 (12) O4xvi—K1—P3xvii 69.59 (5)
O2i—Fe1—O1 178.52 (12) P3xviii—K1—P3xvii 94.92 (4)
O2ii—Fe1—O1 88.81 (11) O1xi—K1—P3xvi 94.74 (5)
O2iii—Fe1—O1 90.09 (10) O1xii—K1—P3xvi 79.13 (5)
O2i—Fe1—O1iv 90.09 (10) O1x—K1—P3xvi 169.06 (5)
O2ii—Fe1—O1iv 178.52 (12) O2xvi—K1—P3xvi 26.25 (5)
O2iii—Fe1—O1iv 88.81 (11) O2xvii—K1—P3xvi 108.35 (6)
O1—Fe1—O1iv 91.38 (10) O2xviii—K1—P3xvi 115.09 (6)
O2i—Fe1—O1v 88.81 (11) O4xvii—K1—P3xvi 103.21 (8)
O2ii—Fe1—O1v 90.09 (10) O4xviii—K1—P3xvi 69.59 (5)
O2iii—Fe1—O1v 178.52 (12) O4xvi—K1—P3xvi 26.22 (5)
O1—Fe1—O1v 91.38 (10) P3xviii—K1—P3xvi 94.92 (4)
O1iv—Fe1—O1v 91.38 (10) P3xvii—K1—P3xvi 94.92 (4)
O2i—Fe1—K2vi 54.54 (9) O3xvii—K2—O3xvi 100.89 (8)
O2ii—Fe1—K2vi 54.54 (9) O3xvii—K2—O3xviii 100.89 (8)
O2iii—Fe1—K2vi 54.54 (9) O3xvi—K2—O3xviii 100.89 (8)
O1—Fe1—K2vi 124.28 (7) O3xvii—K2—O2xix 149.75 (9)
O1iv—Fe1—K2vi 124.28 (7) O3xvi—K2—O2xix 95.89 (7)
O1v—Fe1—K2vi 124.28 (7) O3xviii—K2—O2xix 100.42 (8)
O2i—Fe1—K1vii 132.34 (9) O3xvii—K2—O2xx 95.89 (7)
O2ii—Fe1—K1vii 66.00 (8) O3xvi—K2—O2xx 100.42 (8)
O2iii—Fe1—K1vii 52.14 (8) O3xviii—K2—O2xx 149.75 (9)
O1—Fe1—K1vii 46.70 (7) O2xix—K2—O2xx 56.11 (8)
O1iv—Fe1—K1vii 113.14 (8) O3xvii—K2—O2xxi 100.42 (8)
O1v—Fe1—K1vii 129.02 (8) O3xvi—K2—O2xxi 149.75 (9)
K2vi—Fe1—K1vii 78.502 (13) O3xviii—K2—O2xxi 95.89 (7)
O2i—Fe1—K1viii 66.00 (8) O2xix—K2—O2xxi 56.11 (8)
O2ii—Fe1—K1viii 52.14 (8) O2xx—K2—O2xxi 56.11 (8)
O2iii—Fe1—K1viii 132.34 (9) O3xvii—K2—O4xvii 49.57 (7)
O1—Fe1—K1viii 113.14 (8) O3xvi—K2—O4xvii 115.99 (10)
O1iv—Fe1—K1viii 129.02 (8) O3xviii—K2—O4xvii 52.41 (7)
O1v—Fe1—K1viii 46.70 (7) O2xix—K2—O4xvii 140.03 (8)
K2vi—Fe1—K1viii 78.502 (13) O2xx—K2—O4xvii 132.27 (7)
K1vii—Fe1—K1viii 116.129 (8) O2xxi—K2—O4xvii 94.19 (7)
O2i—Fe1—K1ix 52.14 (8) O3xvii—K2—O4xvi 52.41 (7)
O2ii—Fe1—K1ix 132.34 (9) O3xvi—K2—O4xvi 49.57 (7)
O2iii—Fe1—K1ix 66.00 (8) O3xviii—K2—O4xvi 115.99 (10)
O1—Fe1—K1ix 129.02 (8) O2xix—K2—O4xvi 132.27 (7)
O1iv—Fe1—K1ix 46.70 (7) O2xx—K2—O4xvi 94.19 (7)
O1v—Fe1—K1ix 113.14 (8) O2xxi—K2—O4xvi 140.03 (8)
K2vi—Fe1—K1ix 78.502 (13) O4xvii—K2—O4xvi 87.67 (9)
K1vii—Fe1—K1ix 116.129 (8) O3xvii—K2—O4xviii 115.99 (10)
K1viii—Fe1—K1ix 116.129 (8) O3xvi—K2—O4xviii 52.41 (7)
O3x—Fe2—O3xi 92.37 (12) O3xviii—K2—O4xviii 49.57 (7)
O3x—Fe2—O3xii 92.37 (12) O2xix—K2—O4xviii 94.19 (7)
O3xi—Fe2—O3xii 92.37 (12) O2xx—K2—O4xviii 140.03 (8)
O3x—Fe2—O4 94.89 (12) O2xxi—K2—O4xviii 132.27 (8)
O3xi—Fe2—O4 171.47 (13) O4xvii—K2—O4xviii 87.67 (9)
O3xii—Fe2—O4 82.87 (13) O4xvi—K2—O4xviii 87.67 (9)
O3x—Fe2—O4iv 82.87 (13) O3xvii—K2—O4xx 55.81 (6)
O3xi—Fe2—O4iv 94.90 (12) O3xvi—K2—O4xx 86.02 (7)
O3xii—Fe2—O4iv 171.46 (13) O3xviii—K2—O4xx 156.68 (8)
O4—Fe2—O4iv 90.46 (12) O2xix—K2—O4xx 100.98 (8)
O3x—Fe2—O4v 171.46 (13) O2xx—K2—O4xx 46.19 (7)
O3xi—Fe2—O4v 82.87 (13) O2xxi—K2—O4xx 88.43 (8)
O3xii—Fe2—O4v 94.90 (12) O4xvii—K2—O4xx 104.497 (19)
O4—Fe2—O4v 90.46 (12) O4xvi—K2—O4xx 52.80 (10)
O4iv—Fe2—O4v 90.46 (12) O4xviii—K2—O4xx 137.10 (6)
O3x—Fe2—K2xiii 118.47 (8) O3xvii—K2—O4xix 156.68 (8)
O3xi—Fe2—K2xiii 49.04 (9) O3xvi—K2—O4xix 55.81 (6)
O3xii—Fe2—K2xiii 127.81 (8) O3xviii—K2—O4xix 86.02 (7)
O4—Fe2—K2xiii 129.70 (9) O2xix—K2—O4xix 46.19 (7)
O4iv—Fe2—K2xiii 60.69 (10) O2xx—K2—O4xix 88.43 (8)
O4v—Fe2—K2xiii 53.21 (10) O2xxi—K2—O4xix 100.98 (8)
O3x—Fe2—K2xiv 127.81 (8) O4xvii—K2—O4xix 137.10 (6)
O3xi—Fe2—K2xiv 118.47 (8) O4xvi—K2—O4xix 104.497 (19)
O3xii—Fe2—K2xiv 49.04 (9) O4xviii—K2—O4xix 52.80 (10)
O4—Fe2—K2xiv 53.21 (10) O4xx—K2—O4xix 115.71 (4)
O4iv—Fe2—K2xiv 129.70 (9) O3xvii—K2—O4xxi 86.02 (7)
O4v—Fe2—K2xiv 60.69 (10) O3xvi—K2—O4xxi 156.68 (8)
K2xiii—Fe2—K2xiv 113.409 (11) O3xviii—K2—O4xxi 55.81 (6)
O3x—Fe2—K2xv 49.04 (9) O2xix—K2—O4xxi 88.43 (8)
O3xi—Fe2—K2xv 127.81 (8) O2xx—K2—O4xxi 100.98 (8)
O3xii—Fe2—K2xv 118.47 (8) O2xxi—K2—O4xxi 46.19 (7)
O4—Fe2—K2xv 60.69 (10) O4xvii—K2—O4xxi 52.80 (10)
O4iv—Fe2—K2xv 53.21 (10) O4xvi—K2—O4xxi 137.10 (6)
O4v—Fe2—K2xv 129.70 (9) O4xviii—K2—O4xxi 104.497 (19)
K2xiii—Fe2—K2xv 113.409 (11) O4xx—K2—O4xxi 115.71 (4)
K2xiv—Fe2—K2xv 113.409 (11) O4xix—K2—O4xxi 115.71 (4)
O1xi—K1—O1xii 92.11 (9) O4—P3—O3 107.34 (18)
O1xi—K1—O1x 92.11 (9) O4—P3—O2 106.27 (16)
O1xii—K1—O1x 92.11 (9) O3—P3—O2 111.46 (16)
O1xi—K1—O2xvi 82.55 (7) O4—P3—O1 111.89 (15)
O1xii—K1—O2xvi 56.64 (6) O3—P3—O1 110.74 (14)
O1x—K1—O2xvi 147.84 (9) O2—P3—O1 109.06 (14)
O1xi—K1—O2xvii 56.64 (6) O4—P3—K2xv 71.04 (13)
O1xii—K1—O2xvii 147.84 (9) O3—P3—K2xv 167.62 (11)
O1x—K1—O2xvii 82.55 (7) O2—P3—K2xv 58.68 (11)
O2xvi—K1—O2xvii 119.008 (19) O1—P3—K2xv 80.72 (10)
O1xi—K1—O2xviii 147.84 (9) O4—P3—K1xiv 65.37 (11)
O1xii—K1—O2xviii 82.55 (7) O3—P3—K1xiv 82.38 (11)
O1x—K1—O2xviii 56.64 (6) O2—P3—K1xiv 61.12 (11)
O2xvi—K1—O2xviii 119.008 (19) O1—P3—K1xiv 166.43 (11)
O2xvii—K1—O2xviii 119.008 (19) K2xv—P3—K1xiv 85.93 (3)
O1xi—K1—O4xvii 103.13 (7) O4—P3—K2xiv 56.40 (13)
O1xii—K1—O4xvii 164.24 (7) O3—P3—K2xiv 51.08 (12)
O1x—K1—O4xvii 83.46 (8) O2—P3—K2xiv 126.42 (11)
O2xvi—K1—O4xvii 128.67 (9) O1—P3—K2xiv 124.51 (10)
O2xvii—K1—O4xvii 46.65 (7) K2xv—P3—K2xiv 126.74 (3)
O2xviii—K1—O4xvii 82.39 (7) K1xiv—P3—K2xiv 66.11 (4)
O1xi—K1—O4xviii 164.24 (7) O4—P3—K1vii 149.07 (13)
O1xii—K1—O4xviii 83.46 (8) O3—P3—K1vii 101.87 (12)
O1x—K1—O4xviii 103.13 (7) O2—P3—K1vii 71.24 (11)
O2xvi—K1—O4xviii 82.39 (7) O1—P3—K1vii 46.09 (9)
O2xvii—K1—O4xviii 128.67 (9) K2xv—P3—K1vii 82.54 (3)
O2xviii—K1—O4xviii 46.65 (7) K1xiv—P3—K1vii 129.74 (3)
O4xvii—K1—O4xviii 82.84 (10) K2xiv—P3—K1vii 150.05 (3)
O1xi—K1—O4xvi 83.46 (8) P3—O1—Fe1 132.78 (15)
O1xii—K1—O4xvi 103.13 (7) P3—O1—K1vii 111.02 (12)
O1x—K1—O4xvi 164.24 (7) Fe1—O1—K1vii 102.66 (9)
O2xvi—K1—O4xvi 46.65 (7) P3—O2—Fe1xxii 165.93 (19)
O2xvii—K1—O4xvi 82.39 (7) P3—O2—K2xv 94.82 (12)
O2xviii—K1—O4xvi 128.67 (9) Fe1xxii—O2—K2xv 92.57 (10)
O4xvii—K1—O4xvi 82.84 (10) P3—O2—K1xiv 92.63 (12)
O4xviii—K1—O4xvi 82.84 (10) Fe1xxii—O2—K1xiv 97.25 (10)
O1xi—K1—P3xviii 169.06 (5) K2xv—O2—K1xiv 103.64 (9)
O1xii—K1—P3xviii 94.74 (5) P3—O3—Fe2vii 151.51 (19)
O1x—K1—P3xviii 79.13 (5) P3—O3—K2xiv 104.38 (14)
O2xvi—K1—P3xviii 108.35 (6) Fe2vii—O3—K2xiv 100.00 (10)
O2xvii—K1—P3xviii 115.09 (6) P3—O4—Fe2 152.6 (2)
O2xviii—K1—P3xviii 26.25 (5) P3—O4—K2xiv 98.53 (14)
O4xvii—K1—P3xviii 69.59 (5) Fe2—O4—K2xiv 95.14 (11)
O4xviii—K1—P3xviii 26.22 (5) P3—O4—K1xiv 88.41 (12)
O4xvi—K1—P3xviii 103.21 (8) Fe2—O4—K1xiv 117.90 (11)
O1xi—K1—P3xvii 79.13 (5) K2xiv—O4—K1xiv 77.09 (8)
O1xii—K1—P3xvii 169.06 (5) P3—O4—K2xv 82.65 (13)
O1x—K1—P3xvii 94.74 (5) Fe2—O4—K2xv 87.54 (11)
O2xvi—K1—P3xvii 115.09 (6) K2xiv—O4—K2xv 171.00 (11)
O2xvii—K1—P3xvii 26.25 (5) K1xiv—O4—K2xv 94.06 (9)
O2xviii—K1—P3xvii 108.35 (6)

Symmetry codes: (i) −z, x−1/2, −y+1/2; (ii) −y+1/2, −z, x−1/2; (iii) x−1/2, −y+1/2, −z; (iv) z, x, y; (v) y, z, x; (vi) x−1, y−1, z−1; (vii) −x+1, y−1/2, −z+1/2; (viii) x−1/2, −y+1/2, −z+1; (ix) −x+1/2, −y+1, z−1/2; (x) −x+1, y+1/2, −z+1/2; (xi) −z+1/2, −x+1, y+1/2; (xii) y+1/2, −z+1/2, −x+1; (xiii) −x+1, y−1/2, −z+3/2; (xiv) −x+3/2, −y+1, z−1/2; (xv) x−1/2, −y+3/2, −z+1; (xvi) −y+1, z+1/2, −x+3/2; (xvii) z+1/2, −x+3/2, −y+1; (xviii) −x+3/2, −y+1, z+1/2; (xix) −y+3/2, −z+1, x+1/2; (xx) −z+1, x+1/2, −y+3/2; (xxi) x+1/2, −y+3/2, −z+1; (xxii) x+1/2, −y+1/2, −z.

Funding Statement

This work was funded by Ministry of Education and Science of Ukraine.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Gustafsson, J. C. M., Norberg, S. T., Svensson, G. & Albertsson, J. (2005). Acta Cryst. C61, i9–i13. [DOI] [PubMed]
  6. Isasi, J. & Daidouh, A. (2000). Solid State Ionics, 133, 303–313.
  7. Luo, Y., Sun, T., Shui, M. & Shu, J. (2019). Mater. Chem. Phys. 233, 339–345.
  8. Mereiter, K. (1979). N. Jb. Mineral. Monatsh. pp. 182–188.
  9. Norberg, S. T. (2002). Acta Cryst. B58, 743–749. [DOI] [PMC free article] [PubMed]
  10. Nose, M., Nakayama, H., Nobuhara, K., Yamaguchi, H., Nakanishi, S. & Iba, H. (2013). J. Power Sources, 234, 175–179.
  11. Ogorodnyk, I. V., Baumer, V. N., Zatovsky, I. V., Slobodyanik, N. S., Shishkin, O. V. & Domasevitch, K. V. (2007a). Acta Cryst. B63, 819–827. [DOI] [PubMed]
  12. Ogorodnyk, I. V., Zatovsky, I. V., Baumer, V. N., Slobodyanik, N. S., Shishkin, O. V. & Vorona, I. P. (2008). Z. Naturforsch. Teil B, 63, 261–266.
  13. Ogorodnyk, I. V., Zatovsky, I. V. & Slobodyanik, N. S. (2007b). Russ. J. Inorg. Chem. 52, 121–125.
  14. Ogorodnyk, I. V., Zatovsky, I. V., Slobodyanik, N. S., Baumer, V. N. & Shishkin, O. V. (2006). J. Solid State Chem. 179, 3461–3466.
  15. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  16. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Strutynska, N., Bondarenko, M., Slobodyanik, N., Baumer, V., Zatovsky, I., Bychkov, K. & Puzan, A. (2016). Cryst. Res. Technol. 51, 627–633.
  20. Wang, D., Wei, Z., Lin, Y., Chen, N., Gao, Y., Chen, G., Song, L. & Du, F. (2019). J. Mater. Chem. A, 7, 20604–20613.
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  22. Zatovskii, I. V., Slobodyanik, N. S., Ushchapivskaya, T. I., Ogorodnik, I. V. & Babarik, A. A. (2006). Russ. J. Appl. Chem. 79, 10–15.
  23. Zatovsky, I. V., Strutynska, N. Yu., Hizhnyi, Y. A., Nedilko, S. G., Slobodyanik, N. S. & Klyui, N. I. (2018). ChemistryOpen, 7, 504–512. [DOI] [PMC free article] [PubMed]
  24. Zatovsky, I. V., Strutynska, N. Yu., Ogorodnyk, I. V., Baumer, V. N., Slobodyanik, N. S., Yatskin, M. M. & Odynets, I. V. (2016). Struct. Chem. 27, 323–330.
  25. Zemann, A. & Zemann, J. (1957). Acta Cryst. 10, 409–413.
  26. Zhang, B., Ma, K., Lv, X., Shi, K., Wang, Y., Nian, Z., Li, Y., Wang, L., Dai, L. & He, Z. (2021). J. Alloys Compd. 867, 159060.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S2056989021011877/wm5625sup1.cif

e-77-01299-sup1.cif (651.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989021011877/wm5625Isup2.hkl

e-77-01299-Isup2.hkl (70.2KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989021011877/wm5625IIsup3.hkl

e-77-01299-IIsup3.hkl (69.4KB, hkl)

CCDC references: 2121192, 2121193

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES