Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2021 Dec 6;41(6):1105–1115. doi: 10.1007/s11596-021-2474-3

Application of Artificial Intelligence in Medicine: An Overview

Peng-ran Liu 1,#, Lin Lu 1,#, Jia-yao Zhang 1, Tong-tong Huo 1, Song-xiang Liu 1, Zhe-wei Ye 1,
PMCID: PMC8648557  PMID: 34874486

Abstract

Artificial intelligence (AI) is a new technical discipline that uses computer technology to research and develop the theory, method, technique, and application system for the simulation, extension, and expansion of human intelligence. With the assistance of new AI technology, the traditional medical environment has changed a lot. For example, a patient’s diagnosis based on radiological, pathological, endoscopic, ultrasonographic, and biochemical examinations has been effectively promoted with a higher accuracy and a lower human workload. The medical treatments during the perioperative period, including the preoperative preparation, surgical period, and postoperative recovery period, have been significantly enhanced with better surgical effects. In addition, AI technology has also played a crucial role in medical drug production, medical management, and medical education, taking them into a new direction. The purpose of this review is to introduce the application of AI in medicine and to provide an outlook of future trends.

Key words: artificial intelligence, medicine, application, overview

Footnotes

This project was supported by the National Natural Science Foundation of China (No. 81974355).

Conflict of Interest Statement

The authors declare that they have no conflicts of interest.

The authors contributed equally to this work.

Contributor Information

Peng-ran Liu, Email: lprlprlprwd@163.com.

Lin Lu, Email: lledu2014@163.com.

Zhe-wei Ye, Email: yezhewei@hust.edu.cn.

References

  • 1.Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019;28(2):73–81. doi: 10.1080/13645706.2019.1575882. [DOI] [PubMed] [Google Scholar]
  • 2.Kaul V, Enslin S, Gross SA. The history of artificial intelligence in medicine. Gastrointest Endosc. 2020;92(4):807–812. doi: 10.1016/j.gie.2020.06.040. [DOI] [PubMed] [Google Scholar]
  • 3.Miller RA, Pople HJ, Myers JD. Internist-1, an experimental computer-based diagnostic consultant for general internal medicine. N Engl J Med. 1982;307(8):468–476. doi: 10.1056/NEJM198208193070803. [DOI] [PubMed] [Google Scholar]
  • 4.Shortliffe EH, Davis R, Axline SG, et al. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Comput Biomed Res. 1975;8(4):303–320. doi: 10.1016/0010-4809(75)90009-9. [DOI] [PubMed] [Google Scholar]
  • 5.Weiss S, Kulikowski CA, Safir A. Glaucoma consultation by computer. Comput Biol Med. 1978;8(1):25–40. doi: 10.1016/0010-4825(78)90011-2. [DOI] [PubMed] [Google Scholar]
  • 6.Kulikowski CA. Beginnings of Artificial Intelligence in Medicine (AIM): Computational Artifice Assisting Scientific Inquiry and Clinical Art — with Reflections on Present AIM Challenges. Yearb Med Inform. 2019;28(1):249–256. doi: 10.1055/s-0039-1677895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Patel VL, Shortliffe EH, Stefanelli M, et al. The coming of age of artificial intelligence in medicine. Artif Intell Med. 2009;46(1):5–17. doi: 10.1016/j.artmed.2008.07.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Sorrentino FS, Jurman G, De NK, et al. Application of Artificial Intelligence in Targeting Retinal Diseases. Curr Drug Targets. 2020;21(12):1208–1215. doi: 10.2174/1389450121666200708120646. [DOI] [PubMed] [Google Scholar]
  • 9.Heydon P, Egan C, Bolter L, et al. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Br J Ophthalmol. 2021;105(5):723–728. doi: 10.1136/bjophthalmol-2020-316594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Xie Q, Liu Y, Huang H, et al. An innovative method for screening and evaluating the degree of diabetic retinopathy and drug treatment based on artificial intelligence algorithms. Pharmacol Res. 2020;159:104986. doi: 10.1016/j.phrs.2020.104986. [DOI] [PubMed] [Google Scholar]
  • 11.Gong J, Liu JY, Sun XW, et al. Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules. Phys Med Biol. 2018;63(3):35036. doi: 10.1088/1361-6560/aaa610. [DOI] [PubMed] [Google Scholar]
  • 12.Gong J, Liu JY, Jiang YJ, et al. Fusion of quantitative imaging features and serum biomarkers to improve performance of computer-aided diagnosis scheme for lung cancer: A preliminary study. Med Phys. 2018;45(12):5472–5481. doi: 10.1002/mp.13237. [DOI] [PubMed] [Google Scholar]
  • 13.Rodriguez RA, Lang K, Gubern MA, et al. Stand-Alone Artificial Intelligence for Breast Cancer Detection in Mammography: Comparison With 101 Radiologists. J Natl Cancer Inst. 2019;111(9):916–922. doi: 10.1093/jnci/djy222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94. doi: 10.1038/s41586-019-1799-6. [DOI] [PubMed] [Google Scholar]
  • 15.Rodriguez RA, Lang K, Gubern MA, et al. Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study. Eur Radiol. 2019;29(9):4825–4832. doi: 10.1007/s00330-019-06186-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Stoel BC. Artificial intelligence in detecting early RA. Semin Arthritis Rheum. 2019;49(3S):S25–S28. doi: 10.1016/j.semarthrit.2019.09.020. [DOI] [PubMed] [Google Scholar]
  • 17.Acs B, Rantalainen M, Hartman J. Artificial intelligence as the next step towards precision pathology. J Intern Med. 2020;288(1):62–81. doi: 10.1111/joim.13030. [DOI] [PubMed] [Google Scholar]
  • 18.Allen TC. Regulating Artificial Intelligence for a Successful Pathology Future. Arch Pathol Lab Med. 2019;143(10):1175–1179. doi: 10.5858/arpa.2019-0229-ED. [DOI] [PubMed] [Google Scholar]
  • 19.Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nat Rev Clin Oncol. 2019;16(11):703–715. doi: 10.1038/s41571-019-0252-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Serag A, Ion MA, Qureshi H, et al. Translational AI and Deep Learning in Diagnostic Pathology. Front Med (Lausanne) 2019;6:185. doi: 10.3389/fmed.2019.00185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Zemouri R, Devalland C, Valmary DS, et al. Neural network: A future in pathology? Ann Pathol. 2019;39(2):119–129. doi: 10.1016/j.annpat.2019.01.004. [DOI] [PubMed] [Google Scholar]
  • 22.Wang S, Yang DM, Rong R, et al. Pathology Image Analysis Using Segmentation Deep Learning Algorithms. Am J Pathol. 2019;189(9):1686–1698. doi: 10.1016/j.ajpath.2019.05.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Komura D, Ishikawa S. Machine learning approaches for pathologic diagnosis. Virchows Arch. 2019;475(2):131–138. doi: 10.1007/s00428-019-02594-w. [DOI] [PubMed] [Google Scholar]
  • 24.Hart S N, Flotte W, Norgan AP, et al. Classification of Melanocytic Lesions in Selected and Whole-Slide Images via Convolutional Neural Networks. J Pathol Inform. 2019;10:5. doi: 10.4103/jpi.jpi_32_18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Kosaraju SC, Hao J, Koh HM, et al. Deep-Hipo: Multi-scale receptive field deep learning for histopathological image analysis. Methods. 2020;179:3–13. doi: 10.1016/j.ymeth.2020.05.012. [DOI] [PubMed] [Google Scholar]
  • 26.Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24(10):1559–1567. doi: 10.1038/s41591-018-0177-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Iizuka O, Kanavati F, Kato K, et al. Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours. Sci Rep. 2020;10(1):1504. doi: 10.1038/s41598-020-58467-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Kanavati F, Toyokawa G, Momosaki S, et al. Weakly-supervised learning for lung carcinoma classification using deep learning. Sci Rep. 2020;10(1):9297. doi: 10.1038/s41598-020-66333-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Wang S, Yang DM, Rong R, et al. Artificial Intelligence in Lung Cancer Pathology Image Analysis. Cancers (Basel) 2019;11(11):1673. doi: 10.3390/cancers11111673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Jiang YQ, Xiong JH, Li HY, et al. Recognizing basal cell carcinoma on smartphone-captured digital histopathology images with a deep neural network. Br J Dermatol. 2020;182(3):754–762. doi: 10.1111/bjd.18026. [DOI] [PubMed] [Google Scholar]
  • 31.Bueno G, Fernandez CM, Gonzalez L, et al. Glomerulosclerosis identification in whole slide images using semantic segmentation. Comput Methods Programs Biomed. 2020;184:105273. doi: 10.1016/j.cmpb.2019.105273. [DOI] [PubMed] [Google Scholar]
  • 32.Namikawa K, Hirasawa T, Yoshio T, et al. Utilizing artificial intelligence in endoscopy: a clinician’s guide. Expert Rev Gastroenterol Hepatol, 2020:1–18 [DOI] [PubMed]
  • 33.Gulati S, Emmanuel A, Patel M, et al. Artificial intelligence in luminal endoscopy. Ther Adv Gastrointest Endosc. 2020;13:2631774520935220. doi: 10.1177/2631774520935220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Hwang Y, Lee HH, Park C, et al. An Improved Classification and Localization Approach to Small Bowel Capsule Endoscopy Using Convolutional Neural Network. Dig Endosc. 2020;33(4):598–607. doi: 10.1111/den.13787. [DOI] [PubMed] [Google Scholar]
  • 35.He YS, Su JR, Li Z, et al. Application of artificial intelligence in gastrointestinal endoscopy. J Dig Dis. 2019;20(12):623–630. doi: 10.1111/1751-2980.12827. [DOI] [PubMed] [Google Scholar]
  • 36.Chahal D, Byrne MF. A primer on artificial intelligence and its application to endoscopy. Gastrointest Endosc. 2020;92(4):813–820. doi: 10.1016/j.gie.2020.04.074. [DOI] [PubMed] [Google Scholar]
  • 37.Sharma P, Pante A, Gross SA. Artificial intelligence in endoscopy. Gastrointest Endosc. 2020;91(4):925–931. doi: 10.1016/j.gie.2019.12.018. [DOI] [PubMed] [Google Scholar]
  • 38.Nguyen DT, Pham TD, Batchuluun G, et al. Artificial Intelligence-Based Thyroid Nodule Classification Using Information from Spatial and Frequency Domains. J Clin Med. 2019;8(11):1976. doi: 10.3390/jcm8111976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Nguyen DT, Kang JK, Pham TD, et al. Ultrasound Image-Based Diagnosis of Malignant Thyroid Nodule Using Artificial Intelligence. Sensors (Basel) 2020;20(7):1822. doi: 10.3390/s20071822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Sun C, Zhang Y, Chang Q, et al. Evaluation of a deep learning-based computer-aided diagnosis system for distinguishing benign from malignant thyroid nodules in ultrasound images. Med Phys. 2020;47(9):3952–3960. doi: 10.1002/mp.14301. [DOI] [PubMed] [Google Scholar]
  • 41.Chen J, You H, Li K. A review of thyroid gland segmentation and thyroid nodule segmentation methods for medical ultrasound images. Comput Methods Programs Biomed. 2020;185:105329. doi: 10.1016/j.cmpb.2020.105329. [DOI] [PubMed] [Google Scholar]
  • 42.Fujioka T, Mori M, Kubota K, et al. Breast Ultrasound Image Synthesis using Deep Convolutional Generative Adversarial Networks. Diagnostics (Basel) 2019;9(4):176. doi: 10.3390/diagnostics9040176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Chen CH, Lee YW, Huang YS, et al. Computer-aided diagnosis of endobronchial ultrasound images using convolutional neural network. Comput Methods Programs Biomed. 2019;177:175–182. doi: 10.1016/j.cmpb.2019.05.020. [DOI] [PubMed] [Google Scholar]
  • 44.Noort F, Vaart CH, Grob A, et al. Deep learning enables automatic quantitative assessment of puborectalis muscle and urogenital hiatus in plane of minimal hiatal dimensions. Ultrasound Obstet Gynecol. 2019;54(2):270–275. doi: 10.1002/uog.20181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Abelson S, Collord G, Ng S, et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018;559(7714):400–404. doi: 10.1038/s41586-018-0317-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19(9):1180–1191. doi: 10.1016/S1470-2045(18)30413-3. [DOI] [PubMed] [Google Scholar]
  • 47.Li X, Yao R, Tan X, et al. Molecular and phenotypic spectrum of Noonan syndrome in Chinese patients. Clin Genet. 2019;96(4):290–299. doi: 10.1111/cge.13588. [DOI] [PubMed] [Google Scholar]
  • 48.Tomita K, Nagao R, Touge H, et al. Deep learning facilitates the diagnosis of adult asthma. Allergol Int. 2019;68(4):456–461. doi: 10.1016/j.alit.2019.04.010. [DOI] [PubMed] [Google Scholar]
  • 49.Demircioglu A. Radiomics-AI-based image analysis. Pathologe. 2019;40(Suppl 3):271–276. doi: 10.1007/s00292-019-00704-8. [DOI] [PubMed] [Google Scholar]
  • 50.Jakopec M, Harris SJ, Rodriguez YB, et al. The first clinical application of a “hands-on” robotic knee surgery system. Comput Aided Surg. 2001;6(6):329–339. doi: 10.3109/10929080109146302. [DOI] [PubMed] [Google Scholar]
  • 51.Cowley G. Introducing “Robodoc”. A robot finds his calling—in the operating room. Newsweek. 1992;120(21):86. [PubMed] [Google Scholar]
  • 52.Stefano GB. Robotic Surgery: Fast Forward to Telemedicine. Med Sci Monit. 2017;23:1856. doi: 10.12659/MSM.904666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Tae K. Robotic thyroid surgery. Auris Nasus Larynx. 2020;48(3):331–338. doi: 10.1016/j.anl.2020.06.007. [DOI] [PubMed] [Google Scholar]
  • 54.Stefanelli LV, Mandelaris GA, Franchina A, et al. Accuracy Evaluation of 14 Maxillary Full Arch Implant Treatments Performed with Da Vinci Bridge: A Case Series. Materials (Basel) 2020;13(12):2806. doi: 10.3390/ma13122806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Lenfant L, Wilson CA, Sawczyn G, et al. Single-Port Robot-Assisted Dismembered Pyeloplasty With Mini-Pfannenstiel or Peri-Umbilical Access: Initial Experience in a Single Center. Urology. 2020;143:147–152. doi: 10.1016/j.urology.2020.05.041. [DOI] [PubMed] [Google Scholar]
  • 56.Winder A, Strauss DC, Jones RL, et al. Robotic surgery for gastric gastrointestinal stromal tumors: A single center case series. J Surg Oncol, 2020, doi: 10.1002/jso.26053. Online ahead of print [DOI] [PubMed]
  • 57.Jones R, Dobbs RW, Halgrimson WR, et al. Single port robotic radical prostatectomy with the da Vinci SP platform: a step by step approach. Can J Urol. 2020;27(3):10263–10269. [PubMed] [Google Scholar]
  • 58.Wang Y, Meng D, Sun X, et al. A Prospective Study of Da Vinci Surgical Robotic System with Chest Wall External Nursing Interventions. Chin J Lung Cancer (Chinese) 2020;23(6):487–491. doi: 10.3779/j.issn.1009-3419.2020.101.07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Zuo S, Yang GZ. Endomicroscopy for Computer and Robot Assisted Intervention. IEEE Rev Biomed Eng. 2017;10:12–25. doi: 10.1109/RBME.2017.2686483. [DOI] [PubMed] [Google Scholar]
  • 60.Navarrete AJ, Hashimoto DA. Current applications of artificial intelligence for intraoperative decision support in surgery. Front Med. 2020;14(4):369–381. doi: 10.1007/s11684-020-0784-7. [DOI] [PubMed] [Google Scholar]
  • 61.Samareh A, Chang X, Lober WB, et al. Artificial Intelligence Methods for Surgical Site Infection: Impacts on Detection, Monitoring, and Decision Making. Surg Infect (Larchmt) 2019;20(7):546–554. doi: 10.1089/sur.2019.150. [DOI] [PubMed] [Google Scholar]
  • 62.Tejo OA, Buj CI, Fenollosa AF. 3D Printing in Medicine for Preoperative Surgical Planning: A Review. Ann Biomed Eng. 2020;48(2):536–555. doi: 10.1007/s10439-019-02411-0. [DOI] [PubMed] [Google Scholar]
  • 63.Wang C, Zhang L, Qin T, et al. 3D printing in adult cardiovascular surgery and interventions: a systematic review. J Thorac Dis. 2020;12(6):3227–3237. doi: 10.21037/jtd-20-455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Nikoyan L, Patel R. Intraoral Scanner, Three-Dimensional Imaging, and Three-Dimensional Printing in the Dental Office. Dent Clin North Am. 2020;64(2):365–378. doi: 10.1016/j.cden.2019.12.004. [DOI] [PubMed] [Google Scholar]
  • 65.Skelley NW, Smith MJ, Ma R, et al. Three-dimensional Printing Technology in Orthopaedics. J Am Acad Orthop Surg. 2019;27(24):918–925. doi: 10.5435/JAAOS-D-18-00746. [DOI] [PubMed] [Google Scholar]
  • 66.Yamaguchi JT, Hsu WK. Three-Dimensional Printing in Minimally Invasive Spine Surgery. Curr Rev Musculoskelet Med. 2019;12(4):425–435. doi: 10.1007/s12178-019-09576-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Bangeas P, Tsioukas V, Papadopoulos V N, et al. Role of innovative 3D printing models in the management of hepatobiliary malignancies. World J Hepatol. 2019;11(7):574–585. doi: 10.4254/wjh.v11.i7.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Feng ZH, Li XB, Phan K, et al. Design of a 3D navigation template to guide the screw trajectory in spine: a step-by-step approach using Mimics and 3-Matic software. J Spine Surg. 2018;4(3):645–653. doi: 10.21037/jss.2018.08.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Kashyap A, Kadur S, Mishra A, et al. Cervical pedicle screw guiding jig, an innovative solution. J Clin Orthop Trauma. 2018;9(3):226–229. doi: 10.1016/j.jcot.2018.07.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Corona PS, Vicente M, Tetsworth K, et al. Preliminary results using patient-specific 3d printed models to improve preoperative planning for correction of post-traumatic tibial deformities with circular frames. Injury. 2018;49(Suppl 2):S51–S59. doi: 10.1016/j.injury.2018.07.017. [DOI] [PubMed] [Google Scholar]
  • 71.Sun ML, Zhang Y, Peng Y, et al. Accuracy of a Novel 3D-Printed Patient-Specific Intramedullary Guide to Control Femoral Component Rotation in Total Knee Arthroplasty. Orthop Surg. 2020;12(2):429–441. doi: 10.1111/os.12619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Zhou F, Xue F, Zhang S. The application of 3D printing patient specific instrumentation model in total knee arthroplasty. Saudi J Biol Sci. 2020;27(5):1217–1221. doi: 10.1016/j.sjbs.2020.02.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Park JW, Kang HG, Kim JH, et al. The application of 3D-printing technology in pelvic bone tumor surgery. J Orthop Sci. 2021;26(2):276–283. doi: 10.1016/j.jos.2020.03.004. [DOI] [PubMed] [Google Scholar]
  • 74.Gomez JM, Estades FJ, Meschian CS, et al. Internal Hemipelvectomy and Reconstruction Assisted by 3D Printing Technology Using Premade Intraoperative Cutting and Placement Guides in a Patient With Pelvic Sarcoma: A Case Report. JBJS Case Connect. 2019;9(4):e60. doi: 10.2106/JBJS.CC.19.00060. [DOI] [PubMed] [Google Scholar]
  • 75.Salah M, Tayebi L, Moharamzadeh K, et al. Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg. 2020;42(1):18. doi: 10.1186/s40902-020-00263-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Alkhaibary A, Alharbi A, Alnefaie N, et al. Cranioplasty: A Comprehensive Review of the History, Materials, Surgical Aspects, and Complications. World Neurosurg. 2020;139:445–452. doi: 10.1016/j.wneu.2020.04.211. [DOI] [PubMed] [Google Scholar]
  • 77.Vidal L, Kampleitner C, Brennan MA, et al. Reconstruction of Large Skeletal Defects: Current Clinical Therapeutic Strategies and Future Directions Using 3D Printing. Front Bioeng Biotechnol. 2020;8:61. doi: 10.3389/fbioe.2020.00061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Xing F, Xiang Z, Rommens PM, et al. 3D Bioprinting for Vascularized Tissue-Engineered Bone Fabrication. Materials (Basel) 2020;13(10):2278. doi: 10.3390/ma13102278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 79.Rey F, Barzaghini B, Nardini A, et al. Advances in Tissue Engineering and Innovative Fabrication Techniques for 3-D-Structures: Translational Applications in Neurodegenerative Diseases. Cells. 2020;9(7):1636. doi: 10.3390/cells9071636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Boso D, Maghin E, Carraro E, et al. Extracellular Matrix-Derived Hydrogels as Biomaterial for Different Skeletal Muscle Tissue Replacements. Materials (Basel) 2020;13(11):2483. doi: 10.3390/ma13112483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Ettinger M, Windhagen H. Individual revision arthroplasty of the knee joint. Orthopade. 2020;49(5):396–402. doi: 10.1007/s00132-020-03908-6. [DOI] [PubMed] [Google Scholar]
  • 82.Levin D, Mackensen GB, Reisman M, et al. 3D Printing Applications for Transcatheter Aortic Valve Replacement. Curr Cardiol Rep. 2020;22(4):23. doi: 10.1007/s11886-020-1276-8. [DOI] [PubMed] [Google Scholar]
  • 83.Farmer ZL, Dominguez RJ, Mancinelli C, et al. Urogynecological surgical mesh implants: New trends in materials, manufacturing and therapeutic approaches. Int J Pharm. 2020;585:119512. doi: 10.1016/j.ijpharm.2020.119512. [DOI] [PubMed] [Google Scholar]
  • 84.Edgar L, Pu T, Porter B, et al. Regenerative medicine, organ bioengineering and transplantation. Br J Surg. 2020;107(7):793–800. doi: 10.1002/bjs.11686. [DOI] [PubMed] [Google Scholar]
  • 85.Mirchi N, Bissonnette V, Ledwos N, et al. Artificial Neural Networks to Assess Virtual Reality Anterior Cervical Discectomy Performance. Oper Neurosurg (Hagerstown) 2020;19(1):65–75. doi: 10.1093/ons/opz359. [DOI] [PubMed] [Google Scholar]
  • 86.Sadeghi AH, Taverne Y, Bogers A, et al. Immersive virtual reality surgical planning of minimally invasive coronary artery bypass for Kawasaki disease. Eur Heart J. 2020;41(34):3279. doi: 10.1093/eurheartj/ehaa518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Fertleman C, Aubugeau WP, Sher C, et al. A Discussion of Virtual Reality As a New Tool for Training Healthcare Professionals. Front Public Health. 2018;6:44. doi: 10.3389/fpubh.2018.00044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Creighton FX, Unberath M, Song T, et al. Early Feasibility Studies of Augmented Reality Navigation for Lateral Skull Base Surgery. Otol Neurotol. 2020;41(7):883–888. doi: 10.1097/MAO.0000000000002724. [DOI] [PubMed] [Google Scholar]
  • 89.Gibby J, Cvetko S, Javan R, et al. Use of augmented reality for image-guided spine procedures. Eur Spine J. 2020;29(8):1823–1832. doi: 10.1007/s00586-020-06495-4. [DOI] [PubMed] [Google Scholar]
  • 90.Hu HZ, Feng XB, Shao ZW, et al. Application and Prospect of Mixed Reality Technology in Medical Field. Curr Med Sci. 2019;39(1):1–6. doi: 10.1007/s11596-019-1992-8. [DOI] [PubMed] [Google Scholar]
  • 91.Goo HW, Park SJ, Yoo SJ. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing. Korean J Radiol. 2020;21(2):133–145. doi: 10.3348/kjr.2019.0625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Salmas M, Chronopoulos E, Chytas D. Comment on: “A Novel Evaluation Model for a Mixed-Reality Surgical Navigation System: Where Microsoft HoloLens Meets the Operating Room”. Surg Innov, 2020:1611082121 [DOI] [PubMed]
  • 93.Wu X, Liu R, Yu J, et al. Mixed Reality Technology Launches in Orthopedic Surgery for Comprehensive Preoperative Management of Complicated Cervical Fractures. Surg Innov. 2018;25(4):421–422. doi: 10.1177/1553350618761758. [DOI] [PubMed] [Google Scholar]
  • 94.Gu Y, Yao Q, Xu Y, et al. A Clinical Application Study of Mixed Reality Technology Assisted Lumbar Pedicle Screws Implantation. Med Sci Monit. 2020;26:e924982. doi: 10.12659/MSM.924982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Chytas D, Chronopoulos E, Salmas M, et al. Comment on: “Intraoperative 3D Hologram Support With Mixed Reality Techniques in Liver Surgery”. Ann Surg. 2021;274(6):e761–e762. doi: 10.1097/SLA.0000000000004157. [DOI] [PubMed] [Google Scholar]
  • 96.Zeiger J, Costa A, Bederson J, et al. Use of Mixed Reality Visualization in Endoscopic Endonasal Skull Base Surgery. Oper Neurosurg (Hagerstown) 2020;19(1):43–52. doi: 10.1093/ons/opz355. [DOI] [PubMed] [Google Scholar]
  • 97.Wu X, Liu R, Yu J, et al. Mixed Reality Technology-Assisted Orthopedics Surgery Navigation. Surg Innov. 2018;25(3):304–305. doi: 10.1177/1553350618771413. [DOI] [PubMed] [Google Scholar]
  • 98.Yoshida S, Sugimoto M, Fukuda S, et al. Mixed reality computed tomography-based surgical planning for partial nephrectomy using a head-mounted holographic computer. Int J Urol. 2020;26(6):681–682. doi: 10.1111/iju.13954. [DOI] [PubMed] [Google Scholar]
  • 99.Rojas ME, Cabrera ME, Lin C, et al. The System for Telementoring with Augmented Reality (STAR): A head-mounted display to improve surgical coaching and confidence in remote areas. Surgery. 2020;167(4):724–731. doi: 10.1016/j.surg.2019.11.008. [DOI] [PubMed] [Google Scholar]
  • 100.Held J, Yu K, Pyles C, et al. Augmented Reality-Based Rehabilitation of Gait Impairments: Case Report. JMIR Mhealth Uhealth. 2020;8(5):e17804. doi: 10.2196/17804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Chen PJ, Penn IW, Wei SH, et al. Augmented reality-assisted training with selected Tai-Chi movements improves balance control and increases lower limb muscle strength in older adults: A prospective randomized trial. J Exerc Sci Fit. 2020;18(3):142–147. doi: 10.1016/j.jesf.2020.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Hashimoto DA, Witkowski E, Gao L, et al. Artificial Intelligence in Anesthesiology: Current Techniques, Clinical Applications, and Limitations. Anesthesiology. 2020;132(2):379–394. doi: 10.1097/ALN.0000000000002960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Seger C, Cannesson M. Recent advances in the technology of anesthesia. F1000Res. 2020;9:F1000. doi: 10.12688/f1000research.24059.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Kamdar N, Jalilian L. Telemedicine: A Digital Interface for Perioperative Anesthetic Care. Anesth Analg. 2020;130(2):272–275. doi: 10.1213/ANE.0000000000004513. [DOI] [PubMed] [Google Scholar]
  • 105.Poncette AS, Mosch L, Spies C, et al. Improvements in Patient Monitoring in the Intensive Care Unit: Survey Study. J Med Internet Res. 2020;22(6):e19091. doi: 10.2196/19091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Angehrn Z, Haldna L, Zandvliet AS, et al. Artificial Intelligence and Machine Learning Applied at the Point of Care. Front Pharmacol. 2020;11:759. doi: 10.3389/fphar.2020.00759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Dai B, Yu Y, Huang L, et al. Application of neural network model in assisting device fitting for low vision patients. Ann Transl Med. 2020;8(11):702. doi: 10.21037/atm.2020.02.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Averta G, Della SC, Valenza G, et al. Exploiting upper-limb functional principal components for humanlike motion generation of anthropomorphic robots. J Neuroeng Rehabil. 2020;17(1):63. doi: 10.1186/s12984-020-00680-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Zhao Y, Liang C, Gu Z, et al. A New Design Scheme for Intelligent Upper Limb Rehabilitation Training Robot. Int J Environ Res Public Health. 2020;17(8):2948. doi: 10.3390/ijerph17082948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.De CH, Corradi F, Smeets C, et al. Wearable Monitoring and Interpretable Machine Learning Can Objectively Track Progression in Patients during Cardiac Rehabilitation. Sensors (Basel) 2020;20(12):3601. doi: 10.3390/s20123601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Ramezani R, Zhang W, Xie Z, et al. A Combination of Indoor Localization and Wearable Sensor-Based Physical Activity Recognition to Assess Older Patients Undergoing Subacute Rehabilitation: Baseline Study Results. JMIR Mhealth Uhealth. 2019;7(7):e14090. doi: 10.2196/14090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Bajorath J, Kearnes S, Walters WP, et al. Artificial Intelligence in Drug Discovery: Into the Great Wide Open. J Med Chem. 2020;63(16):8651–8652. doi: 10.1021/acs.jmedchem.0c01077. [DOI] [PubMed] [Google Scholar]
  • 113.Brown N, Ertl P, Lewis R, et al. Artificial intelligence in chemistry and drug design. J Comput Aided Mol Des. 2020;34(7):709–715. doi: 10.1007/s10822-020-00317-x. [DOI] [PubMed] [Google Scholar]
  • 114.Zhavoronkov A. Medicinal Chemists versus Machines Challenge: What Will It Take to Adopt and Advance Artificial Intelligence for Drug Discovery? J Chem Inf Model. 2020;60(6):2657–2659. doi: 10.1021/acs.jcim.0c00435. [DOI] [PubMed] [Google Scholar]
  • 115.Russo G, Reche P, Pennisi M, et al. The combination of artificial intelligence and systems biology for intelligent vaccine design. Expert Opin Drug Discov, 2020:1–15 [DOI] [PubMed]
  • 116.Fernandez A. Artificial Intelligence Teaches Drugs to Target Proteins by Tackling the Induced Folding Problem. Mol Pharm. 2020;17(8):2761–2767. doi: 10.1021/acs.molpharmaceut.0c00470. [DOI] [PubMed] [Google Scholar]
  • 117.Liang G, Fan W, Luo H, et al. The emerging roles of artificial intelligence in cancer drug development and precision therapy. Biomed Pharmacother. 2020;128:110255. doi: 10.1016/j.biopha.2020.110255. [DOI] [PubMed] [Google Scholar]
  • 118.Takakusagi Y, Takakusagi K, Sakaguchi K, et al. Phage display technology for target determination of small-molecule therapeutics: an update. Expert Opin Drug Discov, 2020:1–13 [DOI] [PubMed]
  • 119.Awad A, Fina F, Goyanes A, et al. 3D printing: Principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 2020;586:119594. doi: 10.1016/j.ijpharm.2020.119594. [DOI] [PubMed] [Google Scholar]
  • 120.Pandey M, Choudhury H, Fern J, et al. 3D printing for oral drug delivery: a new tool to customize drug delivery. Drug Deliv Transl Res. 2020;10(4):986–1001. doi: 10.1007/s13346-020-00737-0. [DOI] [PubMed] [Google Scholar]
  • 121.Tsintavi E, Rekkas DM, Bettini R. Partial tablet coating by 3D printing. Int J Pharm. 2020;581:119298. doi: 10.1016/j.ijpharm.2020.119298. [DOI] [PubMed] [Google Scholar]
  • 122.Cheng N, Kuo A. Using Long Short-Term Memory (LSTM) Neural Networks to Predict Emergency Department Wait Time. Stud Health Technol Inform. 2020;272:199–202. doi: 10.3233/SHTI200528. [DOI] [PubMed] [Google Scholar]
  • 123.Nas S, Koyuncu M. Emergency Department Capacity Planning: A Recurrent Neural Network and Simulation Approach. Comput Math Methods Med. 2019;2019:4359719. doi: 10.1155/2019/4359719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Saab A, Saikali M, Lamy JB. Comparison of Machine Learning Algorithms for Classifying Adverse-Event Related 30-Day Hospital Readmissions: Potential Implications for Patient Safety. Stud Health Technol Inform. 2020;272:51–54. doi: 10.3233/SHTI200491. [DOI] [PubMed] [Google Scholar]
  • 125.Lin YW, Zhou Y, Faghri F, et al. Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory. PLoS One. 2019;14(7):e218942. doi: 10.1371/journal.pone.0218942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Wu D, Xiang Y, Wu X, et al. Artificial intelligence-tutoring problem-based learning in ophthalmology clerkship. Ann Transl Med. 2020;8(11):700. doi: 10.21037/atm.2019.12.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Yang YY, Shulruf B. Expert-led and artificial intelligence (AI) system-assisted tutoring course increase confidence of Chinese medical interns on suturing and ligature skills: prospective pilot study. J Educ Eval Health Prof. 2019;16:7. doi: 10.3352/jeehp.2019.16.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Mirchi N, Bissonnette V, Yilmaz R, et al. The Virtual Operative Assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine. PLoS One. 2020;15(2):e229596. doi: 10.1371/journal.pone.0229596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Dekker I, De Jong EM, Schippers MC, et al. Optimizing Students’ Mental Health and Academic Performance: AI-Enhanced Life Crafting. Front Psychol. 2020;11:1063. doi: 10.3389/fpsyg.2020.01063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Bertin H, Huon JF, Praud M, et al. Bilateral sagittal split osteotomy training on mandibular 3-dimensional printed models for maxillofacial surgical residents. Br J Oral Maxillofac Surg. 2020;58(8):953–958. doi: 10.1016/j.bjoms.2020.04.039. [DOI] [PubMed] [Google Scholar]
  • 131.Bohl MA, McBryan S, Pais D, et al. The Living Spine Model: A Biomimetic Surgical Training and Education Tool. Oper Neurosurg (Hagerstown) 2020;19(1):98–106. doi: 10.1093/ons/opz326. [DOI] [PubMed] [Google Scholar]
  • 132.Sappenfield JW, Smith WB, Cooper LA, et al. Visualization Improves Supraclavicular Access to the Subclavian Vein in a Mixed Reality Simulator. Anesth Analg. 2018;127(1):83–89. doi: 10.1213/ANE.0000000000002572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Vaishya R, Javaid M, Khan IH, et al. Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab Syndr. 2020;14(4):337–339. doi: 10.1016/j.dsx.2020.04.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Zhang HT, Zhang JS, Zhang HH, et al. Automated detection and quantification of COVID-19 pneumonia: CT imaging analysis by a deep learning-based software. Eur J Nucl Med Mol Imaging. 2020;47(11):2525–2532. doi: 10.1007/s00259-020-04953-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Sakagianni A, Feretzakis G, Kalles D, et al. Setting up an Easy-to-Use Machine Learning Pipeline for Medical Decision Support: A Case Study for COVID-19 Diagnosis Based on Deep Learning with CT Scans. Stud Health Technol Inform. 2020;272:13–16. doi: 10.3233/SHTI200481. [DOI] [PubMed] [Google Scholar]
  • 136.Mashamba TP, Drain PK. Point-of-Care Diagnostic Services as an Integral Part of Health Services during the Novel Coronavirus 2019 Era. Diagnostics (Basel) 2020;10(7):449. doi: 10.3390/diagnostics10070449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Mohanty S, Harun AR, Mridul M, et al. Application of Artificial Intelligence in COVID-19 drug repurposing. Diabetes Metab Syndr. 2020;14(5):1027–1031. doi: 10.1016/j.dsx.2020.06.068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Ke YY, Peng TT, Yeh TK, et al. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed J. 2020;43(4):355–362. doi: 10.1016/j.bj.2020.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Kim J, Zhang J, Cha Y, et al. Advanced bioinformatics rapidly identifies existing therapeutics for patients with coronavirus disease-2019 (COVID-19) J Transl Med. 2020;18(1):257. doi: 10.1186/s12967-020-02430-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 140.Arash KA, Julia W, Milad S, et al. Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Front Artif Intell. 2020;3:65. doi: 10.3389/frai.2020.00065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Elaziz MA, Hosny KM, Salah A, et al. New machine learning method for image-based diagnosis of COVID-19. PLoS One. 2020;15(6):e235187. doi: 10.1371/journal.pone.0235187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Mali SN, Pratap AP. Targeting infectious Coronavirus Disease 2019 (COVID-19) with Artificial Intelligence (AI) applications: Evidence based opinion. Infect Disord Drug Targets. 2021;21(4):475–477. doi: 10.2174/1871526520666200622144857. [DOI] [PubMed] [Google Scholar]

Articles from Current Medical Science are provided here courtesy of Nature Publishing Group

RESOURCES